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Second-order necessary conditions in nonlinear programming are derived by a new method
that does not require the usual sort of constraint qualification. In terms of the multiplier
vectors appearing in such second-order conditions, an estimate is obtained for the generalized
subgradients of the optimal value function associated with a parameterized nonlinear pro-
gramming problem. This yields estimates for ‘marginal values® with respect to the parameters.
The main theoretical tools are the augmented Lagrangian and, despite the assumption of
second-order smoothness of objective constraints, the subdifferential caleulus that has

recently been developed for nonsmooth, nonconvex functions.
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1. Introduction

For i=0,1,...,m, let f; be a function of class % on R" and consider the

parameterized nonlinear programming problem:

P minimize fy(x) overallx ER"
ol =0 fori=1...,s,
satbivice: (@) u,{ =0 fori=s+1,..,m,
where v =(uy, ... U4, ) ER". Let
p{u) =inf(P,) (optimal value),

X(u)=argmin(P,) (set of optimal solutions),

F(u)=feas(P,) (set of feasible solutions).

Here p is a well-defined function from R™ to [ — s, =] (under the convention that
inf(P,) =2 when (P,) is infeasible). To ensure that p is lower semicontinuous
everywhere with p(u)> —o, we assume that the following inf-boundedness

condition is satisfied:

for every u € R™ and « € R, there is a neighborhood U of
u such that the set {x € F(U) [ folx) = a} is bounded,
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246 R.T. Rockafellar| Second-order necessary conditions
where notationally
F(U):= \JFu)={x|3u' € U withx € F(u)}
w'ell

This condition implies at the same time that X (u) is a nonempty compact set for
every i having p(u) <.

The question we want to address is the relationship between the generalized
subgradients and subderivatives of p at u and the Lagrange multiplier vectors y
that correspond to various optimality conditions on the elements x of X (u). We
alm at using this relationship to establish the necessity of certain second-order
optimality conditions of a new sort,

Subgradients of arbitrary lower semicontinuous functions, which like p need
not be convex, were first defined in a robust manner by Clarke [2]. They were
characterized by Rockafellar [13] in terms of certain generalized directional
derivatives, called subderivatives. At a point u € R™ where p(u) <o, the sub-
derivative of p with respect to a vector h € R™ is

p '(u; h):=lim { lim sup [ inf IM___E_(_“_)H
|h!

el (=07 e i
Cie piu =t plk) &
[ k k
] . u" +th")— I
= inf [ sup [hm“ h) = p( )H )
th¥1=h {07 e ty :

fiu®, prat b= ta, pluly
It was shown in [15] that as a function of h, p "(u: h) is always lower semicon-
tinuous. convex and positively homogeneous. The set of (generalized) sub-
gradients of p at u is

ap(u)i={yER™|pT(u:h)=y-h forall h €R"}, (1.3)

which is a closed convex set. One has
p(u;h)=suply - h i veEap()} if aplu) =8, (1.4)
p (uihy=+=or—= forevery hif dplu)=40. (1.5)

The theory of such subgradients and subderivatives has undergone much
development; see [16] for an exposition. For present purposes we mention only
the following facts. If p is convex, then dp(u) agrees with the subgradient set of
convex analysis. The case where dp (i) consists of a solitary vector v is exactly
the case where p is strictly differentiable [16] at u with Yp(u)={y}. Finally, a
necessary and sufficient condition for p to be Lipschitz continuous (in particular
finite) in a neighborhood of u is that dp(u) be nonempty and bounded [14].

These relations underscore the fundamental significance of the expressions
p "(u: h), which can be interpreted as generalized marginal values. Estimates for
such values can be derived via (1.4) from estimates for ap(u).

Apart from convex programming and some situations in nonconvex pro-
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gramming where p happens to be a %€° function, the first strong results relating
behavior of p to Lagrange multiplier vectors were obtained by Gauvin [4]. To
formulate these and set the stage for other results in this paper, we introduce the
functions

16 ¥) = fox) + 3 300,
! ui) (1.6)
lo(x, ¥) = X vfi(x).

i=1
For each x € F(u), we consider the active index set
Hux)={i€[l,m]|fi(x)+u =0} D{s+1,..,m} (1.7)
and the first-order multiplier sets

K'(u.x)={y €ER"|Vd(x,y)=0 and y =0 for i€[l,s], (1.8
with y; = 0if i & I(u, x)},

Kiu.x)={veRr" [\'-'xfn(x, y)=0 and y =0 for i€[l,5], (19)
with y; = 0if i & I(u, x)}.

The latter is a cone containing 0.

The existence of some y in K'(u, x) is, of course, a necessary condition for x
to be in the optimal solution set X(u), under certain qualifications., We state for
reference the following fact (cf. [10], [7, Section 4.10], [18]).

Proposition 1. For any u and x € F(u), the following are equivalent:

(a) K'(u.x) is nonempty and bounded:

(b) Ko(u,x)= {0}

(¢) the Mangasarian—Fromovitz constraint qualification is satisfied, i.e. the
gradients Vfi(x), i =s+1,....m, are linearly independent, and there is a vector
w & R" such that

eyl S0 fori€I(u,x)i=s,
Vi) u{=0 fori=s+1,..,m.

The subgradient results of Gauvin may now be stated.

Theorem 1 (Gauvin [4]). Let u be such that p(u) <= and K}(u, x) = {0} for every
x € X(u). Then p is Lipschitz continuous on a neighborhood of u. the set

U K'(u,x)

XEX{

is compact, and one has

HD(H)CCO[ U K'(u..\')}, (1.10)

TEXN{n)
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so that
p (u; k) =max{y - h | vy € K'(u, x) for some x € X(u)}. (1.11)

The local Lipschitz continuity in Theorem 1 allows the expression (1.2) for
p (u:h) to be reduced to a simpler one, the Clarke derivative; see [15, 16].
Gauvin actually worked with such derivatives only and assumed merely that
f, € €'. Extensions of Theorem 1 can be made to cases where fi is just locally
Lipschitz continuous (not necessarily differentiable), and where an abstract
constraint v € C(u) is present (see Auslender [1]. Rockafellar [18]).

Our present goal is in the opposite direction: we want to exploit as far as
possible the assumption that f, € €°. Specifically, we look for multiplier sets
K*(u, x) and K{(u, x), included in K'(i, x) and K}(u, x) but exhibiting second-
order properties. such that generalizations of Proposition 1 and Theorem 1 hold.
This is a completely new approach to second-order necessary conditions for
optimality.

The first step towards this goal is an exact description of dp(u) in terms of
limits of certain ‘augmentable’ multiplier vectors associated with the (quadratic)
augmented Lagrangian. We appeal here to a formula established in [17]. An
extended version of the formula is presented in Section 2; a previous assumption
of ‘quadratic growth’ is avoided, and more information is provided about the
cone of singular subgradients

p()={yER™ |y -h=0 forall h withp'(u; h) <=} (1.12)

This cone is important because it is the recession cone of dp(u) when ap(u) # 6,
and indeed (cf. [18, Section 3]);

') ={0}& p"(u:h) <= forall h

) (1.13)
< dp(u)is nonempty and bounded,

In Sections 3 and 4 the connection between augmentable Lagrange multiplier
vectors and the standard kinds of first- and second-order optimality conditions is
explored. The new multiplier sets K*¥(u, x) and K3i(u, x) are introduced in Section
5 and shown to yield results about necessary conditions and subgradient esti-
mates, as proposed.

The reader should know that, while the new second-order necessary con-
ditions derived here help substantially to narrow the estimates which can be
given for subderivatives of the optimal value function p, they do not exhaust
what can be said towards characterizing local optimality. As far as narrowing the
gap between necessity and sufficiency is concerned, and doing so in terms of just
the first and second derivatives of the functions f; at the point in question, the
sharpest results so far are those which Ioffe [8, Sections 7, 8] has obtained,
following a different approach due to Levitin et al. [9]. In this approach it is the
expression

supfw  Vil(x, y)w |y € K'(u, x)}
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whose nonnegativity or positivity for all w in a certain cone is at issue. The
corresponding assertions about marginal values, although not fully explored, are
oriented toward directional derivatives of p in the Hadamard sense, rather than
the subderivitaves studied here. An exception is the recent work of Gollan [5],
which does encompass certain second-order estimates for dp(u) and p '(u;h)
complementary to ours (see the last part of Section 3).

A final observation: although we consider only a seemingly special form of
parameterization in this paper, our results can easily be extended to the case
where fi(x) is replaced by fi(v, x) with » a general parameter vector in R% The
trick is simply to regard this as minimization jointly in ¢ and x subject to an
additional set of equality constraints, namely that each component of v be equal
to a preassigned value. See [17] and [18, Section 3] for more details.

2, Subgradients and augmentable multiplier vectors
By the augmented Lagrangian associated with (P,), we mean the function

L!r(xs ¥, r) — f(}(x) _2[ (P(f.(x) + i, ¥is I‘) - ﬁ;] tf!(f;(x) U Y ?’). (2])

where
W)+ w, v 1) = Wilfi(x) + ]+ or[fi(x) + w1, (2.2)
" _[ Y+, v, 1) iy i) + w] = 0, i
PR P i) -5y} ity + i+ ul=0. O

The properties of the augmented lagrangian are of recognized importance in
connection with computational methods, but here we shall be occupied with
their theoretical significance.

For one thing, it is clear that regardless of the choice of ¥ € R™ and r > 0. one
has

L,(x,y.r)=fyx) forallx € F(u) (2.4

and consequently

Ig{f L,(x,y.r)=p(u) whenever C 2 F(u). (2.5)
Let i
A)={yER™|3Tr>0 and neighborhood U of u such that
Anf Lu(x, y, 1) = pu) <o}, (2.6)

The elements of A(u) will be called augmentable Lagrange multiplier vectors.
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They allow the constrained minimization in (P,) to be reduced to an essentially
unconstrained minimization in the sense of the proposition below. (Here we
generalize results of Rockafellar [14, 13] that correspond to replacing F(U) by
all of R" in (2.6).) Other properties of augmentable multiplier vectors, which
indicate their abundance and explain their relationship to more familiar multi-
plier ¢conditions, will be derived in Sections 3 and 4; for a local characterization
of augmentability, see the remark after Proposition 5.

Proposition 2. Let vy € A(u) and let BC R™ be any bounded set with u €int B.

