-

Fgsnt

A Pochers et el 4‘.;,5'.‘5:-) Springe r‘—\’ev‘lz\j A9E3

Generalized Subgradients in Mathematical
Programming

R. T. Rockafellar*
University of Wiashing par J R s, O

ashington, Department of Mathemuatics, CH8 Padelford H: 1N-
el o gl : delford Hall, GN-50,

Abstract. Mathematical programming problems, and the techniques used in solvin

them, naturally involve functions that may well [ail (o be differentiable. Such I'uﬁctiung'

Oflt_tl'l have “subdifferential™ properties of a sort not covered in classical analysis {n::

which [‘ll'('!?:'ii'{‘ much imformation about local behavior. This paper u.ullim-a' l‘h:.f;l‘llll':

::cl:ll::l\l of a recently developed theory of generalized directional dvri\-‘;lli'\\-'cs and ‘ill;‘n-‘
i *nis.

Introduction

The theory of subpradients of convex functions is by now widely known and
has found numerous applications in mathematical pmgr;unmiﬂg-, It scrvc; in
Irn:: char;lctc_nzatiun of optimality conditions, sensitivity analysis. and lh{:.dc—
sign and validation of algorithms. What is not so widely known |x the surpris-
r:ﬁl'y. po;vy:rl‘ul extension of this theory to nonconvex functions. 'f‘his h;IS ll;leén
md::‘]:‘; [m ;r{l!"(_-ll?l::zulf}fnly in the last few years, following breakthroughs
Generalized subgradients have already been applied 10 optimal control
proh.len"m by Clarke [16], [17], [18), [19]. |20]. [21]. and Thibault |57], to Lagrange
multiplier theory and sensilivity analysis by Aubin [2), Aubin ;m‘d ('I:lrbk-:‘ [:;
:;I-,:IA;T:T‘:?:?{IE?II"I”1:} ha‘nl(:y [9], Clarke [22], Gauvin [26]. Gauvin and l)uhc;n;
qul‘ e y [3]. [ ] [32], [34|.‘ Pomerol [42], Rockafellar [47), [48], |50],
321, 153L ‘lfﬂm, Nguyen and Strodiot [40], (o nonlinear programming algo-
rithms h_y Chaney and Goldstein [10], Goldstein [28], and Mifflin [38] f’;(‘)|bt
stochastic programming by Hiriact-Urruty [33], and to game thcor\;f h" \Au‘hi::
[3]. Many more applications are surely possible and will be made vwh(}:n nor
rcsr:fa_rchersa have gained familiarity with the concepts and results o
) I'he purpose of the present article is to help matters ;llnné Iw‘ Ircvicwi 12 L
important mlel of nonsmooth, not necessarily convex functi{;n‘: in m'ith:r; [“"3
cal programming and describing briefly the central facts :|hnu!lf.uch f(uncli ): :
Of course, much has 1o be lelt out. The reader can find t'ur!hc\r details i tt:.;
I-?-*cture notes |_4‘J] and the many articles which are cited. Only the fi ﬁi‘lchdilrll »
.-s!unal case wl]l be discussed, but the references ofien u;m'lin infini -- e
sional generalizations. ‘ niintte-dimen-
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1. Gieneralized Subgradients in Muthematival Programming it

1. The Role of Nonsmooth Functions

A real-vilued function is said 1o be smaoth iU itis of class ¢, i.e. conlinuously
differentiable. The functions which appear in classical problems in physics and
engineering lypically are smaoth . but not so in economics and other areas
where the operation of maximization and minimization are basic. Such opera-
tinns give rise to quantities whose dependence on certain variables or paramet-
ers may nol even he continuous, much less differentiable. Often these quanti-
ties nevertheless do exhibit some kind ol generalized differentiability behavior,
and this can be important in being able 10 work with them.

Let us look at a standard mathematical programming problem ol the

form
minimize f,{x) over all x € C satisfying
(" =0 fori=1I,....s
£l .
-0 forf=s+1,....m,
where € is a subset of IR" and each f is a real-valued function on C

i~ 0. 1.....m. Nonsmoothness can occur in connection with (P) not only be-
cause of the way the constraint and objective functions may be expressed, but
also as an inescapable feature of auxiliary problems that may be set up as an
aid 1o solving (P). For example, duality, penalty methods and decomposition
techniques oflen require consideration of nonsmooth functions.

it is common in operations research to see problems in which the objective

function f, is “piecewise linear™:

(LD folx)= max @, (x¥),

fe=d

where each ¢, is affine (i.e. linear + constant). Then the graph of f, can have
vereases” and “corners” where differentiability fails. Sometimes fo is given as
the supremum in an optimization problem in which x is a parameter vector:

(1.2) fola= su[:fp, (x).

Here T could be a subset of some space IR?, defined by a further system of con-
straints, of it could be any abstract set. With T=Il,...,r], we revert from (1.2}
to (1.1). Such an f, may fail to be smooth, but if the functions ¢, are all affine,
fu is at least convex. Indeed, this is almost a characterization of convexity: a
real-valued function f, on IR” is convex if and only if it can be ex pressed in the
form (1.2) for some collection of alfine functions A,. (Convexity relative only Lo

a convex subset € or R” can be characterized similarly when semicontinuily

properties are present; sec [43, § 12}.}
Thus, problems where merely the convexity of £, is a natural assumption, as

in many economic applications, can well involve nensmoothness. On the other

hand, smooth convex functions do exist, so a formula of type (1.2) does not pre

clude smoothness of fi.
How can one tell in a particular instance of (1.2) with smooth functions ¢,

whether f, is smooth or not? More generally, what partial dilferentiability
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properties of £, can be deduced from (1.2)7 Such questions are nol covered by
traditional mathenvatics, but they have attracted attention in optimization the-
ory. Some answers will be provided below.

Much of what has just heen said about £, also applies to the constraing
functions in ('), at least for the inequality constraints. Such function f; could
be expressed as in (1.1) or (1.2): in particular, f, might be convex without being
smooth. OF course, if

(.3 £ (¥} =sup g, (v).
re

with smooth ¢,,’s, the single constraint £ (x) <0 is equivalent to a system of
smooth constraints:

(L4) P (X)=0 Tor every 17,

In this sense it may seem artificial to be worried about /. being nonsmooth.
Why not just write (1.4) rather than £ (x)=0?

