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Abstract

l{e exhibit a dual of a stochestic piogian \rith sinple lecourse -- rith randor!

palaneters in thc technoloty atri:( ana lhe right-hand sides,and xith quadlatic

recourse costs -- that is essentially a detelninistic quadratic Dlogral! except

for sode sirfiple stochastic uppei bormds. t{e then describe a solu!ion procedure

for +roblens of this t).pe based on a finite elenent representation o€ the dual
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of quadratic stochastic plogtans with sinDte
We consider the following class

recou!se:

(0.11 find xe Rn such that

O.*j =.j, j=1,...,n
FN/. a- -x--l=r 1J J s b. i=1,...,n

and

is naxinized, where

(0.2) vh(o) = Irlrtn, (r,),r-nnto).

The function 0 is defined by

s(.r) = lo if r<0,
t^
l,'/, if osrst,
I

j1- r/z ie r>r;
so lhat the aecourse cost function

on(v;)=onene(e-jvn)

has the forll

Irl, r", ', - $-r'r -, { Inlron r,r 
"nu 1qr"nr,r}

0.3 Figure: recoutse cost function

t
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In the lidit as eh goes to 0, the function ph tends to the pieceHise

0
t inear function P; with

0

P;(vh) = 0 if vh<0,
= o-v- if v. >0.'hh n

vhich brings us to the case of stochastic prograns with si:nPle recou!se and

linear recourse costs [1]. Note that there is no loss of generality in having

p; and ph Llith sloDe O t]hen vh<o. If the oriSinal Probletn is not of this forrn.

a sinple transfornation involving an adjustnent of the (cj,j=1, ',n) and the

(qh,h=l,...,f) HiLl reduce the oiiginal problen to the canonical forn (0 1)'

The coefficien!s

qh(')' h=1""'1

i-r .' h=I,..,,1,
"hj\ /' J

Ph('1, h=1' " ',1

are randon variables with known distTibution functlon' lle assr'8re that these

random vatj.ables have second lnonents so that the vh(') defined through (0 2)

also have fi.ni.te second monents. Consequently the exPectation that aPPea:'s in

the objective of (O.I) is tfelL-defined. l{e shal1 assutre that (0'1) is solvable'

i.e., that exists a vectol xr that solves (0.1); in palticulaf this irnPlies that

the line3r: sYst ern

o<xj5rj, j=1,...,n; Ij-lr"rj"jsbi, i=1,.'.n,

is feasible. The coefficients r d, for i=I, ''n, and eh for h=l""'! as well

as the randorn variables 9;(') are strictly posilive' In palti'ular this guar-

antees the concavity of the object.

l,ve regard model (0.1) as the quaihatic velsion of the sirTrPle lecourse Prob_

lern [2] involving random coefficients in the technology rnalrix, the cost and the

right hand sides.

In the next seclion we show that the follov'ing problen (0 41 is dual to

the quadratic stochastic Plograns Hith simple iecoulse:



(o-4) find yeRn and z(.): flrRl such that

Ii>0 i=1,...,rn

0<zh(uJ)<qh(o) a.s. h=1,. . . ,!
and

f

Iil,t,r, * elnl, {pnt'l,nr,t-a;hf ,i.,}
F n ^-,-l+1. .r.cl.U{d. D l-J=rl J J i'

is loilinized, rrheie j=1,...,n,

(0.s) wi=c;-Irlra'r,-e(Inl,'nf'ttn,f't).

Although this problen is related to the dual problen that l{outd be obtained by a

stiaight for}ald application of the lesults of [3] these are si.gnificant differ-
ences. It is the speci.fic stncture of tris dual problen *hich i.s erploited i.n

the algorithrnic plocedure described j.n Section 2.