Then y; =0 fori=1,...,s, and for all r =0 sufficiently large one has
X(u)=argmin L,(x, vy, r) Cint F(B). 2.7
xEF(B)

Proof. We note first that

Lix y.n= min {fyx)=y @'~ ) +aru’ — ul}. (2.8)

' xEFu

This implies for arbitrary U C R™ that

inf L(x,y,r)=inf{pu)—y (@ —u)+irlu' —ul}, (2.9)
W'Eel

xZF(L)

]

with x yielding the minimum on the left if and only if x € X(u') for some u
yielding the minimum on the right. (Recall that X(u')#@ when p(u’) <=
Taking U = B, we see that the desired relation (2.7) is equivalent to

arg min {p(u")—y - (u' — u) +3rju’ — ul} = {u}, (2.10)
[I=3:]

since the continuity of the functions f; ensures
int F(B) D F(u) 2 X(u) whenu €int B.

On the other hand, the condition v € A(u) translates by (2.9) into the existence
of some 7> 0 and neighborhood U of u such that

ue argcng'in{p(u’) —y-(u—w+3rlu —ul}, plu) <o, (2.11)
(Note that this implies y, =0 for i =1, ..., s, since p(u") is nondecreasing with
respect to uj, i=1,...,5)

The question therefore boils down to whether (2.11) holding for some >0
and neighborhood U ensures that (2.10) holds for all r sufficiently large. Choose
€ > 0 such that |u'— u| < e implies u’ € U. It suffices to show that if p(u) is finite
and r,> 0 is such that

=)

puY=pu)+y-(u' —u)—srju' —u> when|u'— ul=e, (2.12)
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then for all r =0 sufficiently large one will have
plu)>pl)+y - (' —u)—srlu'—ul* whenuw €B,u'# u. (2.13)

Since p is lower semicontinuous on R™ and B is bounded there is a number
@« € R such that

pluy=ca« forallu'€B.
Also, there is @ number 8 € R such that
ve(u'—u)—srju'—ul’=g forallu’€R™
If > r, but (2.13) is violated. we would have to have |u'— u| = € but
a=p)+y-(u—u)—irju —ul
=p(u)+y - (' —u)—rlu' = ulf =3 = ro)|u’ — uf
< plu)+ B —telr=ry.

so that r<r;=(2/e)[p(u)—a + B]. This shows that (2.13) cannot be violated.
when r is sufficiently large.

Proposition 2 reduces to previous results of ours in [12. 13] when a certain
quadratic growth condition is satisfied. namely that for U = R"™ and some choice
of ¥y €R" and r > (). the quantity (2.9) is not —=. This growth condition was also
invoked for a formula for dp(u) which we gave in [17]. We now present a
version of the formula which avoids it and at the same time says more about the
cone 3°p(u) in (1.12) and (1.13).

The notion of “lim sup™ for multifunctions will be useful, Recall that for a set
M (z) depending on a parameter vector =, one defines

hm sup M(z") ={w | I sz wh e M) with wh = wl (2.14)
(This limit set is always closed.) As a special case, for any C C R™ the set

0"C:=limsup tC
g M. (2.15)
={y ] Iy e 1, >0, with 1,y* >y}
is called the recession cone of C. It is a cone (i.e. closed under multiplication bv
positive scalars). and its constituent rays correspond to the ‘direction points’ of
R™ that can be interpreted as ‘points of € at infinity’ (cf. [11. Section 8] for
the case of C convex). Note that C is nonempty and bounded if and only if
0" C ={0}.
We shall write the convex hull of a set C as co C. It is elementary that

c[C+D]=coC+coD foralCCR™, DCR". (2.16)
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Theorem 2. Let u be such that p(u) <=, and define

Y(u)= limsup A(u"), 2.17)
('L pla = plud)
Yy(u)= Tlimsup tA(u"). (2.18)
=0t

(", pla't=elie, pludy

Then Y(u) and Y (1) are closed subsets of R™ such that Y(u) is a cone with

0E Yyu) and 07Y(u)C Yyu). (2.19)
One has
ap(u) = cleo[Y(u) + Yy(u)], 23°p(u)Cclco Yylu), (2.20)
and
Y(u)=0< ap(u)=0=> {0} a'p(u) = clco Yo(u). (2.21)
Moreover
J’ sup y-h ify-h=0foreveryy € Yy(u),
piluih)=1""" (2.22)
‘__ T otherwise,
with

int{h |p T(u; )y <=}={h |y -h<0 forallye€ Yyu),y#=0}  (2.23)

The latter set is nonempty if and only if Yo(u) is pointed, in which event 8°p(u) is
pointed too and one actually has

ap(u) = co[Y(w) + Yy(w)], a°p(u) =co Ylu). (2.24)

This is the case in particular when there are no equality constraints in (P,), L.e.
when s = m.

Here we use the terminology that a cone C, C R™, not necessarily convex but
containing 0, is pointed if 0 cannot be expressed as a sum of nonzero vectors in
Cy. (When C, is convex, this is equivalent to the condition that if y € C; and
y#0, then —y& C,) Trivially, C, is pointed in the degenerate case where
Co={0}, or if Cy= RY. A dual characterization of pointedness is provided by the
next proposition, which will be needed in proving Theorem 2.

Proposition 3. Suppose C and Cy are closed subsets of R™ such that Cy is a cone
with
0eC, and 0°CCC, (2.25)

If C, is pointed, then co Cy and co[C + Cy] are closed. Moreover, C, is pointed if
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and only if there exists a vector h satisfving
y-h<0 forally€ C,withy#0. (2.26)
When h does have this property. then
heint{h|y-h=0 forally € C=int{h |sup,ccy -h<o} (2.27)

Proof, Part of this, namely the assertion that co Cy and co[C + C;] are closed
when C, is pointed, is covered by [18, Proposition 15], but an alternative proof
will be offered in the course of what follows. Condition (2.26) obviously
guarantees that C; is pointed. We proceed to show that it implies (2.27) and the
closedness of co €y and co[ C + Cy]. The final stage will be an argument that if
Cy is pointed and co C, closed, then (2.26) holds for some h.

If i satisfies (2.26) we have

0 > max{y - E| y € Co |v|=1}

(the maximum exists because C, is closed). The same is then true for all k in
some neighborhood of h, say defined by |h — h| = € for some € > 0. Then

0>max{y h|yeCuly|=1,|h—h|<e}
= max{y - i +elyl |y € Colyl = 1,

s0 (since C, is a cone)

0>y -h+e|ly] forallye Cyy+0. (2.28)
By (2.25) this also holds for nonzero y €0°C, and the definition (2.15) of the
latter cone then implies

-e> lin_q_stup lz| 7'z - h.

e

For some p = 0, therefore, we have

0>z h+elz| forallz e C with|z|>p,

from which can be deduced (using the closedness of C) that, for some « € R
sufficiently large,

a>y-h+ely] forallyeC. (2.29)
In particular, then, if |h — i| <€ we have

suph-y=sup{y-h+ejy)}=a

ver yeU
This verifies (2.27).

Continuing with the same vector h satisfying (2.28) and (2.29). we demonstrate
next that co C; and co[C + Cq] are closed. We shall argue first that for any =0
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there is a ¢ >0 such that

{vecoC, | ly|=n}= {z:; 5 ‘ vie o Y=t

r|=ak @30

since the set on the right is compact, this will prove co C, is ¢losed, Because C,
is a cone in R™ containing 0, its convex hull can be represented as

. {2:’:] Y |yie Cn} (2.31)

(Caratheodory’s theorem [11, Section 17]). Hence for any ¢ = 0 the inclusion D is
true in (2.30). For the reverse inclusion we must show for arbitrary n >0 the
existence of £ > 0 such that

12”' ‘ n Y EC>y|=¢ (2.32)

We invoke (2.28): the assumptions in (2.32) give us

s0 the conclusion in (2.32) is valid for £ = n|hl/e.
To demonstrate in similar fashion the closedness of the set co[C+ C)]=
co C +co C,, we introduce

V={v,A\ )ER" xR 1 either A =0and v € Cyor A >0and A "'v € C}
(2.33)

and observe (via Caratheodory’s theorem again) the representation
coC+c0Cn={2 "o | 3N with @A) €V, 3 ,\j=1}‘ (2.34)

Here V is closed, because C, and C are closed and (2.25) holds. We shall
demonstrate that for arbitrary n > 0 there is a { > 0 such that

{vE[CoC+coCn]|]1‘-|5T}}= (

-2

.35)

This will provide the closedness of co C +co C,, since the set on the right in
(2.35) is compact.
The inclusion D in (2.35) is clear from the (2.34), so in order to verify (2.35)

we need only establish for arbitrary m >0 the existence of a corresponding
£ =0 such that

I!\

={z;“u [EDY with (v, \)E V, |pl|=¢ S oA ‘2;0 l

Im

2 v

i=0

Im

W, ) EV, E)L—l =n=>|=¢ (2.36)
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Considering elements which satisfy the hypothesis of this desired implication, let
us suppose for notational simplicity that (for some index ¢, 0 << g =2m)

)L_{>[] forj=0,...,4q,
=0 forj=q+],.,.,2m.

Then by (2.28), (2.29), and the definition (2.33) of V
h-AT'v+eldi'y| forj=0,..,4q,
h-vl+elol|=0 forj=qg+1,...2m,

and therefore
hevi+ev|=ra forallj

It follows that

Zm Im

E;g]ﬁjlgzz:;/\jﬂ—(; Er)-E£a+n|Hl,

|
so |v'| = (a + n|h|)/e for all j. Hence (2.35) is true for { = (a + n|h])/e.

We are now at the last step in the proof of Proposition 3. Under the
assumption that C, is pointed, we must show the existence of an h satisfying
(2.26). The pointedness of C, ensures the pointedness of the convex cone
D =co C, (cf. (2.31)) and, as we have already determined, the closedness of D.

The polar of D is
D°={h|y-h=0 forally€ D}

(2.37)
=1h | y-h=0 forallye (g}
and since D is closed, the polar of D° is in turn D:
D={5|5-h=0 forallh€ D. (2.38)

If D° had empty interior, it would not be m-dimensional and would have to be
contained in a proper subspace of R™ [11, Section 6]. Thus there would exist some
§#0, § LD, and by (2.38) we would have both § and —¥ in D, contrary to D being
pointed. Hence there must be some h € int D°. Obviously from (2.37), any such h
satisfies (2.26).