Actually, the thinking can go just as well in the other direction. The set 7T,
may he infinite. or il finite, very large. Thus it may not be practical Lo treat (1.4)
in full. Lumping (1.4) together as a single condition f,(x) =0 is a form of con-
straint aggregation. Il enough is known about the behavior of formulas of type
(L.3). it may be possible to treat £ directly, generating only the particalar {7
needed locally at any time,

Note that a function of form (1.2) might have + oo as a value, unless restric-
tions are imposed on T and the way that ¢, (x) depends on . Minimizing such
an extended-real-valued function is definitely a matter of interest too. for in-
stance in connection with duality-based methods.

Duality is & major source of nonsmooth optimization problems. The ordi-
nary dual associated with (P) is

() maximize ¢(y) over all y€ Y

where

(1.5) Y={r=(r, .. tJER"1,20 for T PR 5],

(1.6) glry=inl @ (v} for ¢, (y)=folx)+ 2w ).
LA § [N ]

Except for the reversal of maximization and minimization, we can identify this
as an instance of a problem of type (P} where the objective function is repre-
sented as in (1.2) but might not be finite everywhere. Since ¢, (v) is affine in i
g is a concave function, quite possibly nonsmooth.

Several important methods for solving (P) proceed by way of (D), despite
nonsmoothness. In Dantzig-Wolfe decomposition, a cutting plane algorithmn is
used to maximize g. I " happens 1o be a convex polyhedron and the functions
1. are affine, g is piccewise linear and the maximization of ¢ can be formuluted
simply as a problem in linear programming. The number of “pieces” of g can
be 50 enormous, however, that this approach is impractical. More hope lies in
treating g as a nonsmooth function which nevertheless has usefu| “subdifferen-
tial™ properties. as will be discussed later. This is also the case in integer pro-

e | , ;
11 Greneralized Subpoadients i Mathematical Propriaommmg 71

gr:lnlming methads which solve () partially in order to obtmn a lower hound
for the minimum in () (cf. Held, Wolfe and Crowder !3"]). )

The dual of a “geometric™ propramming prablem in the sense }lr l)t‘rrll_n.
Peterson and Zener |25] provides another example. Flis consists ol maximiz-
ing, subject to lincar constraints, a certain ﬁnii_c‘ concave function of nmrlncg.f-l
tive variables which has a formula in terms ol Inga!‘nl’nms that looks hu?nllcs\
enough. The function fails, however, to be differentiable at boundary points of
its domain. ‘ Wil

Exact penalty methods, which replace () by a single minimization prnhlc.m
with no constraints, or al least simpler constraints, also lead to nonsfntmtlmcss.
Under mild assumptions on (P}, it will be true that Tor r> 0 sufficiently large
the optimal solutions to (P) are the same as those to the problem

minimize f(x) over all x& C, with

. w4l

(0 %) _r;.m+r( S LW+ Y 1.!.‘m|).
[ 1 r=1

where

(L.R) fre] v = maxa, 0},

and of course || = max |a, — a). This type of penalty function has been consid-
ered by Zangwill [62], Petrzykowski [41], Howe [16]. Conn [12] and Chung [H],
for instance. If the functions f, are smooth, the fin (1.7) can be rcpresc‘nllcd as
in (1.1) with smooth ¢,"s. Thus fis piecewise smooth, not cvcrywl‘!crc dilferen-
tiable. Another exact penalty approach, based on the (quadratic-type) aug-
mented Lagrangian for (F) (see [55]), preserves ﬁrsft—nrder smoothness of the
/s but can create discontinuities in second derivatives. _ ) .
 So far we have been discussing nonsmoothness of the klllfi which arises
from representations {1.2), (1.3). This is relatively easy fn deal with, 'hul a trick-
ier kind of nonsmoothness is encountered in parametric programming and the
study of Lagrange multipliers. Suppose that in place of (;P) we have a problem
which depends on a parameter vector o=(r, ..., 0, € R";

minimize [fo(r, x) over all xye C(r)C R”

(P [z0 fori=],...,. Y,
stch-that £ (%) =0 for i=s41,...,m,

Let p(r) denote the optimal value in (F,). Then p is a function on R" whose val
ues can in general be not just real numbers but — oo and +.oc (lhf.:.lmlcr.fm: i
such that (£,) is infeasible). What can be said about generalized differentiabil-
ity properties of p?

Actually, p can be represented by

(1.9) p{ﬂ)=‘gi£"fﬂ\ (),

where .
fotn, x) if x 15 a feasible solution to (P,.),

Cr I P (0} = oo otherwise .
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.I,.IIU‘- pis the pointwise infimum of @ collection of functions on R These Tune-
!mn«. @, are not smooth, though, even i the 475 are smooth, because of the
jump to | ce when the parameter vector ¢ shifts into a range where the feasihil
itv of a piven vis lost. For this reason the nonsmoothness ol pis harder to ana-
Ivse, yel \llrllﬂj.'_ results have been obtned (el [48] and its relerencesy. ('ll'I'IL“l'-
ally hpL‘illl\Inj:. directional denvative properties of poat e are closely related 1o
(.hc possible Lagrange multiplier vectors associated with ()plilil;llilf conditions
for (7,). : _
ll_n: stmplest cise is the one where /(0. x) is convex jointly in (0, v), and the
set of (v, ) satislying x € C(r) is convex. Then pis a cm-wcx I:um‘linﬂ ‘I"vcn 50
p may have nonhinite values. . o
T'he importance ol pin sensitivity analysis is clear: we may need to know
the rate of change ol the optimal value p(r), in some scnse, as ¢ varies. The
components ol ¢ may be economic quantities subject to fluctuation or control
In_ I?t_‘lll(l‘l.‘l'ﬁ (_Im'umpmiliml. (P.) is st a subproblem: the real task consists nl“
minimizing in v and ¢ jointly, subject to the given conditions. The residual
!1r‘ohlcm. or master problem, connected with this formulation, is that of I'I‘Iil‘IiIT‘l—
izing p (1) over all r € R Obviously, generalized dilTerential properties of p ¢
have much to do with success in this task. i
Finally, we wish to point out that in the broad picture of optimization the-
ory there are other nonsmooth functions worthy of consideration Pri-m LN
ples are the indicators w ol sets CC R ) ‘ - o
(110 wep={" e,
i y&C.
By gy ol Tk g gn/s
: | . The study of these provides a
bridge hr:t.ween peometry and analysis that leads 1o a deeper understanding ol
many topics, such as the characterization of optimal solutions. . *

