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Abstract

We exnibit a dual of a stochastic program with simple recourse -- with random
parameters in the technoloty matrix and the right-hand sides,and with quadratic
recourse costs -- that is essentially a deterministic quadratic program except
for some simple stochastic upper bounds. We then describe a solution procedure
for problems of this type based on a finite element representation of the dual

variables.
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We consider the following class of quadratic stochastic programs with simple
recourse:
(0.1) find xe R" such that

0 sxj grj, SEC R I |

n
Ej=i 2i5%5 < boi=1,...,m

and

n j .2 2 -1
Xj=lfcjxj_2rj ij—E{-fh=lqh(m)eh8(eh vh(m)}
is maximized, where
n
(0.2) v, () = Zj=1th}. (@) x;-p, ().
The function 8 is defined by
6(t) = [0 if T 510,
122 ifost<1,
T /2 dif o= ls
so that the recourse cost function
-1
Phv) = qpey 8 (e vp)

has the form

e

0.3 Figure: recourse cost function
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In the limit as e, goes to 0, the function Py tends to the piecewise

linear function pi with

z ;
Dh[vh) =0 if vhé 0,

= qu vy if Vi, 2 0.
which brings us to the case of stochastic programs with simple recourse and
]inear recourse costs [1]. Note that there is no loss of gemerality in having
pﬁ and Dh with slope 0 when vhso. If the original problem is not of this form,
a simple transformation involving an adjustment of the (cj,jzl,...,n) and the
{qh,h=1,...,£) will reduce the original problem to the canonical form (0.1).
The coefficients

qh('}, h=1,...,%

thj{-), [0 (PR, R ¢ B

ph(-), h=1,...,%
are random variables with known distribution function. We assume that these
random variables have second moments so that the vhf-) defined through (0.2)
also have finite second moments. Consequently the expectation that appears in
the objective of (0.1) is well-defined. We shall assume that {0.1) is solvable,

i.e., that exists a vector x* that solves (0.1); in particular this implies that

the linear system
0<x.sT j=1 n; m oo . x.<b., i
<X,<T., s weyTl 3=1215%3 T yeen
is feasible. The coefficients rj’dj for j=1,...,n, and ey for h=1,...,% as well
as the random variables qh(-) are strictly positive. In particular this guar-
antees the concavity of the object.
We regard model (0.1) as the quadratic version of the simple Tecourse prob-
lem [2] involving Tandom coefficients in the technology matrix, the cost and the
right hand sides.

In the next section we show that the following problem (0.4) is dual to

the quadratic stochastic programs with simple recourse:
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(0.4) find yERm and z(-): Q+RR such that

yiz 0 I=lywwsm
Oszh(m) sqh(w) a.s. h=1l,...,%
and
m 2 eh 2
Liopbsys* Elhet {ph(‘””h(“‘)" 2q, (@) Zh(“)}
n -1
+) . .d.68(d . w,
L8085 uy)
is minimized, where j=1,...,m,
= . .y m L
(0.5) wj—cj Zi=laijyi—EfEh=lzh[u)thj[w)).

Although this problem is related to the dual problem that would be obtained by a
straight forward application of the results of [3] these are significant differ-
ences. It is the specific structure of this dual problem which is exploited in
the algorithmic procedure described in Section 2.

Our work was originally motivated by a problem coming from the division
of IIASA (International Institute for Applied Systems Analysis) dealing with
Resources and Environment; given the hydrodynamic flow, highly affected by
atmospheric conditions, between subbasins of a given shallow lake, one needs to
design (size) and locate tertiary treatment plants that will filter the inflow
so as to minimize (in a least square sense) the deviation between the observed
concentration of certain pollutants and given desirable levels. Here both p(*)

and T(-) were random but q was fixed (nonstochastic).

1. DUALITY AND ITS DERIVATION
The primal problem (0.1) and dual problem (0.4) are linked together as the

two halves of a certain minimax problem. Let
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(1.1) X

0]

{x=(x,,...,% )ERn | 0<x.<r.},
1 n j
- = m
Y"{Y [YI:'--;Ym)ER ‘ OSYJ}:
4.
z = {z(-)=[zl(-),...,zl(-}]:Q+R [o“h(m)mh(w) 5B
(where the functions zh(') are assumed to be measurable and are in fact square

integrable, because the functions qh(-) are). Define the function L on XxXYxZ by

syt | _dj_ﬂfi[ ‘h 2
(1.2) L(x,y,z( }]—Zj=1lc.x.- ; ij +E[Zh=1 ph[m]“h(m)+§a;Taﬁg-h(m)]}

* 21213’1"{{3‘21 [Eir:lyiaij * E{Zhilzh(m)thj [‘”)}]"j .

