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Second order necessirj_ condition! in nonlinerr progr.ndin! xre de.i!e{l b-v r new melhod
ihat does not require ihe !sudl sort ol constr!lnr quall6carion ln rern\ ol the dulrl!lier
vectoF apFeari.s i. such second-order co.ditions. !n .(imate is obiained ior the sener.llzed
nrbgradienls ol lhe oFriaral ralue lunction asocialed rith r paramclcriTcd nonlioear rro-
etunning problen. Thij yjeld\ eninales lor 'ma.ginal lxlues $ilh rerpec{ lo lhe parrorelers
The nain theoretic.l tools rre the augnenled Lagrnneian and. delpile lhe i$unprion oi
sccond$der smoothne$ of objective constraints. rne jubdiflerentirl .!lculus rh.r h.s
recenlly bee. dcveloped lor no.nnooth. n.nconvc\ iun.tnrnr.
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1. Introduction

For i = 0, I.... , 'r, let J, be a funcrion of class ?r on R" and consider the
parameterized nonlinear programming problen:

(P.) mininize Jo(r) over all 'I €R"
l_ 0 lor j 1.......

'at..runs '."r ,t O "", , \.t...h,.
where u = ( r,....u,")eR"'.Let

p(L) = inf(P,,) (optimal value),

X(x) = nrg min(P,,) Ge1 of optjmal solutiont.
F(&) = feas(P,) (ser of feasible solutions).

He.e p is a u,el1 defined funciion fron R'' to [- ',6] (under the convention that
inf(P,) = ' when (P,,) is infeasible). To ensure that p is lower semicontinuous
ever_v$'here with p(a)> -. we assume rhar ihe following inl-bounlledness
cofldilior is satisfed:

for every r{ € R'' and a € R. there is a neighborhood U ol
I such that rhe set {r € P(Lr) lJ,(r) < 

"} is bounded.
(l.1)
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where notationally

F(U):: U F(r') = {r ll '€ Uwithi€F(u')}.

This condition inplies at the salrle tinre that x(r) is a nonempty compact set for
every r having tt(lr) < '

The question we \rant to address js the relarionshit between the generalized

subgradients and subderivaiives of p at and the l-agmng€ multiplier vectors )
that correspond to vaious optimality condjtjons on the elements -t of X(L). We

ain at using this relationship to establish the necessity of certain second-order

oprimality conditions of a new sort.
Subgrndients of arbitrary lower sernicontln ous functions, which like p need

not be convex. were firsr defined in a robust nanner by Clarke [2]. They were
characterized by Rockafellar tl5l in terns of certain generalized direclional
derivarives, called s lderildtirjcs. At a poinl LeR'" where p( )<-. the sub

derivative of p rvith respect 1() a vector h € R, is

p (,: l'l ,n I lir 'rrp int f" lLl--t!') i,..lll

rnr I 'rr lr''r"'' "1" " " | !'| j)': L r' rl
\ ' rl ' l- / | / '

It was shown in [15] thai as a function ol ,r, t'{tr;[) h al$'a-\,s lower semicon-
tinuo S, corr€-r and positively honrogeneous- fhe set of (s.r€rdli:ed) sxb'
s/adi?nls of p at is

( Lr),p("):= {! €R'' lpr(r: ft)> ).ft forall ir€R"'}.

which is a closed convex set. One has

r'(r.|h)=supir h l ye ar(rl)l if rp(r)+0.

p-(r:,r)=r-or - for every h)r i)p(.u)=A

The lhcory of s ch subgradients and subde.ivatives has undersone much
deveiopmenti see li6l for an exposition. For present purposes we mention only
the follorr'ing facts. If p is conver, then ,p( ) asrees with lhe subgradient set of
conyex analysis. The case where ,p(rl) consisls of a solilary vector ) is exaclly
ihe case where p is sticil) ditrerentiable 116l at with Vp(x):i)). Finally, a

necessary nnd sufficienl condilion for I io be I-ipschjtz conlinuous (in particular
finite) 1n a neighborhood of r is lhnt rp(!) be nonemptv and bounded [14].

These relations underscore the fuDdamental significance of the expressions
pr( : i), which can be interpreted as g.,ner.riizul moryinal !dlues. Estimates for
luch values can be derived via (1.4) from esijnates for ,p(r).

Aparl fron convex progranming and some situat;ons in nonconvex pro-

(t.1)

(l.5)



gramming where p happens to be a gr furciion, the first slrong resutts relating
behavior of p to Lagrange multiplier vechrs were obtajned by cauvin l4l. To
formulaae these and set the stage for other resulls in this paper, we introduce the
functions

r(_r, r) = lo(r) + > ),f,(i),
. (l.6)

l,(j, ))= > rl,(a).

For each ir € F(u), we consider the active index set

r(&, r) = {i € tr, ,1l ]f,(r) + uJ - 0}r{s + 1,..., r'rl (t.j)
and the first-order multiplier sets

tI( .x)={}eR', lvJ(a.}i:0 and J,>0 fo! ietl,sl, (1.8)

with ),= 0if iF 1( , x)1,

Kl(!r, :r) : {}' € R- | v,l(:r, )) = 0 and ),>0 for j€tl,sl, (1.9)

withy,=0ifieI(,x)1.
The latter is a cone containing 0.

The exislence of some ) in K'(lr. r) is, of course, a necessary condition for r
io be in the optimal solution set X(r), under cerrain qualiications. We state for
reference the following fact (cf. [10], [7, Seclion 4.10]. I18l).

Pmposition 1. For any u und x e F(ur. the Jollov,ing $c equiMlent:
(a) ('(L, r) is nonemptr and bounded,
(b) I<1i(4 r) : {0};
(c) the MnBasatian Fromoritz construint quatification is salisf€d. ;.?. rhe

gradients Tflx). i=s+l,..-,m, are linea t independent, und there is a Nctor
l' eR' s cft lhdt

R.r Ro.&djdildt.S.cond-old?r n...rsa,-! .ondilnrh J

The subgradient resirlts of cauvin may now be srated.

Th€oren 1 (Gauvin l4l). Let u be such that p(u) <- and K1(u,,, {0} lor erery
x € Xlu). Then p h Lipschitz continuous on a neighborhood of u, the set

U r.'(&. r)

is compact, ind one hus

v,,,,,{:3 i;il: j,i',1::',;'

arr,l c *[.U,,, r r,.,,t], ( 1.10)



Tbe local Lipschitz continuity in Theorem 1 allows the expression (1.2) for
p'(ll;l) to be reduced to a sinpler one, the Cldrk. derftatiDe., see [15, 16].
Gauvin actually worked with such dedvatives only and assumed merely tlar
/, e g!. Extensions of Theorem 1 can be made to cases where i is just locally
Lipschitz continuous (nor necessarily diferentiable), and where an absrracr
constraint r € C(L) is presen! (see Auslender nl, Rockafellar [18]).

Our present goal is in the opposile direcrion: we want to exploit as far as
possible the assLrmption thai l, € gr. Specifically, we look for muttiplier sets
K:(r,x) and L;(L,'I) included in Kr(r,i) and t i,(l,.r) bur exhibiting second-
order properties, such thai generalizations of Proposition I and Theorem t hotd.
This is a conpletely new approach to second-order necessary conditjons for
optirnality.

The ftst step to$ards this goal is an exact description of dp(L) in terms of
tinits of certain 'augmentable' rnultiplier vecrors associated wirh the (quadraric)
augmented Laerangian. We appeal here to a formula established in [17]. An
extended version of the formula is presented in Section 2; a previous assumption
of'quadratic gro$th'is avoided, and more information is provided abour the
cone of sirs ldr subglddicrls

RI R..(,/,lld,/5.,dr,1 ,r,,1,, ,i, rr\dir ,,/ir.,\

p 1(u; ft)<nax{} h I J € Lr(!.. r) JorsoDl€r € x(r)i (1.11)

dop(ll)={),eR']}.h=0 for atl h wifi p I (a; ft) < 6}. ( r.12)

(r. r 3)

This cone is important because jt is the recession cone of dp(L) when ap(ll);0,
dnd rndeed ,cl. 'la Se(rion t)'

,|p( )-{0}ep1(:h)<6 for all h

c ap( ) is nonempty and bounded.

In Sections 3 and 4 the connection between augmentable Lagrange nuitiplier
!eciors and the standard kinds of first and second-order optimality conditions is
expbred. The new multiplier sets Kr(a, r) and Ki( , ir) are introduced in Section
5 and shown to yield resuits about necessary conditions and subsradient esti-
males. as proposed,

The reader should krow thar, I,hile the new secord-order necessary con-
ditions dedved here help substantially to narrow ihe eslimates which can be
given fo. subderivarives of the optimal value function p, they do not exhaust
*hat can be sajd rowards characierizing local optimaliry. As far as narrowing the
gap between necessity and sufficiency is concerned, and doing so in terns of just
the first and second derivalives of tle functions l ar rhe point in questjon, the
sharpest results so far are those which Ioffe [8, Secrions 7. 8] has obtained.
following a ditrerent approach due to Levitin et al. [9]. tn this approach ir is rhe

sup{w vil(r, i)rr r e Kr(r1,:r)}
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whose nonnegativity or posjtivity for all ', in a certain cone is at issue. The
corresponding assertions about marginal values, although not fully erplored. are
oriented toward directional derivatives of p in the Hadamard sense. rarher rhan
the subderiviraves studied here. An exception is the recent work of collan [5],
which does encompass certain second-order estimates for Ap(r) and pi(ll;h)
complementary !o ours (see the last part of Section 5).

A final observation: although we consider onty a seenrinsly special form of
parameterization in this paper, our results can easity be extended to the case
wbere f,(r) is replaced by i(r, -r) with r a general parameter vector in Rr. The
trick is simply to regrrd this as ninirnizaiion jointly in ri and r subject ro an
additional set of equality constraints, namely that each componenl of D be equal
lo a preassigned value. See tl?l and []8, Seciion 3l for more derails.

2. Subgradi€nts and augm€ntabl€ multiplie. vectors

By the augmented Lagrangian associated wi!h (p,,). we mean rhe function

L,,(r, ), r): lo(t) + > ef,(.r)+ r,. )r. r) + > {,(f,(r) +I/,, J',. r), (2.r)

tffr(r) + a,. ),,, ) = iiu,(_r) + urt + lrt/,(r) + tl,1r, (2.2)

lrrrr\r'r.!.r' ir\ rll'\l-r,J- l1
p(/(i) a. j,,) | {l.ll'

l-:,' rl i rlli\r-dr' 0

The properlies of the ausmenred l,asrangian are of recognized irnpoftance in
connection with comtutationat nethods. but here we shall be occupied wjth
their theoreiical signi6cance.

For one thing, it is clear ihat regardless of the choice of ) € R', and / > 0. one
has

L,,(:r. ), r) <Jo(r) foratlreF(L)

inf L.G. J. , < p(n) whenever C:rF(r).
Lel

A(l1): {) € R' l3 r>0 and neichborhood U of, such that

,EiJ'l,) 
L"(r, i'. r) = p(,r) < '1. (2.6)

(2.4)

(2.5)

The elements of A(u) will be calted augmentahle Lasrange mulriplier veciors.



250 R t. -Ror,idj.lldrl&.ond-orlrr r...i!try ..nlili.,r

They allow the constrained mininization in (P,) to be reduced to an essentially
unconstrained minimizatior in the sense of the proposition below. (Here we

seneralize results of Rockafellar Il1, 151 that couespond ro teplacins F(U) by
all of R^ in (2.6).) Other properties of ausmentable multiplier vectors, which
indicale their abundance and explain their relationship to nore familiar multi-
plier conditions, will be derived in Sections 3 and,1; for a local characterizaiion
of augnentability, see the remark after Proposition 5.