2. Useful Classes of Functions

As we have eV i H 1

" ’LI have observed, il is not enough just to consider real-valued functions:

: e \;.: ut? -I;—gm aluul — oo somelimes need (o be admitted. We shall speak of a

unction f: R" «| - co o] as proper il f g ) ‘
4 a per il f(x) > — oo for all ¥, an S or

least one v, The set ‘ S o f0esy

(2.1) dom f=|ye R"| fix)< o)
is called the effective domain ol {, and
(2.2) epif=lv.)ER" " fix)=a)

the epigr i I s is |
the cpig aph of /. For most purposes, there is little generality lost in concentral-
ing on the case where [ is fower semicontinuons

(2.3 flo=liminf f(x') forall ve R

11 Generahized Subprudients in Mathemitn al Propramonmyg

['his property holds il and only if epi £ is o clased set,

Convex analysis [d3] serves as a puide in developing a theory of differentia-
bility in such a general context. The function / is convex if and only if epi s
convex sel. We shall see below that amazingly much of the theory of one-sided
directional derivatives and subgradients of convex functions has a natural ex-
tension (o the clasy of all Tower cemicontinuous proper functions on R” Inci-
dentally, iU is casy o give conditions on the parameterized problem (7)) in gl
which ensure that the corresponding optimal value function p s lower semi-
continuous and proper: see [48].

Although a Tunction [ may be extended -real-valued in the large, we are
often interested in situations where /15 finite in a neighborhood ol a certain
point v and has stronger properies in such a neighborhood as well. Among the
etics to be considered in such a context is Lipschitz con-

mosl important prope
an open set U if [ is real-valued on U/ and there ex-

tinuity: /is Lipschitzian on
ists a4 number A 2 0 such that

(2.4) LAY —FCONSA —al when vEUV'E .

(Here |+] stands Tor the Fuclidean norm on R ) This condition can also be pul
in the form

(2.9 [fx 4 ey — ()1 =Athl when x€ U xtithelU >0,

Thus it expresses a bound on difference quotients.

We shall say / is Lipschitzian around x if it is Lipschitz continuous in some
neighbarhood of v, and that f is locally Lipschitzian on an open set U il f s
Lipschitzian around each v& U. The distinction between this and simply being
Lipschitzian on t/ is that the modulus 4 in (2.4) need nat he valid for all of U,
but may change from one neighborhood to another. Two classical results on lo-
cal Lipschitz continuity may he cited.

Theorem 2.1 [43, § 10]. A convex function is locally Lipschitzian on any open sth-
set of R" where its parlues are finite.

Theorem 2.2 (Rademacher: cf. [S6]). 4 locally Lipschitzian function { on an epen
et UC R" is differentiable except al a negligible set of points in U.

A negligible set is a set ol measure zero in the Lebesgue sense: forany £ > (),
it can he covered by a sequence of balls whose total n-dimensional volume
does not exceed 7.

A more subtle form of Lipschitz continuity that will be important to us he-
low is the following. Suppose [ is a lower semicontinuous, proper function on
R and let v € dom /. We say that fis directionally Lipschitzian at x with respect
to the vector I it

there exist £>0 and 120 such that

{2.6) [ fix + =)/ r=Alhl when s+,
I —xl=Ze, h=hl=e, 0<1<t.

If b= 0. this reduces to f being Lipschitzian around v
We say simply that [ 15 directionally Lipschitzian at x il (2.6) holds for at
least one . Note that £ need not be finite on a neighborhaod of 8 for this con-
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dition o hold: For exaomple, il ¢ is conrev, then £ s dircctionally Lipschitzian
at v owith respect tooany frosuch that « § rhe int(dom £y for ¢ =0 sulTiciently
small (461 Thas it inifdom £ 140, / is directionally  Lipschitzian every
e dom ot ‘

Another example: i 7 is a nonde reasing function on R in the sense that

(2.7) O =) when v Ve RY

then £ois directionally |1 ipschitzian il every v dom /. (Consider e int R

fl?l?lll dpeometrical point of view, / iy divectionally Lipschitzian at v il'..'i.ml
E;:Ij_v thepi/ has “Lipsehitzian houndary™ in a neighborhood of (X, f{x)): see

Muoving to propertics stronger than Lipschitz conlinuity but still short of e
tual smoothness, we come upon twa highly significant classes of functions al.
ready suggested by the discussion in § 1 Let us say that £ is subsmooth (or Iln'n‘-
::r-'f Y oaround vl there is an open neighborhood X of v and a representa-
m

(2.%) fOvh=maxeg, (v)  for all ve X,
re

u.'!u'nc T isla compact topological space. each ¢, is of class 7 ' and the values
of " and its first partial derivatives are continuous not only with I‘L‘.*;pu.'.('l tt-w
YCXbut (1, v)€ I'x Y. (In particular, 7' could be any finite index sel in the dis-
L‘rctc_lnpuingy_ Then the continuity requirements in ¢ are trivial: £ s jusi l,\
prc.wfhlc Iucfully as the pointwise maximum of 4 finite cnllcctiu‘ni oll' .in.mu!.h
!unc!mn:- as i L1y We shall say £ is subsmoath on U, am open setin R i/
IS .'.i!.lhslll()lllh around every v € U. (The representation (2.8) may be dil'l"crcn-r Tor
(ll“t’r{__'t_‘ll regions ol Uy Obviously every smooth Tunction is also subsmoott
(take 7 1o be a singleton). | B
.[n H| s| l_nil;n' vein, we shall eall f stronghy subsimooth (of order ) e U (or fow-
er=7 ")l in the local representations (2.8} around pnintﬁ ol 7 the functions
are actually of class ¥ * with 2 <7 < co_and their partial derivatives up Ihrnl :T;
order r depend conlinuously on (7, vy, o A

Theorem 2.3 [13]. 1/ [ is subsmooth (or s
em 2.3[13]. 117 . or strongly subsmooth) on an open ser U "
then 1 is locally Lipschitzian on U. ' e ped

;I;c:);e: 2.-:;[ ? I!. {fh(: classes of strongly mh\'m(_m.'h functions of order r on U, for

Sr= oo, all coing tde. so that one can speak simply of o single clasy of sirongly
suhymaooth f.mu'n'nm on U without reference 1o rmlr p.m'n'ruh.n' ] .flh e ..f '”'.1
subsmaooth functions which are not stranghe subsmoorls, hnu‘:'n'r. il

Iﬁl.ﬂrjnl 2'5;””' A real-vafued function § on an open set UE R iy stronghe sieh-
mmuflt on U af and only o some open convea nerghborhood Y of ea ih. ve UV
there is a represenfation . - l |
FOVY=gix)+hiiv) Torall ex

with g convex, h of class v °

(2.9)
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Then there exist sich represenfations with h oactnadly of clase ¢« faer wieh
fiivi= If?|\|'_]rl =4},

Corollary 2.6, A conven function is strongfe subsmooth on any open subser of R”
where ts values are finite.

