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ln lhrs pupca rNc considcr detairxin:slic and stochaltrr rcrsron: .r[ drrcactc tx c
anirk)ts of optimizatton problems of thc Bolza rypc. The lunctrootls rre uslunrcd to
tx convex, but we malc no dillc.cntiability assumprions and allow lrrr rhc c\phcrt ,)r
implicil presence o[ conslraints bolh on the state -!, and lhc inc.emcnlJ 1\, I-h(
dclcrmini$lrc th€ory icrvcs to ll€t thc stagc [o. the stochallic problcm. Wc obl: n
oplrmality conditions that aae al*als sullicient anrl whtch irac xl$ n€(c\srr! ll thc
grvcn problcm salisfics a stdct feasibiliry !:ondilion lnd. tn lhc rtoch.btrc c:h,i. n
bounded recoursc condirron. Thir is a ncw condition lhat bypitssc5 lhd unrlorn)
bound€dnds reslriclions encountc.cd in carlicr worl on rclalcd p.oblcmj.

1. INTRODUCTION

ln thc classical calculus of variations, a problcm ol Eolza type is one
whcre a functional of the form

1Re\earuh rupponcd i0 part by Air Force ()lliec o[ Sllcnllie R(tcurrh. (;.]nt No.
l.re6{)-8:-K -{x)r:.

:Rcscirrch rupporlcd in parl by.r grunt of lh,.: NJlron.rl Scrc ec Iirund.rt(rn.
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2.14 R. T. RoCKAf ELLAR AND R J II. wL I S

/(.r): = l(x(ro), .r(r,)) + J L(r, r(r), i(4) /r ( l t)

is minimized over a space of arcs x:[to,tr]-01'subjcct to a system
of cqualions and inequality constraints on thc endpoint puir
(x(to),r(.,)) and the triplc (t,x(0,i(0). This fundanrcnt l dynamical
model has in recent years bccn a focus of ellbrts towards dcveloprng
a variational theory not so depcndent on srnoolhncss assumptions,
and in which more light can be shed on phcnomcna of du.rlity. ln
this thcory, thc constraints arc repr€sented by allowing I and L(r,.,.)
to bc cxtendcd-rcal-valucd lunctions on R'x S{", and optimulity
conditions are cxpressed in terms of subgradients; sce [2, l3].

Our aim hcrc is to treat the analog of this problcm in discrctc
time, imposing convexity assumptions that lead to a close conncctron
betwccn the optimality conditions wc derivc and a eertain dual
problcm. After taking care of the deterministic case, which is mainly
a mattcr of applying well-known results in convcx analysis to a
particular situation, we study the stochastic version of this class of
optimizatron problcms. The significant ncw fca!urc, not prescnl ln
thc functiooal form (l.l), is a proccss that modcls thc flow of
information. Dccisions takcn at any timc I can only dcpcnd on thc
information collectcd about past random cvcnts, tllc future being
known only in a probabilistic sense. Whcrcas in llrc dctcrministic
modcl the decision maker has al any timc total information about
past and future costs associated with any plan, in thc slochasIrc
model at any tims r, the unccrtairty about thc actual cost of any
decision plan can only be mitigated by past obscrvalions.

In thc deterministic problcm in discrcte tinc, wc considcr in place
of an arc r:[te, t,]-fi' 3 y6g1e1

r: :(ro,xr,..., rr) e R" x ... t R": =(R')r -'

and in place of i: -dr/.lt thc diffcrcnec

Ax,::x,-xr-, for ,: l, ..., ?l

Thc problem has thc fornr:

BOLZA PRObI,E[T5

C: = {(ao, ar) € R' x R'l/1no, ar; <.a)}.

F,(2,): = {w,eN"lL,lz,, w,) < x,),

(xo, t) e C,

Ax,eic,(x,,r) for I=l,..., I

275
nu mlze over all x:lxo,rr,...,rr)€(R,)r,r thc function(Po.,)

T
;1x): =(:6, x1) +,1 L,g,_1,Ax,),

H::i., 1,""1 aj f:, 1:,, , ,, are funcrions trurn i., i.., r,r,rrwl.+cor, none of which is idenlically +co. Wc urrun.-,,,.r"
:lT,l*: aic lower semicontinuous and rrnr"r. if,""l, .r,',, ,i,*",
:em':91tinrlo'l: and convex wirh valucs i" mr-l i i *'i; '*"'lin,r",. 

i,rs not idcnrically + o.
It is essential to appreciatc thd facl that in (pd.,) lherc ilrc certaioconstraints. irnplicir in rhe condirion _/(r) < @, 

"t 
i"ii 

" or".u""li" ,"a vector x being of interest in ths minimizarion Lerrinf'-'----".

{ l.l.}

r l.l)

ff#ldllll"i"::1"":" f :?Ti' I : ( ;; tr, #,:i :i 1,;, 
o".,,,,

{ 1.4)

I I.5)

[:T:r:Ol if our srarring poinr is a probtcm of minirnizinc atunctron of rhe form 1r) over all the vecttrs r *1,,.h ;;;,;fr'r;:; ;sysrcm of consrrainrs, we can oose rhis as a pro-blem ,n"") l,il,o]i o,(rc-)delining / to be +oo evervw6cre outsirle of th. ,;;?: ;;;ti ,"be, + co everywherc outside rhe graph .f tn. .uf ,,fu*.,ir.'i '" '
rmprrclt rn tbe dynanical constraint ( 1.5) is Ihe ,,o,. .onr,luin,

(1.6)

where

Z,: = lz,eR"lF,e,l+g). ( l.i)
Nolc that the dynamical conslraint could also bc put in ..conrrol,,
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rorm,r.r pr; bv rnr ruducrns " T'l:;:"Ji;:l'i:i'l :i:,ii:],,';il i"ti'i
pltrnrctcr vcetor ur t irngrng :l:ti;,,;;i ,,ru.,u,. l'.,"'n,r,.uu..,n trursclvo "'ln:.l"l,lr";;;;i.,,' ,"Uu',"' rrtr t,tt'':rllttrg-lhc st')cltrr:'trc vct:ron ()r 

,"1 
"":;';;:; 

l"iU'
prtrbabiliry \Prcc (Q' 'y'' f) und il

,!i.=\'.r,.),'tt,. ,'g,!, whcrc '!oct!)tL c '!)''''y' (l lJ)

r r,c,cr,r,, rcprcscn,, ,"r,l'-1".::Jl,l;:lt'i: i: 
.]l';',iii'^.i,,1;; :ll

tlr.,t r luD!tron r':Q -Jt' rs 
'.'ril'ii,l' , 

"' " 'r"n'u 
r rcJ dclrrtlJ ul l)r5t

,.lcpcrt.t ein 'tt'lt tttli.'t m't ttL'r.r- l"'],,ii' ;"" ;,; [ururc Aecor.lttrgly wc

cucrrr.,.,,r,,o rurrd('or :'","::..,'j;:J[i;,; ;;,.",, ro thc (clt^cJr

rc5triLl Jlteoll('ll ll) uut dcCl

Itncar lunction sPitcc

N -I\=(\o,\r'. \I)e !'\Q'''/'lr'([t")r'r)lr' is '4'-mcasurablc l

( 1.9)

nrc crcrrrc,rrs r rrr rhrs )l,'li ]'iri"'t,lJ ::,,:;:lll:'iiJli;,.::,:l
rc50ccl t(r lhc :'ystcnr ? tl

problem is 
I

minrmizc ovcr all t=(r.,' \r"\r)e l tltc functtona

(P,,") .f '

J(\). .ltl.l\,,1"'):'Llrrr"r:r r l: {,!,
,(,',t, A.t,(,r)t]1.,{' /. \,

Hcrc rr,= \, - \, , ts 
','nrcrr5urrhrc iiJ,);.1,"],,'r,i,l]i.1i",.i""'"."

As rn thc Jctcrnrittisttc t""-l ,'.''"",1- 
',*"; 

5cn|lc,)l|(rouous fronl

t= l' . r and t'reo "t: ",:i::1,'iJ'"'-'.. iu" ,,,'u"'" ,rlsu tlrrt thc

R" x R' to Ru | + r 1' n;" 'l"jt"lj'iil.u,ur.,bly on ,.r, .,r rn orhcr

eprgruph or L,t@. ' ) dcPcnds ,:";';;;;'. xi. . q' 113, p r?rl
uj,ritr. ttt", L, s a 9,'norml tt cgtuttu :1^:- ";"- ,,.,, ,n,i ,n.11,, ,.,r'

lil,i;';i.;',;,"". in:,,:"""1: lllj, :ll;ff;i, ;:' i:l'u,Jjl?n"^.
v,-mcrsurrblc in t''". so '' "il]i.il,i-ii' ir' j,-r"",r'"ut. fo, unv

cert"rnlv' thc term L't'o' r': l:::l;;i,;;. ,,n L, i' thc c.rntlttion th;rt

\ €.1 L.rst amotrg our bustc asl
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frtr cvcry p>0 und o>0 (ltcrc is a slalrrablc lunctron ,,:O,,R 1r.c..
integrablc with linite inrcgrul ft;(o4|) such thar

LkD, zr,,,r) Z'r'\(D) u.s. whcn lz,l<1,, lw,l:o. (1.10)