Proof of Theorem 2. Tt is evident from (2.17) and (2.18) that Y (u) and Y,(u) are
closed sets, Yy (u) is a cone, and 07Y (u) C Yi(u). As for (2.20) and the fact that
0&€ Yy(u), we proved these in [17, Theorem 2] with the functions f; merely
continuous, but assuming the ‘quadratic growth condition’ described above, prior
to the statement of the theorem, and furthermore with A(u) in (2.17) and (2.18)
consisting not of augmentable multiplier vectors as in (2.6), but ‘totally’ aug-
mentable ones in the sense of yielding

inf L,(x,y,r)=p(u)<o forsome r>0. (2.39)
xER"
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Proposition 2 assures us that when v is augmentable we have for arbitrary
bounded B C R™ with u €int B:

ir;ffB_ L,(x.y,r)=p(u) <o forrsufficiently large. (2.40)
x=F(B)

The proof of Proposition 2 used the boundedness of B only to guarantee that p
is bounded below on B by some « € R. Certainly, then, if p happens to be
bounded below on all of R™ (a special case of the ‘quadratic growth condition”),
any augmentable v satisfies (2.41) with B = R™. Since F(R™) = R", we see that in
this case every augmentable multiplier vector is totally augmentable. Thus when
p is bounded below, our earlier result is applicable and allows us to conclude
0& Yy(u) and (2.20).

A simple trick reduces the general case to the one where p is bounded below
on R™: set « = p(u)—1 and replace f, by fo = max{f,. a}. This replaces p by a
new optimal value function § = e and the sets A(u) in (2.16) and (2.17) by sets
A(u), in terms of which the desired formula is valid. Now since p was lower
semicontinuous at u, and p(u) > «, we have p(u') >« for all ¥’ in some open
neighborhood U, for u; then for all x € F(Uy) we have fy(x) > a, 50 fy(x) = fo(x).
This reveals that for all u'€ U, both p(u")=p(u’) and A(u")= A(u’), The
formula in terms of p and A is thereby identical to the one asserted in terms of p
and A. Thus we are sure in general that (2.20) holds and 0 € Y,(u).

The proof of the cited result [17, Theorem 2] actually established that the
normal cone to the epigraph of p at (i, p(u)) is

clecof(y, A) | either A =0and y € Y(u),orA >0and A 'y € Y(u)}
On the other hand, from the general theory of subgradients the normal cone is
{(y,A\)|either A =0and y €8°(u),or A >0and A"y € ap(w)}  (2.41)

[16, 18]. Obviously if Y(u)=0, we may conclude 3°p(u)=clco Yy(u). Since
Y(u)+ Yy(u)=0 if and only if Y(u)=0 (recall 0 € Yy(u)), while a°p(u)# {0}
when dp(u) =@ (inasmuch as (u, p(u)) is a boundary point of the epigraph of p,
so the normal cone (2.41) cannot be just the zero vector [14, p. 149]), we may
conclude the validity of (2.21). Then (2.22) follows by the fundamental formulas
(1.4), (1.5), (1.12) (using the convection that sup f# = — ).

The inclusion C in (2.23) is immediate from (2.22). Applving Proposition 3 to
C=Y(u) and Cy= Y(u), we obtain the reverse inclusion, again via (2,22), as
well as the assertions in the final sentence of Theorem 2, except concerning
3°p(u). As for the latter, if h belongs to the set in (2.23), then by (1.12)

y-h<0 forally€ ap(u).

This implies by Proposition 3 that 2p(u) is pointed (the case of Cq= 8% (1) in
Proposition 3).
If there are no equality constraints, we have in (2.17) and (2.18) that A(u") C
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R (cf. Proposition 2) and therefore Y(«) CRY, Yy(u) CRT. In particular Yq(u)
is pointed in this case.

Theorem 3. Let u be such that p{u)<<=. The condition Yy(u)={0} is then a
necessary and sufficient condition for p to be Lipschitz continuous on a neigh-
borhood of u. In that case Y(u) is a nonempty compact set, and one has

ap(u)=co Y(u), (2.42)

p'(uih)= max y-h=Ilimsupy'-h. (2.43)
vEY(u) _\-'El.a\i_u')
ol u:'{}::!r_:l u)

Proof. From general theory we know that p is Lipschitz continuous on a
neighborhood of u if and only if &p(u) is nonempty and bounded, or
equivalently, a"p(u)=1{0}. If the latter holds, then Y,(u)={0} by (2.20) in
Theorem 2. On the other hand, if Y (1) = {0} (in which case Y,(u) is pointed), we
have by (2.24) both 8"p(u)={0} and dp(u)=co Y(u); moreover Y(u)#@ by
(2.21) and 0°Y(u)={0} by (2.10). The latter implies Y (u) is compact, so that
(2.22) reduces to the first equation in (2.43). The second equation in (2.43) then
follows from the definition (2.17) and (2.18) of Y (1) and Y (u): Since Y (u) = {0},
every sequence {v*} having v* € A(u*) for some sequence {u*} with u*-u,
p(u*)— p(u), must be a bounded sequence whose cluster points all lie in Y (u).

Remark. Nothing in this section has made use of the smoothness of the
functions f. They could merely be continuous functions on R". An abstract
constraint x € C (where C is a nonempty closed subset of R"). could also be
added, the description of the feasible set F(u) being altered accordingly. In this
general setting, Proposition 2, Theorem 2 and its corollary still hold with the
same wording.

The smoothness of f; enters, of course, in trying to relate augmentable Lagrange
multiplier vectors (and their limits) to vectors that satisfy first and second-order
optimality conditions in differential form, as we do in the next two sections. It is
then that the connection between the preceding theorem and Theorem 1 (Gau-
vin) will become clear (Theorem 4).

3. Estimates in terms of first-order conditions

Estimates of the subgradient set dp(u) and subderivatives p '(u;h) can be
generated from Theorem 2 by way of estimates for the sets Y(u) and Y (u).
With this purpose in mind, we now explore connections between the vectors in
Y(u) and Y (u) and various Lagrange multipliers that appear in classical
optimality conditions.
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We start with a result about the relationship between augmentable Lagrange
multiplier vectors and the first-order conditions already mentioned in Section 1.
(The result only requires f; € €'.) This will lead to a generalization of Theorem 1.

il

Proposition 4. For any u € R™ with p(u) <=, one has

Awc Ywec U K'wx), Youwc U Ki(u, x). @1

rEX ) KEXiu)

In the convex programming case (where f; is convex for i =0.1,..., s and affine
fori=s+1,...,m), it is actually true that

Aw)=Yw) =K' u.x) and Yo(u)=K{u x) forallx € X(u).
(

Proof. Trivially A(w)C Y (u) by definition (2.16), Whenever v € A(u) and x €
X (u), we have (by Proposition 2, when r is sufficiently large) that L,(-, v, ) has
a local minimum at x; this minimum is equal to p(u) by (2.6). Then since
L.(x,v.r)=fx)=p(u)=1L,(x,v.7) for all ¥ by (2.4) the function L,(x,-.7r)
also has a local maximum at vy, and it follows that

ViLu(x,¥.r)=0 and V,L.x,y,r)=0. (3.3)

2)

Lad

In terms of the notation

max{fi(x) +u,— yfrt for i=1,..,s

je {f,:(x}+ 1 for i=gy +1 aiy TV 34
One has
VLG v, 1) = Vo) + 3 i+ mfi),
et ‘ (3.5)
V_\-L_.‘-().. ¥, r) . (nl- O Tfm)
50 (3.3) is equivalent to having x € F(u) and y € K'(u, x). Thus
A CK'(u, x) when x& X(u). (3.6)

Next we recall from the inf-boundedness condition (1.1) assumed at the
beginning of Section 1 that for any bounded neighborhood U of u the set
{xEeFU) | fix)=p(u)+1} is bounded. If v € Y(u), there exist by definition
(2.18) sequences v* =y and u* — u such that p(«*)—> p(u) and yv* € A(u"). Since
p(u) <=, we have p(u*) <= (at least for k sufficiently large), so X(u*)# 4.
Taking arbitrary x* € X(u*), we have A(u")C K'(u*,x") by (3.6). hence y* &
K'(u*, x*). Moreover fy(x*) = p(u*), so that for k sufficiently large we not only
have u* € U (implying x* € X(U) C F(U)) but f(x*)=p(u)+ 1, i.e. x* belongs
to the bounded set {x € F(U) | fo(x) = p(u)+ 1}. The sequence {x'} is therefore
bounded and can be assumed to converge to some x. Then by the continuity of f,
and Vf, we have, since x*&€ F(u*) and y"& K'(u*, x*), that x & F(u) and
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vy € K'(u, x); furthermore fo(x) = lim fo(x*) =1lim p(u*) = p(u), so actually x €
X (u). Thus for each v € A(u) there exists x € X(u) with y € K'(u, x), which is
the assertion of the first inclusion in (3.1).

The second inclusion in (3.1) has a parallel proof. If ¥y € Y (u), there exist by
definition (2.18) sequences t,v*—y, and u*—u such that t,—0', p(u*)—=p(u)
and y* € A(u"). Again we can find x*€ X(u") such that y* € K'(u*, x*) and

x* = x € X(u). This time, however, we have

0= V15 v = 6 Vfox") + 3 t DVAG) = S vV () 37
=1 =1
and consequently y € K {(u, x).
In the case of convex programming, L,(x.y,r) is convex in x, as well as
concave in y (this follows from (2.8), cf. [13]). so the conditions x € F(u) and
y € K'(u, x), which we have seen to be equivalent to (3.3), imply (x,¥) is a

(global) saddle point of L,(:, +,r):

inf L(x',v,r)=L,(x v, r)=sup L,(x,y,r).

*'=R" yER™
Since
s ifxeF
sup Ly, n={10 S XS m lantu),

.\.-ERI“.

This implies v € A(u). Thus K'(i. x) C A(y) when x € X(u), and in view of (3.6)
we must indeed have A{u) = Y (u) = K'(u, x) as asserted in (3.2).

We work now towards verifying the second part of (3.2). Let L} be the

function obtained by deleting the f, term from the augmented Lagrangian. Thus

L.(x,y, )= folx)+ Lu(x, 3, 1) (3.8)

where L2(x, v, r) is convex in x, concave in y, and

Lix.y,r)= min {—y (' —uw)+3rlu' —ul?}, (3.9)
uixEFuN

0. o o~ [0 ifx e F(u), _

sup Lu(x,y, 1) = {oc if xZ F(u). (3.10)

Fix any 7> 0 and define

A1) ={y € R" |inf e Li(x, v, ) = O}. (3.1

We claim that

Kiu, x)= A%w) forall x € F(u). (3.12)
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Indeed, from (3.9) and (3.10) we know that

0= inf [sup Li(x,y, H1= sup inf Li(x,y, 7)= inf Li(x,0,F)=0.
ER" yER™ vER™ *=R" *ER

Hence 0 is the saddle value of L5(:, -, ¥) on R" X R™, and the saddle points are the
pairs (x, ¥) such that

sup L%x, -, F)=0=inf LY(-, ¥, 7), (3.13)

Rm R.'.'
i.e. from (3.10) and (3.12) the elements of F(u)x A'(u). They are also the pairs
(x, v) satisfying

V.L%x, v, =0 and V,Li(x,y,7)=0. (3.14)
As in the case of L, the gradients of L are described by (3.4) and (3.5), without
the Vf, term, so by condition (3.14) the saddle points must be the pairs (x, y)
such that

max{fi(x)+u, ylr}=0 for i=1,..,s,

fix)+u; =0 for i=s+1,...,m,

2 }‘rvfl(x) = 01

1=1
or in other words, such that x € F(u) and y € Ku, x). We deduce that

F(u) x Au) ={(x, y) | x € F(u). y € Kq(u, )},

which means (3.12).

