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In this paper we consider deterministic and stochastic versions ol discrete time
analogs of optimization problems of the Bolza type. The lunctionals are assumed 10
be convex, but we make no differentiability assumptions and allow for the exphat or
implicit presence of constraints both on the state x, and the increments Ay, The
deterministic theory serves 1o set the stage for the stochastic problem. We obtain
opumality conditions that are always sufficient and which are also necessary 1l the
given problem satisfies a strict feasibility condition and. in the stochastic case, a
bounded recourse condition. This is @ new condition that bypasses the umilorm
boundedness restrictions encountered in earlier work on related problems.

1. INTRODUCTION

In the classical calculus of variations, a problem of Bolza type is one
where a functional of the form
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274 R. T. ROCKAFELLAR AND R. J-B. WETS

I(x): =l(x(1g), x(1,)) + jl L, xtt), x(1)) dt (1.1)

0

is minimized over a space of arcs x:[fo, 1, ]—R" subject 1o a system
of equations and inequality constraints on the endpoint pair
(x(tg), x(r,)) and the tnple (¢, x(r), X(r)). This fundamental dynamical
model has in recent years been a focus of efforts towards developing
a vanational theory not so dependent on smoothness assumptions,
and in which more light can be shed on phenomena of duahty. In
this theory, the constraints are represented by allowing [ and Lyt, -, ")
to be extended-real-valued functions on R" x R", and opumality
conditions are expressed in terms of subgradients; see [2, 13].

Our aim here is to treat the analog of this problem in discrete
time, imposing convexity assumptions that lead to a close connection
between the optimality conditions we derive and a certain dual
problem. After taking care of the deterministic case, which is mainly
a matter of applying well-known results in convex analysis to a
particular situation, we study the stochastic version of this class of
optimization problems. The significant new feature, not present in
the functional form (1.1), is a process that models the flow of
information. Decisions taken at any time t can only depend on the
information collected about past random events, the future being
known only in a probabilistic sense. Whereas in the deterministic
model the decision maker has at any time total information about
past and future costs associated with any plan, in the stochastc
model at any time ¢, the uncertainty about the actual cost of any
decision plan can only be mitigated by past observations.

In the deterministic problem in discrete time, we consider in place
of an arc x:[tg, t,]—R" a vector

X =AKips Ko S ER" % 4, XRY =(R)T!

and in place of x: =dx/dt the difference

Ax;:=x,—x,_, for t=1,...,T.

The problem has the form:

B T ————
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B minimize over all X=(xgs X1s-.., X7) €(R")* ! the T -
det

. T
](x): -—-l(x()!xl)-i' z L:(xt—llerJ’
t=1

where | and L, for (= l,...,T are functions from K" x 3
Ru{j— co},- none of which is identically + a0, We ussumc“
funguong are lower semicontinuous and convex. Then j, too, 1s lowe
semicontinuous and convex with values in Ru {4+ o0 we .. y “‘t%"
Is not identically + oo, l : i
It is essential to appreciate the fact that in (Pye) there are certai
constraints implicit in the condition j(x) < co, Whi:‘lh IS prerequisit ™
a vector x being of interest in the minimization. Letting e

Lo
Laese

C;={(amar)eﬂ"xR"]i(ao,urm;o,‘-. (1.2
Fi(z): ={w,eR"|L(z,,w)< 0}, (1.3)

we .C“?"_ wu.huul loss of generality, restrict attention in (P,.) 1o
minumizing j(x) over the set of all x€(R")™*" which salisfy -

(x0, x1)€C, (1.4)
Ax,eF(x,_,) for t=1,....T (1.5)
rConv.ersely, if our starting point is a problem of minimizing a
‘ur‘u,uon of the rqrm J(x) over all the vectors x which satisfy such a
system of constraints, we can pose this as a problem (P,,) simply by
(re-)defining [ to be + oo everywhere outside of the set C, and L 1o

be + 0 everywhere outside the graph of the multifunction F.

Implicit in the dynamical constraint (1.5) is the state constraint
X_1€2Z, for t=1,...,T (1.6)
where

Zi={z,eR"|F(z)#0}. (1.7)

Note that the dynamical constraint could also be put in “control”
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a parumclcrimliun of the sets F(z,) by a

form simply by introducing
although we will

parameter veclor 1, ranging over some other set Uy,
not concern ourselves with such additional structure here.