Fronl this it follows that for any r€-t, cach ()l thc tcrm5
L,(c-r, r, ,(ro),Ar,(ro)) in (P,,,) mllorizcs a sunrmable Iurrctron oI r,;

and lhcrefore has a well-defincd expcclation, finilc or +,r,. Thus J i:
a wcll-dcfincd functional on.! with valucs in Ru{+ rrl. ln lacr J rs

convcx and Iower semicontinuous (with rcspcct to thc .l''-lornr
topology on .1 ). We supposc J(.r) < xr for at leas( otrc \ €. L

Ccrtain constraints are implicit in thc stochastic problcm, jusr as

in thc dcterministic problem, bccausc only thc clcotcnts \ o[ . t
which satisly J(r)< rc can be candidates lor thc nrininrum of J. Lct

f,(rr-r, z, ): = {w, e R" 1L,1,,.', ;,, r',, ) < rc },

Z,(ut): : lz, e W' l F,k't, :,1 * 9]i.

live ry r e . t with J(r) < .! must satisfy (scr: ( 1.2))

(l.ll)

1 l.llt

(C{-ro(o)}, El r,{ro)l)e C. ( l. rl)

Ax,(c-r) e f,(o, .r, - ,(t r)) a.s. for r= l,...,7: (l.l.l)

and consequcntly

x, J(Dl € Z,l,|ol a.s. for r= l, ..,1: (1.15)

1'hus in (P,,") the minimization could bc rcs(rictcd to thosc \€.1'
that satisfy thesc constraints, rather (han ovcr all o[. L

'[he multifunction 7-,:to-2,(ul is closcd-valucd under rhc
bounded rscourse condition to be givcn in Scctiern I (Dsfinition l),
and it is then also 9,-measurable by virtuc of thc 14,-normality of L,.
(Namely, Z,(al is a ccrtain projection of thc cpigraph of L,(ur, , ),

which dcpends 9,-measurably on t,,r; scc [12, Cor. lP] for the
measurability of projcctions of mul(ifuoclions.) Thc ncsd for a

stronger mcasurability property o[ Z, is suggcsted, howevcr, by our
implicit constraint in tP,,") that rt r(i!r)€2,(rr) alnro5l surcly, whcrc
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xr, r is .l, - r-measurable Unless Zr is acrually 9, ,-tneasurable' wc

cannot very realistically work with such a constrainl, because

otherwisc r,-r(@) cannot lully respond to all thc possiblc variations

in Z,(u). For this reason the assumption of 9' ,-measurability of Z'

will enter the theorems formulated in Sections 4 and 5

We have alrearly mentioned earlier that the information process is

a significant feature of lhe slochastic version (P',.) of our problem

We have modeled it here by an increasing sequence of o-helds 9,,
r:0,...,T Each 9, represents the field generated by thc

information-events accessible to the decision maker in time period t

We implicitly assume that there is no loss of information from

one time period to the next, since for all t,Et-t'=E'' To gauge lhc

llexibility of this modeling of thc information process' it is con-

venienr to introducc the increasing sequence o[ o-frelds g,Ld'
r=0,...,T Each 9, is the o-held generated by thc random events

that occur before or at dme t. If at time t we only possess partial

information about past occurrences, t\en 9,c-9, and we can

compute the exp€cted valuc of the information loss as

inf J(x)- inf J(-r),
r.l

where

-{t::lx:(xo,...,-xr)lx, is -z-,-me asurable) (l l7)

Thc quantity in (1.16) is nonnegative' since'9,'-t, implics 'l c"l't'
In lhis casc it is instructive to view the restriction of the decisron

process to ,t" as the result of a double conslraint First a (strlct)

nonanticipativity constraint, xr cannot anticipatc any luture events'

which implies that it needs to be .f'-measurable' and second a

(partial) informalion constraint, x' can only depend on the

information collected about these ev€nts, i c., wc necd to restrict 'r,

further to 9,-measurability. The (marginal) prices associated with thc

constrain! xe,{ <-9* can be decomposed in two parts

corresponding to the strict nonanticipativity and the partial

information restrictions.
But the cases of partial or total informatioo are not the only oncs

covercd by our motiel. In tact, it handles thc situation equally wcll

when for all t,9,={,, or when there is no inclusion in one direction

( l.l6)

BOLZA PROBLEMS 2']g
or Ihe other. The case g,=g, would model the situation when rhcdecision maker has access to a predictor, whereas in if,.'f"i,a.."*
som.e events would only be partially obscrvable unO ott..rloutO U"predlcted to some exlenl. However, our modcl does not include thccase of informarion toss (thc a,,s not neccssarilyl;;;";;;;, ;; ,.*.
:,j"::i.:.1: 

*h:" 
.,lere is onty partial obscrvalion unO 

'rt 

"'i'lr"i.p"n.lon prevrous decisions. For further details about information plrr"rn,
see [3], and for a somewhar air"."nt app.o"ci, iij. 

"*'*" *
Concerning rhe form of ;hl. b;;;;u.y expressionl(Elxo@)),, Elxlot))) in our luncrronat ,I, the reader may wonderwhy we do not aim rather ar something trke ii,t.,,, 

".io,if, 
_*i_ff fThe answer is that this would not acrually add much generaliry, burwould re nd ro mess up rhc approach 

".'*irr, ir-r"ir3*'ir' ,J", ,duatiry. Indeed, rhe rermi 
' 

r{r"rr, x"t.,l,.ri.,, _"'nt_]ri 
""0!,|,Lil,'t, 

x,r Jul, xr{r,rt - xr_ r(ar))} api.;"?ie'i;'ii. r"ffi'J r"r,arreaoy a ow tree incorporation of terms of rhe kind EIlo(t,, xo(r,))]and E{llu, xlul } inro rhe quantiry ro bc minimized.ln our earlier work [14, t5, 16], various tect ni".ai conairions teOus to impose uniform boundedness restrictions on the sei oi feasiblcsolutions. Such restrictions also appear in rhe relared *oit-oiion",
and. Olsen 

.[5, .6], Dynkin [t] inA Evsrigne"" tt, ei. 
'iiiJ" 

"r.partially skirted by Hiriarr-Urruty [9] beiause r,"'O."rr' "iii ,r,"nonconver case and does not seek any duality relations.) Here wc go
1 lon8.waf towards removing these boundcdnes. 

"""Aii.nr.'ff,"Dounded recourse condition, as defined in Section 3, no longerrequires that the set of fcasible solutions Uc uniforrniy--louia.O,
lu,., .uO 

,: an integrability condirion_it onf y ,"quirJ, li"i ,r,.
reaslDte sotutions, which ar time, pass through I boundcd set, canbe 'boundedly" extended. By this it is m"ait ,t",,ir"." .*ir,, 

"Ieastbte extension of these solutions to timc pariod r+ I which is alsocontained in a bounded set. This condiiion i, 
".r.niiut"in tn.

9jl":1i." of the.neccssary conditions. fo. ,,o"r,o"i"- f r,ilf.rn. .fthe Botza typc, the boundcd recourse condition comiliments theusual strict feasibility condition rcquired to ontuin tf,.'"*isi"n.. of
1,"1!:-:**,^*riabtes. The appropriare stricr feasiUiriiy conAirtons,
cJ. Dellrutlon 2, are somcwhat weaker than those rve have uscd in
the past [15, 16] but this must be arrribured ro rtre rpeciat stiu.iurc
of the problem, in particular to the form of ft" ..,tp"in,-.;;;;;;r.

Thc restriction of the decision processes to the space of essentially
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boundcd mcasurable functions is chicfly lbr tcchnical rsitsons (hat

havc mostly to do wilh thc nccessity atgumcnt. Actually, it is not

dilllcult to scc that the optimality conditions givcn in Thcorem 4 are

sufficicnt for any ./P space, p] l, providcd thlt lhe integrability
condrtit.rn tl.l0) be appropriat€ly strcngthcncd.

The prospect of studying stochastic Bolza problems in continuous

time, as limi(s o[ sequcnccs of discrete timc problems, provides some

of the motivation for this study. At this tinrc, however, there are

major technicll obs(aclcs that nccd to bc overcome in carrying oui
such a program.

2. OPTIMALITY IN THE DETERMINISTIC PROBLEM

Solutions lo problem (P,j.,) will now be characterized by relations

analogous to those known for deterministic problems in conlinuous
time, where the functional (l.l) is minimized Il' ll]. These

conditit.rns involve srrb.gncr,liertts of the convex functions I and L,.

Recall lhat for a convex function g: R'- R u | + ,rl ], the subgrulient

sel dgluj consists of all thc veclors peR' such that 8(u')=g(!)+
u (r.r'- a) lor all ri'e R'. Equivalently,

ue?g(!)€inf lg(!')-t u') is attuined at u'-u (2.r)

See [10] for more on subgradients and their properties.

A key lo the optimality condition wc shall be looking at is

provided by thc function r/:(R')r*'-Ru | + co) delined for y:
(f,,, J',,...,.vr) €(R')r" by

This function is convcx, bccausc / and 1,, arc convex [10, Section 5]

Notc tlrat d{0) is the infimum in (P0",). We can imagine @(y) as

thc infimum obtained when (Po.,) is "perturbcd" by the parametcr

vector y.