Our work was o!i.ginalIy notivated by a problen coning frorn the division

of IIASA (International Institure for Applied Systerns Analysis) dealing with

Resoulces and Environnent; given the hydlodfnanic f1oir, highly affected by

atnosphe:ic condj.tions, between subbasins of a given shallow 1ake, one needs to

design (size) and locate tertiary treatnenr pLants that wilt filter the inflow

so as to rnininize (i.n a least squale sense) the deviation betveen the obser:ved

concentration of certain pollutants and given desir.able levels. llere both p(.)
and T(.) lJele randon but q vas fixed (nonstochastic).

I. DUATITY AND ITS OERIVATION

The prilr]al problen (0.1) and dual problen (0.4) are Linked together as the

tuo halves of a certain hinjnax problem. Let
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(t.l) X= {x=(x1,...,xn) € Rn t0.x..r.},

v = { r= (rr,. . .,/r) € Rn I o<y.1,

z = { z(.)=[21(.) ,---,zr(.)),0*Rq I 0s zn(r,) <nn(.) a.s.)

(where the functions zh(') are assuned to be neasurable and are in fact squale

integrable, because the functions qh(') are). Define the function L on xxYxz b)

. .-"f d, "\ (-at "h 2-.li
(r. 2) r.k,y,'(.)) =l lr 

i" j.j 4 
-;] - E{161, 

In,,{.r'nr,)- 7qilrt,;(')l }

- Irirrrur-I,lr [Iilrvi"ij t t{lnlr 
'n r'l 'n, 

r'l)] ", '

This func!ion is obviously quadlatic concave in x foi fixed [y,z(')) and quadratic

convex in (y,z(')) for fixed x. Tlro oPtinization ploblens are natuially associated

with it, namely

(1.3) nar<inize f(x) ove! all x€X, Hhere

r(x) =inf(y, z t.))er*, t'(x,Y,z('))

and

mininize g(y,z(')) over all (v,21';)<Yxz, wtrere

g(y,z (')) =suP*.*L(*,Y,'(')) .

As is ee11 knoHn in optinization theory, no natter what the choice of the sets

x,Y and z and the formula for L, the saddlePoint condition

(1.s) L(x,t,;()) < L(i,t,;(')) s r.(i,v,z('l) for ar1 x€ x, (v,z(')JeYxz

is satisfj.ed by elenents xe X ana (i,i(')) ( YxZ if and onty if i gives the max-

inu'n in probLero (1.3), (t,t(')l gives the nrinirnurn in probletn (1'4) and the oPti-

nral values in these two Problens are equal.

In fact (1.3) and (1.4) can be idenlified slth our: Prina1 and dual pioblens

(0.1) and (0.41 , so the asseltions just nade are true of the latter' This is

shohr by direct calculation: one has from the fornulas in (1 3) and (1 4) and
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the definitions (1.1) and (I.2) that

l. n , di

lIj:, 
Gj-j I -i, - E {Ihlrqh(')"he(";1"nr,l)}

f(x) = {""' I tf ljl,"rj'j <b. for i=1,...,r,r

l- - oth"t,uis"

where vn(o) is given by (0.2), and

e(y,zt.)J = Ii-lrurrr* u 
{Inlr(ont,t,nr,l 

.-ft; ,nr'tt}

.Ir-lr"raro(air*r) 
'

uhere 1{. is given by (0.5). The calculation ,Ekes use of the fact that
jugate of the function € is

er (t) = supr€{ {tr-e 1r; 1 =

t212 if ostst,

DUALITY THEORE|4. Suppose tlnt
xhere eiLsxs x€R sataa!-Lng

the Wnnpl probl,en (0-1) is feaibLe, i.e., that

the con-

(1.6) ot*j=rj for 3=t,-..,n,

Then the pz:inal pz'oblem (O.I') ha

has @t optin@l soluti.on (j ,i()) ,

equaL, Moreoue?, |. dtld (i,;O)

dition (r.s) ie fulfilled.

and Ln,a. .x. <b. for i=1.....n.-l=r 1J J J'
ot optinal soLution i, the &/aL ptublan (0.4)