The stochastic version of our problem reguires an underlying
probability space (€, o/, p) and & nest 4 of a-fields:

g & .., %., where ‘ﬁuc:‘.-‘;'lc':..»:’.ff',cw.:/. (1.8)

7
g =G4

K
[}
The field %, represents information available at time (, and 10 say
that a function QR % -measurable is to say that x(w) can
ation only, not on unobscrved details of past
vents still in the future. Accordingly we
(o the (closed)

depend on such inform
events, or on random ¢
restrict atlention 1 our decision-making process
Lincar function spice

L (R Y| x, 18 4 -measurable].

Nt:{(:(.\‘u,xl,”.‘x,-je

(1.9

The elements x of this space are said to be nonanticipative (with
respect o the system % in (1.8)). The stochastic optimization
problem 18

minimize over all x=(Xg, Y- xp)e. b the functional

tPﬂ.u)
'
‘\; L tw, X, l{u)),A.\'l{uJ])}

=1

pr;umqmm;uxmﬂn+ﬁ{

Here Ax, =X, — Y -1 15 '.f;‘,-mcusur‘.ih'lc and x,- 18 %, ,|-mcasurublc.
As in the deterministic case, | and the funcuons Lw. ") for each
i=1,..., T and we ) are convex and lower semicontinuous from
R" x R* to Ru{+ x}, not identically + . We assume also that the
epigraph of Lw, ") depends & -measurably on . or in other
words, that L, 1s a 4 -normal integrand on €% R x B [12, p- 173])
Among other things, this ensures that whenever z,(w) and w,(w) are
4, -measurable in w, so is Ljw, z(w) ww)) [12, Cor. 2B]. Then,
certainly, the term L,(w, X, - {w), Ax (w)) 18 i&',-mcusurublc for any
.+ Last among our basic assumptions on L is the condition that

——- = -
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IU' CVer ))U d 2= CI lh d i [ U 2-v :
y / Jld a _)U 1h e 1S a4 summ blt’ ] nchon "'! R ll
. L,

i o 5y moc en e
ntegrable with finite integral E{y(w)}) such that ‘

Lw, 2, w) Z 7
dw,z,w) Zy(w) as. when |z[Zp, |w
» '

sa. (1.10)

Fro is 1

L'(u[,]‘]x‘l_hl(hw)“A:(:l,k;w? that for any xe.b, each of the terms
s maclrore' ha; :‘L ||T jP,m) majorizes a summable funcuon of u.;
A TR e. l— cﬁncq c.xpcclanon, finite or + w. Thus J is
e o Sna_ on .‘? with vu.lu::s in Ru{+oo}. In fact J is
oics o 0% B0 e‘mtconAImuous (with respect to the % “-norm

pe ogy Cu.ns".ainf‘sluppqac J.[ﬁ..'}«.: o for at least one xe. .+,
S onae \:. are implicit in the stochastic problem, just as
s ¢ problem, bccgusc only the elements x of .}
y J(x) < x can be candidates for the minimum of J. Lcll

F(w,z) ={w,eR"|L(w,z,w) <o}, (L11)
Zlw):={z,eR"|F(w z)#0}. (.12

Every xe. b with J(x) < oo must satisfy (see (1.2))

(E{xolw)}, E{xdw)})eC, (1.13)
Ax(w)eF(w,x,_(w)) as. for t=1,...,T (1.14)

and consequently
X _(weliw) as for t=1,...T (L.15)

Thus in (P,,) the minimizan ; c res
thinlfhsutisfy these constraints, lrzltlh:?l::\{inb:v::is;rlllct:}! '."D fhose ve-t
e " i P ' )
buundcdmrzll;f:rr;:lu‘)n dv?.',:wﬂé,(w)‘ is closed-valued under the
S e ({.;n u.l(?n to be given in Section 4 (Definition 1)
o s ,-‘mciu.,urublc. by. virtue of the 4 -normality of Lj
s d.cpc,nds gd u:'rt.un projection of the epigraph of L(w,- ;
e e ,-mgasgrubly on w; sce [12, Cor. 1P] ;'ur’l‘hc,
S5 a mczsumbﬁ.rmccuons of m’ullifunclionsj The need for a
s b ' |.|ly property of Z, is suggested, however, by our
nstraint in (P,,) that x, (w)e Z (w) almost surely, where
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x,_, is % _,-measurable. Unless Z,. is actually ¥, _ 1::nfagsurall3lt?: ::z
cannot very realistically work with such a cons‘tﬁalllt,’ fn.;ims
otherwise x,_,(w) cannot fully respon.d to all the pO'::ttlbllcb\l‘lcjl[rllele
in Z(w). For this reason the assumption Qf %, . ,-measurability .
will enter the theorems formulated in Sections 4 and 5. _ o