Proposition 2. tel )EA( ) aul let BCR'' be ant bounded s€t ltitft u€in1B.
Then rt>o lor i - t, ... , s, and for alt t > o sufrciently latse one has

x(r) = aremin L,(x, J-, /) c int F(B).
r€F(B)

Proof. We note first that

L"(.x, ), /) = min {/o(x) ) (u' u)+ttr u' uI.
{ ,.r1{ )

This iinplies for arbitrary U C R. that

(2.1)

(t.8)

(2.e)

with.r yieldins the rninirnum on the left if and only if :rex(r') for some u'
yieldins lhe mininum on the risht. (Recall that X(!.')+0 when p(r')<€.)
Taking U = B, we see that lhe desired relation (2.7) is equivalent to

argrnin{p(&') r ' (,,' t)+lrlL' rl}:{x}, (2.l0)

€ arsmin{p(x') - } (a'-u)++lu'-u1l, p(u)<- (2.11)

since the continuity of the functions li ensures

int F(B) r F(u) r X(u) whenueintE.

On the other hand, the condition r c A(r) rranslates by (2.9) into the existence
of sone r>0 and neighborhood U of x such that

(Note that this implies )r > 0 for i = 1.... , r. since p(u') is nondecreasins with
respect to ui, ; = 1,... . s.)

The question therefore boils down to whether (2.11) holding for sone />0
and nejghborhood U ensures that (2.10) holds for all / sufrcienily large- Choose
€ > 0 such that x' u < € implies r'€ U. It sumces ro show rhar iJ p(L) is finire
and h> 0 is such that

p(x')>p(L)+)' (!.'-r)-).n"' "' when,r'-!l<€, (1.r2)
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then lor oLl r > 0 sulSciently large one will have

i,(!')>p(rr)-r (ft -rr)-lrlrr'-rrl' $rhenrr'€B,x'r .

Since p is loner semicontinuous on R"'and B is bounded there is
o€Rsuchthat

p(tr') > a for all .r'€ B.

Also, there is a number B € R such thnt

II

(1.l3)

1-.(a'-rr)-lrlrr'-rrl'<p for all tr'e R".

lf /> /) but (2.13) is violated. $e rould have to hav€ r/' ll >€bu!

d prflr+r ln -!r lrir'-ftli
< p('i) + ] (x'-,{)-lr,lr'-rr[ ]tr-r,)lrr'-,r:
<t(r/)+B 1€(r-rJ.

io that r<r0-(:/€)[p(rr) d +B]. This shoq.s thal (2.13) canndt be li(tared-
when r js sumciently large.

Proposilion I reduces lo pre\'jous resultr of ours in [1]. l3l shen r certain
quadralic gro\r.ih condition is satisficd. namel,v thal for L: = n " and some choice
of r e R'" and / > 0. lhe quaniil! 12 9) ir not'. This g.o$th condition wlrs also
invoked for a for ula for,p(r) lvhich \!e gale in ll7l. We now presen! a

version of the iormula \r,hich aloids ii and at the same lime \!ys more aboul the
cone top(r') in (l.l:) and (1.13).

The notion of linsup for multifunctions \!ill be useful. Recall thatforaset
,uI (.:) depending on a pa.irmelcr vector :. one defincs

lim-sup M(:'):{r l3:t-:. \'€,\r(:t) wirh wi- !J. (2.14)

{Thi\ limit \el is always closed.) As a special case. ior any C c R" th. set

0-C:= lim sup tC

= {r l: r'' e c. r^ -o-. wirh r')'' )-} 
(: l5)

ii .alled the recessio,r ro,re of C. It is a cone (i.e. closed under multiplicalion b)
pLr;iti\e realars). rnd its constituent rays correrpond lo the'direction poinl! of
R ihlt crn be interpretcd as poinls of C at infinity'(cf. l. Section ill n,.
the .a!e of C con!e\). Note that C is nonempty Rnd bounded if nnd on^ ii
ri C : {rr}

\\ e .h.,11 \irite ihc convei hull of a set C as co C, lt j! elemcniar! rhat

.o[C-D]=coC+coD for ull C c R''. D c R''. :11'i
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Th€orem 2. L€t x be s&ch that p(u\ <-, and deine

Y(u): lim sup A(r'),
(!.e('rr1!,r(!,

Y,(!): lim sup tA(r').
(!.p(r{l)_((Jn!))

Then Y(u) and YoQt) ore closed subsets ol R'' sllch th41 Yo(") is d

0e Yo(rl dad U l '!r- Y,rrr

One has

dp(L) = cl cotY(&) + vi( )1, a"p(r)cclco%( ),

Y(u\=0 <> ap(u) =0> {0} + ,0p(r) = cl co vo( )

t h il1 .h<0 fot erclr ) € Y(L),

(2.1'7)

(2.18.)

(2.19)

(2.20)

(2.2t\

(2.22)P 1(u. n): lc'(''

with

in!{h lp i(ft;h) < -}: {h lr l<0 for all r e Yo(ul } * 0}. (2.23)

The ldttet set is nonempt) il drd onl] iJ Yo(u) is pointed, itl \rhich eEfi aop(u) is

pointed too a tl o e actuall\ h/Js

ap( ): cotY(r) - v(r)], dop(r)=coYo(r). (2.24)

This is the case in patti.ular when thete drc no eqadlib consrraints in (P,,), i.?.

Here we use the terminolosy thai a cone C0 C R'', not necessarjly convex but
containing 0, is poirt€d if 0 cannot be expressed as a sum of nonzero vectors in
C". (When C, is convex, this h equivalent lo the condition tbat if ] € Co and

)+0. then )€C0.) Trivially, Co is pointed in the degenerate case where

C. = {0}. or jf C" = R?. A dual characterizalion of pointedness is provided by the
next proposiiion, which will be needed in proving Theorem 2.

Pmposition 3. Suppose C awL Co ttre clos€d subrets oJR'" s cll th6t Co is a cone

\rith

0eco dnd 0tccco. (2.25)

Il C! is pointed, then co C0 dnd colc + Col arc cbsed. Moreoxer, Ctr is pointed if
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and onl\ if therc exists (t !ecbr t sdtisflins

) ft <0 /orl1ll)€Co)'ithy+0. (2.26)

Whe h does hdte this ptopert\. then

h €int{,l I } h<0 lorallr€CJ=int{hIsupr€.).h<-} (2.2'7\

Proot. Pa of this, namely the assertion thar coCo and colc+Col are closed
when Co is pointed, is covered by Il8, Propositior 151, b t an alternative proof
wili be ofiered in the course of \rhat follo$,s. Condition (2.26) obviously
suarantees that Cr is poinied. We proceed to show lhat it ijnplies (2.27) and the
closedness of co Co and cot C + C0l. The final srage will be an argument rhar if
C . poifled,nJ co I clo.ed. rhen \2.2b1 hold. 1! .ome l.

If t satislies (2.26) we have

0>max{y 6l y e C1,ly =l}
(the nlaximun exists because Co is closed). Tbe same is then true for all ir in
.one neiFhborhouJ ol ]l ,! oefineJ b) Jt tl . ro, \ore..0 then

u m-\lr ,, 1,-c,.t,l-r.r /il. rl
= max{y. [+ely l r ec,.lrl= r],

so Gince Co is a cone)

0> ) ,1-+ €lyl foratlJ€Co.y+0. (2.28)

By (2.25) rhis also holds for nonzero r- e 0'C, and the definition (2.15) of rhe
latter cone then implies

- e > limrup lzl ': . /r.

For some p > 0, therefore, we have

0>: t + €l:l for all ; € C \r,i1h lzl > p,

from which can be deduced (using the closedness of C) ttat, for some
sulicienUy large.

a > "r' ii+e yl fora1l) e C.

In particular, then, if h-F <r wehave

sup h J < sup{r t+€}l}<d.

This verifies (2.27).

Coniinuing with the same vector t satisfying (2.28) and (2.29), we demonstrate
nex! that co Co and colc + Col are closed. We shall argue first that ior any ! > 0

deR

(2.29)
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there is a i>0 such that

iieco{01 r -r, l).,, lr -(0.1,r' (. >. ) al: (2r0'

since the sei on the righl is compact, this will prove co Ci is closed. Because Ci
is a cone in R" containing 0, its convex hull can be represented as

* c"= {>i,. '' 
e c.} (2.1)

(Caratheodory's theorem t1l, Section 171). Hence for any ( > 0 the jnclusion I is
true in (2.30). For the reverse inclusion we must show for a.bitrary n>0 tlte
existence of (>0 such that

l) ,,l r. \ e c.= r':: L2.r',l- t'\

$e in\oke r2.28): rhe a..umprion\ in (2.1)) Eire u\

e)lr'l= ) y' ft <1lhl.
j=r j=r

.o rhe.onclu.ion in r2.J2r i. \atid lor r - altr-/e.
To demonstrate in similar fashion the closedness of the set colC+CJ:

co C + co Co. we introduce

V = {(o. n) € R'' x R I either I = 0 and 1-1 e Cr or 
^ 

> 0 and I !l) e C}
(2 33)

and observe (via Caratheodory's theorem again) the representation

coC.cor"-[)'-, ]f \,$irh(u.rr.V.) ,t t] r2.1,lrt'a j

Here V is closed. because C0 and C are closed and (2.25) holds. We shall
demorstrate that for arbitrary rl > 0 there is a 4 > 0 such that

{! €lco c+co coll lil= r}= (2.15i

- {>.:,, 1r^ $irh,,.\.,cr. -.)..,-' >,.,1.r1
This will provide the closedness of co C+co Co, since the set on rhe right in
(2.35) is compacr.

The inclusion I in (2.35) is clear from the (2.34), so in order ro verify (2.35)
we need only establish for arbit.ary t>0 rhe existence of a coresponding
f>0suchthat

ru. \.)c v.> ^, t. : u l. rl . ..Fl l;i I

(2.36)



R I' Ro.Adj?lldrl s..ord o/d./ "e.erJd/r.or.lntuns 2i5

Considerins elements which satisfy the hypothesis of this desired implication, iet
us suppose for notational sinplicity that (for some index q, 0 < q <2m)

r I'o forj = o q'

l=0 forj=q+1,..,2ft.

Then by (2.28), (2.29), and tle definition (2.33) of V

t ri'!r + €lri'Njl for j = 0, ... , q.

t uj+€1,'l<0 forj=q+1,....2n.

6 r-,i+ e r,j <,t;a for allj.

It foilows that

€st"'- sr'a ls " ).,; a n,rl.a, a, \tsit I

\o r l=ro al' r e ror a.l i. Hence (2.15, r. rrue ror ' ro al6 rt'
We are now at tle last step in the proof of Proposition 3. Under tl}e

a..umplion Ihal a. i. ooinled. ue mu.r \ho\r rhe e\r\ren!e ot "n h .arisfying
(2.26). The pointedness of Co ensures the pointedness of the convex cone
D = co C0 (cf. (2.31)) and, as we have already determined, the closedness of D.
The polar of D is

D':{tu
=\h

(2.3',7 )

(2.38)

).h <0 forallr'eDI
).h<0 fora1l)eC(r)

and since D is closed. the polar of D" is in trrln r:
D- jilr t-o for dt hcD"l.