BOt,ZA PROELLNI S llJ l
Tttr<rtrrpr I A suJJiLient unrliti,n Jitr tlte optuwtlrrl, ,l r tu prohknt(P,i.,lit rrc .'xisrcn.'e oJ s m. p=(po,pt,...,prle(01.)r,'' Ji./{ir;i,../;

a) (po, -p.) e c.l1xo, xr),
b) (6p,,p,)e dL,lx, ,, L.x,) for t=1,...,7

IndeeJ, these relations ue suisJietl by x arul p iJ.utl onlS,i!.x soheslPo) un,l p e tA!|

ln parallcl with thc contrnut
speak or (b) as rhe ,',,,"i" i,iilr',1[]^ifi;,,i,j, ill'?li'll",iltrunsletsulity rela on. The pairing ofl oicomponents ,f-r 

""A 
pcorresponds to some extent, as will bc scen U"to*,'rJ"'tt""integration by parts" rule that

xr'Pr - Io po= ,x, r 
. Ap, +

TI
II

The value of the observation that (a) anrl (b) corrcspontJ ro rlrcsubgradient condirion pedl(0) is, of coursc, ,i,", if," ."'.pr""",, p,
can.b€- interpreted as describing gcnerarizcd dircctionar .t"riu,,riu"s utthe inlimum in (p0.,) with respcct to ccrtlio perturbttions.

Proof of T.heoren.l To say that ,r solvcs (pu",) lnrl .rertry'10) is tosay that x givcs the infimum in (2.2) for y=0.lnU Otol+lfiSOtylfor all ye(R")r*r, or in other words thtl thc inllnrum of thc
expression

P, A t,. (2.1)

(2.4)

over all x'e(R')r*t and y€(R")r+r is attained at.\,:.r,r,=0. We
must show rhis holds if and only if (a) and 1b1 are fulfillcd.

A change of variables will do the;ob. For each choree o[ vecrorso-o!, 1n9 2,,w,, for t=t,...,T there exist unique r,€(R")r.r andy€(R')r+r such that

II
l(.ri,+ro,xi)+ I r.1.x;-,,a.r;+_ri)- I p, y,

r-l r-o

x'q + yt: a, and x', = ar,

x',-r:zt and dxj1y,:11,t tor t=1,...,T.
{l 5}
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In terms of these we can write (by means of the identity (2 3) for x'):

,i,oo, 
r,=oo too-'rb)+,1 r' (w'-Axi)

.tT

=po'oo+,trp,'n'-t; pr+,!,-rl-r'Ap' (26)

=po'ao-pr'or+ t. tan, ', 
*r', n'l

Therefore, the infimum of (2'4) over all x"y' is attained at x'=r'

y:0, if ""a 
only if the inhmum of the expresslon

I(ao,tr\-po'ao+p, or*,1 lL'lz"w'\ - ap' z'_ p''w') (2'11

over all ae, o7' Zp wr is attained at

Ao = r.-o' ,lI:_\T' Zt=Xt-l' tl,':AXt'

Bul the latrer inltmum is facilitated by an independence of

irgr."no, an equivalent assertion is that

inf {l(ao,a1)-po oo+P1'url is attained ar (no'a'):('to'-rt)'
oo,.r (2.8)

int {L,(2,, w,) - al ' :' - P, w' } is attrincd at (3" wr) : (xr - r' ax')'

Thisisexactlywhat(a)and(b)sayaboutxandp'soTheoremlhas
been proved. O

Ir is clear from Theorem I that whenever (Pd") is such that

dOPl*g,the condition ttrat there exist a p satisfying (a) and (b) for

asivenxisnotjust'uu'""nifo'theoplimalityofxbutalso
;".';;;;;v ;;v;;"iex funcrion d has ao(o)*0 when

0 e ri (dom @)'
(2.9',1 yedom @+J.x with ,4,(x, y)e G. (2.t41

BOLZA PROBLEMS

where "ri" denotes relative intcrior (the rnt"rror of u
relative to its affine hull [ 10, Section 6]) and

dom d: =[yld(])<c()].

281

convcx sct

{2.10)

For the function { at hand, we can reduce (2.9) to a lind of srrict
feasibility assumption on the consrraints in (Pu.,), and this yislds rhe
next theorem.

Txeoneu 2 Suppose the constroints in (Po,) are such thut there is ut
lecst one ie(R')r+r with

(i6, ir) e ri C, (l.l l )

i,-reriZ, and Li,e:iF,(i.-rl lor t=1,...,7. (:.ll)

Then lor un x e(R)r'r to be optimal in (Po.,l it is rcr.essrrr.;', rrs x,ell
as sullicienl, ,hut therc exist c pe(R')r'r salirr,irg rdutiurs (t) .url
(bl oJ Theorem l.

Proof of Theorem ? To represent the effectivc domlin 12. l()) of r/
in a manner that will expedite the calculation of its rcl.ttrvc rntcrior,
we deline

C,: :domL,=gphF, for t = 1,..., 1

G::CxCrr,...xCr,

A lx, yl'. : 4 r1yo, -.., xr, fo,..., yr)

: =(xo +/o, xr, -to, Axr + yr, rt, Ax2 +rt,...,,\r - r,Arr + yr)

(2.11,

Here G is

Moreovcr,

sroclt 6

a convex sct, /r and l, are linear transformations.
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l-his tclls us that dom<p:,4,(.4i t(C)). lhcn from the calculus of
rcllrivc intcriors of convex sets U0, Scction 6l wc have

ri(dom d): /r(l ' '(ri 
G)),

whcre moreovcr

ri C:riCx riC, x... x riC'.,

ri C, = ri1go5 p,; {1:,'w,\lz,eriZ,, r',eri l.,{:,)}

It fullows thut

0e ri(dom {)+l i with .{r(i,}')€riC,

and that thc latter condition is idcntical to (2.11) and (2.12). Thus
thc hypothesis of the theorem is equivalent to {2.9), which as we

already know guarantees dd(O)*0 and thereby yields the dcsired
conclusion. I

Thc next two results clarify and eluborute thc strict fcusibility
assumed in Theorem 2.

Prop<rsttloN l. Let C' be the set of uttttiuble entlpoint pairsJor tlv
multilutrt'tions f',,..., I t:

('; : [(ao, ur] e R" x R" l 
l .\ € ([t" )r' "

A,t,eF,(,x,-,), t:l,...,I

(2.15)

with

tnl
-to:40' rr: l/ r l

Then C' is Lonuex, und the hypothesis oJ T htorenr ) is :;urisJied il unl
only rf

ri Cn ri C'* (J. (1. r 6)
lr,lS r/: rol- r=0. t,...,I (2.22)
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. Protl All onc nee,J: lo do is ealculare ri C, b1 rhclor ri(dom dl in the proof of Theorem 2, anrJ rhe rcrullderaiis will be oml ed. E
Pt,,cq5111611- 2. The ht,p,,thesis,tf The,trem -) is s.rrryir,/ n pdnt..uLtr
U Jot some x€(R')r+r, t>0 undhus nuntbus qEW,Jor r_0, 1,....7, c,rr.,

l8i
mcthod uscd
falls ou t. The

l2.l1l

L,(:,,n',)Sa, when lz,_i, 1l<r, lrr,,-Ai,l sc. (2.llJ)

Itloretter. h this case dll. Dts ttRn), ,"r, 
,wht(tt ,.ttir!i.,:; (t,thlit],]n, l,t),tnl lbl oJ Theorum ! fur s,tme x e (R"), ' t ntu,sr hur.

i P'r=tf i d, -i(r)1,/d.,-_.o,. '- l,:u , ', -'Jt "

P.roof For any choice of vectors :, and rv, as, = l;.._ ... T consrdcr :, -:, - r, ,, x.j = 1: _A.,. if ,Jr".\ 6(Ra)r' t and J,e(R.,r', suri'sfying

Xo t ) o =.to. \r =.r r.

r, r=i,-r+:; and A,r,+.1,,=4g, 11r., 
(:10)

and then

(,xo +yo, xr) +

/( t0, tz.) S a0,

,f L,(,r,,, 4-r, +ri)=t(io,,r1) +

12.t9)

in (1.17) for
cxist uniquc

L,l:,, te,l

(2.2t)

aI
aod consequently

d(y)S10+1r +...+qr.
ln particular, taking any ),such that
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r, : i, - [(T - r)/T]1'o for r=0' l" ''I'

we have [2.20) holding, with

z',= -L(T-t+ l)/Tl1'e and wi :r, (liT)t'o,

and conscqucotly t

l:il: lr',1 <c an<i lwil5lr',1+ lr,l5 r:

-l-his tclls us that (2.11) is true whenever (222) is truc' Thus the

clfcctrve domain l].10) of d actually includes a neighborhood of 0, so

thal condition (2.9), which we know from the proof of Theorcm 2 to

bc equivalent to the hyPothesis of Theorem 2, is certainly satished'

Consider now any p and .r satisfying conditions (a) and (b) of

Thcorem t. We have by Thcorem t that j(-t):{(0) and pedd(O), so

that

d(,rr>d(o)+p y:y1r)+ f a, r,

for all ],€(R')r'1 and in particular for all l satisfying (222) Sincc

(2.1l) holds for such .t, we obtatn

TfT
f r, -i(r): f tup P, 1, -r'' lr f ll,l'
,:u '-.o,,,,:, .l r o

antj this is thc bound (l l9) thar we trccdcd to establish'

-fhe vectors p appcaring in the optinrality condition in Theorem I

c,rn be charaiteriied by a dual variational principle' as is no

surprise, inasmuch as we arc dealing with a problem in the realm of

convex analysis. The duality involves the functions l* and Lf
conjugate to l and L, [10, Section 12] Let

n(b,r,br):: sup Ido bo-ar'bt-l(ao,ai\=f(bo, -br)' (223)
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lvl tlrtt, r ): : sup 1.1, 
. lr, + r, . z, _ L,(:,, rr.,)l = i_,.1r,. rl,). (l.l.l)

Then m and M, are lower semtconltouous, convcx lunctlDns lrornR'x.R' to Ru{+cc} which are nor identically +cc, rnd I antt L,
can be recovered from thcm by thc inverse formulas

I(a o, o.r) : sup (ao. b o - a r. b r - n(bo, b lt) = nt (au, _ a 1), ( J.l5)!o,!r

L,(:,, w,)=sup {q,. w,+ r,. z,- M,(q,,r)l = Ml(v,,, z,). (2.26)
1,,"

Thc problem we identify as dual to (pd.,) is

maximize - k(p) over all p = (po, p,,..., pr) e(0X')r* r, where
(Pi,)

k(p)= n(po, p) + i, 
^0,, 

o,.,r.
r=l

Tueonrv 3 The inequulity inf(pd.,) > sup (pj",) u/rlu1,s hohls. Oru
has p e 0Q(01 iJ' and only iJ ucnulll. inf 1po.,fl maxl pj. ,1, unt! p u
optinal Jbr (Pt.).