Applying (3.12) to the second inclusion in (3.1), we see that Yo(u)C Kyu, x)
for all x € X(u), and that to establish equality, as asserted in the second part of
(3.2), it will suffice to show A"u)C Y,(u). Accordingly, we consider any y €
A%u) and try to find sequences {t,}, {¥*} and {u"} such that

tyt =y, YEAWY, -0 uou pH-ph. (3.13)

Success in this matter will finish the proof of Proposition 4.
We can make use of what has already been proved in the first part of (3.2) in
the following way:

K u,x)=Y@)C Y )+ Yy(u)C K'u, x)+ Kiu, x) = K'(y, x),

so that Y(u)+ Yy(u)=K'u, x) (closed convex) and by formula (2.20) in
Theorem 2:

ap(u) = K'(u, x) = A(u).

This having been established for arbitrary u with p(u) < e, we can apply it to the
proposed elements u* in (3.15):

v e AN e v € ap), when plu)<e=, (3.16)
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Fixing any y € A"(u), and letting
qu)=—y - (u'—u)+3Fu’' —ul, (3.17)
D={u|F@)=a={u|pu)<=}
we observe from (3.9) that
0= inf L%x, yv.7) = inf min g(u)= inf g(u").
<ER" tER" wrEFW) WweD

The set D is convex, the function ¢ is strictly convex, and g(u)=0, u € D.
Therefore

q(u,){}o ifplu) <=butu'+#u,

=0 ifu'=u (3.18)

Since we are dealing with convex programming, the optimal value function p is
itself convex [11], as well as (under our inf-boundedness assumption (1.1)) lower
semicontinuous, finite at u. It follows that for k = 1,2, ... there is a unique

u® € argmin{p(u") + kq(u")}. (3.19)

P
weER

This satisfies

p(u¥) =p") +kq(u*) = pu)+ kq(u) = p(u) (3.20)
and the subgradient condition

0 ap(u®) +kag(u") = ap(u*) + k[ — y + F(u* — w)]. (3.21)
Let

vy =kly—Fu*—u)l, t.=k™"

Then t,— 07, y* € dp(u*) by (3.21), and t,y* = yH(u* — u). We need only show
that u* — u, for then t,y*—= v and p(u*)—= p(u) (by (3.20) and the lower semicon-
tinuity of p), and in view of (3.16) we will know that the chosen sequences meet
the prescription (3.15) for v € Yy(«). The proof that u*—u rests on (3.18).
Inasmuch as p is a proper convex function on R", there is an affine function a
satisfying

a(uh=p(u") forallu'€R™
By (3.19) and (3.20)
u* € {u'| p(u) + kq(u) = p(w} C {u' | au) +q) = pw)},

the latter set being some closed ball B (due to the form of g in (3.17)); let

B = min p(u"),

W'ER
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a quantity which is finite because p is lower semicontinuous. We see that {u "1 is
a bounded sequence which by (3.20) satisfles

kqu y=p)—pw)=pu)—p forallk
and hence by (3.18) can have no cluster point other than u. Thus u* —u and the
proof of Proposition 4 is complete.

Corollary 1. For any u € R™ with p(u) <=, one has ap(u) D A(u) and

plu:h)= sup v-h. (3.22)

vEAN)

Proof. Since A(u)C Y(u) and 0 € Yy(u). we have A(u) C Y(u)+ Yy(u). Speci-
alize formulas (2.20) and (2.22) of Theorem 2 accordingly.

Corollary 2. In the convex programming case, ohe has for any u with p(u) <=
and any x € X(u) that

apu) = A(u) = K'(u, x), a"pw) = Ki(w, x), (3.23)

pTush)= sup y-h forallhif K'(u, x)+#8, (3.24)
_\'GKI(u..\']

puih)y=—< ifpT(u;h)<oebut K'(u x)=48. (3.25)

pluh)<=e v -h=0 forallye€ K{u x). (3.26)

Proof. Again specialize formulas (2.20) and (2.22) of Theorem 2, this time in
terms of (3.2) and the fact that K'(u, x) and K (u, x) are polvhedral convex sets
with

Kiu, x)=0"K'(u,x) when K'(u, x) #4. (3.27)

Polyhedral convexity provides a decomposition
K'(u,x)=C+0"K'(u, x)

for some compact convex set C, and this is why (3.26) is valid, rather than just
(2.23) with Kj(u, x) in place of Y (u).

Corollary 3. In the convex programming case, consider any u with p(u) <« and
any x € X(u). Then for each h = (hy, ..., h,) ER™, p(u; h) is the optimal value
in the linear programming problem

minimize Vfyx)-w overallw ER",

=0 forielux)l=si=s,

=0 fori=s+1,..,m (3.28)

suchthat Vfi(x) w+ h,{
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Proof. The linear programming problem in question is the one dual to

maximize y-h overally&€ R",

m

suchthat = v Vfi(x) = Vfy(x),

=1
=0 foriel(u,x).l=i=<s,

}!‘i{=0 forig I, x), l=i=<s. (a2

The feasible set in (3.29) is, of course, just K'(u, x), and the optimal value is,
according to Corollary 2, p "(u; h) in every case except the one where K'(u, x) =
@ but h does not satisfy y - h =0 for all y € K{(u, x). In that case the supremum
in (3.29) is —=, while p "(u; h) == (cf. (3.26)). But that is also just the case
where the linear programming duality theorem fails because (3.28), as well as
(3.29), is infeasible. The the infimum in (3.29) is . In all cases, therefore,
p '(u; h) agrees with the infimum in (3.28).

Theorem 4. Let u be such that p(u) <=, and define

Y'(u)= U}K](u.x), Yiw= |J Kiux. (3.30)

XEX (U XEXN)
Then Y'(u) and Y )(u) are closed subsets of R™ such that Y i(u) is a cone with

0 Yyu) and 0°Y'(u)C Yiu). (3.31)

One always has

ap(u) Celeo[Y () + Yiu)] (3.32)
and

Y') =0 ap(u) =0 {0} # 6% (1) Cclco Yi(w). (3.33)
Moreouver

(sup yeh ify-h=0 forall vEY(u),

P \[‘::YI{H] otherwise, L]
with

int{h |p Yu; hy <=} o{h | h-y<0 forally e Yyu)} (3.33)

The latter set is nonempty if and only if Y (u) is pointed, in which event a’p(u) is
pointed too and actually

ap(u) CeolY'(w)+ Yi(u)], a°p(u)Cco Y iuw). 3.36)

This is the case in particular when there are no equality constraints in (P,), ie.
when s = m.
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Proof. The closedness of Y'(u) and Y(u) is an elementary consequence of the
continuity of the functions f; and Vf; and the compactness of X (u). The fact that
0€ Yi(w) is trivial: 0€ Kj(u, x) for every x. If y €0’ Y (), there exist by
definition sequences {t,} and {y*} such that £, > 0", y* € Y'(u), t;,y* = y. Then for
each v¥ there is an x¥ € X (u) such that y* € K'(u, x*). Since X(u) is compact,
we can suppose x*—x € X (u). For all k we have (by the definition of K'(u. x*))

max{f.(x")+u,—y3=0 fori=1,..,s,
vfn(xk) & 2 Y’vai(xk) = 1.
i=1

Multiplying the second equation by t. and taking the limit as k —» %, we get

max{fi(x)+u,—y}=0 fori=1 ..,

2, WVfi(x)=0,

which means precisely that vy € KJ(u, x). Thus y € Y (u).
The rest of the proof of Theorem 4 is merely a matter of applying Theorem 2

and Proposition 3 to Y'(u) and Y }(u), using the fact that
Y Yiu) and Yyu)C Yiu) (3.37)

by Proposition 4. Obviously if there are no equality constraints we have
Yi(u)C R™, so Y (u) is pointed.

Lad

Theorem 4 generalizes Theorem 1. Indeed, Theorem 1 is the corollary of
Theorem 4 for the case where Y (1) ={0}. Then in particular, Y \(u) is pointed,
and the set {h | p "(u: h) < o} therefore has a nonempty interior, p is ‘direction-
ally Lipschitzian’ at u and special formulas hold for p "(u;-) (see [15, 16]).

Theorem 4 can be extended to the situation where the functions f; are not of
class €’ but just locally Lipschitzian, and where an abstract constraint is present
(see [18]).

4, Estimates in terms of standard second-order conditions

The basic formulas in Theorem 2 lead to the estimates in Theorem 1 in terms
of the multiplier vectors in K'(u, x) and K(u x), and the question is whether
sharper estimates can be obtained by taking second-order optimality conditions
into account. A positive answer will be provided in the next section, but not
quite in terms of second-order conditions as traditionally formulated, Multiplier
sets K*(u,x) and Ki(u, x) will be introduced which not only are smaller in
general than K'(u, x) and K{(u, x) and can be substituted for them in Theorems
1 and 4, but also correspond to a new sort of theory of second-order necessary
conditions for local optimality.
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The relationship between augmentable Lagrange multiplier vectors and the
classical kinds of second-order conditions must be studied first, For any u €R"
and x € F(u) we consider the linearized constraint system

ey, W] =0 fori€l(u,x), 1=<i=s,
Vfi(x) 1‘»{:0 fori=s+1,. .m, @.1)

and the polyhedral convex cone
W, x)={weR" | (4.1) holds and Vfi(x) - w =0}, (4.2)
Note that for any y € K'(u, x) and the index sets

L(wx,y)={i€lu,x)|1=i=<sy,=0},

o | “3)

one has the characterization of W(u, x) as the set of all w & R" satisfying the
system

ey f =0 forall i€ Iy, x,y),
Vi) { =0 forallieI(ux,y). &4
Denoting by V7f(x) the Hessian of f, at x, so that
V() = VHE + X 5T (4.5)
(recall the definition (1.6) of I), we define for x € F(u) the sets
N x)={y€K'(u,x)|w Vi y)w=0 forallw e Wi, x)},
(4.6)
S(u,x)={y EK'(u, x) | w - V2U(x, y)w >0
for all nonzero w € W(u, x)}. (4.7)

The notation is suggested by the well-known fact that the existence of some
y € S(u. x) is always sufficient for x to be a locally optimal solution to (P,),
while under certain constraint qualifications (!) the existence of some v &
N{(u, x) is necessary for x to be a locally optimal solution to (P,). (The constraint
qualifications in question are rather stringent, however. More will be said on this
issue in Section 5.)