This function is obviously quadratic concave in x for fixed {y,z(°)] and quadratic
convex in {y,z(-)] for fixed x. Two optimization problems are naturally associated
with it, namely
(1.3) maximize £(x) over all xeX, where

f(x)=inf[y,z(,n£sz L(x,y,z())
and

minimize g[y,z(')] over all [y,z(-))erZ, where

8y, 20} sup, oL (x,7,2)).

As is well known in optimization theory, no matter what the choice of the sets

X,Y and Z and the formula for L, the saddlepoint condition

i..5) L(x,7,2() ¢ L{%,7,2() sL{x,y,2(+)) for all xe X, (y,z(:))e¥xL

is satisfied by elements xe X and (y,z(*)) e YxZ if and only if x gives the max-
imum in problem (1.3), [?,E(-)) gives the minimum in problem (1.4) and the opti-
mal values in these two problems are equal.

In fact (1.3) and (1.4) can be identified with our primal and dual problems
(0.1) and (0.4), so the assertions just made are true of the latter. This is

shown by direct calculation: one has from the formulas in (1.3) and (1.4) and
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the definitions (1.1) and (1.2) that
n dj 2 n 1
ijlfcjxj-i;; xj] -E {Xh=lqh{m)eh8[eh vh(w)]}

f =
(x) if Z.n a,.x. sb. for i=1,...,m
j=1"1j7j 1

- otherwise
where vh(w) is given by (0.2), and

)5 ™ 2 h 2
g(r,2()) = 1i21byy; + B Bl (o )z () + 20 @ n®
h

n -1

+ ). r.d.B(d, w.
IJ=1JJ [J J)’

where wj is given by (0.5). The calculation makes use of the fact that the con-

jugate of the function 6 is

JtZ/Z if 0st<1,
8% (1) = sup__o {tT-8(T)} = l

® ptherwise

DUALITY THEOREM. Suppose that the primal problem (0.1) is feasible, i.e., that
there exists xeR" satisfing

n

1.6) 0<x.sr. for j=1,...,n, and a..x, s<b. for i=1,...,n.
¢ g = By o L1457 505 ;

Then the primal problem (0.1) has an optimal solution X, the dual problem (0.4)
has an optimal solution (¥,%(+)), and the optimal values in the two problems are
equal. Moreover, x and (y,z(*)) are optimal if and only if the saddlepoint com-

dition (1.5) is fulfilled.

PROOF. These assertions will follow from the general observations above, once
it is shown that there do exist xe X and (¥,Z(+)) e YxZ satisfying the saddle-
point condition., To show this we consider an auxiliary minimax problem in

terms of the function
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d e

% 2
Lo{x,z(')) = Ejzl[cjxj -E;;-xj] +E {Eh=1fph(wjzh(m)-+§a;%aj-zh(m)}}

n 2
+Zj=lE {Xh=lzh(w)thj(m)}xj

on Xon, where XO consists of the vectors x which satisfy (1.6). (Note that LO
differs from L only in the absence of all y terms.) Again Lo[x,z(-}} is con-
cave in x and convex in z(+) and it is continuous in x and z(*) relative to the
usual topology on X< R™ and the norm topology that Z receives as a subset of a
Hilbert space of square integrable functions. Any convex function which is con-
tinuous in the norm topology on a Hilbert space is also lower semicontinuous in
the weak topology, and in the latter topology the convex set Z is compact. Of
course the convex set XD is also compact. Thus we are dealing with a function
on a product of two nonempty compact convex sets, which is in particular upper
semicontiﬁuous and concave in the first argument and lower semicontinuous and
convex in the second. According to the,minimax theorem of Ky Fan, see [4],such
a function is sure to have a saddlepoint.