Once other class of Tunctions of preat importanee in optimization deserves
mention: the saddie funcrions. Suppose f{ v, 2) is convex in v© ¥ and concave
in s where Yoo ZC R is convex. Then f is locally Lipschitzian on the inter-
wr ol Yo Z [43, Theorem 35 1] and has many other properties, such as the exis
tence of one sided divectional derivitives [43, Theorem 35.6), but /s nal sub-
smooth, More generally, one could consider the class of all functions expressi-
ble locilly as lincar combinations ol such caddle Tunctions along with convex
and concave Munctions, No absiract characterization ol this class is known.

3. Sublinear Functions Representing Convex Sets

In the classical approach to differentiability. one seeks to approximate a lune-
tion { around a pomt v by a finear function £:

(31 v+ h) - fiy=Hhy+ohl).

This £ expresses directional derivatives of £ at v with respect to various vectors
B Next. one uses the duality between linear lunctions { on R and vectors
e R" 1o define the gradient ol f at x: there is a unique ¢ such that

(32 Hhy=v-ir torall he R".

This v is the gradient V/(y).

We cannot limit ourselves merely to linear functions [ as approxinilions, in
trying (o capture the generalized differentiability properties of functions / be
longing ta the various classes mentoned in § 2. A broader duality correspond-
ence thun the one between vectors and lincar lunctions is therelore required.
The correspondence about to be described replaces vectors € R" by closed
convex sets YC R".

A function f: R" —| — oo, + oo 15 saicdd 10 be sublinear if {15 convex, positively
homuogencous (I{Ahy=A1{h) for A>0), and /() < oo. These conditions mean
that epif is a closed convex cone in R"'' containing the origin. Every linear
function s in particular sublinear.

Theorem 3.1 [43. § 13]. Let | be a sublincar function on R which is fower semicon-

finweons, Then cither s proper, with 1{0)y=0, or | has no values other than + oo
and — co_ In the latter case, the set of poinis b where 1th) = — o ix a closed con-

vex cone containiig 0.
Theorem 3.2 [43, § 13]. There is a onc-to-one correspondence beiween proper,
lower semicontinuous, sublinear functions | on R" and the nonempty, closed, con-
rex suhsets Y oof R, given by
(RIRY} Ithy=supy-h forall ic R"

(R

(3.4) Y={reR"lv-h=lth) forall hER"}.
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The special case of singleton sels ¥ yields the classical correspondence be.
tween linear [unctions and vectors.

The Buclidean norm £thy < ] is an example of a sublincar function which
is not linear. It corresponds to the ball Y=y |l = I}. The sublincar function

(3.5) iy =maxtla,-h, ... a,-h
corresponds to the polvtope

(3.6) Y=cola,..  a,l}.
The function

0 rhek

(3.7) "
L i hek.

where K is a closed convex cone containing 0, corresponds to the polar cone
Y¥=K".

A finite sublinear function on R", being convex, is continuous (cf. Thearem
2.1). hence certainly lower semicontinuous. This gives the following special
case of Theorem 3.2,

Corollary 3.3 [43]. Formulas (3.3), (3.4), give a one-to-one correspondence be-
tween the finite sublinear functions | on R and the nonempty compact convex
subsets Y of R".

The duality between finiteness of / and boundedness of ¥ extends to a more
detailed relationship. Here we recall that since ¥ is a closed convex set., if there
is no halfspace having a nonempty bounded intersection with ¥, then there is
vector z# 0 such that the line |y +rz)r € R} is included in ¥ for every € Y [43,
§ 131 In the latter case, Y is just a bundle of parallel lines. '

Thel_lrem 3.4 [43, §13). Under the correspondence in Theorem 3.2, one has
h€int(doml) if and only if for some [} € R the set |y € Y lv-h = fi) is bounded and
nonempty. Thus the convex cone dom/! has nonempity interior if and ondy it ¥ can-
not he expressed as a bundle of parallel lines. I ol

_ Thc pattern we ultimately wish 1o follow is that of defining for a given func-
tion fand point x a kind of generalized directional derivative which is a fower
semicontinuous sublinear function 1 of the direction vector 4. The elements r of
the corresponding closed convex set ¥ will be the “subgradients™ of f at x.

4. Contingent Derivatives

For a Funcnlnn J:R" -+ —co, co] and a point x where [ is Nnite, the ordinary
one-sided directional derivatipe of [at x with respect to b is

(4.1) I hy=tim L&D N0
L {
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il i1 exists (possible as + oo or — eo). This concept ol o derivalive has its uses,
but 1t s inadequate for dealing with functions that are not necessarily contin-
uous il v, One ol the drawbacks is that difference quotients are only consid-
ered along rays emanating from v: no allowance is made for “curvilinear be-
havior™.

As an allustration,  consider  the indicator function of the curve
C=ly=(v. v )€ R lv.=x):

0 af v=x)

b [ fal =
(4.2) MEED=Y i el

Obviously /(0,4 hy, hy)= oo Tor all nonzero vectors h=(h,, h,). There is noth-
ing to distinguish the vectors tangent ot the curve C at (0, 0), namely the ones
with &= 0, Irom the others. Although the function (4.2) may be seen as an ex-
treme case, it reflects a lack of responsiveness of ordinary directional deriva-
tives that is rather widespread.

Certainly in handling optimal value functions like the p introduced towards
the end of § 1, it is essential to consider more subtle limits of difference quo-
tients. Instead ol just sequences of points x* =x+¢ h with 1, | 0, one at lcast
neceds to look at the possibility of x* =xv+4 8" with 4 |0 and A* ~h. (A se-
quence [x*'} which can be expressed in the latter form with h £ 0 is said to con-
verge to x in the direction of h.)