Proposition 5. For any u € R" with p(u) <=, one has
N Stuwx)CTA@C [ N(u x). (4.8)
X )

xEX{ul XY

In fact if

Su. x) # 0, (4.9)

X=X
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then

el (V Stu,x)=clAu)= N N(u, x). (4.10)

rEXu) XNEX(uW)

Proof. A simplified representation for the augmented Lagrangian L, will assist
us. Suppose x € F(u) and v € K'(u, x). Looking back to the definition of L, at
the beginning of Section 2, we see from the continuity of f; that any inequality
constraints which are inactive at x are inactive in an open neighborhood of x,
and for all x’ in such a neighborhood:

Lu(xr-: ¥, P‘) = fl](xJ) * 2 %r[fl'(xr) + ul']:;

i
+ ig%_‘\ . i) + w ]+ 3 [f(x) + w])
=y u+flx) +Z} yfi(x) +rg(x', y) (4.11)
where
[a]. = max{0,e] for « ER, (4.12)
at,n=3( 3 Heuls S e+l
-3 (”z SRR S )= FEF) (413)

and fy(x)+ 31 vfi(x) = l(x', v), with V. I(x. y) = 0. Therefore
L,(x’, y, r) = fu(x) +2(x'— x)Vil(x, y)(x'— x)

+3r S max0, Vii(x) - (x'—x)}

iElin, oyl

+ar ”Z [Vfi(x) « (x' — )+ o(|x' — x]?) (4.14)
iENin, x v
when x € F(u) and v € K'(u, x).

Consider now any x € X(u) and y € A(u). It was demonstrated in the proof of
Proposition 4 that such an (x, y) is a local saddle point of L,(-,-,r) for r
sufficiently large, and that this implies y € K'(u, x). We thus have (4.14) at our
disposal, with L,(x', y,r) = L,(x, v, r) for x' near enough to x. Setting x' = x + tw
and considering what happens as t =07, we deduce

0=w-V2(x, v)w+ ”(-Euz.; RO w]? + =z W) W]:)
3 ' (4.15)

for all w € R". In this inequality the r term vanishes exactly when w € W(u, x),
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so for such w we must have 0 =w « V3{(x, y)w. Thus vy € N(u, x), and the second
of the inclusions in (4.8) is valid.
Next consider a vector

YyE ) St x). (4.16)
T X (u)
We shall demonstrate first that for each x € X (u) the function L,(+, v, r) has a
local minimum at x, provided r is sufficiently large; then we shall show that this
property implies v € A(u). Consider any x € X(u) and observe from the
definition (4.7) of y being in S(u. x) that the compact set

D={wER"|w Vi, y)w=0, |w=1}

does not meet W(u, x) and therefore has

0<min{ > VA wli+ X [Vf'.-(x)wv]g}.

weED Lislyln, 5, v) (= FUATRE

Denote this minimum by 8 and let

a = mi}'}l{w CV(x, y)wl=0.

For any r >0 large enough that o +3r8 > 0, it is clear that strict inequality holds
in (4.15) when w € D, but it also holds trivially when wg& D, |w| =1, because
w - Vil(x, y)w >0 for such vectors w. Since the right side of (4.15) is positively
homogeneous of degree 2 as a function of w, we conclude that when r is
sufficiently large, strict inequality holds in (4.15) for every w# 0. It follows then
from the second-order expansion (4.14) that when r is sufficiently large,
L.,y r)has a local minimum at x, and this minimum value is fy(x), i.e. p(u)
(because x € X(u)).

We can now associate with each x € X(u) an open neighborhood V, and
value r, > 0 such that

L x'.y,r)=p(u) forallx'€ V,whenr=r.

Since X(u) is compact. it is covered by finitely many such neighborhoods V..
Taking V* to be the union of this finite covering, and r* to be the maximum of
the corresponding values r, (finitely many), we see that V* is an open set
containing X (u), such that

L(x',y,r)=p(u) forallx'€ V* when r=r*. (4.17)

In order to prove y € A(u), we want to demonstrate from this that there exist a
neighborhood U of u and a value F> 0 with

Lix',y,r)=zp(u) forallx’€ F(U)whenr=F (4.18)

We shall assume the opposite and argue to a contradiction: suppose (4.18) is
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not true for any U or 7. Then there exist sequences {x*}, {u*}, {r*} with
Wosu rfsn s x*e F(u®), L,x%y.n)<p(u). (4.19)

Recalling that
L(x5 y, n)=fox)+ min {y-u'+inu' —ul}

w'ix"EFu)

= f(x) + min{y o' +inlu’ — u[}
y'ER"

= folx") = Iy['/2n
we find that
Ffulxy < pu) +|y[2n = p(u). (4.20)
Certainly then for all k sufficiently large
e EFB) | falx)=p)+1} withB={u'||u'—u|=1},

and by our inf-boundedness assumption (1.1) this implies {x*} is bounded. We
can therefore suppose x* converges to some x: then fo(x) = p(u) by (4.20), while
also x € F(u) because x*& F(u"). Hence x € X(u). However, we also have
x*# V* for all k by (4.17) and (4.18), and inasmuch as V* is open this implies
x& V* We have reached a contradiction, because X{(u)C V*. Thus it is true
after all that y € A(u), and the first inclusion in (4.8) is correct.

The rest of Proposition 3 is easy., Taking again any y as in (4.16) and
considering any y' belonging to the intersection on the right in (4.8), we observe
that for every x € X(u) and t € [0, 1):

(I=ty+tv' e S, x)

(cf. definitions (4.6) and (4.7)). Thus (1—t)y + ty" belongs to the intersection on
the left in (4.8) as t — 17, and the limit y' therefore belongs to the closure of the
intersection. This shows that

N N(ux)Ccl () S(u, x)

XEX () =N
when (4.9) holds, and in combination with (4.8) this inclusion vields (4.10).
Remark. The proof of Proposition 5 actually establishes a stronger result. For
x € F(u), define
A, x)={y €K', x)|3r>0 suchthatl(-.y)+rg(-,y) (421
has a local min at x}.

where g, is the penalty function in (4.13). (The condition v € K'(u, x) by itself
merely implies that I(:,v)+rq.(:,y) has a stationary point at x, since
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V.q.(x,¥)=0.) Then

S(u, x) C A(u, x) T N(u, x), withcl S(u, x)=cl A(u, x)= N(u, x)
when S{u, x) # @, (4.22)

and (under our inf-boundedness condition)

Aw) = () Al x). (4.23)
XCX{u)
A vector y € A(u, x) may be called locally augmentable at x. The set A(u, x).
like S(u,x) and N(u,x), is convex. The existence of some vy & Ay, x) is
sufficient for an x € F(u) to be locally optimal in (P,). Indeed, the pairs (x, y)
such that x € F(u) and y € A(u, x), are precisely the local saddle points of the
augmented Lagrangian L,( -, -, r) for various values of r > (.

Corollary. Let u be such that p(u) <. Then the multiplier sets Y(u) and Yy (u)
of Theorem 2 are estimated by

lim Sup[l N S x“)} C Y (1) C lim sup LIEX[”__) N(u', x’)]. (4.24)

= FEX{uY w'—=u
plhit=plud Bl )=l
i 1 * I ¢ =
lim sup[ N Su', x )] C Yiu) Clim s_up[ tN (u', x )]- (4.25)
=) VEX () =" EX [’
u'—u w'—u
plai—piu) Pt =p{ud

This corollary enables us to describe a situation where the subgradients and
subderivatives of the optimal value function p are completely expressible in
terms of classical multiplier vectors. For this purpose we need to introduce in
association with the set N(u, x) in (4.6) the polyhedral convex cone

Ny(u. x) ={y EKi(u. x) | w - Viy(x, y)w =0 forall w € Wy(u. x)}.

(4.26)

where of course (by the definition (1.6) of 1)

Vs, ) = 3 5T, ().
It is elementary that

0"N(u, x) = Ny(u,x) when N(u, x) = 0. (4.27)
Theorem 5. For some u such that p(u) <=, assume

X(u)={x} (uniqueoptimal solution), S(u,x)=@ (4.28)
and the semicontinuity properties

lim sup N(u’, x') C N(u, x), (4.29)

(1, x=lu. 1)
XEF(uY)
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lim sup tN(u', x") T Nolu, x). (4.30)
[u'..‘l:'_)’ﬂ(u.x'l
2EFu)
Then
ap(u) = N(u,x)#=8, a"p(w) = Ny(u, x), (4.31)
and ]
sup{v - h |y € N(u, x)}

pTu;h)=14 if y-h=0 for every y € Ny(u, x), (4.32)
| = otherwise.

Proof. Our inf-boundedness assumption (1.1) implies that whenever x* € X (u")
for a sequence {u"} with u*—u and p(u")— p(u), the sequence {x*} is bounded
and has all of its cluster points in X(u) (see the proof of Proposition 2, for
instance). Therefore

lim sup[ ' r] N(u', x’)} C N(u. x)

plul=pin) F

by (4.29). It follows from (4.27) that
Su, x) CY () C N(u x).

Then since Y (u) is a closed set (Theorem 2). we have from (4.28) and Pro-
position 4 that

@+ Y(u)=N(u x) (convex). (4.33)

We calculate next from (4.30) and the second inclusion in (4.25) that

lim sup tN(u', x) C Ny(u, x). (4.34)
(u', L'T—Ll{u.x)
XEX(u

The set N(u, x) being closed and convex, we have

Nolu, x)=0"Y (u) C Yi(u).
Combining this with (4.34) we get

07Y (1) = Yo(u) = Ny(u, x). (4.35)
Since Y (u) is a nonempty closed convex set by (4.33), we have Y{(u)+ 0" Y (u) =
Y(u) (cf. [11, Section 8]) and consequently Y(u) = Y(u)+ Y (u) in view of (4.35),

so that ap(u) = Y(u) in Theorem 2. This yields via (4.33) the first formula in (4.31).
We note next that for any nonempty closed convex set CCR"™,

0°C={yER"

y-h=0 forall h withsup.ccz+h <<=}

(see [11, Section 13]). Recalling (1.4) and the definition (1.12) of 3"p (1), we see that



R.T. Rockafellar| Second-order necessary conditions 2

for C' = ap(u) this reduces to
0%ap(u)=a"p(u) when op(u)=8. (4.36)

Since dp(u) = Y (u) in the present case, we are able to conclude from (4.35) that
the second formula in (4.33) is valid too. Formula (4.32) then follows im-
mediately from (1.4) and (1.12).