Denote such a saddlepoint by (x,2(+)) : one has xeX, z(*)eZ and
(1.7) Lofi,z(-)] < Lo[i,i(-)] sLo[i,z{-)) for all xeX_, z(*) € Z.
Since the quadratic concave function x}-Lo[x,E(-)) attains its maximum at x rela-

tive to the set Xo, j.e., relative to the linear constraints (1.6), there exists

a Lagrange multiplier vectoT y e Y such that

(1-8)  r (x2C2) z;:l)_ri(b.l—):jzlaijxj]

s - n =
L, (RE02) Ziflyi(bi_zjﬂaijxj}

< Lo{i’z(')) g Ziziyi(bi-2j21aijxj]

for all xe X and ye Y.
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Inasmuch as

m -

LO(X»£(°)) # Ei:lyi(bi_zjilaijxj] = L{x,y,2(")

by definition, the combination of (1.7) and (1.8) is equivalent to the desired

saddlepoint condition (1.5) thus (x,y,z(*)) is a saddlepoint of L on Xx¥xZ. 0

COROLLARY. Suppose (},E{-)] is an optimal solution to the dual problem (0.4).

Then the wnique optimal solution x to the primal problem (0.1) is given by

(1.9) x

1]

i3 2r. 73

d.
argmax {w.x. - —Lx? }
J

0 if w. <0
]

r.w./d. if 0sw. <d.
F 3 2 J 3
r. if w.>d.,

] ] ]

where wj is given by (0.5).

The corollary follows from the saddlepoint condition: L(x,},i(-)] must achieve
its maximum over X at X, and this expression is strictl? concave,

d.
_=142),
2rj ]

Ly, 20) = LT, (e
2. A SOLUTION PROCEDURE FOR THE DUAL PROBLEM
We are concerned with problem (0.4), repeated here for convenient reference,
(2.1) find y ERT and z(+): Qﬂ-Ri measurable such that
0< zh(m) sqh(m] a.s. hely. cnsk
and ¢(y,z) is minimized,
where

m 2 *h .2
(2.2)  ®(y,z)= ], by + L E Py ()2, () * 7oy ()

N oo [ e,
+zj=lr3 Je[dl WJ]
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with, for j=1,...,n
m
2« i
(2.3) Wy Cy 21 123575 " {Zh i h(w)thJ(u)}

Here 0 denotes the support (the smallest closed set of measure 1) of the random
variables. It has been shown [5] that the sclution to (2.1) remains unaffected
if the condition

0< zh(u} < qh(m) a.s.
is replaced by the condition

(2.4) 0s zh(w)s qh(w) for all we Q.

It is this last version of these constraints that we shall use.
The main idea of the algorithm is to substitute for (2.1) a finite dimen-
sional approximation based on a finite element representation of (2.1) for z.

We restrict zh(-J to the linear span of a finite collection of functions, i.e.,

2, () = Doy g ()

where the zhk(-) are given and the Ahks R. With this representation for z, prob-

lem (2.1) becomes:

(2.5) find ye R] and My € R for k=1,...,v, h=l,...,%, such that
v
DSZk:llmchk(“) s q, () for all weQ, g (R
. T m v 1 2
Wy =< zi=1aijy1 Zk Mk E chk(m)t (@)} for j=1,...,n,

and ¢”(y,\) is minimized
where

(v, =L, by

L v
* The1 ka1 B {onk (@2P, (92

e
+ Ty (B 1Ek'—1 nk i {ZQ ) Hk(m)chk'[m]}]

]

« 1.2 r.a.0(es

j=1"373] JJ
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Let us denote the integrals that appear in (2.5) by

Ehkj =E{g,, () thj (W)},

lshk = E{Chk [UJ] Ph [LU) ] s

and
e

- _ h
ehkk‘ =E {W Chk[m)ghk' (UJ}},
we then get the following form for (2:5)3

(2.6) find ye R and Ak € R for k=1,...,v, h=1,...,2 such that for

m 2 v n
W, = e 3 a W e C = i
5= %5 Lia12i57; Xh=1zk=17‘hkthkj for 3=1,...,n,
'y} 4% ninimized
and

(2.7) Oszk:llhkchk(w) < q (W) for all weQ, h=l,...,%.

The function ¢v takes on. the form
v _v Vo e v g v -
(2.8) ¢ (y,A) = Eh=1 [zk=l Phk )‘hk * f‘g'zk=1 Zl»c':l Chkk! Ahk Ahk' )

Dbyl

n -1
1=1 P4 '=lrjdj 6 (dj wj)

]
Except for the stochastic constraints (2.7) this is a deterministic quadratic pro-
gram for which efficient subroutine are available; for example MINOS [6]; recall
that 8 is a piece-wise quadratic and linear function, Thus the only serious
obstacle is the fact that the simple upper-bounding constraints (2.7) are stochas-
tic. We overcome this difficulty by constructing the representations of the func-
tions zh(-) so that they automatically satisfy these constraints.