@1d tlE optinal oaTues i.i. the bto pt'oblens are

are aptit@L if and only if the sddAlepoint cofl-

PR00F. These assertj-ons qlil1 fol1ow fTon the general observations above, once

j.t is shorm that there do exist i< x ana (i,i(.)) € Yxz satisfying the saddle-

point condition. To show thi.s we consider an auxiLi.ary nininax problen j.n

terns of the fulction
+.



r.o[x,z(')) = Iilr[.3*; - * -,, - e {in1r[rnr'l'nr'l.if it'lt]

" " - t. s .l'I,lt r 
i)n=-t'nr')tn, 

('r)/'l

on XoxZ, where Xo consistsofthe vectots x which salisfy (1'6) (Note that Lo

differs fron L only in the absence of all y tertns ) egain Lo(x'z(')) is con-

caveinxandconvexinz(.)anditiscontinuousinxandz(.)lelativetothe

usual topology on XcRn and the norlll toPology that z receives as a subset of a

Hj.lbelt sPace of square integr:ab1e flmctions Any convex function \{hich is con-

tinuous in the notn topology on a Hilbert space is also loHel semicontinuous in

the Heak toPology, and in the lalter topology the convex set Z is conpact ' Of

coulse the convex set Xo i5 also conpact Thus vre are dealing with a function

on a product of two nonenPty cornPact convex sels' which is 
't? 

particuLar upPel

seniconti.nuous and concave in the first argrnent an'l Lover. Senicontinuous and

convexinthesecond.Accordingtothe.nininaxtheoreEofKyFan'see[4],such

a function is sule to have a saddlePoint'

Denote such a saddlePoint uv (i,if'lJ : one has i€ x' ;(') € z and

(r.7) Lo(i,z(')) s r,o(i,i(')) < r-o(i'z(')) for al1 x< Xo' z(') e z'

since the quadratic concave function xl'Lo(x'i(')l attains its naximum at i rela-

tive to the set Xo, i.e., relative to the lineai constraints (1 6) ' there exists

a Lafrange nultiplie! vectol le Y such that

(1 .8)

s ro [i,i(')) . Iilril (br-l;ir"iji;)

s r.o(i,;(.)) r Iiirvi (or-Itlr.iti:)

for all x€ X and Y€ Y.
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Inasrnuch as

Lo (*, i i') ) .Irlrrrfur-iri,.1.;*,,) = r.(*,r,ir.))

by definition, the conbination of (1.7) and (1.8) is equivalent to the desired

saddlepoint condition (1.5) thus (i,t,;(.)) is a saddlepoint of L on Xxyxz. D

C0R0LLARY. Suppose (y,i1.1) is @1 optinal solutian to the dual p"oblen (0,4).

Then the tmique optinwl soLution x to ttLe prLnal prcblen (0.1) is gi,ten by

r d. ^'(I.9) i. - "rer"* {*.*. - Jrl I) - \)) zrj t)

fo ir,..o
= lr.n.la. if o < w- r d.

IJJ,J J J

[r, if w. > d.,

ohere w. is giaen by (0.5) -

The corollary follows fron the saddLepoint condition: L(x,;,;(.)J nmst achieve

its naxinun over X at i, and this expression j.s striclly concave,

a
L[x,i,r(.)) =1,1,("1,1 +^;).

2. A SOLUTION PROCEDURE FOR THE DUAL PROELE}I

I|ie are concened with problem (0.4), r:epeated here for convenient reference,

(2.1) find y e Rf and z(.J: Q* R! rneasurable such that

0 < zh({,r) < qh(or) a.s. h=l,...,1

and 0(y, z) is nininized,

Hhere

(2.2) 0 [y, z) =
"h 2- .l* zc;i;I 'r''t'r1

-o (
Ii=1birt * )61, e 

{nn 
(o) zn (tu)

. -1 .
) -" r.d.0ld.^w.l't=L)t') J',

:

:t
fi



with, for j=1,...,n

(2.3) *, =.r-lf=r.rrri - t{lnlr,nt'l.n,r,l} .