We have already mentioned carhqr that 'th,r: information prou:bis 1S
a significant feature of the slochgst:c version (P..) ‘of u;ur ;)rlczje(;]
We have modeled it here by an increasing sequence ol g- 1;:) s h‘:
t=0,...,T Each %, represents thc_ .ﬁcld gcngral_cd y (; :_
information-events accessible to lhc-dcmsnon mak‘er. in lm?c.pem[)mm.
We implicitly assume that there is no loss ol xnfor;natnf)ﬂ Ui
one time period to the next, since I'qr all ¢, 3, Alcfﬁ,‘. ”0 %aisg the
flexibility of this modeling of thf: information prouessidl b con
venient to introduce the increasing sequence of o-fields #, ‘l[j
t=0,..., T Each #, is the o-field gen_crated by the rannd‘orr‘l e.“':}.bl
that occur before or at time t. If at time ¢ we onldy possess par 'm
information about past occurrences, the'n ff,cf, and we can
compute the expected value of the information loss as

inf J(x)— inf J(x), (1.16)
xeN AEJ’. o
where |
V= fx=(xy xp)|x, is #,-measurable}. (1.17)
¥ = 3y I

The quantity in (1.16) is nonnegul%vc, since @',c:jff{ 1mphcts;‘. ydc.?‘:(;r;
In this case it is instructive to view the restriction of‘.L‘t.' t:(.‘.lbr‘”
process to .+ as the result of a double constraint. First a (stnts
nonanticipativity constraint, x, cannot anticipate uny'fu:iur‘e ‘cv:g d
which implies that it needs !0 be #,-measurable, ‘dll dse;s -
(partial) information constraint, x, can only df.dpcn on
information collected about these events, L.e, we nee ; to rest ; [hé
further to %,-measurability. The (marginal) prices asst_)uatcd wil he
constraint xe A c¥® can be d(.:chompo-sed in [[WO ‘p "
corresponding to the strict nonanticipativity and the par

information restrictions. ‘
mig::“:;]'t r:‘ascs of partial or total information are not the O.HII]y onc:l:i
covered by our model. In fact, it han_dles l'hc situation equal y‘\ycn
when for all 1, ¥, >#,, or when there is no inclusion in one directio

P
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or the other. The case 9, > %, would model the situation when the
decision maker has access to a predictor, whereas in the latter case
some cvents would only be partially observable and others could be
predicted to some extent. However, our model does not include the
case of information loss (the #’s not necessarily Increasing), or some
situations when there is only partial observation and the 4,’s depend
on previous decisions. For further details about information patterns
see [3], and for a somewhat different approach, [1].

Concerning  the form of the  boundary expression
HE{xo(w)}, E{xr{w)}) in our functional J, the reader may wonder
why we do not aim rather at something like E{l(w, Xo(w)), x {w))}.
The answer is that this would not actually add much generality, but
would tend to mess up the approach we wish to follow by way of
duality. Indeed, the terms E{Ly(w, Xo(w), x\(w) — xy(w))}  and
E{L{w, Xp - (W), x{w) —x7_ ()} appearing in the formula for J
already allow free incorporation of terms of the kind E{lo(w, xo(w)))
and E{l{w, x{w)} into the quantity to be minimized.

In our earlier work [14, 15, 16], various technical conditions led
us to impose uniform boundedness restrictions on the set of feasible
solutions. Such restrictions also appear in the related work of Eisner
and Olsen [5, 6], Dynkin [4] and Evstigneev [7, 8]. (They are
partially skirted by Hiriart-Urruty [9] because he deals with the
nonconvex case and does not seek any duality relations.) Here we go
a long way towards removing these boundedness conditions. The
bounded recourse condition, as defined in Section 3, no longer
requires that the set of feasible solutions be uniformly bounded,
but—up to an integrability condition—it only requires that the
feasible solutions, which at time ¢ pass through a bounded set, can
be “boundedly” extended. By this it is meant that there exists a
feasible extension of these solutions to time period r+ 1 which is also
contained in a bounded set. This condition is essential in the
derivation of the necessary conditions. For stochastic problems of
the Bolza type, the bounded recourse condition compliments the
usual strict feasibility condition required to obtain the existence of
dual (co-state) variables. The appropriate strict feasibility conditions,
¢f. Definition 2, are somewhat weaker than those we have used in
the past [15, 16] but this must be attributed to the special structure
of the problem, in particular to the form of the endpoint conditions.

The restriction of the decision processes to the space of essentially
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bounded measurable functions is chiefly for techmical reasons that
have mostly to do with the necessity argument. Actually, 1t is not
difficult to sce that the optimality conditions given in Theorem: 4 are
sufficient for any £* space, pz1, provided that the integrability
condition (1.10) be appropriately strengthened.