Suppose that functions Ty @re themselves bounded below by 0 and above by
qy, s then the constraints(2.7) will be satisfied if rather than taking linear com-

binations of the functions Chk we limit ourselves to comvex combinations. Assuming

that we proceed in this fashion, problem (2.6) becomes:
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(2.9) find ye RT and Ahks R, for k=1,...,v; h=1,...2 such that

Y

- m 2‘ oy =
¥y = j'):i=laijyi_zh=lzk=l *nk Chkj for J=l.....m,

v
1-Ek:1 AMigr b=l,....8,

and ¢”(y,\) is minimized.

The choice of the functions Chk is adaptive. We view problem (2.9) as the
v-th iteration of an approximation process, in the sense that the convex combi-
nation of the functions chk only yields a finite element representation of the
functions Z,- The choice of ch,v is such that it guarantees a decrease in the

value of ®(y,z) when the solution to the v-th quadratic program is used to repre-

sent z, i.e.,
Vs & W X
20 = B i ()
instead of the coefficients that would be generated through ealier versions of

(2.9); here ihk are the optimal solutions of (2.9). Let

S || U (8
]

be the (dual) multipliers associated with the equations

m L v “_
Wy = Cj'zi=laijyi = by bt M Yk A7Llaeeeam,

at the optimum. For h=1,...,%, we define

(2.20) &'} ) = qu ) o' (e} ([0 s @)k} - by (w)1)

where 8' is the derivative of 8, i.e.,

' (1) = (_0 if 1:<0,

T if 0=EtT=l,

Lﬁl if 21,

In view of (2.10), we always have that
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v+1
0L () sq ().

; \V
The functions g +l = [E;\{ﬂ,..,t;v;l) are such that

(2+11) CWI € argmin [rb[yv,r;) lo< &y, < qh(-}, h=1,...,L4].

To see this simply note that

3.5 . “h n o gl 5 8
a—zgqﬂ = ph+§; zh—szlrje [d.w.]

from which it follows that

L¢=eq_lz +p —znt X0
3z, hTh *h PR Li=1th5T

since 5.9 wj =thj and from (1.9) and the definition of 9' we get

Bzh
x.=r.8'[d_.lw.]= 0 if w.<0
o] 3 i
rd-lw, if 0ew, 2d,,
j j 3773
T, if d. <w..
LJ i

This then yields (2.10) since we obtain E\);l from the equation
ai $=0
h

if it turns out that the resulting value is between 0 and Qy -
E Vv 2
The choice of = guarantees that unless we already have found the optimal

solution, the new representation

v+l o ou+l .
zn (= i) A S ()

will yield an improved solution, here the th being the coefficients obtained by

solving (2.9), setting wv=v+1 in (2.9).
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The algorithm thus proceeds as follows:

Step 0. Choose any function Cl such that

0= C;(w)s g (W) h=l,...,L.
(say ci(m)z 0).

Set v=1.

Step 1. Solve (2.9), recording [x?, jzl,...,n] the dual variables associated to
the constraints defining Wi let & denote the optimal values of the A-

variables.

Step 2. Define £”*' through (2.10).

v+l v

& ; W
If ¢ h T Zkkhkchk’ terminate: the (xj, 3=1,...,n] solve problem (0.1).

Otherwise return to Step 1 with v=v+l.

Observe that having Cv+1 =7 implies that no function of type { can be found
that could give a representation for z generating a decrease in ¢. The fact that
the (x?, j=l,...,n] are then optimal solutions of the original problem (0.1) fol-
lows from the Duality Theorem of Section 1.

We conclude by making a few comments about implementation. First note that
to store the function gv it really suffices to store the finite dimensional vector
(Xg, j=1,...,n); the definition of QU, through (2.10), corresponds to a simple proba-

v _
bilistic subset (event) of Q completely determined by x . This is also all that

is necessary to compute the quanities thkj ﬁhk and éhkk' which are obtained by

’
numerical integration. Finally, one should not really rely on the stopping crite-
rion given in Step 2, but on bounds that can be obtained from the optimal value of

(2.9) similar to those used in the Frank-Wolf algorithm [7].
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