,,Proof oJ Theorem 3 Only a sltght exrension of thc proof of
Theorem I is needed. The infimum of exprcssion (1..1) over all r,, y,
is by the definirion of @ equal to

inr IO0) - p. y| : - O.@). (2.27',

But the change-of-variable argument in Theorem I showed that this
was also equal to the infimum of the expressir:n (2.7) ovcr all as, a1,
2,, w,, which by (2.3J) and 12.24) is

T

- n(po, pi - | u,1p,, tp,1: - t<1p1.
,=t
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Thcrclirrc llrc l.lttcr lgrcc:j wrth (l l7). und lor ercry 2 \-!c lr'rvc

((/,):inl l,y'(r) p 1l:/{t)) l) 0:irrl(l',r.,i

Ta!,ing thc supremum with rcspcct to /)' rc scc thrt

sup ( Pi.,) < inf( Pd.,) in gcncral. Morcover' thc tqlr'rtrotr

- t(p) = suP (Pi.,) : inf( 
''".,)

hol.ls tl an,l onlY rf

ilf ld(rt - p v) is attrincd rt )'- ('r'

whreh is tbc condition Peld(0). !

Ci)R()trARY IJ nll'r rhe hypo resis oJ Thaortn 2 (ot Proptt:rtto,r ll
trne /rus irrf { I'0.,) = nrax (P;.,).

I'rool 1\c hypothcsis in question has bccll sh()wll tn thc prlrt'l ol
-fhcorcnr 2 to bc equivalcnt to conditton (19)' which SuuraDtccs thrt

d0(0) r0. Ll

I{cnrrtrli A strict feasibility condition for (l'i.,) can be stittctl tn

close par:rllcl to lhc onc for (Pu.,) irt l'heorcrn 2 l-t- inrplies by

urgu-"nrl; duul to thc oncs above that nlio(l',r.,)=suP(P;'')'

3. SUFFICIENT CONDITIONS FOR OPTIMALITY IN THE

STOCHASTIC PROBLEM

An optamality condition for (P,,") rescmbling thc onc lor (PJ"l irr

'lhcoicm I can bc formulatetl in ternts ol conditional expcctattorls'

Fcrr the conlition ul expeclotilrt gi|tn 9,' wo wrilc 6' 1[or thc usual

but morc cunrbcrsomc notatioo E'') This is takcn l() bc a rcgulrtr

"un('flri,.rn"t 
sJ(pcctirtion' i.c., reprcsctrtrblc Js un rndclillilc lnttgral

*-i,t ,"rp.., to a regular condltrunJl probJbrlrly 1r't l) on 'ulxO'
Thcrc is really no toss in assuming th;rt such rcgulll conditi'rnll

ir,rbubilirics exist; in practice we can alwuys lrl'c (O"/'/r) ls rhc

B()l ZA I,ROIL|:MS 2ll9
rangc space of ccrtain random variablcs, with e a subsct tll a llnrrc
dimcnsional space and ry' thc llorcl llckl on e.

(;iven art.q/-mcasurable randrrrn variuble ], thq r)bJcrvitblc aspectsr( timc , arc represenled by [,y. Wc shall bc intcrestcd il thc guirr ,rf
information that can bc achicved from one timc pcriod rrr rlri ncxt.
!'or thcsc purposes, we introducc thc opcrator

(.1 lt

t.l l)

whcre lo keep notation as compact as possiblc wc havc supplcsscd
indication of the (rr argument ofthe functions r,, L,1., r, ctc. (or, as
we really should say in dealing with clements of l.' , erluit,alent.e
clusscs of functions). The functional O is wcll tlclilcd lrorn rl. ro
Rw{+m}, and it is convex. [n what follows, wc *ill ncrtl ro spcak
of its subgradicnts with respect to the natural pairing bctwccn
functions y e g' 

^nd 
functions

ttr in thc more standard notation lii:[r,-[r, ,. N()rc tlr.rt
whcncver ,9,:9, 

- t which mcans thal thcrc is no gain eif
inlormalion from one time pcriod I - I to lhs next, thc t_'t t",,r,, r:un
always be dropped. This should be kept in mind whcn cornpanrrg
()ur dcvclopment lor the dcterministic and stochastic vcrsrons of (he
problcm.

Again a crucial role in the derivation and unulysis of oprinruliry
eonditions will be played by a perturbation [unction. For

y =(yo, y b..., y)e I "lQ,.tr'. p;{R)t , ,):: I '

wc dcfine

( .1.1)

E'o'. : E' P' - t

(

't{l,t: = inf {ltlj(.ro +.t,,}. Er,)

rl
+C,I L,{r'r..\,-., L!r, ,.ar, t-l-'.), , + /:,r,t}.

p = (po, p b..., prl e-!/'((),.c/, /; { 6&') r " I : . !', (1 1)
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given by

(r )(p.j) E{ f p,1,,1 y,r-r}. (J.5)
[,o )

The set of subgradients of O at y in this sense is

dotyl: lpe 9t l@1y') > o(y) + (p,.y'- y) ior all y'es-1.
( 1.6)

Subgradients of the functions I and Ll@, ,.) will also enter the
conditions below. We write

dl,(to, z, w):5s1 of subgradients ot L,(a, , ) at (2, w). 13.1)

In other words, despite what the notation dl, might suggest, we do
not involve u.r in the subdiflerentiation.

Tseotru 4'A suflicient condition ltr the optimoli y of xe..{ in
problen (P",") is the existence of some p e 9t such that

a) (Eopo)(co)= bo arul pr(al=b, for some lbo, b) e il(E.rn, Exr),

b) ((E Lp,)(l:ll,(E p)(afi e AL,@, x, r(trl), (Ax,Xor)) a.s.,

c) p,"., is 9,-measurable for t:1,...,7.
Indeed, these relotions ore satislied by x e ..{ and p e 9t if and only il
x solues (P,,") and peAQ\0\.

In analogy to lhe deterministic case, we shall refer to (b) as the
stochastic discrete Euler-Lagrange relation, (a) as the tronsDersal I
relation. We can view (p,, t :0, . . . , T) as a stochastic proc€ss of latenr
multipliers whose manifestations in time period r, namely

EI A,p, and E p,,

are the usual multipliers or costate variables related to the decision
variables subject to sel€ction in period f,.l condition (b). Thesc

vectors ErAp, and E p, are g,-measurable functions of ro arrd can

therefore be calculated from knowledge of their functional form and

I]OLZA PROI]I-F]MS

the observations made up to period t. Their values lor particular (,.)

do not dcpeld on any information which, as far as period I rs

conccrned, lies in the future. The latenl multipliers po,...,pr, on the
other hand, exhibit in (c) a tleluyed nonanticipatiuity. Thcse optimal
dual variables do depend on information to be collected in the next
time period, although, by construction, not on the whole future. This
property of the latent multipliers is special to the structure of the
Bolza model adopted here. Ordinarily one could not expect the
latent multipliers to be any better than 9.-measurable for all t fl5].

Again it should be noted that in identifying the optimaliry
conditions in Theorem 4 with the subgradient relation pedO(0) we
open the way lo interpreting the latent multipliers in terms of
directional derivatives of the optimal value in (P,,.) with respect to
certain perturbalions.

Prool ol Theorem 4 The argument is patterned after the proof of
Theorem I but has to contend with complications posed by the
different information lields 9,. To say that r solves (P.,") and
pedO(O) is to say that x furnishes the infimum in (3.3) for I:0, and
O(OKp, 

"y) 5O(y) [or all ye9-. This property ot xe"4' and, pe.9t is
equivalent to having the inlimum of the expression

T

-E I n t, + l(Exsr Eys, Ex'.t\
r=O

I
+EL L,(o, x', ,- Etoy, ,,Lx',+ E'ol, ,*Et',) (1.8)

r=l

over all x'e.1' and ye!/'be attained at r':x, l:0. The theorem
can be established by showing that this holds if and only if (a), (b)
and (c) are satisfied.