Example. Consider the inequality-constrained case of (P,) where m =5 =2 and
for x = (x;, x) ER”
folx) = x7—x3, filx) = = x; +x3, fax) = x;+ x3,

Vio(x) = (2x,—2x2), VH(x)=(—1,2x,), Vix) = (1, 2x,),

wwos[} Y w1 vl )

We shall analyze the behavior of the second-order multiplier set N(u, x) for
u = (1, 4>) near 4 = (0. 0) and verify by way of Theorem 5 that

ap (@) ={(v.yD | yi=y. =1,

8"p(@) ={(y.. y») I ¥ =y,=0} (4.37)

Pl(ﬁlh)={%(h1+h3) for h = (h,, h») with h,+ h, =0,
' a0 for h =(h,, h,) with h;+ h,> 0.

Since

Fu)={x|-x,+xi+u,=0 and X+ xitu, =0}

=i | wi=x,=—u xI=min{x, — uy, — x,— u-}},

it is clear that

pluy <=z Fu)#0S u, = — u,, (4.38)

F(u) ={(u;, 0} ={(— 45,00} = X (1) when u,=—u,. (4.39)
For any x € F(u). we have

K'(u,x)={y ER?|V(x, y)=0.

Vi(=x + x5+ u)=0= yi(x,+ x3+ us)},

Ko(u, x) ={y € R | Vdy(x, y) =0,
Vil =X+ X3+ 1)) = 0= ya(x; + x3 + un)}

where
Vil(x, y) = Qxi=yi+ 2, 2= 1+ 3, + y),
Vilo(x, ¥) = (= ¥+ y2, 2%y, + y2).
Since we are only interested in u near @ =(0,0) such that F{u)#0, we can

dassume

—i<u = —us<h, (4.40)
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Direct calculation determines that under this restriction

(GO + ;= ua) oL+ o — u))} .
when u; < — 1, and x= G(u; — uz), = [u, + 151"
{Cuy, 0} when 0= u, <— s, X = (uy, 0),
R Y {(0, 2uy)} when u; < —u, =0, x = (— uy, 0),
1 L] S
{G(r + 1y — wa), 3 (0 + 1 — u1))| v =iy — u,}
when u; = — 2. x = (uy, 0) = ( — us, 0),
1] otherwise for x € F(u) (under (4.40)),
L (4.41)
K¥u, x) = {{(L‘-, v) | v = 0} whenu; = —us x = (U, 0) =(—us, 0),
{(0, 0)} otherwise for x € F(u) (under (4.40)).
(4.42)

In particular for @ = (0, 0) we have

F(ii)= X(&i)={z}. where ¥ =(0,0),

4,
K@, %)= Kia, ) ={(y), ¥») | ¥yi=v.=0L e

Note incidentally that since K(d, %) is not just (0, 0), the Mangasarian-Fromo-
vitz constraint qualification is not satisfied for (P,).

Next we check the elements of K'(u, x) and K(u, x) to see if they actually
belong to N(u, x) or Ny(u, x). The hessian matrices are

72 LR 2 0 -2 s 0 0
v.\'f(xs }) =t [0 2('\,] +y, = 1)] v _\'IO(xs _\) = [0 2(}71 g }‘2)}‘

In the first case of (4.41), W(u, x) = {(0, 0)}, so K'(u, x) = N(u, x) trivially. In the
second and third cases of (4.41), W(u, x)={0} xR and the hessian fails the
second derivative condition by virtue of (4.40). (These cases correspond to local
maxima.) In the fourth case of (4.41) we likewise have W(u, x) = {0} x R, and the
second derivative condition is satisfied if also y,+v.= 1. In the first case of
(4.42), the hessian is positive semidefinite, so K (i, x) = Ny(u. x). Thus

[{G(l + 1y = ), 51+ wy — u))}
when 1y < —ua x = Gy, — o), =[5, + u2)]"?)
N, x) =4 {60+ — w) 3o + w—u)) | e = 1}
when ;= —1s, x = (1, 0) = (—u>, 0),
(@ otherwise for x € F(u) (under (4.40)),
(4.44)
{(v, v) | v =0} whenu;=—u x = (uy,0) = (—us, 0),

{(0, 0} otherwise for x € F(u) (under (4,40)),
(4,45)

N, x) = {
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and in particular for @ = ((0, 0)), ¥ = (0, 0):
N(@, 2) ={(y:, y2)

y] = y::_”%}# Kl(ﬁ: 'f)

4.46

N, £) =4y 32 | 31 = 2= 0} = K}, ). 0
Furthermore

S@, %) =Gy | =23 (4.47)

From (4.43)-(4.47) we see that the assumptions in Theorem 35 are fulfilled, and
that (4.43) is the conclusion.

5. Estimates in terms of new second-order conditions

We have seen in Theorem 5 that subgradients and subderivatives of the
optimal value function p can sometimes be characterized in terms of the
multiplier sets

NG x)={y €K', x) | w ViU, Yw=0, ¥we W x)},

Nolu, x) =4y € K {(u, x) | weVix. w=0, Ywe W, x)h G.D

where

=0 fori=0and i€l x),i=y,

PEWU )& Vfi(x) - w
W (u, x) & Vfi(x) ”{:0 fori=s+1,....m

This characterization depended, however, on N and N, having certain limit
properties (4.29) and (4.30), which unfortunately can fail in some situations.
Although

lim sup K'u', x)= K'(u, x), (5.2)

(', )=, X0
x"eE (i}

lim sup tK'(u', x") C Ku, x), (5.3)
=0~
(It'..‘["]—“l:t{.l’.‘
KEF)

by virtue of the continuity of the functions f; and Vf,, the same is not true of N
and N,. It appears that N(u, x) and Ny(u, x) are sometimes too small to contain
all the needed limits.

Another deficiency is that the condition Ny(u, x) = {0} does not guarantee that
N(u,x)# @ and therefore cannot serve as a constraint qualification in the
manner that the condition K\(u, x)={0} does in Proposition 1. Moreover, in
general

Y& N(u,x), You)Z U Nylu, x),

vEX{u) =N
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50 Theorem 4 topples when N (u, x) and Ny(u, x) are substituted for K'(u, x) and
Ki(u, x). These facts point to the need for some sort of enlargement of N(u, x)
and Ny(u, x), if a second-order refinement of the results concerning K'(u, x) and
K (1, x) is to be developed.

The definition of the sets which we shall presently introduce for this purpose
as K%u, x) and Ki(u, x) depends on the concept of a sequence of subspaces M*
of R" conuverging to a subspace M as k — . This means

dist(z, M*) > dist(z. M) foreachz€&R". (5.4)

An equivalent statement is that M* N B converges to M N B in the Hausdorff
metric, where B is the closed unit ball. See Salinetti and Wets [19], Wets [20],
for more on such convergence and its characterizations. Every sequence of
subspaces of R" has a subsequence which is convergent in this sense.

Our interest will center on sequences of subspaces of the form

M={weR"|V{iH - w=0, YieI(u x)} (5.5)

associated with u, x € F(u), and sequences of points x* — x. We set

M (u, x) = {M(subspace) C R" | IM* asin (5.5) with x* - x, M* - M}.
(5.6)

Clearly (u, x) contains the subspace

Z(u,x)={wER" [ Vi(x) - w=0, Vi&l(u x)}, (5.7
and

Z(, x)C W(u, x) when K'(u, x) # 0.

Every other element of #{(u, x) is included in Z(u, x) and has dimension at least
n — |I(u, x)|, where I(u, x) denotes the number of indices in I(u, x). More will be
said about the nature of the collection . (u. x) in Proposition 7 below,

We define

K, x)={y € K'(u. x) | IM e HM(u, x)
with w - V2I(x, y)w= 0 forall w € M},

Kiu, x)={y € Kiu, x) ] M & M(u, x) 8
with w Vily(x, v)w=0forall w € M}.
Obviously, then, for anv u and x € F(u) we have
K (u,x) DN, x), and Kiu, x) D Ny(u, x) (5.9)

when K'(u, x) # @ (hence when N (u, x) # 0).
The multiplier sets K*(u, x) and Kj(u, x) need not be convex, however.

Propesition 6. Let u be such that p(u) <=, For any x € F(u), K*u.x) and
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Ki(u. x) are closed subsets of R™ such that Ki(u. x) is a cone with
0€ Ki(u.x) and 0"K(u, x)C Kiu, x). (5.10)

One has the semicontinuity properties

lim sup K*(u', x) = K(u, x), (5.1D
Gty sl )
x'EF{uY)

lim sup Ki(u', x') = Ki(u, x), (5.12)

(', 51—, )

Fiuh

lim sup tK(u', x) C Ki(u, x). (5.13)
=
(', =i, )

xEE(1)
Furthermore, the sets Y(u) and Yi(u) in Theorem 2 satisfy

Yoo L) Kz Yoy U Ki(u, x). (5.14)

XEXN ) XEX(n

Proof. The closedness of K*(u, x) is implicit in formula (5.11), which we there-
fore proceed to verify. The inclusion D is trivial in (5.11) (consider constant
sequences).

In order to prove the inclusion C in (5.11), we first need to observe that
K*u, x) and Ki(u, x) would not be altered if the collection Af(u, x) in their
definition (5.8) were replaced by

M'(u. x) = {M(subspace) C R" | 3(u*, x*) = (1. x)
with x* € F(u*) and Z(u*, x*)> M}, (5.13)

where Z(u, x) is the subspace in (5.7). Indeed, if M € (1, x) and M* - M with
M* as in (5.5) and x* > x, we can set u¥ =~ f,(x*) for i € I(u. x) and u* = u; for
all other i (namely with fi(x) + u; < 0) to get u* — u and have, for all k sufficiently
large, x* € F(1*) and T(u*, x*) = I(u, x): then M* = Z(u*, x*). Thus

M, x) C M (U, x). (5.16)

On the other hand, if M'€ #'(u,x) and Z(u* x*)>M' with (u*, x> (4, x),
x* € F(u"). we must have I(u*, x*) C I(u, x) for all k sufficiently large, because if
filx") +ut=0 for infinitely many values of k it must also be true by continuity
that fi{x)+u;=0. Then, taking M* to be the subspace in (5.5), we have
M* C Z(u*, x*). Passing to subsequences if necessary, we can assume that M*
converges to a subspace M; then M belongs to Jf(u, x), and M C M', inasmuch
as Z(u*, x*)—> M’. Therefore

every M' &€ J'(u, x) includes some M € #(u, x). (5.17)
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Our claim that the definitions (5.8) would be unaffected by a substitution of
A1, x) for M(u, x) is correct, in view of (5.16) and (5.17).