A useful concept in this regard is that of the contingent derivative (also
called the lower Hadamard derivative} of f at x with respect to h:

fx+th)— f(x)

(4.3) J 2 (s hy=liminf = =
W oah
IRe
. . Sx+th'y— f(x)
=lim| inl —— —.
rl e =l s i

In contrast to the ordinary derivative /'(x; &), this kind of limit always exists,
of course. In example (4.2) one gets

0 il hy=0,

S7(0,0:h, )= w if ha k0.

Strong geometric motivation for the contingent derivative is provided by its
epigraphical interpretation. To explain this, we recall that the contingeni cone
to a closed set CCR" at a point x€ C is the set

(4.4) Ko (x)={h3e |0,k —h, with x4+ 0 eC).

Thus K. (x) consists of the zero vector and all vectors # 40 giving directions in
which sequences in C can converge to x. It is elementary that K (x) is closed,
and that K. (x) truly is a cone, i.e. Lh€ K (x) when h€ K.-(x) and 4 > (.

The contingent cone was introduced by Bouligand in the 193(0's (cf. [56]). In
the mathematical programming literature, it is often called the “tangent cone™,
but we prefer to reserve that term for another concept to be described in §6 and
keep to the classical usape. The following fact is easily deduced from the defi-
nitions.
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Theorem 4.1. For the contingent devicative function Iy = f 7 (xohy epi i the

contingent cone fo epi foat the point (x, fi).

Corollary 4.2, e eontingent devivadive §7 (v hyis a lower senicontinians, posi-
tively homogencons function of frowith {7 (vo0) < ool

Since conlingent cones 1o convey sels are convex, we also have the tollow-
ing.
Corollary 4.3. Suppase [ v a proper convex function, and led x € dom [ Then the
contingent devivative function Jhy= (v 0y is not only lower semicontinuous
but sublinear,

The convex case also exhibits a close relationship between ordinary direc-
tional derivatives and contingent derivatives,

Theorem 4.4 [43). Suppose [ is a proper convex function on R and et vdom [
Then foiv Iy exive for crerv i fpossibly as oo or — o0 and

{4.5) f v =liminl £ Ry

Wk

In fact {7 (x:y= () for everv hosuch that x4+ theinttdom £) for some
f— 1.

The sublincarity in Corollary 4.3 is the basis of the well known subgradient
theory ol convex analysis [43], elements of which will be reviewed in §7. Unlor-
tunalely, contingent cones 1o nonconvex sets generally are nos convex. By the
same token, the contingent derivative function {{hy=f " (v h) is generally nor
convex when fis not convex, excepl for certain important cises which will be
noted in §6. The cantingent denvative does not, therefore, lead to a robust the
ory of subgradients in terms of the duality correspondence in § 3.

What is needed is a concept ol directional derivative possessed of an inher-
ent convexity. Such a concept has been furnished by Clarke [13] for locally Lip-
schitzian functions. We shall present il in the next section in an extended form
which 10 a certain extent is useful also in connection with functions which are
not locally Lipschitzian. The full concept of derivative needed in treating such
general lunctions, the so-called “subderivative™, will not be discussed until § 6.
however.

5. Clarke Derivatives

For a lower semicontinuous function f and a point x where fis Tinite. we de-
line the extended Clarke derivative of fat x with respect to the vector fi Lo be

SO Y — f(xD
p

(5.1} f v =limsu
5 '

o Greneratized Subeeadients i Mathematical Programpnng o
where the notation is used thal

Vi y
’

R VITU RIS E

(5.2) ooy

IT / happens (o be continuous at v one has f(x}— f(v) when vy, so the cxtra
notation is unnecessary, The case where fis not necessarily continuous at x is
ol delinite interest, however, as the following fact (immediate from the delini-

tion) well indicales.

Theorem S.1. Lot { be a fower senticontinuous, proper function on R" and let
vedom £, Fhen for a vector b one has {7 (v hy< o it and only if [is direction-
allv Lipschiczian at v with respect 1o h,

Clarke’s original definition of /7 (x:h) in [I3] applicd only (o the case
where factually is Lipschitzian around v. The formula then takes on a simpler

form.
Theorem 5.2. Suppoese iy Lipselitzian arvenind xo Then

F(v' +thy— f(x’y

5.3 FUv = Lhimsup ;

o]

A striking feature of the extended Clarke derivative is its inherent convexity.
Theorem 5.3. Let [ be a lower semicontinnous, proper function on R". and fet
vedom f. Then the extended Clarke derivative function 1y = (v ) iy conpex
and positively homogeneous, but nor pecessarily lower semicontinnous (in fact
dom/ is an open convex cone). !

If 1 is Lipschitzian around x. a property  equiralent  to having
oo = {0V = £ (x: O, then [is nor ondy sublinear bt finiie creryvwhere {hence can-
finons ).

This result too is simply a consequence of the delinitions. We tuke nole
now of a very important case where extended Clarke derivatives, contingent
derivatives and ordinary directional derivatives all have the same value.

Theorem 5.4. Suppose [ is subsmooth around x. Then f7(x1h) exists as a real
nwnther (finite) for everv he R, and
(5.4 Freshy=f"ivihy=f"(x: h).

In jact for any local representation of [ as in (2.8) (with g, smooth, and @ (v h)
continnous jointh in t and x for each ) one has

{(5.5) v =max g hy forall he R”,
fe by
where
(5.6) Fo=reT|p (x)=fix)}}=argmax @ (x).
[ |

Formula (5.5) was first proved by Danskin [24], and the equation
Frixshy= £ (x: by was established by Clarke [13]. The proof of (5.5) shows that _
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v i given by the same maximum, in fact directional derivatives exist in
the Hadamard sense:
(5.7) lim Lac max g (x2 )y forall he R

ok ) ot

i
A subgradient version of (5.5) will be given in Theorem 7.3 and Corollary 7.4,
It is good 10 nole. however, that (5.4) associates with each x a linite, sublinear
function f that depends only on fand not on any particular max representation
(2.8). '

For funclions which are not locally Lipschitzian or even directionally Lip-
schitzian, the extended Clarke derivative conveys little information. Thus for
the function in (4.2), one has f°(0. 00 )= oo Tor all (5, 8. Indeed if £ s
not directionally Lipschitzian at v, one necessarily has " (x: = oo (ot all & by
Theorem 5.1,

6. Subderivatives and the Clarke Tangent Cone

A type ol directional derivative will now be described which is able (o serve as
the foundution for a theory of subgradients of very peneral functions. It agrees
with the contingent deriviive and extended Clarke derivative in the important
cises where those derivatives yield a lower semicontinuous, sublinear function
! of the direction vector it But, it yiclds such an ! no matter what the circum-
stances with the other dertvatives.