The prospect of studying stochastic Bolza problems in continuous
time, as limits of sequences of discrete time problems, provides some
of the motivation for this study. At this time, however, there are
major technical obstacles that need to be overcome in carrying out
such a program.

2. OPTIMALITY IN THE DETERMINISTIC PROBLEM

Solutions to problem (Py,) will now be characterized by relations
analogous to those known for deterministic problems in continuous
time, where the functional (1.1) 1s minimized [1, 11]. These
conditions involve subgradients of the convex functions | and L,.
Recall that for a convex function g:R™—RuU | + o}, the subgradient
set Oglu) consists of all the vectors ve R™ such that glu) 2 glu)+
v-(u' —u) for all v e R™. Equivalently,

vedgu)<=inf {gw)—v-u'} is attained at w'=u. . (21)

See [10] for more on subgradients and their properties.

A key to the optimality condition we shall be looking at is
provided by the function ¢:(R")'"'—»Ru{to} defined for y=
(Jos Vise - yr)E(RDT by

T
¢]{ },}: =inf {“ Xy + Vo 7\‘[) + Z L'( : A.\} +}It}} (22]
=1

This function is convex, because | and L., are convex [10, Section §].
Note that ¢(0) is the infimum n (P,,). We can imagine Gly) as
the infimum obtained when (Py.) is “perturbed” by the parameter
vector y.

o mer—

s g
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"I;;ugngL:'M i A sujﬁu’em condition for the optimality of X in problem
(Pye) is the existence of some P=(Po: P1s..., pr) (R such thar

4) (po, —py)eclx,, Xr),

b) (Ap,. p)elLyx,_,, Ax,) Jor t=1,...,T

Indeed, these relations are satisfi i

: sfied by x and ‘
R Yy xand p if and only if x solves
‘ l'nkpamllcl with !hp continuous time case, it is appropriate 1o
speak of (b] as lhf: discrete Euler-Lagrange relution and (4) as the
transversality relation. The pairing off of components of x and P

S_orrespoflds to some extent, as will be seen below to th
Integration by parts” rule that , )
T T
Xr PT—XOIP(J: Zl xl—l'A.p|+ E p,‘A.\',. (23]
= =1

The val.ue of the observation that (a) and (b) correspond to the
subgradlen[ condition pe@(0) is, of course, that the components )
can _be mterprc[ed as describing generalized directional dcrivutivc.; S;
the infimum in (P,,,) with respect to certain perturbations.

‘ Proof of waorem l To say that x solves (P,_,) and PEHPO) is to
say that x glve:];r the infimum in (2.2) for y=0, and SO0 +p-ySd(y)
for alll ye(R")™*!' or in other words that the infimum o? the
expression

T "
Ut b i X+ T Ll B iy 5 3
Far T 12:1 l( 1= 1 '\'J+_‘IJ tZU P Ve {24.'

over all x’e(R"Jr" and ye(R")"! is attained at x'=x, y=0. We
must show this holds if and only if (a) and (b) are fulfilled,
A change of variables will do the Job. For each choice of vectors

ag, dr, and z, w,, for (=1 T wliete e st il )
] ey Ay ue x e Rn r+1 ,
ye(R")T*! such that 4q (R") and

Xot+yo=da, and x}=ay,

Xi_j=2% and  Ax;+y,=w, for t=1,...,T
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In terms of these we can write (by means of the identity (2.3) for x'):

T
pl.y:=p0'(a0_x;))+.z,l p,'(W,—AX,)

1~

0

T ’ g .
=Po'ao+'z,lPu'W:-xT'PT*";l Xe-1 Apl ( )

T
=po-do—pr-ar+ Y, [Apz+ P Wil
=1

Therefore, the infimum of (2.4) over all x,y, is attained at x’ =X,

y=0, if and only if the infimum of the expression

; Lz, w)—Ap, 2, —P: Wil (2.7)
I(%var)_Pa'ao“’PT'aT""Z‘[ 1(‘1’ | ] t

over all ag, ar, Z,, W;, 18 attained at

a0:.\‘0, (JT=XT, 2, =Xg—1» W',=A)Ll.