As in the proof of Theorem l, the trick is to make the right
change of variables in order ao separate variables in calculating the
infimum. For arbitrary

vectors co,ar, in R" and functions se, s1, u, rnd :,,
w,, rr,, for t:1,...,7, all in 9-(4,.{,p; R') with :,
and w, both 9,-measurable, Eru,:0, [ra:Q, 5n 3n6
)-r respectively 9o- ar,d 9 r-measurable, Ero:0, Er?
:0, (1.9)
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thcrc cxist uniquc .\1€ I rnd J € 1' such thut

[.tu + f r',, :rto and I: t', = rt. '

-ri,+8".1i,-lli,-li)'u:'u aud \'1 Lr', :5''

tl -,-L-!i, r=:,fort:l, ' ''{ (3 10)

A.ti +l:!r', rl Ii't,=1e, for r:l' ''l'

)i , -L'.t, r=r', li)rr=l"7 and j1-l)t1- =11

lllc lrnlll ()l thrs itiscrti()ll lnly not cxirctly 'nlcct tllc cyc"' bul it is

rr()l i5 flri\cr ble tei rcrtfy as onc nlight imaginc frotn ths complcxity

l',1 ,lra 11rt"n, 1o bc solvcd Narncly, wc obscrvc at lhe outsct that

l.l.l0l inrplics

r'r : .r r a dr' ( 14 r-nrcasurablc). (l.l l )

Ncxt, sincc :, is givcn as :4,-mcusurablc we scc by uPplying i!' I lo
both sidcs ol thc cquutiol) r, , - l'it1,' I =:! tlrat the lat(cr holds for

a'1, ,-mcasurablc ri , (as rr:quircd by thc crrndition r'e l )if irnd

only if

ri ,=[' ':, lbr r=1,..7.

l'l,ti ,=1" t:, :, for l-1 7 (lll)

These relations wilh (l.ll) deternrtnc u unrquc r'e I its well as

place conditions on y that ntust bc satisficd il ths systcrl {-} 10) is to
'be 

solvable at all. Anothcr implicutio[ of (] 10) is thai

(l.ll)

(1. t1)
E'y,=w,-A.rl -[!y, ,=w,-ti +ri , -l:''1, ,

=:r+rer-'(l for r:1"I

For I=T wc thurcby obrain, sinec )'r-f r'),-rr' thut by (-l l l)

yT=lr+:t.+$r-rr=:r'+rt't rl -dl l-ll (l l5)

B()t.zA PR()tJl.l \ls l9l

(.1.l6t

From the idcnt rty

Y, t=lY,.r-c'r,,)+Ei.v,-1al:,.1,,,

on the olher hand, we dcduce via thc
combincd with (3.13) and thsn (1.14), that

last cr-rrrdi(ron tn ( -1.l0l.

/, r:r',*(t'' tzt-zll+zt 1*w, ,-tj ,

{1. t7t
=\-zr+zt,t +w,-r lor t=]...., l.

thc last by (3.12).

Firrally, from (3,16) for t=l we obiain by {he lusr condirron rn
{1.10), lhen (l,ll) and the sccond linc of (3.10):

1,u :1yu - E'yu) + Elyo + €oro
(.1.18)

:ur* Eozr- z 1+ r-o + Erll+ Eyo -.rA = tr -;r + n0 +.to,

wherc in Lhe final equality thc initill condition o[(:].lo] is rovolJd
alonB with (1.12). Equalions {3.15), (1.17) and (J.18) dctcrqrinc a
uniquc gr.-measurnble ye2' to go with (he uniquc .r'e.I alrcady
detcrmined by (3.1l) and (1.12), and this .r' and r do satisfy (l.l{)), 1s
can rcadily bc verilied.

Thus in taking the infimum of (1.8) ovcr all r'€.1 irnd i/r.-
measurable yE:/e,we can just as well makc Ihc subsrrtlltions (J.10)
and take the inlimum subject to (1.9). Undcr thc substiturion we
obviously have

l([.xi, + Eyo, Ex;) : l(4,.,. 4r),
II 19)

L,(a, x', t - L-iy, - t, d.ri - [i],, ] t-']i) = L,(u,, :,, r', ).
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Furth€rmore, since (3.10) entails (3.15), (3.17) and (3.18), we have

T

,L^ P,' !, = Po' @, - z t + so + ool + p r' (z r + w r - s r a.r' + u)

I I P,'@, *t- z, + t+ zt+ w)
r=l

I
= po.(so * ae) - p1.(sr + ar) + | p,.(2,+w,) (3.20)

t-l

T

rl p, - 1'@,- z,)+ pr'u

T
:po.(so + ao) -pr.(,rr + cJ + | tLO, z, + 0,.w,1r=l

T

. 't ,L,P, , u'+Pr'r.

The conditions on so, s, and z1 in (3.9) imply also that

E{po (so + au)- pr. (s. + cr)}

: (Epd. ao - (Ep). a, + E{(Eo po Eps) so - (Er pr. - Epr). sr},

(3.2r)

while those on u, and u give us

(3.22)

Therefore, when the substitutions (3.10) are made lhe inlimum o[
(3.8) over all x'e,{ and gr-measurable ye.9- is converted into the

BOLZA PROBLEMS

infimum of

-(EpJ ao + (Epr)' a, - El(Eop- Epo). so -(Erp1- Epr.) . sr)

r,,f,6p,.2,+p, ",1 "{,i @,-t -E,p, ,t.u,+rp,-rtp,t.ult=t [r=l

T

+ l(ao, a) + E,L, L,(a, 2,, w,)

subjecl to (3.9). What we must show in order to prove the theorem
is that (a), (b) and (c) hold for xe-1. and pe?t if and only if this
infimum is attained at

ao=Exs, ar:ExT, zr:xt r, wr:Axl, u,:t:0,
(3.24')

so: xo Exo,5r:xr-Exr

(since lhese are the relations which imply x' = x and f,:0 in (3.10)).
We knou of course, that the infimum in (3-23) is not + co, since

the one in (3.8) is not * oo (due to our assumption in Section I that
J(x') < co in (P",.) for at l€ast one x'e,(\. \ is possible rherefore, to
choose the elements in (3.9) in such a manner that the expression in
(3.23) is not +oo. The inlimum in (3.23) can rherefore be
decomposed into the sum of the separale terms

i"f Eii tp,-t E'p, tt.u,+tpr - E' prt.r\.(,-r )

inf E{ -(Eopo- Epe).se +(Erpr-Ipr) sr},

inf ll(ao, ar) -(Eps\' a, +(Epr1. url,

7

I inf li{L,(ro,2,, w,)- EtLp, z,- Etp,.w,\,

(3.25)

(3.26)

(3.27)

(3.28)

295

,{,1 0,,,,*0,,}:"{,i, @,,,E,p, - ).,,+to,- E,o,t.u}.

none of which can be + co. In each term, the minimization is subject
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(o the rcslricrl()ns in (19) ln (-'1.15) thc inlinruttr is r unlcss

. - ['], fr-rr t - 1, ' l anrl f, L'l''
Pt l- "tt I

rn which e vcnt it is 0 and attail)cd at rrr = r1=0 simtlarll rn (l l())' thc

infimum is - oo unlcss

Eo Pu = EP,' ;rtr''l EtP'--LP''

inwlrtchcvcntitis0undlitrillcdirt'!0=JI=0logcthct'tlrcn.itrs
f*".rrt,irf" i,t tlrc rnfirD1 rn (Il5) tncl 13 26) to bc irttxincd t\ccpt

il;';i'.; uun,rti' iu wlrruh c\ent they urc uttaincd^ by.r''=rr=0'
r.'' ". = r. - }-r,: m()rctrvcr this is thc casc i[ and only il p

;;;:, ;;;u'i,.',r (e) .ri thc thcorcm aod has (cop")=b6 and

nli,ril,,, 'it ','"t. 
it',,,t',ltm" R" Thcn L-p"=iru and lip' =b,'' so

rhc rnlimttttt trt lJ lTl rs Jlt llled Jl rlu= Ltu irnd 'li = f'{r,i[ ull'l,only

if conditrtrn {u) of thd thcorenr hr-rl'ls Finully' since L' 3nd thc

corrcspr)llJlllg llncilr tcrms lrc 4,-nurntul intcBrJnds lntl :'-und rt'

.i" 
-i'" 

,,f-'i,i",t 3'-mcl\urrblc funcltr''ns n ?'l{l :y' f : Rl' lhc

;;i;;;t 
-i; 

I l.l8) can bc trkcn p.intwisc [ | ]' 't'hcorcnr lAl' it

reduces to

dnd is attaincd by the [unctir'rns :,= r,- ' 'rttJ rrr:A\r r[ ''."t:]llttt
ii" f"n"t, "".t 

fi" in 1l'l9t for creh r'-' Jtc Jll'rrrluJ rlrrri'\t )ur('ly at

-' v .lrrrl lnil n - (Ar',)l('rl lJut tlrlr prtrl)cr t) r\ the 'rnc in

.'"",ii,'.1" itr"i" .,,,1.1u',on' rt r\ true thrt (x)' (b) rnd (c) hold lor rn
"-*,': "Jlr. Z, if lnd only r[ thc inlimurrr ot (].21) :'ub]cct to (19)

is lttliocd 0t (1.24). !