If D" had empty interior, ii would not be n-dinensional and wouid have to be
containedinapropersubspaceofR''lll,Section6l.Thusrherewouldexistsome
).+ 0, i'rD, and by (2.38) we would have boih t and t inr, contrary ro D being
pointed. Hence ihere must be some t e inr D.. Obviously from (2.37), any such t
satisfies (2.26).

P.oor of Theorem 2.It is evident fron (2.17) and (2.18) that Y(L) and %( ) are
closed sets, )a0( ) is a cone, and 0*y(r)c%(r). As for (2.20) and the fact thar
0€Y0("), we proved these in 117. Theoren 2l wirh the functions Jr merety
continuous, but assuming the'quadmtic growth condition' described above. prior
to the statement of the theorem, and furthermore with A(u) in (2_17) and (2.1S)
consisling not of ausmentable muitiplier vectors as in (2.6), but .rorlrfl), aug-
mentable ones in the sense of yielding

inf l,(ir, ), /) = p(r) <- forsome/>0. (2.39',)
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Proposition 2 assures r! that when ) is ausmentable we have for arbitrary
bounded B cR'" lvith u €int B:

inf L,,(r, J, r) = p(u) < d for r sufficiently larse. (2.40)

The proof of Propositior 2 used the boundedress of B only to guarantee that p
is bounded below on B by some a € R. Certainly, then, if p happens to be
bounded belorv on al1 of R' (a special case of tle 'quadratic growth condition'),
any ausmentable ) satisfies (2.41) with B = R'". Since F(R') = R", we see that in
this case every augmentable nultiplier vector is totally augmentable. Thus when
p is bounded below, our earlier result is applicable and allows us to conclude
0 e Yo(u) and (2.20).

A simple trick reduces the general case to the one \r'here p is bourded below
on R^: set d=p(x) l and replace loby fLj = max{10, a}. This replaces p by a

new optimal value function i > d and the sets A(u) in (2.16) and (2.17) by sets
Aifil, in terns of which the desired fornula is vali{i. Now since p was lower
semicontinuous at r, and p( )>o, we have p(x')>d for all r'in some open
neighbo-hood L ro, r:rhenfo, cll \eF(U0, $eha\efr| o..ojt\l Jo(.rl
This 'eve.l. ,har lor Jl l]-to. burh itr't.DtLt.ro c'dr- 4(,). The
formula in terms of i and A is thereby idenlicai to the one asserted in terms of p

and A. Thus we are sure in seneral that (2.20) holds and 0 e Yo(x).
The proof of the cited result []7, Theorem 2l actually established that the

normal cone to the epigraph of p at (u, p( ))is
clco{(}, 

^) 
Leither I = 0 and } € Yo(Il),or I > 0and I '} e Y(l])}.

On the other hand, from the gereral theory of subgradients the normal cone is

{(r..I) leither I = 0and ) € a0p(ri). orI >0 and I '} e ap(u)} (2.a1)

[16, 18]. obviously if Y(u):0, we rnay conclude top(L)=clco y('r). Since
Y(r)+Yo(r)=0 if and only if 1'(&)=0 (recalt 0€%( )), while dop(I])+{0}
when 6p(r) = 0 (inasmuch as (1, p(Il)) is a boundary poin! of the episraph of p,
so the normal cone (2.41) cannot be just the zero vector [14, p. 149]), we may
conclude the validity of (2.21). Then (2.22) follows by ihe fundamental formulas
(1.4), (l.s). (1.l2) (usins the convection thar sup 0 = -).

The inclusion c in (2.23) is immediate from (2.22). Applying Proposition 3 to
C = Y(!r) and Ci = Y(u), we obtain the reverse inclusion, again via (2.22), as
well as the assertions in the linal sentence of Theorem 2, except concerdng
dop(x). As for the latter, if li belongs to the set jn (2.23), then by (1-12)

). t<0 forall ) e rop(ri).

This implies by Proposition 3 that aop(r) is pointed (the case of Co = top(.r) in
Proposition 3).

lf there are no equality constraints. we have in (2.17) and (2.18) thai A(a') C
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Rl'(cf. Proposition 2) and therefore Y(x)cR1, Y0( )cR?'. In particular Yo(r)
is pointed in this case.

Theorem 3. L€t u be such that p(u)<6. The.onditior Yo(u)={0};s /htn d

neussv! dnd suff,cient condition lot p to be Lip chitz continuaus on a neigh-

borhood of u. Ii thut case Y(u) is a nonempt! compact sel, anll one hds

dp( )=coY('1),

p r(r;,r) = ma\ \'h=limsup\' ft.

rl!Fi({)

(2.42)

(1.43)

Proof. From seneral theory we kno*' that p is Lipschitz contimrous on a

neighborhood of !] if and only if ap(u) is nonempty and bounded, or
equivalently, 6"p("):{0}. lf the latter holds, then vo(L) = i0} by (2.20) in

Theorem 2. On the otber hand, if %(r) = {0} (in which case vo(L) is pointed), we

have by (2.24) both aop(L) = {0} and ,p(")=co Y( ): moreover Y(u)+0 by
(2.21) and 0-Y(u)={0} by (2.10). The latter implies Y(u) js compact, so that
(2.22) reduces to the first equation in (2.43). The second equation in (2-43) then

follows from tbe definition (2.17) and (2.18) of v(L) and %01): Since Yo(L) = {0},
every sequence {)t} havine yre e(r') ror some sequence {rr} with ui'Il,
p(uk)) p(u). must be a bounded sequence whose clusier points all lie in Y(u).

R€mark. Nothing in this section has made use of ihe smoothness of the

functions i. They could merely be continuous functions on R'. An abstract

constraint :r e C (where C is a nonempty closed subset of R"). could also be

added, the description of the feasible set F( ) beins altered accordingly ln this
general setting, Proposition 2, Theorem 2 and its corollary still hold with the

same wordine.
The smoothness of/, enters, of course, in trying to relate augmentable Lagrange

multiplier vectors (and their limits) 1o vectors that satlsfy first and second orde.
optinaljty conditions in difierential form, as we do in the next two sections lt is
then that the connection between the preceding theoren and Theorem 1 (Gan-

vin) will becone clear (Theoren 4).

3. Estinates in t€rms of ffrst-order conditions

Estinates of the subgradient set 6p({) and subderivatives p1(&;ft) can be
gereraled from Theorem 2 by way of estimates for the sets Y(&) and Y(r).
With this purpose in mind, we now explore conneciions between the vectors in
Y(L) and Y (!.) and various Lagrange multipliers that appear in classical
optimality conditions.
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We start with a resul! about the relationship between augmentable Lagrange
multiplier vectors and the lirstorder conditions already nentioned in Seclion 1.

(The result only requires f,€ (r.) This {i1l1ead to a seneralization of Theoren L

Proposition ,1. For nnt ll E R'^ {,;lh p(u)< -, one has

A(t])cY(!)c U (\L,r), Y(r)c U Kl(,r.r). (3.1)
r.xi,)

In the co tex prcgrcmming cas€ (}},hfl€ f, is conu,rI lor i = 0. 1.... . s cnd 4ff'rc
lol i= s + l,..., l'r), it is actuallr true that

A(&)=Y(ll)=LL(a,1) ard Y0( )=(,i(t],r) loralJ-rex(L).
(3.2)

Proor. Trivially A(r1)cY( ) by definjlion (2.16). whenever r-€A(r) and:rc
X(u), we have (by Proposition 2. when / is sufrciently large) that L,,( , ), r') has

a local minimum at ri this mininum is equal to p(&) by (2.6). Then since
L.(r.)'.r)<fur)=p(u)=L"(ir,l,/) for all J'by (2.4) the function L,,(x, ./)
also has a local maximum at ), and it follows rhat

v,L,(:r, r-, r) = 0 and i"L,,(ir, J, /) = 0. (t..r)

ln terms of the notation

_ = Imar{/ (rr+ fi,, \ //}', IF(1)+ r, for i=s+1....,nr.

v^L,(r, r', r) = vjo(r) + ) (), + ry)f,(r),

V,l,(r. r-, r) = (r,, ... , r,,)

so (3.3) is equivalent to having jr € F(L) and ) € K!(Il, a). Thus

A(r) c Kr(!, r) $hen r € x(ri).

Next we recal1 from the inf-bourdedness condilion (1.1) assuned at the
beginning of Section I that for any bounded neighborhood U of u the set

{r€F(U)lf0(r)<p(ll)+1} is bounded. If )€Y(,r). there exist by d€finition
(2.18) sequences ],r + I and ar > rr such tbat p(4r) r p(r) and )' e A( (). 

Since
p(u)<-, 

"'e 
have p(Lr)<- (at leasl for k suiiciently large), so I(Lr);0.

Taking arbitrary x'e x(x*), we have A(l1r)cK'(&r.-rr) by {3.6i, hence r,re
K'(ur,'I5. Moreover f0(**)=p(r'), so that for ft sufrciently large we rot oniy
have rr € U (inplying :rt E x(U) c F(U)) but f,,(:rt) < p(&) + l. j.e. rr belonss
to tbe bounded set {i e F(U) lli(x) < p(u) + 1}. The sequence {xr} is therefore
bounded and can be assumed to converge to sone -y. Then by the continuity of l
and vi we have, since:!r€F(lrr) and )'e('(u'.r'), that r€F( ) and

(3.4)

(3.5)

(3.',)
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y € K r(!1, r.); furthermore lo(:!) = lin J(.1'l : Iim p(Lr) : p(r), so actually :r e
X(ll). Thus for each ) e A(u) there exists x e X( ) with ) e K1( , r), which is
the assertion of the first inclusion in (3.1).

The second inclusion in (3.1) has a parallei proof. If ) € Yo(lt), there exist by
definirion (2.18) sequences lrJk'), and xr+& such that lts:0, p( l+p(L)
and ]r€A( r). Again we can frnd jlr€x(ut) sucb that )t€Ki(ui,xk) and

\' \ cX(,1. lhi' rime. l'oqever. qe hdte

and consequently ) € Kl(u, r).

In the case of convex programming, L,(r, ), r) is convex in :r, as well as

concave in ) (this follows fron (2.8), cf. l13l), so the conditions r e F(!) and

)e.K'(,'!), which we have seen to be equivalent to (3.3). imply (:r. y) is a

(global) saddle point of L.(., ., r.):

0 = rkv.l(:r{, }{) = dvfo(rt)+ > (rr))rl,(r)i> },rL(1)

r:(r, ]. , = min { ) .(r' u)+;r u'- ul'1},
f rEF(!)

sup

Thisimpli€s)eA( ). Thus -t<1(l1,:r)cA(u) when r € X(&), and in vie* of (1.6)

we nust indeed have A(r) = Y(ll) = Kr(r, r) as asserred in (3.2).

We work now towards verifying the second part of (3.2). Let ll be the

function obtained by deleting the /0 term from the augmented I-agrangian. Thus

L,,(:r, ), r) = l(r) + Ll(r ), r)

where L:(:r, ), /) is convex in j(, concave in ). and

- rL(:!l if :r€P(u) rL,rr, ) .1")= 1; ilre Prrr i=prx).

. r0 if a € F(,r).
Qri(r'!')=1- if r e Frat

(3.7)

(l.8)

(3.9)

(3.10)

(3.11)

Fix any t>0 and define

Ao(,) = {} € R'' linf,ER" Lki, ), t) = 0}.