Let fbe lower semicontinuous and proper, and let v € dom /. The subderiva-
tive of fat x with respect 1o h is defined to be

(6.1) Fvihy=lim [Iim xup[ inf S 1) = flx '” .
e

sl Ve hl=e !

(ARl

where again the not:tion (5.2} is used as a shorthand. This rather complicated
limit is a sort of amalgam of the ones used in defining £ * (x: &) and /" (x: h):
cf. (4.3) and (5.1). It was first given by Rockafellar [45], but as we shall see he-
low, it is closely related to a geometrical notion of Clarke {13]. The initial diffi-
culties in appreciating the nature of fT{v: kyare (ar outweighed by its remarka-
ble properties. A convincing case can be made for this derivative as the natural
one to consider for general functions /. Clearly

(6.2) Fre s =gl forall b

Theorem 6.1 [45]. Ler £ he a lower semicontinnons. proper function on RY, and et
xedom [ Then the subderivative function 1) = t1 (x:h)is fower semiicontinuons
and sublinear.

Tust as the contingent derivative corresponds to a conlingent cone to the
epigraph of [ (el. Theorem 4.1), the subderivative carresponds to another
geometrical concept. For a closed set CC R”, the Clarke fangent cone at a poi
xe Cis defined to be
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(6.1 Toavr={hlvyr —vin C o1 |0, Vh =B with A o W e

This is always a efosed convex cone containing 0, a surprising fact in view of the
Jack of ;||w.s:u|n-'(~xily assumplions whatsoever on . For a direct prool, sce
[44]. The cone T, (x) was originaily defined by Clarke |13] in a more circaitous
manner, bul formula (6.3) turned out to be implicit in one of his results (see [ 13,
Prop. 3.7}, We shall say more about the properties of this cone in Theorem 6.8,
Obviously the Clarke tangent cone is a subset ol the conlingent cone in §4:

(6.4) T.(x)C K (x).

Theorem 6.2 [45]. Let f be a lower semicontinuous function on R, and let
vedom £, Let Hi)= f1x: by Then the epigraph of Lis the Clarke tangent cone to
the epigraph of [ at (x, f{x)).

The relationship between subderivatives and the Clarke derivatives of the

preceding section s quite simple.

Theorem 6.3 [46]. Let [he a lower semicontinuous, proper function on R". and let
xedom /. Then

(6.5) inthe€ R k)< o) =f{he R"|f"(x: h) < oo},

and on this open convex cone one has s y=1"(c h.

Corollary 6.4. Let f he a lower semicontimuous, proper function on R", and let
xedom{f. Then ene has the epigraphical relationship

(6.6) int{th, HerR" NPz el ={h. MeRrR" " Ifi=f " (x hit.

Corollary 6.5. Let [ be a lower semicontingous, proper function on R". and fet
xEdom f. Let h be an element of the cone (6.5). Then
(6.7) Sl =tlimf o —oh+ehy forall heR".

el

Corollaries 6.4 and 6.5 follow from Theorem 6.3 by way of basic [acts about
the closures and interiors of epigraphs of convex functions [43, Lemma 7.3 and
Carollary 7.5.1]. Of course, the cones (6.5} and (6.6) are nonempty only when /
is directionally Lipschitzian at x; ¢f. Theorem 5.1, Thus in the directionally
Lipschitzian case, £ can be constructed from the simpler function / by tak-
ing f1(x; M=/ {x:h)on the cone (6.5) and limits (6.7) al boundary pmms.. but
when / is noi directionally Lipschitzian, no help can be obtained from /" al
all.

The retationship between subderivatives and contingent derivatives is not
as easy to describe, although it does turn out that subderivatives can be ex-
pressed as certain limits of contingent derivatives. First of all, let us in‘tmducc
the terminology: f is subdifferentially reqular at xif f Yix:hy=/"(x; h)forall i

Theorem 6.6 [13], [46]. If f is a lower semicontinuous and convex on a neighbor-
hood of x (a point where [ is finite). or if [is subsmooth around x, then fis subdif-

Jferentially regular at x.
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Theorem 6.7 [46]. If [ is a lower semicontinuous. proper function on R" and sub-
ditterentially requdar at the point x € dom f, then for every hoin the cone (6.5) the
nf’dfﬂﬂ{r directional derivative [(x; h) exists, and f'(x k)= i (x: h.

Thearem 6.7 provides a natural generalization of Theorems 4.4 and 5.3,
which carrespond 1o the cases in Theorem 6.6. An example ol a suhd_ifl’tfrcn-
tially repular function nol covered by Theorem 6.6 is given by (4.2); this lun.c-
tion is not covered by Theorem 6.7 either, since it is not directionally Lipschit-
zian; the set (6.5) is empty for every x €Edom /. ‘ .

To gain deeper understanding of the cases where f 1s snhd_il'lc.rt:_ntml]y reg-
ular, we can appeal to a result of Cornet [23] about the relationship between
the Clarke tangent conc and the contingent cone.

Theorem 6.8 [23]. Let C be a closed set in R" and let x€C. Then
(6.8) T (v)= Iin_lianf {x})
\"f-‘("
= h| VXt ax with x*€C, F0F =h with I* € K (")
Thus T, ()= K (0) if and only if the multifunction K2 x— K¢ (x) is lower semi-
continuous at x relative to C.

This can be applied to the epigraphs of f1(x; *yand f“ (x: -) due to Theor-
ems 4.1 and 6.2. The limit in (6.8) can be expressed in function lern_ls_usmg a
fact in [46. Proposition |]. We then obtain the lollowing formula for flin terms

of [”.
Theorem 6.9. Let [ be lower semicontinuous, and let x be a point where fis finite.

Then for all h.
(6.9) fx:hy=1lim [Iim sup [ inf /" (x"; h’]]],
ih

PR v A 1=
This has force whether or not f is directionally Lipschitzian at x.

Corollary 6.10. Let [ be lower semicontinuous, and let x be a point where [ is fin-
= : - : ] Ey

ite. Then [ is subdifferentially reqular at x if and only if for every sequence x* —x

with f(x*)=f(x) and every h, there is a sequence h* —h with

limsup f* (x* W }y=7" (x: h).
A e

Incidentally, in infinite-dimensional spaces Theorem 6.8 generally fails (cf.
Treiman [61]).