Here Q denotes the suPport [the snallest closed set of neasule 1) of the iandon

variables. It has been shown [5] that the sotution to (2.1) renains unaffected

if the condition

0 < zh(o)) < qh(ur) a. s.

is reglaced by the condition

(2.4) 0szi(or)<9n(or) for all o€Q'

It i.s this last version of these constraints that we shall use'

The nain ldea of the alSorithn is to substitute fot (2'1) a finite dinen-

sj,onal approxj.nation based on a finite elenent tepresentation of (2'1) for z'

l{e lestrict zh(') to the linear span of a finite collection of functions, i'e',

, r.r=! v 1 r r.)-hr / 4k=r tk,hr\ z

where the !61(') are given anal the lnae R. Wi'th this lePresentation for z' prob-

len (2.1) becones :

(2.51 find vc Rm and )", € R fot k'1,...,V, h=1,...,1, such that
hX

0 r lk:1\kqhk(!r) < Qn(r,r) for all o€0, h=1,...,1

*. = ",-lrlr"rrrr-I*lr^n*u {qhk(o)thj (o)} ror j=1,...,n,

and ov (y, ).) is rninimized

o! 1y, r.; =frlrlrr,

- Inlrl*]rrr1. u { chk (or) Ph (ur) }

- In='r (Ik:, I*Y=,rnurn*, u {i$,n*.,.n*. ",})
* l.n- r.a.o [a llw.l .

")=!))'J )'



Let us denote the integrals that appear in (2.5) by

'lt; 
= E{r11(tu) tn, {'r) },

ihk = n{rhk (o)ph(uJl },
and

- , \L ]

"r,tr' = t t qifi .hk({'r)chk' (o).1'

we then get the fotlowing fonn for (2.5):

(2.6) find yeRn and lhk€ R for k=I,..-,!, h=1,...,f such that for

"i =';-Iilr'..,".-I',l,I,.l.,}r,uinri ror j=r,...,n.

Ov1y,t; is lliniJnized

and

, rV\2./) u s Z1=t4l,1(61(to) < 96(o) for alt oFn, h=r,...,!.

The function Ov takes on. the fol'r

(2.8) our",r; = Ir]r (Ir], rn* rn* - |I*1, I*y=, En*r, rn* ln*, )

Irl, trr, .Iilrr,a. o {a--r*.1

Except for the stochasti.c constraints (2.7) this is a deterninistic quadralic pro-
gran for vhich efficient subioutine are available; for exanrple MINOS [6]; recall
that € i.s a piece-uise quadratic and lineat function, Tius the only serious
obstacle i.s the fact that the siDple upper_bounding constraints (2.7) are stochas_

tic. llle overcome this difficulty by constructing the lepresentations of the func -
tions zn(.) so that they autonatically satisfy these constraints.

Suppose that functions ehk are themselves bounded below by 0 and above by

qh, then the constlaints(2,2) !ri11 be satisfied if rather than taking linea! con_

binations of the functions fhk we limit ourselves to ccmDet conbinations. Assuni.ng

that we proceed in this fashion, problen (2-6) becones:



(2-g) find ye Rf and lhk. R+ for k=1,,..,1); h=1,...1 such that

.D r f, ev .wj =ci - li=1aiir1 - l5=1 l1=1 lhkthkl fo" j=1,' ,n,

r=Irlr\r,h=1,...,.c,
. -v. .-and 0 (y,).) is rrininized.