I(l(x. r) = Ao(L) forall:r€F(ll). (1.12)
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lndeed. fron (3.9) and (3.10) we know that

0 -- inf l.up l0(.r !.irl - .up int Llr\. \.;' - ial. i'(r.0 Fr-0

Hence 0 is the saddle valoe of Ll( , . /) on R" )< R'', and the saddle points are tlle
pairs (ir, l) such that

sup Ll(i,., i) = 0 = inf Ll( . , ), r). (3.13)

i.e. Irom (3.10) and (3.12) ihe elenents of F(u)xA!(&) Thev are also the pairs

(r )) satisfyine

!,Ll(r. r, i) = 0 and v,Ll(r, ). i) = 0. (3 14)

As in the case of L,. the gradients of Ll are delcibed bv (3 4) and (3 5), without

the Vlo term, so by condition (3.14) ihe saddle points must be the pairs (l J)

such that
maxu,(r) + u,, ),/4 = 0 for i = 1,..., s,

l,(:r) + i=0 for i:s+l,...,nl.

i..sr,"r=0.E
or in other words, such that r e F(,l) and ) e -Kl( , :!). We deduce lhat

F(&)xAo(x)=(:r, ))] r eF(r),y€Kl(L,:r)],

which neans (3.12).

Applyins (1.12) to lhe second jnclusion in (3.1), we see tijat Yo(u)c Li(l.,1)
for all :r € X( ), and lhat to establish equality, as asserted in the second part of
(3.2), it lvill sulice to show A0( )cYo(u). Accordingly, we consider any )e
A"(&) and try to find sequences {4}, {}t} and {rr} such rhat

rrlr-). Jr€A(Irk), rr+0*, rr-r, p(L)ip(u). (3.15)

Success in this matter will finish the proof of Proposition 4.

We can make use of what has aheady been proved in lhe tust part of (3.2) in

tbe following wayl

K1(n, r) = Y(L) c Y(r) + Y(!)c K'(r, r)+ Xi(, r) = -K'(u, r),

so that Y(r)+Yi(L)=Xr(x,i) (closed convex) and by formula (2.20) in
Theoren 2:

dp(L)=Ii'(11,:r)=A(u).

This having been established for arbitrary with p(x) <€, we can apply it !o the
proposed elements u'in (3.15):

r-'e A(u')e r* e dp(Lr), when p1arl<-. (3.16)
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Firing any y e Ao(r), and letting

q(!.')= ).('-r)+:il ' |'2. (3.17)

D ={l,' I F(x') + 0}={L' I p(,')<-}.

we observe fron (3.9) thal

0 = inf Lo(:r. ), t) = inf min q(&') = inf q( ')
J.i" L,l€F.{)

The s€t D is convex. the function q is strictly conver. and q(u)=0, eD
Therefore

0,,,1 I llil,,t. lbur ,, ',a. (r.rRl' t=1, rt =l]
Since we are dealing with convex prosramming, the optimal value function p is
itself corvex []ll, as well as (under our inf-boundedness assumption (1.1)) lower
semicontinuous. finite atll. It follows that for fr : 1, 2 .-. there is a unique

ll 
t e argmin{p (r') + k.t (r')}. (3.19)

This satisfies

p(xi) < p(u!) + kq(&r) <p(r) + kq('r) = p(u) (3.20)

and the subgradient condition

0 € ap(ri) + kaq(u{) = ap(rr) + kt ) + t(Lr )1. (3.21)

Let

r'= kt.! - i( ' Il)1, tr = ,. I.

Then ir'0*. )'eap(u') by (3.21), and /ilr:)'r( r !l). We need only show

that xr + r, for then 4)t + y and p(rr)- p(a) (by (3.20) and the lower semicon-
tinuity of p), and in view of (3.16) we will know that the chosen sequences meet

the prescdption (3.15) for )€Yo(r). The proof lhat Lriu rests on (3.18).

Inasmuch as p is a proper convex function on R"', tlere is an affine function d

satisfying

a(u')=p(u') for ali ,l'€ R'.

By (1.19) and (3.20)

rr e{L'l p(a)+&q(a)<p(,.)}c{.1'l d(r')+q(L')<p(r)},

the latter set being som€ closed ball -8 (due to the form of q in (3.17)); let

0 = qfn P1a'1,



a quantity which is 6nite because p is lower semicontinuous. We see thai {lli} is
a bounded sequence which by (3.20) satisfies

ks(u') < p(&) p(llr)<p(u)-P forallk

and hence by (3.18) can have no chrsler point other than Il Thus I+Landthe
proof of Proposition 4 is complete.

Corolfary 1. For dnl Ir 6 R, \rith p(u) <-, one has ap(u)) A(u\ and

R r Ro{ kdI(llir s..ond o/r.r n{..srd/r ..,dnb,s

p1( il)> sup y ii. (3.22)

Proof. Since A(r)cY('1) and 0EYn(r). we have A(u) c Y(L) + Yo(a). Speci-

alize formulas (2.20) and (2.22) of Theorem 2 accordingly.

Co.ollary 2. ln the conDex prosrommi g .dse, ote lds f.,r dnr- u ||ith p(u)<-
dnd dn) ir € X(L) thdl

ap(r)=A(")=K1(,.r), a"p(a) = Ki(r1, 'I), (3.23)

p1(;h)= sup ).ft lor dll h il rL(r, r) + 0, (3.24)
,c( nr. \)

pt(uth)= ., iJp1(uth)<t butKt(u.x)=0. (3.25)

p1(u,h)<-e).h<0 Jor dil }. e Kl(!l. r). (3.26)

Proof. Asain specialize fornulas (2.20) and (2.22) of Theoren 2, this time in
termsof(3.2)andthefactthatKr(,ir)andKi(L,-r)arepol),r€drdlconl)f:rsels
x'iih

I<i( .:r) = o.Kr(u, r) lvhen Kr(r,.!) + 0. (3.27)

Polyhedral convexity provides a decomposilion

KI(1, r) : C + 0.](1(r/. :r)

for some compact convex sei C, and this is why (3.26) is valid, rather than jusl
(2.23) wiih KJ(!, r) in place of v!(L).

Corollary 3. In the con'ex trogmnlming cdse. .onsidfr dnr" u i\ith p(u) < ' and
dn) :r e X(u). Then for each h = (h; ... , ft,") e R'. p1(uih) is the optimat Mlue
in the li,ledr proqramminE pnblem

minini?f vi(x)'$ oDetdLtw eR",

\r.iII'LI rf(,r' \' -h, ^ tuti.eltu.r) - r: ' (r.lu)
t -,r f.rr -\-tj.. jn.
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Proof. The linear programnins problem in question is the one dual to

761

(3.32)

(3.33)

(3.34)

naximize ).11 overally€R'",

such that > ]rvJ,(x) = vJo(r),

.,f <0 foriel(.)'). l<i<s./'l:0 for ie I(r. r). l= i < s.
(3.2e)

The feasibie set in (3.29) is, of course, just Kr(!, r), ard the optimal value is,
according to Corollary 2, p r(L 

I h) in every case except tlle one where K'(, x) =
0 but tu does not satisfy ) . h < 0 for all y € K;(!. :r). Ir that case the supremum
in (3.29) is -, white p1(r:h)=d (cf. (3.26)). But that is also jusr rhe case
where the linear programming duality theorem fails because (3.28), as we as
(3.29), is infeasible. The the infimum in (3.29) is 6. In atl cases. therefore_
p1( ; h) agrees with the infimun in (3.28).

Theorem 4. lel 11 be srctl thut pQ) <,, and defrne

v'(,): U Kj(&. j), yl(r): u r,l(&. r). (3.30)

Then Yl(u) and Yi)tu) dr€closed s }sd1sofR" such that yie) is o cone vith

0 € Yl(x) drd 0'Y'(u) c yl(L). (3.31)

dp@) c cl cotY'(r) + Y;(L)l

Y'(u) = b> ap@) = O> {0} + dop(L) c ci co yKr.).

.up'h t/) /, n ro,,,/r !C Y.lr,.

[- .'tit"';s€'

with

int{ft lp 1(x;n) < -} r{n lh . } < 0 lord )€yl(r)}.
The lattet set is nonemptr il and onlr il ]1lo/u) is pointed, in \rhich e,rent
pointe(L too and actudll\

,p(x) c colYI(r) + yi(!)1. aop(L)ccoykl).

This is the case in pdrticuld|rhen there drc no equatit\ construints in

(3.35)

,op(u) iJ

(3.36)

(P,), i.e.
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Proof. The closedness of Y'(r) and Yl(r) is an elementa.y consequence of the

continuity of the functions /, and lFr and the compactness of X( ). The facl tha!
0cvl(L) is trivialr 0€Ki(l'l,r) for every r. Ii )e 0rv1( ), there exisi by

definition sequences {4} and {}(} such that lr J 0*, )r e Y1(u), fi}r i ). Then for
each )t there is an xi e x(r) such that )r e }il(r,.r{). since x(r) is compact,

we can suppose rr ' r e x( ).Forall ,. we hav€ (by the definition of K'(r,1r))

max{J,(ri)+ u,,-ii}=0 for i = 1....,s,

vJo(rr) + > iivt(rr) = 0.

Multiplying rhe second equation by lr and takins the limit as k>6, we get

max{f,(-r) + LJ, ),}=0 fori=1,...,!

> Yrri(r) = 0'

which means precisely that )' € Ki(L,:!). Thus ) e v;(u).
The rest of the proof of Theoren 4 is merely a matter of appiying Theorem 2

and Proposition 3 to Y'(L) and Yl( ), using the fact that

Y(u) c Y'( ) and Yo(&) c Yi( ) (3.37)

by Proposition,l. Obviously if there are no equality constrainh !|e have
Yl(L) c R?, so Yl(u) is pointed.

Theorem 4 gereralizes Theorem L Indeed, Theorem 1 is the corollary of
Theorem 4 for the case where vl(r) = {0}. Then in partlcular, Yl(r) is pointed,

and the sei {h J 
p 1(!: h) < -} therefore has a nonempty interior, p is 'diteciion-

ally Lipscbitzian' at u and special formulas hold for pr(u; ) Gee 115. 161).

Theorem 4 can be ertended to the situation where the functions li are not of
class ?1but just locally Lipschitzian, and \1here an abstract constraint is present
(see trsl).

4. Estiinates in t€rms of standard second-order conditions

The basic formulas in Theorem 2lead to the estimates in Theorem 1 in terms
of the multiplier vectors in Kr(r, ri) and Xi(u, r), and lhe question is whether
sharper estimates can be obtained by taking second-order oplimality conditions
into account. A positive answer will be provided in the nexl section, bui rot
qujte in terms of second-order conditions as traditionally formulated. Multiplier
sets Kr(!r.:{) and K;(,r) will be introduced which not only are smaller in
general than K'( , :!) and K;(x, 'I) and can be substituted for ihem in Theorems
1 and 4, but also correspord to a new sort of theory of second-order necessary
conditions for local optimality.
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The relationship between augmentable Lagrange multiplier vectors and the
classical kinds of second-order conditions must be studied first. For any u c R'"
and r € F(&) we consider the linearized constraint system

r, ,,, ,l - 0 lor r e I{r. '). l ;- '' l-0 iori -.-1.....n. t1.lt

' and the polyhedral corvex cone

w(L,x) -{}' €R" l(4.1)holds and vl(.r).}' <0}. (4.2)

Note that for any J € Kr( .:r) and the index sets

r!(!,r, ))= {i e I(ft, r) | I < i <r, ), = 0},

/rr..r.\r 1,r,.') l0rr..r.),. l,!rl

one has the charactedzation of W(I/, jr) as the set of alt u€R', satisft'ing the
system

| :0 for all i € lotr, r, I r,\'(rr (1 
-o ror"ti-r,1,,..r,;). t44t

Denoting by V:r,(r) the Hessian of l ar I, so rhat

!il(r. )): v':/o(x) + > ),v'/,(jr) ('1.5)

(recall the definition (1.6) of l), we define for a € F(a) the seis

N( , r) = {r € Kr(u,r) l}' vir(r.r-)w>0 forallwe w(ll,:r)},
(4.6)

s(,l, x) = {r € Kr(u, 'I) | }1, vil(r.})r,>0
for all nonzero w € w(Il, -()1. (4.7)

The notation is suggested by the well-known fact that the existence of some

)eS(Il,:r) is always ruficienl for )i to be a locally optimal solution to (P,),
'while under certain constraint qualifications (l) the exisrence of some )e
N(r, r) is n€c€ssd/) for jr to be a local1y optimal solution to (P,,). (The constraint
qualifications in question are rather stringent, however. More willbe said on this
issue in Section 5.)