4. NECESSABY CONOITIONS FOR OPTIMALITY IN THE

STOCHASTIC PROBLEM

Thc uucrtitrn now ts huw to l*trow uhctt lhc oplllDJlitl e'rn'littern in

i-i :;;;';';' ;"t univ 'umtitnt 
but neccssarv I roru the method

l t{.:*. il',(t''',:i,t'i)-E'tAp')(ru) :i -r-'l'(r'r) 
.ll} rl:ur
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'uscd in thc dctcrministic sasc. thc rctdcr mxy cxpccl rh.rt rll rrc ncctl
l() do is cnsurr: C(D(0)t0 by nteans of sourc fini(encss propcrry ol (l)
on an 14 '- neigh borhood o[ 0. Mattcrs urc not so srnrplc, howcver.'lhc bcst thut a finiteness propcrty ol O etn givc us is lhc crrstcrrcc
ttfu subgradicnt with respcct to the pairing bctwcen .,|, arrti 1i,,^;,.
Whilt we want lrcre are subgrutlrcnts pe:1t. A gcrrclrl clcrrrcnl of
( y' '')* could havc, bcsidcs an "Zr conrponcnl. l "srrrgullr,,
conlponent [17, ll]. To eliminatc having to tlcal wirh srllgulur
conrponcnts, we nrust make [urthcr assumptions about (.1,,,,) .[.hcsc

lssunptions wrll ullow us to apply earlrcr rcsults Il5l aboLrr _tfr
rtrultipliers [or the nonanticipativity constraint xe.l-in ordcr to
obtirin thc rlcsired rcsult.

Dt nr.*r rror.r I Problcnt (/,,,") will bc said ro satisfy thc &rrrrrr/erl
rtrrtutst torulitittrt if for l: 1,..., f,

a) lor every p>0 and o>0 there is a summable funcrion /:O*ft
such lhirl almost surcly with respcct to rr,,eO,

f:,eZ,l<o) and j:,1 <lr, r|i€f,(ro,:,) antt lr,,,lSoJ

+ L,l@, :1, t'tt ! ltl,)): (.l. t l

b; fol cvery l)>0 thcrc is a p'>0 such thll altntrst surcly with
respccl to (1,€O,

L:,E2,\u, and ]:,] <p] =1:ir,e l,(ro,:,) urrlr

zt+\tt€Zr * Jro) and l--,+rr',lsp'l; tl.l)

interprel Zr+ r((o) as all of R" [or rhis purposc.

Since L,(r,-r, ,.) is lowcr scmicontrnuuus, ptopcrt) (J) itnplrcs rhrt
I,(to, ) is a multifunction with closed graph whose dorrluu Z,((,r) rs a
closed set.

The bounded recourse condition is satisficd in parricul.rr il l.,r r
: 1,..., 7' thcrc are boundcd sets B, c R, x R. and sununablc
functions /, such that almosr surely in @ th€ graph of thc
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trrullrlLloetldn l,(r,r. )is irtclLrdcd il lJ,. rrrd lll ()l lts clenlcnt5 (:,,n,)
satrsly 1-,(1r. :,, x',)S /t.{(u) and :, + *', e Z, , ,1ro). 1-hc last rcquircmenr
cln bc *cakcncd to thc following: for fircd,.r, J vcclor scqucncc
\{),\r, .., r, thilt satisfics Ar,e f',(o,r,n, ,) lirr r= 1,...,r can bc
cxtenrlcd alnrost surcly by -y1+1,...,-r1 to a scqusnce thut satisfies
Ar,eI,(r,-,, t, ,) lor r= 1,.... T This spcci l citsc whcre thc boundcd
rcctrursc condition is satisficd corrcspond\ to lhc eonrbinatiorr of thc
boundedncss and csscntiully complctc rccour5c condilions used in
l6l, except lhat the lultcr, whcn applrcd to tlrc prcscn( situariufl,
would also placc restrictions on thc eudpoint sct ( =doml.

The boundcd recourse condition of Dcllnitron I is a subsrrnrial
inrprovemcnt over such prcvious conditir..rns, bccause it nraLes thc
theory applicablc to evolutionary systcms nalt rrcccssarily rnodcled
with boundcd fcasible rcgions, such as stochastic dyllamic lirrcur
modcls with only nonncBativity constraints. It can bc shown thtl a
rnultis(age stochastic lincar programming problem, which can bc
formul!ted as a stochastic optimizarion problem of Bolza rypc, will
satisfy the- boundcd recourse condition whencvcr thc origrlul
problcm satisfics tbc esscntially complete recoursc condilion and lhc
matrices involved satisfy a condition somcwlrirt wcakcr than full row
rank. Thc feasibility sets nccd not bc boundcd, nruch lcss unifornlly
boundcd.

Dt,t,trtrror 2 Problcm (P,,.) will be said to salisfy thc inrrri{rr
Jeusihility towlition i[ for somc t€ - r', ,>0, and summablc [uncrrons
c,:O ' 0t, one has

(E-!(), I i,.) € (', (.1.I )

and lbr t- 1,...,7'ulnlust surcly with rcspcet to fire(1, also

:,eZ,lol, *',eL-,lo,z,) and L,(r,r,:,, r,,) Sz,(to) (41)

whcnevcr

l;, - r, ,(tr)l < u, lrr', - d.r,(t,r)l < r;.

Tbis is a constraint qualificution that corresponds in thc

TrrLr)RLM 5 Sqpprrse ut,blent lp,") s.rrtr,licr llrc I,ou,h!t.,t t..ttrnt\t,
ii|"',::,:.::',":!:o';';::it:i:'ou'2' ,un,ln,un. *,,t ,t'" ,i,i,,)i,,,t:.,,'i,,, ,,
{p,,";.;,,,,;;;;:;,i.""i1'")u 

".r 
r.henJur \t t r,, t4,,ptt,D;,tt t,l

,ui.isilug @:. i;';;i d" ;;',,ii)i,l!'"*, thur r h. r, r \ t \t,1 p e :t''

Thc pro..rf of this thcorcm, 
.r"l::r-.u: a rcsulr tor nrulriJtirgcstoehJstie programs first dcrived rn I l5J. ln purlrculrr, I hcurcm -l ,rt[5] shows lhal if rhe consrraint

multrplicrs associured 
'-,rh 

' Tlltiiun"l"rn is ntrnatrttcrp'r(trc. thc

t 
" 

. " i'. - y - | 
" 
o;; ;. J;' ::, -J :,",X""1''J;':..; 

ti', 
;l:, u 

" 
: i :'i ? :,(ln othcr words, (hcre is no necd to introducc rhc srnBulrr puri,,tIhc continuous lincar functionals rlcfincd un f.,) i,, im;()rrJnt

:":",:.*"* of all rhis is rhar rhc oprrmality 
".r,,,.j"r."",,, O!.1,*"a porntwrse represenralion. This is explorrej 
", ";;;;;; ,o*"i.,i*,,U"proof. ln order to be able to

Lclnrcar racis'rrr""r i,",.'lnl"ol,oro"'i.,ln::.:.1',',l":";r.,,1",:r,.'T:
constrainr-nonanriciparivity conrlirion as ir appcars t; li;1. 

.. '"

Dl,FlNlrloN J A compact-valued multrfunclrun D.O ,liR.)r,r wrllbc callcd ncraonric rpatiue i[ tor cach ,=0, r, , l:',t. pr.rl".,i,r"

BOI-ZA PROI] LLMS

lltclnrrSsrrc cJsc to thc unc rn propus ion l. rat/rcr rh.llr tlrcone rn Thcorcm 2_

Dt(ar): = {(xo,..., x,)ll(r,, r,...,.(,) wirh

(xo, ..., r,, x,, r, ..,x,)eDla)t;

D(ar)::{x:(-xo,...,rr)ll.,lSp, for i -0,1,.._..r, und
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m r lJcr

{{.5 )

dcpends g,-measurably on <r.r.

ll_:ll::].r 3. Srpp.uu probtetn 1p,,") sartsfus the bttuntttLl rcttturse
:.t:!.tu,-, urul^ Z, is g, ,-m"urunibte Ii r = t, , i:"'f:t,"r' 1",
::lttury 

p:>0,, ,:0, 1, , T, rhere esist corsrL)urs pt:r;, lrrlh' ,t,*Ihe compuct-udluel muluJunctu,q D:{) ,(R",r, t ,lrli,,ri'ir" ' ''

L,x,e F,(a, x, - rl Jbr t=t,...,T]
(4 0)
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is notrrntiLiputirt. Ilit('uu. Ih{( lrt suttttttLtl)l! /trrtttlorrr r,:() -R
sut'h rl,at uln,tst surell'

ll-,(r,-r,.r, ,,Ar,)l <r,(t,r) rr/roi re D(r'r) ('1 7)

Prory' Start with p,,=!,,, and lbr this as /) rn (b) oi Dclinition l,
choosc r.t corrcsponding r':pi suclr thll ('ll) h.-rltls lor r=l Thclr

almost surely

lrue Z rlt,t) and lr,,l<pol'=llrt'r€/1 ,(rr. \,J) \\ith

.\,)+rr€Z!((,J) and lro+r,,l5Pi,],

or il othcr $ordJ, talillg /)r = nllx It r. /);1,

f.rr',e 7, rlu.t) und lrul I Pol

.=l)t,eZrlol with l.\rl=pr and Ar, €f r((,,\o)l (49)

Continue recursively in lhis manner until ft'r curt'rirt 1', ]p, wc

havc alntost surely

fxr. ,eZ rlut) and lr. 'l<pr,,l
-[3 t.eR" with l.r,l<1,. and Ar,el,(t,r. r. r)] ('1 10)

From thc chutn o[ implications (-191'-('1 10)' \re obser!e tlrll
almost surcly. strrting with any I and t,e7-,'rl|t) with t,l!p,, wc

can gcncrltc.\1 11'..,',\1 such thll

].i,1 51,, .rnd Ar,eli,(r'.r.r, 1) for r-r+ I, '71

It follows thut thc prolcction (+.51 ol D((r) crtr lrc rrrittcn

D'(rr,,)= p1,11r1,'-, l(tu, . .,)l r, c Z, . ,1r'-,11. (.1.l l)

DL(,,) : l(.\o...., -\,tl I.r,i S r,,

and A.r, e l-.(to, r. 1)

for

frr r

r:0. 1... .t

r=1,....11.