Suppose now that y' € K*(u', x') and (¢, x', y) > (u, x, y) with x' € F(u’). To
finish the verification of (5.11), we need to show that y € K*(u, x). Certainly
y € K!'(u, x) by (5.2), and for each j there is by the definition of K1/ x%) a
subspace M! € #{(u', x') such that

we Vi yw=0 forallwe M. (5.18)

From (5.16) we actually have M'€E€.'(u', x"); thus there exist sequences
(w* x* >, (), ) with x* € F(u*) and Z(u" x*)—>, M. Then ZGu* x*)NB
converges to M/ N B in the Hausdorff metric (where B ={w €R" ] [w|=1}), so
for

€ = —min{w « VIx), yHw | w € Z(u™, x*) N B} = 0

we have € —, 0. Diagonalizing, we can choose for each j an index k; in such a
way that for

= N‘Ik-i._ M= xfk":, é; == E_."kj:

we get (&, ') > (u, x) and & — 0. Then &’ € F(it') and
we V(! yhw=—§ forallw € Z(i!, )N B. (3.19)

Passing to a subsequence if necessary, we can assume that Z(i', £) converges to
some subspace M’ as j—o. Then M'E€ .#'(u, x) by definition (5.15). Further-
more, Z(ii’, #) N B converges to M’ M B in the Hausdorff metric, and it follows
therefore from (5.19) and the continuity of Vil that w-Vi(x, v)w =0 for all
wE M'NB, hence for all w& M'. By (5.17) there exists M &€ {{(u, x) with
M CM'. Thus for a certain M € 4{(u,x) we have w-Vi(x, v)w =0 for all
wEM, and we may conclude that v € K*(u, x), as we wanted. This proves
(5.11).

The verification of (5.12) proceeds along identical lines and yields the closed-
ness of KXu, x). For (5.13), the argument differs only in having, not ¥/ >y, but
ty' =y with t; | 0; then V3I(x/, ¥') is replaced in (5.19) by

VG, yT) = 97 o(x) +§l Ly Vi (x7) = T2h(x, ).

The case of constant sequences {(u’, x))} in (5.13) yields the inclusion in (5.10).
The only thing left to prove in Proposition 6 is (5.14). But this is immediate
from the definitions of Y (u) and Y,(#) in Theorem 2, the relations

A(YC N, xV"C K u',x) whenx' € X(u') (5.20)

(cf. Proposition 5 and definition (5.8)), and the limit inclusions (5.11) and (5.13).

Corollary, The limit conditions (4.28) and (4.29) in the hypothesis of Theorem 35
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are satisfied if
@# K¥u,x)C N(u,x) and Ki(u, x)C No(u,x) foreachx € X (u).
(5.21)

Proof. This is obvious from (5.11), (5.13), and the general inclusion N(u', x") C
K%y

The generalization of Theorems 1 and 4 which we have been aiming at can
now be stated.

Theorem 6. Let u be such that p(u) <, and define
Y= U Ko9, Y= 1) K (5.22)
*EX(u) xeX{u)

Then Y*(u) and Y ¥u) are closed subsets of R™ such that Yi(u) is a cone with

0€EYiu) and 0'Y¥uw)CYiuw). (5.23)
One always has

ap(u) Ccleo[ Y (u) + Y§(u)] (5.24)
and

Yiu)=0= ap(u) =0 {0} # 3°p(u) Cclco Yiu). (5.25)
Moreover

pi(u;h) E{;lyl?, Yy h_io forsli e Y (5.26)

% otherwise,

with

int{h | pTus iy <=} D{h|y -h<0 forally € Yiu} (5.27)

The latter set is nonempty if and only if Yi(w) is pointed, in which case 8"p(u) is
pointed too and actually

ap(u) Ceo[Y )+ Yiu)l,  8°p(u)Cco Yiu). (5.28)

This is the case in particular when there are no equality constraints in (P,), i.e.
when s = m.

Proof. The assertions about the nature of Y*(u) and Yi(u) are supported by
Proposition 6 and the compactness of X(u). To deduce the remainder of the
result from Theorem 2. simply apply Proposition 3 using the inclusions Y (u)C
Y*u) and Yo(u) C Yi(u) furnished by (5.14).
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Corollary. Let u be such that p(u) <=, and Ki(u, x) ={0} for every x € X(u).
Then p is Lipschitz continuous on a neighborhood of u, the set

U K(ux)

=X

is compact, and one has

ﬁ.—i{.ﬂp(u)Cco[ U Kz(u.x']—],

=X ]
so that
—x<plu:h)=max{y - h | v E K¥u,x) forsomex € X(u)}

Proof. These conclusions follow from Theorem 6 when Y j(u) = {0} (cf. the facts
about Lipschitz continuity cited in Section 1).

Since K*(u,x)C K'(u,x) and Kj(u, x) C Ki(u. x), the preceding corollary
sharpens Theorem 1 (Gauvin), just as Theorem 6 more generally sharpens the
first-order facts in Theorem 4.

Example. A simple illustration of the sharper nature of Theorem 6 and its
corollary is provided by the problem.

minimize folx, Xa, x5) = X1+ X3+ X3+ xT—x3— x5,

Lh

(5.29)

subject to 0= f(x,, %2, %)+ 14, = X]—X3— X3+ Uy

This satisfies our inf-boundedness assumption (1.1) and has, for u, =0, a unigue
optimal solution X = (0,0, 0). Moreover Vf{%)=Vf (%) =(0,0,0) so

K'(0, ) = K40, %)= R".

Since I(0, x)={1}, the subspaces in the collection (0, ¥) all have dimension 2
or more (actually (0, £) consists of all such subspaces of RY). but V3{(&, y)=
2(y — )T and V21(%, v) = 2vJ, where

0 0
J='r0 -1 0—‘.

L0 o -1
There does not exist a subspace M of R’ with dim M = 2, such that w - Jw =0
for all w & M. Therefore
K0, %) ={1}, K0, %) ={0},

and the corollary above is applicable: @ = dap(0) C K*(0, %), hence ap(0)={1}.
Then in fact p must be strictly differentiable at 0 with derivative p'(0) =1 (cf.
Section 1).
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Note that this situation is not covered by Theorem 35, since S(0,%)=60.
Another interesting feature is that the feasible set F(0) consists of the points
(x|, x5, x4) satisfying

gre=e [yt [1E
The behavior of this set at ¥ = (0, 0,0) does not lend itself to characterization by
means of any constraint qualification which implies ‘tangential convexity” at ¥
(as does the Mangasarian-Fromovitz condition, cf. Proposition 1). Yet the
condition KX0,%)={0} is able here to act as a constraint qualification and
provide strong information.

Before turning to the question of how all this is related to second-order
necessary conditions for optimality, we prove an auxiliary result which, in some
cases, furnishes a complete description of the subspace collection J{(u, x) used
in defining K*(u. x) and Kj(u, x). For each vector z €R", let

M, x,2)={wEZ(u, x) | Iw'eER"
with w - V(x)z +w' - Vfi(x)=0,i € I(u, x)} (5.30)

where Z(u, x) is the subspace in (5.7). Clearly M (u, x, z) is a subspace included
in Z(u,x). and M(u. x, z2) = Z(u, x) for z=0.

Proposition 7. Suppose that x € F(u) and the following condition holds: if n; and
1! are coefficients such that, for some vector z# 0,

> N Vfi(x)=0 and [E n,-szi(x)]zT‘l

i, &) T %)

;Z-: _"n'svﬁ-(x) =10,
(5.

M

L
L
recird
—

then m; =0 for all | € I{u, x).
Then A (u, x) consists of all the subspaces M(u, x, z), as z ranges over R".

Proof. We already know that .# (u, x) contains the subspace Z(u, x) = M(u, x, 0),
and that every subspace in J(x, x) has dimension at least n — |I(u, x)|. We shall
demonstrate first that every subspace in .#{(u, x), other than Z(u, x), is included
in a subspace of form M(u, x, z) with z# 0, and second that when (5.31) holds.
every such subspace M(u, x. z) has dimension n — |I(u, x)|. Since two subspaces,
one included in the other, must be equal if they have the same dimension, this
will establish the result.

Consider a convergent sequence of subspaces M* of form (5.5) with x*—x,
such that the limit of M* is properly included in Z(u, x), and therefore A
except perhaps for finitely many indices k. Passing to subsequences if necessary,
we can suppose that the vectors z° = (x* — x)/|x* — x| converge to some z (with
|z| = 1). Each w € lim; M* is a limit of vectors w* € M*; for every i € I(u, x) one
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has w« Vfi(x)=0and w* - Vf;(x") =0, so
0= w* [V(x") = VAOUx = x|+ [(w* = w)/lx* = x[1- Vfix).  (5.32)

Let A be the subspace of R™ consisting of all vectors A = (A, ..., A,;) such
that there exists w' € R™ with

hi=w'-¥f(x) forallieI(u,x).
According to (5.32), each of the vectors A" defined by
A=Wk VA = VAU X  —x| fori=1,...,m

belongs to A. Then so does the vector A =lim; A*, whose components are
A= w - Vfi(x)z. Therefore w & M(u,x.z), and it follows that lim, M*C
Mu, x, z).

Our next task is to show that dim M(u, x, z) = n — |I(u, x)| if z# 0. Let

M*(u, x,2) ={(w, w)ER™ | w - Vf(x)=0 foralli€ I(u, x), and
we Vi(x)z+w'Vf(x)=0 foralli€ I(u )}k

Clearly M (u, x, z) is the image of the subspace M*(u, x, z) under the projection
{w, w) = w. The orthogonal complements of these spaces therefore satisfy

M(u, x. 2)' ={v | (v,0) € M*(u, x, 2)'}. (5.33)

Moreover, M*(u, x. z)- is the set of all vectors (v, vtV € R™ of the form

S (VAL VAEN)+ T niVi(x).0)

=1 x) IS x)

= ([fe%_x) "?ivzfs(x)]z + |E%. . niVfi(x), |'E;e:a__w -T]I-Vf(;(x)):

for arbitrary coefficients 7; and n}. Since

{ = 29w | nie Ry = Zu 0" (5.34)

il x)

we obtain from (5.33) that M (u. x, z)~ consists of all vectors of the form

{ p n,..vzfi]z to owith S w0 =0, € Z(u, x)-
iEliu, x) 5
In accordance with this expression, let

G-[nex"

7, =0 for i€I(y, x), and 2"_] 7V i(x)= 0}.