Proposition 5. For dn) L € R'" nith p(u) < -. one hus

n s(&.r)cA(L)c fl N(r.x). (,f.s)
rex(0

n s(ll. -r) + 0, (4.e)
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cl,fl,) s(1.:r): cl A(Il) =.f.l") N('/. t (1.10)

P.oot. A simplified representadon for the augmented Lagrangian L" will assist
us. Suppose r € F(r) and ) e K1(, r). Looking back to the definition of L, at
the beginning of Section 2, we see froln the continuity of t that any inequality
constraints which are inactive at r are inactive in ar open neighborhood of:r,
and for all r'in such a neigbborhood:

L,(ir', r. /) = lo(r') + ) jrU,c) + uJl
j€ro({.J.rJ

+ > ()rU, (i{',) + r4l + j rtf, (1) + l1rr)
iEr,({ i, rr

= y .!l +tur) + j )1,(-r')+ /q,,(.r', y)

tdl. = max{0, dl for a€R,

(1.11)

(4.t2)

,r.('.)'-+( ) ti,,' xl > l|y,-/.f)4 \iEriru,r. t /€rr(r it

-l( > r,.,' '-,.r.rl'- ) /,,r -r(,rl) (4.rrJ/ . .ili tT. ,

and /(x') + >:r ),rr(r'): l(:!', )), with v,l(n, )):0. rherefore

L,(r'. ),r) =L,(x)+ j(r, r)vll(-r, )X-r'-:r)

+l/ > ma,t:{0, vl,(x) (x, r)}
lEr!(l'1.'j

+ l/ > tvl,(r) . (:r' rnz+ o(r' rl) @t4)
iErj(ir i!)

wnen.( ellr) and ! EI( lr.rl-
I onsider noq "n) n - Y,rrdnd ) - {rdr. Il $d\ demon.tr eJ in lhe proofot

Proposition 4 that s ch an (r,)) is a Iocal saddle point of L,(., ,r) for r
suficiently large. and that this implies ) € LL(r.:r). We thus have (4.14) ar our
disposal. with L,(x', ), J') > L,,(:!, ), /) for r' near enough to n. Se(ins j' = -r + l]a,

and considering what happens as t+0*, we deduce

o =. . v1i1", y1" +'(..,P1,) Ivl,G) wt1+ 
.,>..,, NnG) rt')

(1.15)

for all w e R'. ln this jnequality the r term vanishes exactly when w c W(r. x).
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so for such lr we must have 0 = lr' Vll(:!, )))',. Thus ) e N(, :!), and the second
oI the inciusions in (4.8) is valid.

Next corsider a vector

)€ n s( . r). (4. rh)

We shall dernonstrate first rhat for each .r e x(Il) the function 1'( . !. /) has a

local mininum at.r, provided / is sufrciently large; rhen we shall show lhat this
property implies )eA(u). Consider any reX(r) ard observe from th€
definition (4.7) of ) being in S( .:r) that the compact set

D={weR" }1,'vil(r,r,)}'<0, }'1= 1}

does not meet W(ri, ir) and therefore has

0 rin{ > r| ,.r) " l' ,> ts, r'", I

Denote this mininum by 6 and let

d = min{}, vil(-r. })nr<0.

For any r > 0 large enough that o + ]rD > 0. it is clear that strict inequality holds
in (4.15) when w € D, but it also holds tdvially when }1)e D, l{, = 1, because
l' .Vll(jr, ))n,> 0 for such vectors n. Since the right side of (4.15) is positively
homogeneous of degree 2 as a function of !r. we conclude that when / is
sufliciently large, strict inequality holds in (,1.15) for every )r+ 0. lt follows then
from the second-order erpansion (1.14) that when / is suliciently 1arge,

I,,(. , y, r) has a local minimum at :r, and this midmum value is lo(a), i.e. p( )
(because i! e x(u)).

We can now associate with each r€X( ) an open neiehborhood y. and
value J', > 0 such thai

L,(:r', J, /) > p(u) for all .I' € V. when r > r-.

Since X(u) is compact, it is covered by finitely nany such neighborhoods V,.
Taking V* to be the union of this finite covering. and r* io be the maximum of
the corresponding values /, (finitely many), we see that V* is an open set
containing X(x), such that

L(-{', ), /) > p( ) for ail :!' e V+ when r > r* (4.r 7)

In order to prove J c A(r), we want to demonstrate from this that there exisr a
neishborhood U of x and a value t>0 with

L(ir', ), r) > p(u) forall-r'€F(U)when/>t (4.18)

We shall assume the opposite and argue to a contradiction: suppose (4.18) is
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not true for any U or i Then there exist sequences {rr}. {Lk}, {rr} with

11k:y,y*=y,+r,1LeF(rr), L"(:rr,).rr)<p(u). (4.19)

Recalling that

l-(.r', r,,.^r-lo(^ I nin {t r, -:1', -, )

> fo(rt)+ nin{) . u'+:\lu'- u1}

= lo(:!r) li 12lr,

we find that

/0(rt)<p(l1)+ljl:i2lL'p(r). (4.20.)

Certainly then for all L suficienlly large

rr e{r'e F(B) llo(r')<p(r)+ 1} wirhB={r'l ' !,1<r},

ard by oul inf-boundedness assunption (1.1) ihis inplies {ri} is bounded. We
can therefore suppose :r( converges to some r; then lo(:!) < p(x) by (4.20), while
also r€F(u) because jlr€F(!lr). Hence -r€X(l1). However. we also have
:rrE y* for all k by (4.1?) and (1.18), an{t inasjnuch as V* is open this implies
jE V*. We have reached a contradiction, because X( )cV*. Thus it is true
after all ihat ) e A( ). and the first inclusion in (4.8) is correct.

The rest of Proposition 5 is easy. Taking again any ) as in (4.16) and
considering any )'belonging to the intersection on the dght in (4.8), we observe
that for every ri € X(&) and t € 10, l):

(l - t)J + 1)'€ S(l], r)

(cf. definitions (4.6) and (,1.7)). Thus (1- 1)y + t)' belonss to the intersection on
the left in (4.8) as t r 1 , and the linit l'therefore belongs to the closure ofthe
intersection. This shows tbat

n N(!,,, q cl (') s(,,.y)

when (4.9) holds, and in conbination with (1.8) this inclusion yields (4.10).

Remark, lhe proot ol Propo\idon 5 rclurllJ err!bli.he, c \Ironrer re.ult. For
ir € F(r), define

A(!l,r)={}€.K1(r,:r)lf r>0 such that l( . , )) + rs"( . , )) (4.21)

has a loca1 min at jrl
\r,here q, is the penalty function in (4.13). (The condition y e Kr(u,.!) by itself
merely implies that l( ,1)+/q,(.,1) has a stationary point at r. since
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v.q.(:r, y) = 0.) rhen

s(,, n) c A(u, r) c N(,l, i!). I,ithcls(L,r)=ctA(l1,r)=N(u,r)
when S(r, j) + 0. \4.22)

and (under our inf-boundedness condition)

A(u) = n A(,r). (4.23)
i.a(!)

A vector l € A(&, :!) may be calied locallt au,<mentabte ar j. The set A(u. _r).
like S(,x) and N(Il,.r), is convex. The exislence of sone )€A(Il,n) is
suficient for an r e F(Il) to be locdil) optjmat in (p,,)_ Indeed, the pairs (.r, J)
such that ir e F(u) and ) € A(r, jr), are preciseiy the locdt saddie poinrs of rhe
augnenled Lagrangian L"( . . . . /) for various values of r > 0.

Corollary. let r be such that p( u) < c. Then the multiplier sets y (u) and yatu)
of Theorem 2 arc estimated bt

ri..upl fl srr,., rJ-vl.crrn.uof n 'v,,,,,1, ,,r:0,' ' I ''' 1 . -- ^.t{r11_r1 r(r/)-!1!)

,. I ^ ^ t_., t ^ Ilim-supl n rs(d.,'jlcY,,r,r) lim.ueI t] ,rNr,., ,1. ,a 2<,

This corollary enables us to describe a situation where the subgradients and
subderivatives of the optimal value funcrion p are completely expressible in
terms of classical multiplier vectors. For this purpose we need to introduce in
association with the set N(u, r) in (a-6) the polyhedral convex cone

N('1, r) = {) e Kl(r. r) I n, . vll,(r. J)!' > 0 for alt r e wi(u, a)}.
(1.26)

where of course (by rhe definirion (l_6) of l)
v?lo(x. ),) = > ),v,1,(r).

It is elenentary that

o-N(a. r) - N(a. x) \rher N(r-.r) + 0. 14.2.7)

Theor€m 5. Fol sone Jl such that p(u) <a, assu/|,e

X(r) = {r} (aniq[e optim\l solution). S(u.x)+6 (4.2s)

and the semiconti uit! properties

(lim 
s_up) N(r', :!) c N(r, t, (4.29)
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lin sup ,N(&', r') c No(u, x).

t!r;)}:-8n

ap(ll) = N(&, r) + 0, rop(a):N1(r,.r),

sup{y hlreNrr.r)}
p'('/:trr.i :tJ h-0 turpuetr \eN0,,.,r.

l- othetr"ite

(4.r0)

Then

(4.3 r)

(4.32)

Proof. Our inf-boundedness assumption (1.1) implies that whenever:r{€X(ui)
for a sequence {!.r} with atr-u and p(ar)-p( ), the sequence {x(}is bounded
and has all of its cluster points in X(ll) (see the proof of Proposition 2, for
instance). Therefore

Li. 'opl O Ntr'. r'rl c Nra. x r!-r L :\i/, )

by (4.29). h follows from (4.27) that

S(u, n) c Y(x) c N( , r).

Then since Y( ) is a closed set (Theorem 2). we have from (4.28) and Pro-
position 4 that

0 r Y(!]) = N('r. ir) (convex).

We calculate next fron (4.30) and the second inclusion in (,1.25) that

(4.33)

(4.r1)

(.r.35)

lim sup tN(u', r') c N!('r,.!).

The set N(r.:r) being closed and convex. we have

NJL. r) = o-Y(u) c Y{(&).

Combining this with (4.14) we get

0-Y( )=Yo(!l)=N!(r,x).

Since Y(r) is a nonempty closed convex set by (4.33), we have y(r) + O+Y(L) =
Y(L) (cf. ll l, Section 8l) and conseqrcntly Y(r) = Y(r) + %(r) in view of (4.35),

sothatap(r)=y(L)inTheorern2.Thisyieldsvia(4.33)thefirstformulain(4.31).
We note next that for any nonempty closed con!€:{ set C C R".