7. Generalized Subgradients

The sublinearity and lower semicontinuity of the subderivative function in
Theorem 6.1 make it possible to invoke the duality correspondence in § 3. For

1. Generalized Subgradients in Mathematical Programming LHR]

an arbitrary lower semicontinuous function fon R" and point x where f is fin-
ite, we deline

(7.1} f)={yeR" |y-h=f1x: h) lorall heR").

The vectors v € 2 /(x) are called subgradients (or generalized gradientsy of f at x.
This terminology s totally in harmony with other usage, e.g. in convex analy-
si1s, as will be scen in a4 moment. From Theorems 3.1, 3.2 and 6.1 we immedi-
ately see the exact connection between subderivatives and subgradients.

Theorem 7.1. Let f he a lower semicontinucus, proper function on R”, and let
vedomf Then o f(x) is a dosed convex set. One has #f(x}£0 if and only if
SHx > — co, in which case

(7.2) flx;y= sup y-h forall h.
VEAY
Before drawing some peneral Macts from these formulas, we look at some
particular classes of functions.

Theorem 7.2. Suppose f is convex, finite at x, and lower semiconiinuous on a
neighborhood of x. Then

A ={riv-h=1"(x; h) for all k)

(7.3} : 5 :
=(vIfix+thz= f(x)+v-th forall 1=0 and h}.

The first equation is valid by Theorem 4.4 and the subdifferential regularity
asserted in Theorem 6.6. The second equation then holds, because

(i Jixs hy=inf .f{.\‘-l-fh)—l,f!_\-}

IET !

in the convex case. The second expression in (7.3) (where one could just as well
take r=1} is the definition customarily used for the subgradients of a convex
function (cf. [43, § 23]). Thus Theorem 7.2 lays to rest any doubts about the
present terminology versus terminology already established in convex analy-
sis.

Theorem 7.3. Suppose f is subsmooth around x. Then for any local representation
of fas in (2.8) (with the gradient Vp,(x) depending continuousiy not just on x but
on (1, 7)) one has

(7.5) af(xy=colVe ()lteT,],
where T, is the set in (5.6) and “co” stands for convex hull.

Theorem 7.3 follows at once from the subdifferential regularity of sub-
smooth functions (Theorem 6.6) and the derivative equations in Theorem 5.4.
The set ¥ on the right side of (7.5) is compact and convex, and the formula in
(5.5) asserts that the sublinear function corresponding to this Y as in Theorem
Iist=f"(x; )
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CoroHary 7.4. Suppose f(x)=maxig (v), ..., @, (), where cach @, is smooth.
Then ¢ f(x) is the polviope generated by the gradienis Vip, (xX) of the functions ,
which are active at x, in the sense that ¢, (v)=f{x).

Now we look at Lipschitzian cases. The next resull combines Theorem 6.3
with Theorem 3.4 for fthy=f"{x: h).

Theorem 7.5. Let | be a lower semicontinuous, proper function on R*. and let
vedom £ Then [ is divectionally Lipschitzian at x if and only if ¢ f(x) is nonempiy
but not expressible simply as a bundle of parallel lines. In that case one has

(7.6} A ={rlv-h= oy for all bl

Theorem 7.6 [44). Let [ be a lower vemicontinuous, proper function on R”, and let
xedom . Then tis Lipsehitzian around x if and ondy if ¢ f(x) is nonempty and
bounded.

Of course (7.5) holds too when f is Lipschitzian around v, since that corre-
sponds to f being directionally Lipschitzian with respect to # = (). The necessity
of the condition in Theorem 7.6 was observed by Clarke in his original paper
[13). Clarke also furnished (7.6) as a characterization of subgradients of locally
Lipschilzian functions (see [14]), but his definition of ¢ /(x) for general lower
semicontinuous funclions, although equivalent to the one presented here
(stemming from Rockafellar [45]) was rather circuitous. Not having the concept
of subderivative at his disposal, he started with a special formula for subgra-
dients of tocally Lipschitzian functions (sce Theorem 8.5) and used it to de-
velop his notion of tangent cone by a dual method. Then he defined subgra-
dients in general by a geometric version of formula (7.1) which corresponds to
the epigraph relationship in Theorem 6.2,

In the locally Lipschitzian case there is a generalized mean value theorem
which serves as a [urther characterization of the sets ¢f(x); see Lebourg [37].

8. Relationship with Differentiability

A convex Tunction f s differentiable at x il and only if #/(x) consists of a sin-
gle vector v, namely r=V/f(x); cf. [43, Theorem 25.1]. What is the situation [or
nonconvex functions? Something more than ordinary differentiability is in-
volved. :

Recall that £ is differentiable at x in the classical sense if and only if £ is fin-
ite on a neighborhood of x and there exists a vector » such that

e+l —fx)
i S T R

(8.1) li =y-h Torall h.
h i

b
Pl
Then y is called the gradient of § at x and denoted by Vf(x). The concept of
strict differentiability of f at x is less well known; it means that

(8.2) lim flx -Hh_}_!_{‘()

oy !
I 1}
rl

=y-h forall h.
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This is a localization of continuous differentiability: / is smooth on U {an open
set in R il and only il / is strictly differentiable at every x e U,

Theorem 8.1, Let [ be lower semicontinuous and et x be a point where [is finite.
Then fis stricthy differentiable at xif and only if ¢ f(x) consists of a single vector v,
namely the gradient V(x). In this cvent {'must be Lipschitzian around x.

Clarke | 13) proved this fact under the assumption that / is locally Lipschit-
zian. The general case follows from Clarke’s resull and Theorem 7.6.

Subdifferentially regubar functions have an especially strong property in
this regard.

Theorem 8.2 [S1]. Suppose [ is loeally Lipschitzian and subdifferentially reguiar
on the open set UC R, as is true in particular if [ is subsmooth on U. Then [ is
strieth differentiable wherever it is differentiable. Thus except for a negligible set
of points x in U, the convex set #f(x) reduces to a single vector.,

The final assertion is based on Rademacher’s thecorem (Theorem 2.2). Finite
convex functions are in particular subsmooth (Corollary 2.6), so Theorem 8.2
explains the fact mentioned at the beginning of this section.

Corollary 8.3. Suppose [ is subsmooth around x and has a local representation
(2.8) such that there is only one t € T with @, equal to fat x. Then { is strictiv dif-
ferentiable at x with gradient V()= Vg, (x).