T(n,v)= [Ei) n.-Vlf.-(x)]z +u.

Then G is a subspace of R™, T is a linear transformation from R™ x R” into R",
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and the image of G x Z(u,x)" under T is M(u, x, z)'. Furthermore, the only
vector (m,v) In G % Z(u, x)- with T(n, v)=0is (n, v)=(0,); this is the sub-
stance of condition (5.31). Hence T is one-to-one on G X Z{u, x)*, and we have
dim M(u, x, 2)' =dim[G % Z{u. x)'],
=dim G +dim Z{u. x)". (5.33)
Now consider

Go={n€R"|m=0 for i&I(u x)}
T(n) = 3, n9Ai(x).

Again Gy is a subspace of R™, and T, is a linear transformation from R"™ into R".
The image of G, under T, is Z(u, x)~ by (5.34), while the set of n € G, with
Tym)=01is G. Therefore

dim G +dim Z(u. x)" = dim G, = |I(u. x)|,
and we deduce from (5.35) that
dim M (u, x,z) = n —dim M (u, x, z)* = n —|I(u, x)|,

as was our goal.

Our next job is to show that the sets K*(u, x) and K3(u, x) are not only of
value in the study of dp(u), but also furnish a second-order necessary condition
for local optimality in (P,).

Theorem 7. Suppose x is a locally optimal solution to (P,) such that Ki(u, x) =
{0). Then the multiplier set K*(u, x) is nonempty and compact.

Proof. A function g of class %’ can be constructed with the properties that
g(x)=0,Vg(x)=0, Vig(x)=0, and

g(x) = fy(x)—fo(x) forallx' € F(u), x'# x.

Let fy=fo+ g, and let § be the optimal value function obtained in place of p by
this modification. The modified problem (P,) has x as its unique optimal solution,
and it has the same multiplier sets at x as does (P,), namely K*u, x) and
Ki(u, x), because these sets do not depend on f, beyond the values of Vfo(x) and
V*fy(x), which are the same for f; as for f,. Since Ki(u, x) = {0}, we know by the
corollary to Theorem 6 that @ = 8p(u) C K*(u, x) (compact), and this is all we
needed to prove.

An alternative to the constraint qualification K2(u, x) = {0} in Theorem 7, but
yielding a weaker conclusion, is a property we have introduced in [18] in
connection with first-order necessary conditions for nonsmooth problems. We
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say that (P,) is calm at x, one of its locally optimal solutions, if there do not
exist sequences u! = u, x' = x, such that x! € F(u) and

[fn(xj) = fn(x)]” !{j o LL| —» — T,

Theorem 8. Suppose x is a locally optimal solution to (P,) such that (P,) is calm
at x. Then the multiplier set K*(u, x) is nonempty (and closed, but not necessarily
compuact).

Proof. Calmness of (P,) at x implies by [18, Proposition 12] that for g con-
structed as in the proof of Theorem 7 and having the form g(x') = 6(|x’|) for 6
convex on R', the modified optimal value function p satisfies

lim infip(u )J_p{'“):v —
lu' — ul

==l

As shown in [18, Proposition 1], this ensures that 4p(u)# 0. But since the
modified problem (P,) has x as its unique optimal solution, with corresponding
multiplier sets K*(u, x) and K3(u, x), the same as in (P,), we have by Theorem 6

ap(u) C el co[KHu, x)+ Ki(u, x)].
Therefore K(u, x)# Q.

The traditional approach to second-order necessary conditions for optimality
in (P,), and for that matter first-order conditions, relies on the existence of
certain sequences or arcs which approach a locally optimal solution x from
elsewhere in the feasible set F(u) (cf. Hestenes [6]. [7], Fiacco and McCormick
[3D. In our approach. perturbations of u as well as x play a role. To provide a
closer comparison between the results obtainable by the two approaches, we
consider another kind of constraint qualification.

A well-known condition under which K'(u, x) must be nonempty when x is
locally optimal in (P,) is the following (cf. Hestenes [6]): for every nonzero
wE R" satisfying

wp e W =0 forieI(u,x),i=s,

Vi) “{ =0 fori=s+1..,m,
there is a sequence x*—>x in F(u), x*# x, with (x* —x)/|x* —x|—>w. This is
appropriately called the first-order tangential constraint qualification. Now let

I, x)={ieI(u, x) | Vii(x)-w=0 forallwe& W(u, x)k (5.36)

We shall say that the second-order tangential constraint qualification is satisfied
if for every nonzero w satisfying

TFx) w{ <0 fori€I(u, x)~I*u,x),

=0 forieI*(u,x), (5.37)
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there is a sequence x'—x. x*#x, with fi(x*)+ ;=0 for all i € [*(u, x) and
(x* = x)/|x*—x|>w. This is quite similar to the second-order constraint
qualification of Hestenes [6], with respect to x and a multiplier vector y €
K'(u, x), namely that for each nonzero w satisfying

Vf(x) = 'W{‘E O fOI‘ i E Iﬂ([,{, X, }r),

=0 forie&i(u x,y), (5.38)

where I(i, x, v) and T {u, x,y) are the index sets defined in (4.3), there is a
sequence x* - x, x*# x, with

Flx®) + u.-{i 0 fori€Iyu,x,y), (5.39)

=0 fori&L{u x, y).

and (x* —x);’|xk —x|—w. Under the latter condition, y must belong to N(u, x)
(cf. [6, p. 37]). (Fiacco and McCormick [3] make a stronger assumption in terms
of w being tangent to an arc of class €” in F(u); they have equality in place of
the inequalities in (5.38) and (5.39) and correspondingly they conclude only that
w - ViI(x, y)w =0 for a smaller set of vectors w.)

A peculiarity of Hestenes' second-order constraint qualification is that the
system (5.38) does not actually depend on y. The vectors which satisfy it are
precisely the ones in W(u, x), as already noted at the beginning of Section 4. Tt
follows that no assumption on the gradients in (5.38), such as a generalized
Mangasarian-Fromovitz condition of some sort which c¢ould assist in
verification. can possibly distinguish between different forms of (5.39) associated
with different vectors v € K'(u, x). In practice, therefore, one might just as well
settle for the best version of Hestenes’ condition that can be formulated without
reference to any particular y. This is the motivation behind the second-order
tangential constraint qualification formulated above. Indeed, when K'(u, x) = ¢
one has

I*(u,x) = U {I(w x, ») | y € K'(u, x)}
=[(u, x,v) for arbitrary v € ri K '(u, x)

(5.40)

(where ri C denotes the relative interior of a convex set C [11, Section 6]), as can
readily be seen by way of the lemma of Farkas,

Theorem 9. Suppose x is a locally optimal solution to (P,) at which the
second-order tangential constraint qualification is satisfied. Then

N(u, x)=K*u, x)= K'u x). (5.41)
Proof. We may assume K'(u,x)# @, for otherwise (5.41) holds with all sets

empty, cf. (5.9). The vectors w satisfying (5.51) are then precisely the ones
belonging to the relative interior ri W(u, x) of the polyhedral cone Wi(u, x) (cf.
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[11, Section 6]). Consider any such w and a corresponding sequence x* — x with
f{x*)+ w; =0and all i € I*(u, x) and (x* — x)/|x* - x| > w, such as is guaranteed by
our constraint qualification. For i € I(u, x) — I*(u, x), we have by (5.37) and the
mean value theorem

lim[f(x*) = f;:(x)]/]x* = x| <0,
ey

where fi(x)=—u; and therefore f;(x")+ u; <0 for large k. Then x* € F(u), so
fuolx*) = fo(x) by the local optimality of x. Now consider any y € K !(u, x). Since
Wi(u, x) has the alternative description as the set of w satisfying Vfi(x) - w =0
for i € If(u, x, ¥) and Vf;(x) - w =0 for i € I ,(u, x, y) (cf. beginning of Section 4),
we have v, =0 for all i € [(u, x) < I*(u, x). Hence yf(x*)= vf(x)=—vu for
i=1,..,m, so that

[(x¥, ¥) = fox*) = fox) = I(x, y) forlarge k.

Recalling that V. I(x, v} =0 (because y € K'(u, x)), we calculate

K e ) — T Y - (xk —
Oﬁllm,(x }) I(X,})R \‘-\ng-}) (x x):l

F ZW Vil(x, v)w.

[
This being true for arbitrary w &ri W(u, x), it also holds for all we
cl(ri W(u, x)) = W(u, x). Thus y € N(u, x). We have shown K'(u, x) C N(u, x),
and the equalities in (5.41) now follow at once from the general inclusion in (5.9).

Corollary. Suppose x is a locally optimal solution to (P,) such that for all x' in
some neighborhood of x, the matrix J(x') whose rows are the vectors Vf.(x") for
i € I*(u, x) has constant rank. (This is true in particular if the vectors Vfi(x) for
i € I'*(u, x) are lineqrly independent.) Then the conclusion (5.41) of Theorem 9 is
valid.

Proof. Let the rank in question be d, and let I’ be any subset of I*(u, x) such
that the vectors Vf:(x) for i € I' are linearly independent. By a classical theorem
in advanced calculus (based on the implicit function theorem), there is a
neighborhood of x in which each f; for i I' can be expressed as a € function
of the f;’s for i € I'. Then for each w satisfying Vf:(x)- w =0 for all i € I" there
is an arc a(t) of class €* with a(0) = x. a’(0) = w, and f,(a(t)) = filx) foralli eI,
hence for all i € I'*(u, x). In particular, the hypothesis of Theorem 9 is satisfied
in this case.

Theorem 9 and its corollary can be interpreted as saying that the main results
effectively obtainable by the traditional ‘tangential’ approach to second-order
necessary conditions are covered, in a sense, by the ones in Theorems 7 and 8 in
terms of K*(u, x). Moreover the latter are definitely more general to the extent
of being able to handle situations where it does not turn out that every vector ¥
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satisfying the first-order conditions automatically satisfies the second-order
conditions.

There is, however, a class of second-order results which is not covered by our
approach, namely those where a possibly different y with certain properties is
associated with each w € W(u. x) (cf. Hestenes [7], Ioffe [8], Gollan [3]). The
results of Gollan [5] do include an estimate for dp(u) complementary to the one
given here. To formulate this, let

W, x)={weR"|Vfi(x): w=0,¥ie I(ux)}
R, x, w)={y € K'(u.x) | w - Vil(x, y)w = 0},
Ri(u, x, w)={y € Ki(u, x) | w+ Vilx, y)w = 0}.

Gollan shows that for any choice of w(x) € W(u, x) for each x € X(u). one has

r'}p(u)Cclco[ U K(u, x, w(x)) + U Ki(u, x, w(x))].

TENN) rEXNin
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