0*C = {} €R^ 1}.ft <0 for all h with sup.c. : h<-}
(see[11,Section13]).Recalling(1.4)andthedefinilion(1.12)oId0p(x),weseethat
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for C : ap(u) this reduces to

0.dp( ) = 60p(x) when tp(r) * 0. ('1.36)

Since ap('l) = Y(L) in the present case, we are able to conclude from (.1.35) that
the second formula in (4.31) is valid too. Fornrula (4.32) then follows in-
medjatel_\, from (1.4) and (1.12).

nxample. Consider the inequality-condrained case of (P") where m = s = 2 and
for :r = (:r,,:rt e Rr:

toc)=xl rl, l,(r)= x,+rl. fnr)=r,+.r;,
vJo(:!) = (2rr, 2:rJ, vlr(:r)=( 1,2r:). vl:(-r) = (r,2xi),

t0 (rJ i0 0lrrr'' l; _;1. .,,'.,-li !l r'r,,,, ll ll
We shall analyze the behavior of the second-order multiptier ser N(u._r) for

'1= 
('1r, J near l : (0,0) and verify by way of Theorem 5 ttat

,p(t) ={(),. )J I r'= i,>l},
a'p(t) = {(},, rJ I -r, = ), > 0},

p L,;rftr ll'4 h.t "oth- hrh ' uilh,r 4 -0.I iori rir.,.) silhft, h 0.

Since

G.37)

F( )={x
={r

it is clear thal

- rr +.rl+ t{,< 0 and rj+rl+u:<0)
11r < r, < - a:. xl< nin{rL- Ir,, x,-r:}},

p(u) < t.) P(u) + 0 e u < - ui. (4.r8)

F(r)={(',!,0)}={( ll:.0)}=x(,r) when &,: rr. (d.3ei

ior 5nv f, e f (r). \\e hilve

].r(!l, :r) = {! € R: l v.i(.r, }) = 0.
yr(-rL+:r:+ LJ = 0= ),(r,+r:+ r)1,

Kk!l, r) = {}, € Ri lv.t,,(_r, r) = 0.

rj( jr,+.!l+ t = 0= ),(rj+rl+ &.)l

!,1('I, )) = (2rL- ),, + )r, 2ir:( - 1+ ), + JJ).
V./r(x. )) = (- )r+ )r.2:r:(yr + ):))

Since we are only interesied in u near ,=(0,0) such rhar F(&)+0, we can

l< 1, = -a,<1. (4.40)
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Direct calculation deternines that under this reslriction

{(l(1+ lj! L:),l(1+ &: r,))}
whenll,<lrrandir=(i(u, aJ.Jtllr,+r:ll'/)

{(24r,0)} when0= '1< ,1,, -r = (l1,,0).

{(0,2&t} when ft, < - :<0.:r:( r,,0),

{G(! + !l1- ll:),l(r + 2 Il,))lr>lL, &l}

x i,,., )= I{r,, !, r | , > 0}
r(0,0)}

-Kj(u, r) =

when ri = tr,x = (u,,0) = (- x,,0),

otherwise for ir e F(x) (under (4..10)),

(4.4r)

whenal= - u,,r =(r1,0)=( L:,0),
otherwise for.t € F(L) (under (a.a0)).

11.42)

In particular for t = (0.0) we have

F(t) - x(t) = {t}, \'11..s ; = (0, o),

r\r. -.) = Kkr, r): (),, y,) | r, = y.> ol.

Note incidentauy that since Ll(t. i) is nor jusr (0,0), rhe Mangasarian-Fromo-
vitz constraint qualification is not satisfied for (pi).

Next we check the elements of ]<r(a, r) and (j('.. r) to see it rhey acrually
belong to N(,r,:r) or N0(&. r). The hessian maidces are

ll 0 I - r0 0
2,, . -r,1. t hrr.'r-ls :11 r,rJ.

ln lhe tust case of (4.41), w(u. jr) = {(0,0)}, so K'(", n) = N(u, r) rrivially. Ir rhe
second and third cases of (4.41), W(ll.-r)={0}xR and the hessian fails rhe
second derivative condition by vi ue of (4.40). (These cases correspond to local
llld:tind.) In the fouih case of (1.11) we likewise have tV(!, r) = {0} )< R, and the
second derivaijve condition is satisfied if also ), + !, > 1. In the first case of
(4.42), tije hessian is positive semidefinite, so Ki(u. jr) = N.(ll. ri). Thus

(1 1l)

Ilt, rtl(L + tl1/1

I{rL.r) u

lko, o,

(4.44.)

> 0) when u, = ,rz, x = ('1,0) = ( r,, 0),
otheMise for ir € F(,r) (under (4.40)),

(4.4-r)

No(&, r):
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and in padicular for t = ((0,0)), i = (0,0):

N(t, r) = {(),, ,):) | )i = ), > + I K'(r, i).
N'(t, f) = {(),, ),) | ), = )1>0}= }(kt i).

s(t, t) = {(yr, )t l}, = }r>}.
From (4.a3)-(a.al we see ihat the assumptions in Theorem 5 are

that (4.43) is the conclusion.

5. Estimates in terms of ne\r second-order conditions

1im sup K1(I/',.!') = K'( ,:r),

lin sup tK'(L', ir') c KJ(n. x),

11.16)

(447)

fulfilled, and

We have seen in Theorem 5 that subgradients and subderivatives of the
optimal value function p can sometimes be characterized in terms of the
multiplier sets

N(x,'I) ={) er(1(,r, r) I r . vir(x, y)r >0, vw€w(!].:!)},
N{r.rr -l,cK,a.jrlr i l,,r\.))r, 0. Vreurr..rrl. 15 lj

. r.n ro r.0und;eI(r,,\). j .
N e W(r. \) e lf.(a) rrlt-0 o-;..ll,..,ar

This characterizaiion depended, however, on N and N0 having certain ljnit
prope ies (1.29) and (4.30), which unfortunately can fail in some situations.
Ahhoush

(5.2)

(5.3)

by virtue of the continuiry of the furcrions fr and Vi, the same is not true of N
and N0. It appears that N(!]. :!) and No(x,:r) are sonetimes too small to contain
al1 the needed linits.

Anolher deficiency is that the condjtion N('r. r) : {0} does not guarantee that
N('r,x)+0 and therefore cannot serve as a constraint qualification in the
manner that the condition (i(r,r)={0} does in Proposition 1. Moreover, in
general



so Theorem 4 topples $'hen N(u, r) and Nr(t'l, r) are substitured for K'(L, r) and

I(i(r, r). These facts point to the need for some sort of enlargement of N(u, r)
and N(l., ir). if a second-order refinemenl of the results concerning K1(ll,.r) and

K,l(r, r) is to be developed.
The definiiion of the sets \thich we shall presenuy introduce for this purpose

as K2(l1, .I) and Ki(!r,1) depends on the concept of a s€q!€nce of sLbspa.es Mi
of R" conteryins. to a sftbspd.€ M as ft+D This means

211 R f Rn.koltllatlSecdd dl., n,,r\\dr).ofririu,r

dist(:. Mr)- dist(:. M) for each z € R" (5.1)

(5.5)

z(,4.r) = {w c R" lvj't-.) '"=0, v'e1(L,r)}, (5.7)

(5.8)

An equivalent statement is that Mr n B converses to M n B in the Hausdorfi
metric. where B is the closed unit bal1. See Salinetti and Wets t191, Wets t201,

for more on such convergence and i1s characterizations. Every sequence of
subspaces of R" has a subsequence which is convergent in this sense.

our inlerest will center on sequences of subspaces of tbe form

M{ = {w € x" lYl,(1t) $=0, vier(x,r)}
associated witl x, .r c F(r), and sequences of points xt ' n. We set

,(( , r) = {M(sDbspace) c R' lM' as in (5.5) with 'Ir + r, Mr + M}.
(5.6)

Clearly ,#(11. i) contains the subspace

z(u,x)cw(u,x) $'hen Kr(r, x) + 0.

Every other element of .d( , r) is included in Z(l], r) and has dinension at leasi

'1 
- lr(t, r)1, where I(/l, r) denotes the number of indices in 1(u, r). More $i1l be

said about the nature of the collection .l(r, -r) in Proposition 7 below.

K'(u. r) = {) e K1(i]. :!) la M €., .(u, x)
with u.Vil(r. J)w> 0 for all $eMl,

K;(&. r) = {) c l<,l('i, r) I M €.ft(ll,,r)
rvith v !1h(:!, ))$>0forall '' 

€M)

Obviously, then, for any & and :! e F(u) we have

K1(r. r) r N(r,:r), and K;(ll.r)rN,(u,r) (5.9)

{ hen K/,,.,r-0{hen.e $ her Nr,. ,l.0,.
The multiplier sers Kr( , x) and Ki(r, r) need not be convex, however.

Proposition 6. Let u be such that p(u)<'o. Fol dr) r€P(u), K1(u,1<) Md
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I(3(r, :r) dr€ clos€d sllset.r ol R'" rr.h tftot Ki( . :r) is d .one lrirh

0 € I(i(r, r) ard 0.I{:(r, -I) c ri( , r).

One fu1s lhe semicantinuitJ prcperties

lin sup

lim sup

lim sup

(5. Lu)

(5.11)

(5.12)

(5.l3)

(5.11)

(5. L5)

K:(L',:r') = Kr(u. r).

K;(r'. r') = K;(&, r),

rKr(&'. rl c Ki(l]. :r).

Funhetmore, the s?ts Y(,/) an(l Yi( ) itl Theolem 2 satisfJ

)/,'1,c U K:,fi. \r. y(,i,. U K.,,._\,.
r€r(!) r€i(i,r

Proof. The closedness of Kr(Il, ir) is implicit in formula (5.11). which we there-
fore proceed to verify. The inclusion I is triviat in (5.11) iconsider consranr

Ir order to prove the inclusion C in (5.11), s,e first need ro observe rhat
K2(u,r) and K;(u,r) $ould not be alte.ed if the cottecrion l(u.j) in thei.
definition (5.8) were replaced by

l'(Il, a) = {M(subspace) c R" l3(rt. r5,(u.-r)
wirh rt e F(rir) and z(!r, r,) > M},

where Z(x, i) is the subspace in (5.7). Indeed. if M €.,t(x,:r) and M( + M wirh
Ml as in (5.5) and irr i x. we can set ,ri = - j,(:rr) for i € r(lr.:r) xnd !l1 = 1], for
all other i (namely with Ji(r) + rr < 0) to ger ,lr + I an{t have, for aI t sufiicienfly
large. 1r € F(xi) and I(xr. rr) = I(ll, x)r then Mr = Z(ri. ri). Thus

-,u(u, x) c .tt'( , \) . (5. t6)

On the other hand, if M,€.d'(ll,)i) 
^n.l 

Zlut,x\J-M,wirh (Ir1. rr),(l1.r).
yJ a F'r ). qe nu.t ha\e /{/i . \' ) C t(,r. \ r r!,r qrl A .ufi(ie. ty tlrge, becou\e il
f,('Ir) + ul = 0 for infinitely many values of k it must also be true by continuiry
that i('r)+!]r=0. Then, taking Ml to be rhe subspace in (5.5). we have
U C/tu., t Pa,.rnF to.ub.equence\ rf nece\\--). $e crn a..ume th,l M
converges to a subspace Mi rhen M belongs ro .,[(u, r), tlnd M c M,. inasnuch
as Z(&r. :rt)'M'. Therefcre

every Mi e "/l/(Il, r) ircludes some M € .,ft( . x). (5.l7)



Our claim that the definitions (5.8) would be unafiected by a substitution of
!4'(!l, r) for ,{(u,.r) is correct, in view of (5.16) and (5.17).