(.1.8 )

whcrc

(4.l2)

tsOLZA PROIJLLMS ]OI
We nccd to sh()w that D, is a 1/,-nrcasurablc nrultilurrction. Sirrcc

lhe mullifunc(ion .Z,., is closcd,valucd and t/,_ntcrsurublu. so is thc
nrultilunction

(1)F,l(r0,..., r, ) € { [t'), . ' l 
.r, e Z,,,1r,r;j. 14.l])

[12, Prop. I I]. As for thc multifuncrion Di,, lct us obscr!c rh.rr rlrc
rclatrun A.t,el,(ru.r, r)can bc wnttcn

(r. - ,, A_r,) e C.(or),

whcre

C,(a.,); : gph l',(ro, ): dorll t_,((,.,,., ).

'fhis set is the image of thu epigraph of L.(rrr, ,.1 unclcr the
projection (2,, w,, t)t+(;,, w,), and it is closcd as a couscqucncc ol
(a) of Definition l, as nored earlier. Sinc-e rhc epigraph ()[ L,{(,r,., )
depcnds 9.-measurably on rr.,, it [ollows thar C. likcwise dcpcnds
9,-mcrsurubly on tr.r. The multifunction

ot+C 
'(ut) 

x x C'(rrr)

is thcreforc closed-valued and g,-nreasurablc [12, l)rop. I l] trcclll
that g,-measurability implics ,/,-measurabilily lr'he n r < I ).

Moreovcr, we have

Di,(o) = {(ro,..., x,) e S1,,t1r,,..., r,)e Cr{(r) x ... x (',(o, j

w lre re

s: = ((xo,...,.r,1ll.r.l <p,],

.4:(xo,...,.r,)r -(ro, Ax1, t,, A.t,,...,.r,,, A.r,)

This implics that Db is closed-valucd and ,./,.nrcasurablc 
[ 12, Cor.

l0], and thcn, sincc D'is by (4.11) the inrerseclion ol two such
multifunctions, we may conclude D, is itsclf closcd-vllucd (actually
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compact-vtlued) and l,-melsurable [ 12,

nonnni iciPativc as claimsd.
Finally, by applying (al of Dcfinition I with p

wc get the existence of a summablc function

surely

R. T. RO(.KA I.IiLLAR ANt) R J II, WI]TS

Theorcm I Ml Thus D is

and o large cnough,

/, such that llmosl

x € Dl&r)- L'((1)' -{' 
''A.r,)l/(or)'

On lhe other hand, from our basic assunptidn in Scction I that

( l.l0) holtls for some summable 1', we get alnroit surcly

x € D((d) - Lr(cd, r! 
',Ax')li(rr'')'

Combining thesc two inequalitics, we oblain the last assertion of

Proposition 3. !

ProoJ of Theorem 5 The lirst part o[ our argument will

characierize the vectors bo and br which appear in thc optimality

condition in Theorem 4. Only later will a function p b€ determined

in its entirety. For each (au, ar)e R' x R', let

(4.14)

The function h is convex from R" x R' to R u t I r' ], and its elTective

domain

C'. :dom lt : {(ao, u )lhluo, u.i <'r.,I (.1. l5)

has noncmpty interior under our interior fcasibility assumPtlon'

lndccd, lor ihe function i in this assumption and a function p as rn

property (a) of the bounded rccours€ assumPtion, for p and o

suflicicntly large, we have

L,{o, -,(l- ,(@), Ar;( dl< li\o, whcn llr'--xll-<c,

lru", art=inr{a,f L,{t,r, ri - 1(ru), axi(t')) lr' e '' r , Ero : au' et.: u,}'

hcnce

Furthermore,

inf (P,,") : inf {l(au, ar) + l(do, ar) l(do, ar) € C 
^ 

("}

. 
: inf{l(ao, ar) +l(ao, ar)l(co, a1)e ri Cn int C'} tJ tTl

because CnintC'lp by (a.16) 10, Sccrions 6-71. Sincc i is e0nrcr.
it cannot have the value -,ro aoywhere unlcss it is -,,x., idcntically
on the set int(domrr):intC'10, Section 71, in which evcnr inf(P,,")
:-co by (4.17). ln Thcorem 5 we are only concerned with rhc
situation where (P,,.) has a solution x, and then inf(P,,"):./(\)+
- o. Therefore, in what follows we may suppose that

h(ao, dr) > - oo for all (ao, 
']r) € R' x R'. (4 t8)

Then there is no question of ,a-co arising when wc form I r/r rn
(4.17), and we have the following criterion for optinrJlity: .\ solvcJ
(P,,") if and only if

inf ll(ao, ur) + h(uo, ar)) is attaincd ar
(ao,.r).n'rRr

(46, a.) : (E-ro, Ex1),

the inlimum in (4.14) for

(as,a):(Exq, Exr) is att&ined at r.

We can characterize (4.19) by means of subgradicnts:
equivalcnt to having (0,0)ecll+/r)1lru, Ex.).
dom lnint (dom /r)*9 by @.161, we can calculate

d(l + lr)(trxo, Ext): Al(Ero, fxr) + a/r(Lro, frr)

[0, Section l6]. Hence (4.19) is equivalent to

3(bo, - br)e dl(Exo, Exr) with ( - bo, br\ e lh(l:xu, Ex ),

BOLZA PROtsLLIVIS

1,eio, Itr.)€ C^inr C'.

l0J

(.r. r6)

(,1. le)

(4.t0)

it is

Sin,Jc

(4.: lt

f



104 R T. Ro( KAl:llLLAR 
^NI) 

R J u \{ I Is

wherc the sccond rclalion mcans

inf lhlun,a1.)+bo uo-b1 ri1) is attained at (l:t,,'/!tr) {422)

But this and (4.20) say togcthcr that

dom /(@, )= D(,,r1

is {ttained ilt r' : r.

Our task thereforc in proving Theorem 5 is to show that if thc latter

hokls for sonrc (bo,b1) and .\, then ihcre exists pe-Zt satisfying with
(hcse clcmcnts the rclations (a), (b) and (c) of Theorcm 4.

Note that sincc we arc dealing with a convex problcm in (4 21)'

any local solution (with rcspcct to ihe /' norm on ' l ) is a global

solution. lt suflices therefore to restrict attention to x'€-l- satisfyrng

ll^'ll .,<4, say, where l>0 is sufliciently large in the sense that

p>max lll'11", llrll-1, "'tt"rc 
x is the solution being analvzed and -i

is the funiiion in our intcrior feasibility assumption Applying

Proposition 3 wrrh p,:p ior t=0,..'?; we may obtain a

nonanticipative complct-valued mullifunction D satisfying (46) and

(4.7) for vectors ie(R';r' t (we use i here in place o[ t, since r has

already been uscd in the present argument to denotc a solution to
(P,,").) Lct

T

Ib,,.iu -br. ir+f r,r,,,.t,. '.Ai,l rf li,l'/',t,r
/{ro..t;: =1 lbr r=0. 'T

| + x, otherwisc,
t

so that by thc choice of D we have

,i"; {rr" 
rt; -a' ax'1+ e ,f L,(t-,, -ti ,(,u), ar,(cr-r))l ('1.:3)

and also

l/(,o, i)l< ro + c,1rr) +... +a t,l) for i e D(r-,-r), (4.25)

BOLZA PROTILE]IIS

whcrc

au : lbulpn + lbr.lpr. > lbo. io - br. .i /.1 for .i€,1)((,) l.tt6l

arrrl thc [unctions or,....dr arc summublc and suri:ly

a,(or) > lL,(@, i, - r, A,i,)l for i€Di@). (l l7t

Since L, is it 9,-normal integrand on QxR"xR', hcncc ulso .y'-
normal, because E tc.d , it follows from (4.24) that / is an ,cy'-nornral
integrand on Qx(R')r*t [12, Proposition 2M]. For r'e.I
satisfying llr'll.Sr,we havc lri(o)l<p, atmosr surety, so rhat

J fut, x'(al): $o v;(tr.r) -b, ,ri{to) + f r-,1u.,.,; ,(tu}.Arl(r,l))
'=r 

whcn ilr'll-!p.
Thus, since the solution r in (4.21) sarisfics llrll . <1i, rhc asscrtron
(4.21) is equivalent to

inf E[/(ur, x'(tr,r))] is attained t .\':.\. (4.:lr,

The equivalence of (4.21) and {4.2E) cnablcs us to apply our
previous rcsults in 5] ro obtain y'r-multiplicrs for thc constr [rt
x'€-1 . We have observcd that / is an.o/-ntlrmrl intcgrlnd whosc
eflbctive domain multifunction D is comprct-vr.rluctl. unifornrly
bounded, nonanticipative and such thdt thc bounds (.1.25), (4 16) rad
(4.27) hold. We also have avrilablc to us a function t satisfying thc
interior feasibility condition and having llrll . <1;. Thcsc propcrrrus
imply that for some d > 0 sufficiently small.

i e D(tr,r) when li - r'ttrll <,i,

and also

L,(a, z,,w,l{2,(u) when lz, i,(c,.,)l< ri, lw, - A.r,(ro)l < d,
(4.29)

lbo ,io(@)- br. ir(,r)l= 10.