The case in the corollary is obtained from Theorem 7.3. Note that this
answers the question raised in § | about when a function expressed as a maxi-
mum of a collection of smooth functions ¢, as in (2.8) can actually be smooth.
1t is smooth if the representation satisfies the assumptions in the definition of
subsmoothness in §2, and il the maximum is attained for each x by a unique 1.
The latter is true, for instance, if T is a convex set and ¢, {x) is strictly concave
in f Tor each x.

Strongly subsmooth functions, as defined in §2, have an even nicer proper-
ty. Recall that [ is twice-differentiable at x il it is {inite in a neighborhood of x
and there exist r€ R and He R"™" such that

FR Rt o hedih forail &

e+eh’
(R.3) lim ikt

. i/

{This form of the deflinition does not require f to be once dilferentiable on a
neighborhood of x.) A classical theorem of Alexandroff says that [inite convex
functions are twice dilTerentiable almost everywhere. This translates by way of
Theorem 2.5 into the lollowing.

Theorem 8.4 [51]. A strongly subsmooth function f on an open set UCR" is twice
differentiable except on a negligible subset of U.

Since subsmooth functions are quite common in oplimization the preceding
results can be applied in many situations.

Locally Lipschitzian functions which are not subdifferentially regular do
not necessarily have #f(x) consisting just of V/f(x) at points where V/(x) exists,
since f may be differentiable but not strictly differentiable at such points. An
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example cxists ol i locally Lipschitzian function f which is nowhere strictly dif-
ferentiable [51], although f must be differentiable almost everywhere by The-
orem 2.2. Nevertheless ¢/(x) can by constructed from knowledge of V/(x’) at
points near to x, as the next theorem shows.

Theorem 8.5 [I13]. [14]. Suppose f is Lipschitzian around x. Then
(8.4)  &f(xr=colr|3x* —v with [ differentiable at ¥ oand Vix )=o)

This is the formula originally used by Clarke [13] for subgradients of locally
Lipschiizian functions.

A generalization of Theorem 8.5 to arbitrary lower semicontinuous func-
tions / has been furnished by Rockafellar [52], [49]. In such a setting one must
consider not sequences of gradients Vf(x*), but “lower semigradients™ or
“proximal subgradients”, and the notion of convex hull must be broadened to
include “*points at infinity"™.

9. Subdifferential Calculus

Not much could be accomplished with genecralized subgradients if there were
no rules for calculating or estimating them, beyond the definition itself. Such
rules do exist in the convex case [43], and many of them have now been ex-
tended. We can only mention a few here.

A formula for the subgradients of the pointwise maximum of a collection of
smooth functions @, 1 €T, has already been given in Theorem 7.3 and Corol-
lary 7.4. This has been generalized to certain collections of nonsmooth func-
tions ¢, by Clarke [13], [14].

An especially important operation to consider is that of addition of func-
tions.

Theorem 9.1 [46]. Let f, and [ be lower semicontinuous functions on R", and let x
he a point where both f, and f, are finite. Suppose there exists an h€ R" such that
Fl(x:h)y< oo and [ is directionally Lipschitzian ar x with respect to h. Then
9.1) AN DT )+ af5(x).

Moreover equality holds in (9.1} if [, and [, are subdifferentially regular at x.
Corollary 9.2. Suppaose [ is finite at x and lower semicontinuous around x, and f-
is Lipschitzian around x. Then the conclusions of the theorem are valid.

The corollary is the case of the theorem where h=0. A number of applica-
tions of Theorem 9.2 have an indicator function in place of either /) or f,. The
following fact then comes into play.

Theorem 9.3 [13]. Let f be the indicator w, of a closed set CCR", and let x€ C.
Then

{9.2) Afix)=N¢(x), where N-(x)=T.(x)° (polar).

I1. Generalized Subgradients in Mathematical Programming T

The polar N (x) of the Clarke tangent cone T, (x) is the Clarke normal cone
to C at x. and its elements are called normal vectors. A nonzero normal vector
exists at x il and only if x is a boundary point of C (cf. Rockafellar [44]). For di-
rect expressions of the normal cone as the convex hull of limits of more special
kinds of normals at special points, see Clarke [13] and Treiman [61].

Theorem 9.1 is only a samplc of the kind of calculus that can be carried out.
The chain rule too has its generalizations; see Clarke [14], Rockafeltar [44], [54].
Further rules are listed in [49]

As lar as mathematical programming is concerned, the question of how to
estimate the subgradients of an optimal value function p, as described toward
the end of § 1. is highly significant, and much effort has been expended on it
(see ]48] and its references). We must content ourselves here with indicating
what the answer is in a special case.

Let us consider the problem

minimize fy{x) subject to

(P) f()y+u, =0 for i=1,...,m,

where w=(u,,....u,) and the functions f,, fi,....f. are locally Lipschitzian on
R". Suppose that for every u € R" and @ € R the set of feasible solutions to (P,)
with fj(x) =« is bounded (maybe empty). Let p(¢) denole the optimal value in
(7). Then p is a lower semicontinuous, proper function on R™ (convex actually
if every f; is convex, but that is not the situation we want to restrict ourselves to
at the moment). Since p is nondecreasing in u, it is also directionally Lipschit-
zian throughout its effective domain (cf. end of §2).

Theorem 9.4. Let p(u) be the optimal value in problem (F,) under the above as-
sumptions. Fix any u such that p(u) is finite, and let X (1) denote the correspond-
ing set of optimal solutions. For each x € X (u), let K (u, x) denote the set of all La-
grange multiplier vectors y € R™ satisfying the generalized Kuhn-Tucker condi-
tions

y, 20 and y, fi(x)=0 for i=1,....,m,

(9-3) 0c aﬂ](_r) —|—_'|," afr {l‘} L L +_V,,, (r),f:n (t) *

Similarly Iet Ko(u, x) be the sef of vectors y which would satisfy (9.3) if the term
Afolx) were omitted. If Ko(u, x) consists of just the zere vector for every x € X (u),
then p is Lipschitzian around u and

(9.4) ap(u)C co[ U X (x,_v)] (compacr),

ve Xiu)

(9.5) plle hy=p°(u:h)= max  max y-h forall h.

EX () vERIL )

For a stability condition ensuring that 8p ()= K (x, ) in (9.4) see Pomerol
[42]. A more abstract analysis of ép(x) in the case of functions p of the form

p(uy=inf f{u, x),

with f lower semicontinuous on R™ x R" and extended-real-valued, is carried
out in [50].
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