Suppo.e no$ ll."r ) cK rx'.r', , .'!.r.)rsirh \'eFr!] ' lo
finish the veriication of (5.11), se need to show that J€K1(ll,a). Certainly
J€K1(u,r) by (5.2), and for each j there is by the definition of Kr(ri,.r) a

subspace Mi € l(xi, ri) such that

R.T Ro.Ldlell,rSat,nd./ddl h..e$d/I..ndni.h

]' Vii(ij, y)l,, > 0 for all u € Mi. (5.18)

n, !1(ri, ))lr > Ej forallwe z(tj,ii)oB (5. rq)

A(l1') c N(r', :!') c Kr(r!', 'I') when -r'€ x(,r') (5.20)

(cf. Proposition 5 and definition (5.8)), and the linjt jnclusions (5.11) and (5.13).

Corollary. Ttu€ linil .ondirions (1.28) dntl G.29) in the h\pathesis of Theorcm 5

Fron (5.16) we actually have Mjel'(11i,:r'); thus there exist sequences
(Lir, r'k-,1,l:,1i) wirh r,x € P(rrr) and Z(l1'k, rit)'rMj. Then Z(r,{,:r,1) o B
converges to M' n B in the Hausdorfi metric (where B = {w e n" J lrLl < t}), so

for

€,, : - min{u . v:l(:rt, yj)}r I }', e Z(u'r, x 
jt) n B} > 0

we have €* 'r 0. Diagonalizing, we can choose for each j an index kj in sDch a
way that for

[t) = u)\, ii = x,r,, Zj = ,ti,
we 8er r,. i , .tr. \, and a, .0 lhen i - F{n r.lnd

Passing to a subsequence if necessary, we can assume tbat Z(ij, ii) converges to
some subspace M'as ji- Then M'€.ft'(ri,-r) by definition (5.1-s). FLrrther-
morc, Z(frt, ii) n B converses to M' n B in the Hausdorf netric, and it f ollows
therefore from (5.19) and the conlinuity of lil that r Vil(r,))i,,>0 for al1

veM'nB, hence for all w€M'. By (5.17) there exists M€l(&,r) with
MCM'. Thus for a certain M€.((&,:r) we have Vii(:r,y)w>0 or all
r€M, and we may conclude that )e-Kr(L,-r), as we wanted. This proves
(5.11).

The verification of (5.12) proceeds alons identi,ral lines and yields the closed-
ness of -Ki( ,r). For (5.13). the argumenl ditrers only in having, not )ri), but
tj)j' ) wilh f, l. 0i then Vr.l(r', )) is replaced in (5.19) by

rjvil(r.j, )') = rjl:l!(:r) + > 4)ilt(.r)i ll,(:r, )).

The case of constant sequences {(rj, ni)} in (5.13) yields the inctusion in (5.10).
The only thins left to prove in Proposition 6 is (5.14). But this is immediare

fron the definitions of Y(!) and Y"(&) in Theorem 2. the relations



Proof. This is obvious fron (5.11), (5.13), and the seneral
K'1(u',x').

The generalization of Theorems 1 ard .1 which we have been aimiry at can

R.T. Ro.tnl.lldrlSo.ond o/der re.esrd/! .o4dfuio s

0 + K':(r, r) c N(a, r) dnd K3(r,r)cNo(x,r)

Theor€nr 6, Let r b€ s&ch that p(u)<6. and delne

Y14)= U t<1qrt, Yi(r)= U K;(r,r).
r€r(ir) rEx(u)

'fhen Y1(u) and Yitu) dr€ closed srbs€ts oJ R"' rxch tlxdt yi( ) ir d

0e Yi( ) dnd 0'Y'(u)cY3(L).

ap(u) c cl coiYr(!.) + Y;(u)l

Y'(u\=g) ap(u)=A> {0}+ aop( )cclco v3(Il).

| .up y I. t/ ) h'-o lot ntt \ - Y;lu)
P tu:h)<l..\:,,,

ulhpl\ir?,

fotedchxex(u).
(5.21)

inclusion N(L', ir') C

(s.24)

with

inr{h lp 1(!l; h) <-} r {h I y

The lattet set is nonempty if Md onlt if
pointed too and actudll}

&<0 ldrdu ) € Y;(ll)}.

f i\I) ts potnted, tn I htcn

6op(I'l) cco Yi( ).

(5.26)

(s 21)

cdse aop(L) is

ap(u) c colYr(il) + Yi(!.)1. (5.28)

in (P,,). i.e.This is the case in patticular when therc ale no equalitJ constmints

Proof. The assertions about the nature of Y'(4) and Y;( ) are supported by
Proposition 6 and tlle compactness of X(r). To deduce the remainder of the
result from Theorem 2, sinply appiy Proposition 3 using ihe inclusions Y(r)c
Y1(') and %(ll) c Yi(u) fu ished by (5.14).
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cororrary. Let u be such thtlt p(u)<-. tl d r3(u, n = {oi fot eretJ x €x(u).
Then p is Lipschitz continuous on a neishbothood of u, the set

U rr(ri, x)

is compdct, and one has

-€<p1( ; h) < rnax{} ftl}cK'](,x) Jol so'ne a € x(u)}.

Proof. These conclusions follow from Theoren 6 when Y;Qr) = {0} (cf. the facts
about Lipschitz continuity cited in Section 1).

Since (:(11,ir)cKr(a,r) and L;('r. r) c I<i(r, r), ihe preceding sorollary
sharpens Theorem I (Gauvin). jusl as Theorem 6 more generally shapens the
6rst-order facts in Tleorem 4

Example. A simple illustration of the sharper nature of Theorem 6 and its
corollary is provided by the problern.

minimize /,(r,. r.. rJ:,-i+ ri + ri + xi- rl- r1,

\ubject lo o Lr.\.\.\, , - r<lq)

This satisfies our inf-boundedness assumption (1.1) and has, for rr = 0, a unique
optimal solution i = (0.0,0). Moreover VJ!(,i) : VJ(-) = (0,0,0) so

K\0, r) = -K,j(0, r) = R1.

Since 1(0, i) = {1}, the subspaces in tije collectior ,l.l(0, rr) all have dimension 2
or more (actually ,((0, i) consists of all such sdbspaces of Rr), but Vil(-t, )):
2() l)J and vilo(i. )) = 2i'J. lvhere

trI lr 0l
r:ln 1 o

]o ,, -r I

There does not exist a subspace M of Rr wirh din M > 2, such rhat l' Jir > 0
for all lr e M. Therefore

(10,r)-{1}, K;(0, i): {o}.

and the corollary above is applicable: 0+ ap(O) cK10,I), hence ,p(0):{l}.
Then in fact p must be stdctly ditrerentiable at 0 with derivative p'(0):1 (cf.

0r ap(,) c co 
1.U,,, 

('(r. r) 
1.



Note ihat this situation is not covered bv Theorem 5, since S(0, 'r)=0
Another interestirg featur€ is that the f€asible set F(0) consists of rhe poirts
(r1.1:, rj) satisfying

1,: - f:r1+ rllr'r.

The behavior of this set at t = (0, 0,0) does not lend iiself to characteization by

means of any constrain! qualilication whjch implies 'tangential convexitv' at )i

(as does the Mangasarian Fromovitz oondition, cf. Proposition l) Yet the

condition ]<i(o.t)={0i is able here to act as a constraint qualificaiion and

provide strong info.nation.

Before turning to the question of how all this is related to second-order
necessary condilions for opiinality. we prove an auxiliary result which, in some

cases, fumishes a conplete description of the subspace collection ',1(ll,'!) used

in definine K:(&,.r) and Ki(r, 'I). For each vector z € R", let

M(k. x, z) = {\t e z(u, x) | I u' e R^

R.'f. RackujeIktI s..ona4 .r n?..srdrI rordirionr

with ir . v':f (r): + i,'. vl,(r) = 0, i c I( , r-)l (5.r0)

> r,vIr(r) = 0 and [>

where Z( ,a) is the subspace in (5.7). Clearly M(u,r,:) is a subspace included

in Z(ll, r), and M( . r. :) = z( . :r) for : = 0

Proposition 7. S&fpose lftirt r € F(L) dnd the Jolowinq. condition holds: if n, utld

n't are coefrcients su.h that. fot sotne teclot .+ O,

n r-t r. r]; +,_,) Yrlri,rlr=r.

(5.31)

then r, = 0 fot atl i € I{u, x).
Then .u.(u, ') consisrs of dll thc s!lrspaces M(ll. r. z), ds z rdrs€s o1,€/ R'

Proof. We already know that ,ll(t, ri) contains the subspace Z(r, r) = M(1, -t, 0),

and that every subspace jn /(ri. r) has dimension at least 
'1 
- I(u. {) . We shal1

demonstrate first that every subspace in 'ft(&, ir), other than Z(r. r). is included

in a subspace of form M('1.:!,:) with :+ 0, and second lhat when (5.11) holds,

every such subspace M(ll,:,..;)has dinension n lI(.:r) Since two subspaces,

one included in the other, must be equal if they have the same dimension, this

rvill esrablish the result.
Consider a convergent sequence of subspaces Mr of forn (5.5) with rr+r..

such that the limit of Mr is properly included in Z(r,.r), 3nd therefore rtl r
except perbaps for finilely many indices ft. Passing to subsequences if necessary.

we can suppose that the veclors z'= G' ,il:r- :r converse !o some z (with

lzJ = 1). Each }' e liml Mr is a limit of vectorsl'r€MiIforeveryi€I(,x)one
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has H Vt(ir) = 0 and w' vl('') = 0, so

0=wi tvl,(rl vf,(x)l/lr* - r +t(l'r- )/lxk - xll . vf,(x). (5.32)

Let .4 be the subspace of R' consistins of all veciors I=(I1....,I,,) such
lhat there exists !r'€ R' with

\ - w !/,(rl fo, -rl i a J4,,. \).

Accordins to (5.32), each of ihe vectors Ir defned by

rl = r' tvl,(r') vl,(x)lir' xl for i = 1,... , l?l

belongs to l, Then so does the vector I =limrlr, whose components are

rr=$.V1i(:r)r. Therefore $€M(L,x,z), and it follows that limiMrc
M(u. x, z).

O r next task is to show that dim M(Il, r,.z) - n ll(u,r)l if :+ 0. Let

M*(l,.a,r)={($,w')€RaIl','Vl,(:r.}:0 for all i € I(!., r). and

lr . v'l'(:r); + w'Vf'(r) = 0 for all i e I(a, x)].

Clearly M(r, r. r) is the image of the subspace M*(r. ri. :) under the projectior
(}},, w')J w The orthogonal complements of these spaces therefore satisfy

M(&, r. z)' = {u | (,, o) e :1r1,, 
", 'l}. (5.33)

Moreover, M*(ll, r, z)- is tlle set of all vectors (!, ,') € Rr" of the form

) !,(v:l (r)r, vli(-r) + > ?rio.fJ(r).0)

= (l .p., ,,v'r,i.r]. r _p., 'riv/,{r), .p., "r,vr,G)),

for arbitrary coefrcients rlr and t1. Since

[ ) rvF,r'.,|r c?l- ?\t,,,) (s..1,1]
t.eii.l

we obtain from (5.33) that M( . r, z)' consists of all vectors of the forn

l: no,l:-r sirh: rr'irrx'-n.urZ,,r (l
L,.ft,t

In accordance with this expression, let

c={'ren.11,=o to. ier(x,x), and >;: j'r,vt(-r) = 0}.

r(r. u)= l> n v'J (\)lz + r.