105
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measurability !?, Cor' 2X]. Thus C and (' arc c/ mcrsuruble

multifunctions in (4.14), and hence so is their Cartcsian product [12,
Prop. lll and its inversc image under,4 [12' Cor' lQ] This provcs

the ./-mcasurabilitY of [-.
We havc cstablished the existence of an .q/-measurablc lt' such that

(4.15) holds, whcrc f(to) consists o[ the vectors D satisfying (4 ]l)'
and all thcse arc known to obey (414). Obscrving lrom (4 32] that

,l'(llo, dr): {(bo, - br - qrtr))}'

0 Lif ,, w,\ - i L,(w, :,, rr',) -(4,,(.,)' 0),

while by (4.26) and (4.2?) (since r(@)€ D(cr) almos( surely)

T

lj'(.-((,J))l 
: ll'(r,(,0), r,{o)) +,f Li(r, 

'(c,.'), 
Ar,(Lo))l

t

! | l.t,1o) l 14,1r,r.,)l + lb,, 
. .!o(r,,,) b. x ,{or)l

r:o

'r

5I P,lq,(')l+ to + 1,(.,)+ +1r(@)'
t=l)

we sce that when p'(rr-r) is substituted for D in (4 ll) and (4 12) we

have almost surely

@'ol,u), - pi\al+q1(o)):(bu, -b1), (J7)

(Lp',(o\ + q,. ,(rr.r), pj(co)) e iL,(to, r, ,(o), Ar,(r,r))' (4.18)

as well as

c,(t1)) +f 10,,-11=,[,',*: fr:o L '=r ,i r,tr,,-l]/r.

This last inequality assures us that p'eJ4t, since

functions c, are summable.
Thc hnal stage of the proof has been reached. We

qe yl

set

and the

UOLZA PROBLI]MS ]09

p,::Et+t(p',-q,) for !:0, 1,..., T- I,

Pr::P'r-qr'

Thcn p, , is 9'-measurable for t= 1,..., T so (c) of Thcorcnr 4 is

fulfillcd. We also havc via (4.10) lhat

EIp,= E'p"- E'q':6'pi for t:0, 1, , T (4'19)

Considering this for t:0, we see from (4.37) and thc definition

P, = P'r- q, thal

((EopoX-), - plra)):(bo, -br) a,s.,

which is (a) of Theorem 4. Another implication of (4.39) is that

It'(Ap; + q, - r) : t'(p'' - p',' + q' -'l : E (p, - p,' + q,l
(4.40)

: E'Lp, + E q,: E'6p,.

Now the multifunction on the riSht side of (4.38) is is 9,-measurablc'
because L, is a 9,-measurable muhifunction, and x,-, and Ax, arc

both 9,-m€asurable [2, Cor.2X]. Since lhis multilunction is also

convex-valued, we can take the conditional expectalion with respcct

to 9r on the left side of (4.38) and obtain by (4.19) and (4.'10) thal

((E' Lp,)(ot), E p'(a)) e dL,(a-r, r, - 
'(ro)' 

dr,(o.'))

almost surely. This is relation (b) of Theorem '1.

ln summary, we have constructed a function pe /t satisfying (a).

(b) and (c) for the given solution x to (PnJ, and this is all we had to

do in order to prove Theorem 5. !

5. THE DUAL STOCHASTIC PROBLEM

The function p in the optimality corditioo in Theorem 4 turns out

to solve a certain dual problcm, which we now formulate. Define the
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Wc crn now apply [15, p. 181] and conclude thcrc

tt = ltl\), Ltt, . . , q t.) in l" for which
is a function

and

['q,:0 for t=0, 1....,I

inf [[i/(to, .r'(!r.))] - E{4(cu} .t'{r,-')}l

is attained at \: {'.

Since J is .r/-normal, this minimization ove r l" (rathcr than " t )

crn bc reduecd to pointwisc minimization [ 12, Thcorem 34 l:

inf t/(tu,i)-q(or)'i) is attaincd ut i:-t(or) as.
ie(tl'tt ' I

Using the dclinition (4.24) of / and the fact that ll-"ll- <p' so

lx,(to)l < p < p, alnrost surely, and hence

rrrl
int ,{ b, io - b, i r + I L,(,,, i, 

'. 
Ai,) I ,l,t.r) i, I

.i.r,{.,r-r [ - t=r r-r I

is attaincd at i = \(@) a.s.

But rhis means lhat almost surely r(@) is a solutron to a problem in

thc determinrstic format. depcnding on o:

minimize over all i € (R')t't thc function
(Pi,)

I
j-(i): l-(io,.ir) +,I Ll(i, ,,4i,),

wlrere

l-(nu,n1): :bo co-(br+4 (u)) dr,

Li(:,, w,): :Lt(a,1,wt)-q, Jtr') 3t.

(4.-12)

For ll xetl rD thc hypolhcsis of Proposition I is satisficd almost surcly

for (Pii,) by i(tr,r) in vicw of {4.29). There docs lhcn exis{ by Thcorem

(4.10)

(,1 3l)

BOLZA PROBLEN| S

2 a corrcsponding vector i€(R')r'r wirh

(po, - ir)e dl-(ru(t r), xr.(rr.r)),

(Lp,,p,1edLi$,,(o.r),Ar,(or)) for

and every such vec(or has

({ l1)
r = 1,..., I

lo7

f l1i,l<2[co+a,1ro)+...+d,(@) j'(.r(o]))l/d. (.1.J+)
r=0

t-ct f(o.r) denote the set of all pe(R')t'' for which {4.3J1 r:
fulfilled. We have just seen that almosr surely f(tu) is nonempry and
bounded. We must establish ncxt the €xistencc o[ an .q/-mcasurablc
function p' such that

p'(co) e I-(ro) a.s. (4.I5)

(From such a p'we will subsequently be able to manulacturc rhc
dcsired pe5lr satisfying (a), (b) and (c) of Theorem 4 for rhe b,,, l)r
and .x at hand.) It suffices ro verify th:rt the multifunctron
f:to-'l-(ro) is closed-valued and .q/-mcasurable Il?, Cor. lC]. Wc
use the representation

l-((,): /4 t(C(@)x C,(o) x ... x Clto)), t4.lo,

where

C(ur): : dl'(xo(o),.xlo)), C,(o)::dll(-{, - 
'(co), 

A.r,(o)},

A:(ie, f y..., i )t-lio, pr, io, Li', i', Li r,.... i r,, Li).

The subgradient sets C(a,r) and C,(to) are of course closed, and .{ rs

just a linear transformation, so (4.36) implics I-(u.r) is closcd. As

functions on Q x R" x R' the cxpressions in (4..12) arc -ql-normal and
the functions g, are iy'-measurable [l2, Prop. 2Ml. In forming ('(tu)

.and C,(ro), therefore, we are merely putting ry'-mcasurablc argumcnts
into the subgradient multifunctions associatcd with ccrtain o/-
normal integrands, and this operation is known to preserve ry'-
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function lr on 0{'x lR" as bcfore (r/. (2.23)) and let

M,(a, q,' r,) = 5\)p lq, w,+r,2, L,(:,, rr',)).

Then M, is a I fr.ormzl irtegrand [l2, Thcorem 2Kl arrd

t,(<r-r, 2,, w,) : sup { 
(L' urt + tt zt lvl,(q,, r,)1.

4, .,

Let

!?: = lp:bo, . . ., pr'1e 9tln, , is g,-measurable

for t: t, ..., f, and Eopo and pr are constant,}.

(5. 1)

( 5.2)

( 5.3)

This is a closed subspace of -fr. The problem dual to (P,,") is

maximize - K(p) oyer all p : (po, p r,..., pr\ e ?, whete
(P:i")

(f )
Klpl: = mlEo po, pr) + E { I M,lu,tE p)lLul,lE Lp,lt-Dl.(,-r J

The functional K is well-delined from ? to Rw { + co}, convex, and
lower semicontinuous with r€spect to the -f r-norm on ./.

THeoreu 6 The inequality inf(P,,")>sup(Pj") ulwul,s hohls. One
fias petl0(O) if and only iJ actuallr' inf (P,,") : p;1x 1p: "1, 

antl p is
oprinol Jbr (Pl,").

ProoJ of Theorem 6 This is a consequence of the proof of
Theorem 4, just as Theorem 3 was a consequence of the proof of
Theorem l. The trick is to calculate the conjugate <D. from the
definition (3.3) of O and the formula

-o'(p)= inf {o(y)-(p,y)l tor pe9t.
Y'!'

The change-of-variables argument in the proof of Theorem 4

BOLZA PROBLhMS

demonst rutes actually that

( K(P1 it P c.tt,
o*(p) = I

I r r for all other peYr.

The argument for Theorem I theo takes over, word
gives the claimed result via Theorem 4. I

Conorrarv Under the hypothesis of Theorem 5 ond

assumption that (P,,") pos.lesses o solulion, one

l

[or word, and

the addiiouul
ias min (P,,.)

: max (P"1").

Proof The assumptions in question imply according to Theorem
5 the existence of a function p satisfying (a), (b), (c) for a solution x
to (P,,.). Then pe aO(O) by Theorem 4, and the desircd conclusion is

given by Theorem 5. D
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