The choice of the functions Ehk is adaptive. t{e view p]:obler, (2-9) as the

v-th itelation of an approxination process, in the sense that the convex conbi-

nation of the functions lhk only yields a fi.nite elernent representation of the

functions zh. The choice of (h,\, ia such that it guarantees a decrease in the

value of 0(y,z) whetr the solution to the v-th quadratic prograrn is used to repre-

sent z, i. e. ,

dr'l = Inlrin.en* r.l,

inrtead of the coefficients that would be generated thtougl ealiet vetsions of

(2.9); here lhk ale the optinal solutions of (2.9). Let

v_xj, J=r,...,n,

be the (dua1) nultipliers associated with the equations

rlr cl cv.e; = c;-/i=1ai;)ri - 2.6=1 l1=1 
^1,1 

t1,1.1' i=l '... 'n,

at the optinurn. For h=1,,. .,r,, !.e define

(2.I0) cvil {i,r) = cn{') e' (ef t[r]rtnrf,,r)xY-pn(o)l)

where 0' is the derivative of e, i.e.,

re'(r) = l0 if r<0,
I

lr if 0<riI,
I r it .rr.L

In viel{ of (2.10), r,te always have that



0sC-h'(.lsqh(.).

The flnctions 6u*1 = (61*1,..,e'f,l) are suci, tt,at

(2.11) qv'l ...grin [o(y!,g)losrl=ql('), h=1,...,r1 .

To see this sinply note that

a , "h F n - ,.-l \ a

4 
. = on- *r., 'tr- lj=r'j o' tn j *ji4 "j

from l.lhich it follows that

=L o = 
". 

o I 
I ,- * o. - I n v

azh * - 'h! h 'h - Yh - ,j=Ithjxj

sin." j- w. = tL. and fron (.t.9) and ihe definition of gi we getdz- 1 nl

. -r - f-
x . = r, e ' la jw, ) = | o if w.<0,

lr.a-Ir- if osw.sd.-
I r r r t'
It. if d.<t/..
Lr 1 r

This then yields (2.10) since we obtain eull f"or the equation

=: 0= 0
n

if it tuns out that the resulting value is betreen 0 and qh.

The choice of qv*1 g,.ra.ar,t"us that unless l.le aL'eady have found the optinal

solution, the new representation

'l-rt'r = Iil| \* enur.r

lfi11 yield an inrproved solution, here the ihk being the coefficients obtajned by

solving (2.9), setting v=v+l in (2.9).

f

$



Step 0.

Step 1. Solve (2.9) ,

the constraints

var:i.ab1es.

Step 2. Define

_n

Othenrise

:

The algor:ithm thus proceeds as follows:

Choose any ftrrction (1 such that

o s Ci(o) < qh (ur) h=r,...,t.

[s"y 6lqrl: o] .

Set v= l-

2U

/V -record ing txj , J:I....,nJ

defining v.. Let i denote

the dual variables associated

the optinal values of the tr_

6v'1 through (2.10) .

"| = i*in* ena, terninate: the

return to SteP L vith v=v+1.

(i, i=r,...,n) solve Probtem (o.t).

observe that h.ving evtl = zv ilrplies that no function of t)?e q can be found

that could give a representation for z Senerating a decrease in O. The fact that

tr't" ({, :=r,...,n) are then optinal solutions of the origiral ptoblen (0'1) fol-

lo\.s from the Duality Theorern of Section 1.

We conclude by nraking a fel1l cotsnents about inrplenentation Fiist note th3t

to stoie the function 4v j.t really suffices to store the finite dinensional vector

/v - -- - t of 6v, through (2'10),corresPonds to a sinpte groba-txj, J=t,...,n.J ; the detlnlt]'or

bilistic subset (event) of tl cornpletely deternined by xv, This is also all that

is necessary to conpute the quanilies in*i, ir* and en**, vhich are obtained by

nurneri.cal integtation. Final.1y, one shoul.d not reaIly rely on the stopPing cri!e-

rj.on given in Step 2, but on bounds that can be obtained from the oPtimal value of

(2.9) sinilar to those used in the Frank-l'lolf atgorithnr [7]'
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