Tben C is a subspace of R,, T is a linear transformation from R" )< R^ into X",
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and the image of G\Z(u,x) under T is M(!.,:r,?)I. Furthermore, the only
vector (!.!) ;n CtZ(u,x)'with T(!,r)=0 is (r,r)=(0.0); this is the sub-

stance of condjtion (5.31). Hence T is one-to-one on G x Z(u,x)r, and we have

dim M(u,:r,:) : dimlc x Z(r, r)'1.

= dim C + dim Z(r. r)t (5.35)

Gf ={'r€R'" lr,=0 for igr(r,x)},

r.(r) = ) 'r'!f,(r).
Again C0 is a subspace of R", and T0 is a linear transformation from R'' into R'.
The image of Go under Tr is Z(L,i)a by (5.34), while the set of !€C0 with
T(Jt) = 0 is G. Therefore

dim C + din Z('1, r)1: dim Go = J(L, r)1,

and we deduce from (5.35) thal

dim M(u, :r, z) - n dim M( , r, .-)1 = r lI(1, -r)1,

Our next job is lo show that the sets Kr(r,r) and Ki(!, j.) are not only of
value in the study of tp(11), but also furnish a second-order necessary condition
for local optimality in (P,,).

Th€orem 7. Suppose i is a locall\ optimal sol!]rior ro (P,,) srcn tftdt (;(u,.{) =
{01. Then the multiplis ser K'](r. j!) is nonenplr and compact.

P.ool. A function g of class €r can be constructed with t}le properties that
g(:ri = 0. vs(.r) = 0, v:s(r) = 0, and

c(r') > l0(:r) l(:r') foralli'€F(r),:!'+n.
Let f0 = Jo+ s, and let i be the optimal value function obtained in place of p by
this nodification. The nodified problen (F,) has r as its unique optimal solution,
and it has the same mulijplier sets at I as does (P"), nanely K'](u, r) and
I(i(r,:r), because these sets do not depend on fo beyond lhe values of Vfo(.x) and
VTo(.r), which are the sane for f0 as for f0. Since K;(!., r) = {0}, we know by the
corollary to Theorem 6 that O+ aF@)c K'1(u,xl (compact), and this is a[ we

An alternative to the constraint qualification K;(r, r) = {0} in Theorem 7, but
yielding a weaker conclusion, is a property we have introduced in 8l in
connectjon with ftst-order necessary conditions for nonsmooth problems. We
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say that (P,,) ;s cdl'x .rt ir, one of its locdl/J optimal solutions, if rhere do not
e\r\r \equence\ , -ri, r -.y, \ucrr Il"l \' - i Lr') and

lf(xr) l (-t)li a'- al- - -

Theorem 8. Slppos€irisalocdllJopii,rdlsolutionto(P,)suchthar (P,) iscdln
at x. Then the multipliu sel K:(tl, ir) is nonel1lpr) (an(l tlosed.but not ne?ssarilr

Proof. Cal ness of (P,,) at r implies by [18, Proposition l2] that for 8 con-
structed as in the proof of Theorem 7 and having the form g(r'): 0(lr') for I
convex on Ri, the modified oprirnal value funclior i satisfies

riminfir'+44- .
l'] - dl

As sho\rn in tl8. Proposition 11, this ensures that ri( )+0. But since the
modified problem (F,,) las r as its unique optimal solution, wirh corresponding
nultiplier sers l(':(Il, a) and Ki( . :!). the same as in (P,,). we have by Theoren 6

oi,l,Icc ...LK (d..\r K;(r,.()1.

Therefore Kr(!l. r) 10.

The traditional approach to second order necessary conditions for optimality
in (P"). and for that matte. firsl-order conditions. relies on the existerce of
certain sequences or arcs which approach a locally optimal solution r from
elsewbere in the feasible set F(L) (cf. Hestenes [6]. [7], Fiacco and McCormick
[3]). ln our approach. perturbations of ll as well as r play a role. To provide a

closer comparison between the results obtainable by the two approaches- ile
consider another kind of constraint qualification.

A well-known condition under which K1(r.'!) must be nonempty when r is
locally optinal in (P,) is the following (cf. Hestenes t6l): for every nonzero
w € R" satisfyin-s

vr rr,. NI i] 
lo- i. r, !. \,.,._ ..

' I tr lorr -\:1..,l1].
tbere is a sequence rr;x in F(L),:rr+f,, wirh (r'-r)/lx, rl- r,,. This ts
appropdalely called the f/sl-ordeJ' taneentiol constraint qrdtfcation. Now ler

r*(,, r) = {' € r(r1. :r) | vi(jr) . i' = 0 for ali }i € w(l], :!)}. (5.36)

We shall say that the secoru1-ordet tonBential consrrdirr 4udlifcatn'r is satisfied
if for every nonzero w sarisfying

f i,r.r r r[<0 for jeIfui.\)- li(r.\r,' t= ll for i€ I1(r. r). (5.37)
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there is a sequence rr'i, rr+i- with l,(xi)+llr=0 for ali i€I*(, j!) and
(1r-r)/:r( rlrw. This is quite sinilar to the second-order constraini
qualification of Heslenes 16l, with respect to )i and a multiplier vector J €
(i(u, r), namely tl)ai for each nonzero w satisfyins

(5.38)

where I0(l1,r,)) and l(r,r.)) are the index sets defined jn (4.3). there is a

sequence rt ' r, rr+ r. with

(5.3e)

N(4 r) = L1ll, x) = I<1l]. r). (5.41)

vf r, r.* I<0 for i e Iil li. .r. v r.
"' l=0 forieJ(..Y,)),

t.{rr l+,.[<0 for i €I!(r. \. v).' t=0 fori€I(l].:r.r).
and (.rk a)/lar rl>w. Under the lauer condition, J must belong ro N(u.r)
(cf. 16, p. 371). (Fiacco and McCormick l3l nake a stronger assumption in terns
of )r being tangent ro an arc of class gr in F(x); they have equality in piace of
the inequalities in (5.38) and (5.39) and correspondingly they conclude only thai
$ vil(r. ))u > 0 for a smaller set of vectors 

''.)A peculiarity of Hestenes' second-order constmint qualification is that rhe
systen (5.38) does not actually depend on ). The vectors which satisfy it are
precisely the ones in W(u, i), as aheady nor€d at the beginning of Section 4. Il
folows that no assumpilon on lhe aradients in (5.38), such as a seneralized
Mangasarian-Fromovitz condiiion of some sort which could assisr in
verification. can possibly distingnish between diferent forms of (5-39) associated
wiih dilTerent vectors ) € K'(14 ir)- In practice. therefore, one night just as wetl
settle for the best version of Hestenes' condition that can be formulated without
ref€rence to any particular ). This is the motilation behind the second,order
tangential constrainr qualification formulated above. Indeed, .!\,hen Kr(!r.:r) + 0

r*( , r): U {-I (Il,1, i) I l € K'(,,. 'D
= rr(r. -r, )) for arbitrary y € ri K (!l, jr)

(5.40)

(where ri C denotes the relative interior of a conven set C f11. Section 6l). as can
readily be seen by way oI the lenma of Farkas.

Theor€m 9. S ppds€ r ir u loully optimal sol tion td (P.) at \thich the
seco d-ordet tdnqential con\ttuint qualificdtion is sdlisfcd- Ther

Proof. We may assume L'(r,:r);0, for otherwise (5-41) holds with alt sets
empty, cf. (5.9). The vectors r! satisfyins (-s.51) are then precjsely the ones
belonging to the relative interior ri W(u,r.) of the polyhedral cone W(!l.:!) (cf.
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tl1, Section 6l). Consider any such rr aDd a corresponding sequence r(+'r with
/,(rir)+u,=0andalliel+(Il,-Oand(rr r)/lrt-x + r,, such as is guararteed by
our constraint qualification. For i € J(tl,:r) - I*(L, r), we have by (5.37) and the
mean valne theorem

limu,(r5 - J,(1)l/ rt - r < 0,

where i(r)= 4 and therefore i(irt)+rr<0 for large k. Then.xie r1ri.). so

/o(rr) > f0(r) by the local optirnality of ir. Now consider any ) e I(1(u, r). Since
W(n, r.) has the alternative descripiion as the set of u satisfyins Vt (-r) . lr < 0
for ielo(r,x, y) and vl,(r) w =0 for i€I,(1,r, ).) (cf. besinnine of Section 4),
we have ),=0 for all iEI(u,-r)-I+(u,r). Hence )1,(irr) = ]1,(:r) = ]-,e, for
i=1,..., .sotlat

r(ri, )) = /o(xt) > Jo(r) = l(x, ),) for large [.

Recalling that !-l(:r. ]) = 0 (because ) € K'( , r)), we calculate

^ .. ltr'. r't l(r. v) v.l(1. r) (:rt -:!) I=tn v;rrr,rrru.

This being true for arbitrary werilv(r..r). i! aiso holds for alt l'e
c(riW(u,-r)=W( ,r). Thus )€N(r,:r). We hrve shown K'(r4 jr)cN(Il,_r),
ard the equalities in (5.41) now foliow at once fron the general inchsion in (5.9).

Corollary. Srppos€ 'r is a locaLlt optimal solution b (Pi) sllcl thdt for aII x, il
some neighbothooLl of x. the matrix I(\') \those rcws ate the Ecrols Vf,(j') lor
i € I*(u, jr) hds consta t rank. (.This is true in particulat if the Nctots Y fj(x) fot
i€I*{u,x) elinen r-i dependent.) Then the .onclusion (5.4t) af Theorcng is
tdlid.

Proof. Let the rank in question be d, and let I'be any subset of r*(u,j) such
that the vectors VJr(n) for i € I'are linearly independenr. By a ctassicat rheorem
in advanced calculus (based on the implicit function theorem), rhere is a
neishborhood of r in which each i for i€ I' can be expressed as a ?r function
of rhe /,'s for t € I'. Then for each l', satisfyins Vi(.r) le:0 for all t € I, rhere
is an arc d(t) of class g: with a(0) = .r, d,(0) = ]', and l,(o(l)) = Jr(:!) for all t € I',
bence for all i e I*(u, r). In particular, the hyporhesis of Theorem 9 is satisfied
in this case.

Theorem 9 and its corollary can be inrerpreted as saying thar the main resulrs
efectively oblainable by the traditional 'tangential' approach to second-order
necessary conditions are covered, in a sense, by the ones in Theorems 7 and 8 in
terrns of (:(L. r). Moreover rhe latter are definitely more general to rhe exrenr
of being able to handle situations where it does not turn out tbat e!€n vector !
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satisfying the first-order conditions aulomatically satisfies the second-order

conditions.
Ther€ is. however, a class of second-order results which is not covered by our

approach. namely those where a possibly different ) with certain properties is

associated with each u € W(u. i) (cf. Hestenes t7l, lofie t8l, Collan [5]). The
results of Gollan [5] do include an eslimale for ap(u) complementary to the one
given here. To formulate this, let

tt(&, r) = {!' € R" |!J,(r) v=0,vi€I(r..r)},
Rr(,,, x. n) = {) e K'(u. r) | n'. vil(r, )),' > 0},

td(l/, x, w) = {) € Kl(!].:!) I r, vll0(r.})}r>0}.

Gollan sho}s that for any choice of $ (.r) € w(u. r) for each i € X(,r). one has

ap(u) c cr co[.!,,, li'(11. r. ,'(r) +,!,,) f fu11, ! w(i))].
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