But the latter infimum is facilitated by an independence of
arguments: an equivalent assertion is that
inf {l(a ag)—po’ Ao+ pr-ar) 1 attained at  (ag, ar) =(Xg, X1)
[V 1]
S (2.8)

zow)=(x,- 1, 8x).
inf {L,lz,,w,)~Ap‘-:,fpl'w,} is attained at  (z,w)=(x -1, 8%

This is exactly what (a) and (b) say about x and p, so Theorem 1 has

been proved. [

It is clear from Theorem 1 thal_ whcncvq U_’m] .IS,SL:;hb)u}g:
Jdp(0) #9, the condition that there exist a p sa_usfy!ng (a[] .mbu(l o
a given x is not just sufficient for Ehe opumuh}y of x
necessary. Any convex function ¢ has ¢é¢(0)#9 when

Oeri(dom ¢), (2.9)

————a i

r=
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where “ri” denotes relative interior (the interior of a convex sel
relative to its affine hull [10, Section 6]) and

dom ¢: = {y|¢(y) < w0}. (2.10)
For the function ¢ at hand, we can reduce (2.9) to a kind of strict
feasibility assumption on the constraints in (Pg,,), and this yields the

next theorem.

THEOREM 2 Suppose the constraints in (P,,) are such that there is ut
least one xe(R")™*" with

(xg, xp)eTIC, (2.11)

X, ,enZ, and AxerniF(x,_,) for t=1,....,T (212

Then for an xe(R")T*" to be optimal in (P,.) it is necessary, us well

as sufficient, that there exist a pe(R")T ™" satisfying relations (a) aund
(b) of Theorem 1.

Proof of Theorem 2 To represent the effective domain (2.10) of ¢
in a manner that will expedite the calculation of its relative interior,
we define
C:=domL,=gphF, for 1=1,...,T,

G =ERE, ¥ oGy
A%, )i = Ay (v e X12 Yor -2 Y1)

c=(Xo+ Yo X1: Xon AX 1+ Y1 X1, BX 3+ Yoo X721 AX )

Ax(x, y): =Az(Xgs ...y X1y You e YT)1 =Y. (2.13)

Here G is a convex set, A, and A, are linear transformations.
Moreover,

yedom¢p<>dx with A,(x,y)eG. (2.14)

stocH  E
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This tells us that dom ¢ =A.(A; '(G)). Then from the caleulus of
relative interiors of convex sets [ 10, Section 6] we have

ri(dom ¢)=A,(A, '(ri G)),
where moreover
nG=nCxnC x...xnCy,
nC,=ri(gph F)={(z,w)|zenZ, wenkF(z)}
It follows that
Oern(dom¢)<=3x with A, (X, yengG,

and that the latter condition 1s identical to (2.11) and (2.12). Thus
the hypothesis of the theorem is equivalent to (2.9), which as we

already know guarantees d@(0)#9 and thereby yields the desired
conclusion. []

The next two results clarify and elaborate the strict feasibility
assumed in Theorem 2.

ProrosiTion 1. Let C' be the set of attainuble endpoint pairs for the
multifunctions £, ..., F

Ixe(Rm)™! (2.13)

C: = (g ap) e R" x R
with
Ax, e F(x,-,) =l T

and

Then C' is convex, and the hypothesis of Theorem 2 is sansfied if and
only if

ACAnNC #). (2.16)
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forPrri(Ittiljt;) A(;'i) F’ﬂch"‘:!‘ids 0 do is caleulate ri ¢ by the method used
m @) in the Proof of T} e - :
N ient omitted. [ eorem 2, and the result falls out. The

l ROPOSI p < led in pul Cllur
‘ 2 } Irht‘.ﬁlb ()_f j ht‘l‘.ﬂ 5 s fl\j
jf TION ] hf h ) em : url. [¢ [l 8
[} or some x € ' HE ' , £ 0 a”d ”u"lbt’ S a‘ S R, j()’ [ = O I

s Lae

b L1, one
%, %) <2, (2.17)
Liz,w)<2, when Iz, =% llé L, ]wl A% La (2.18)

A”(”E‘U[q‘:l f‘.’l hf‘ as an PE“]} ) Hh“ h [T RYAT ( U”t““(}”& [II'
5 s ¢ 1< ‘

( J Uf ¢ ! j } b ; h j S

ﬂ"d b ’ h orem ’ or some X E( R ' must h[” ¢

A

T " T /
PRLES. [Zﬂ % —J(-\‘J]f’ ‘. (2.19)

Proof For any choice of vectors = and w, as in (2.17) for

t=1,..., T, consider /== —z : =
i " v -t__'-rﬁ'x -1 W, =W —A_\". There exis - .
XE(R) ! and ye(Rr)TH sali‘sfyingl ' I st unique

Xo +}<D=-Euq ‘\;T=‘ET-
(2.20)

x — v - . = ’
1-1=X-,+2 and Ax, +y, =AX, + ),

and then

T
I(xo + Vg, X )
( o™ Vo, xT)'f'r;Zl L,(.‘C‘,I,AI, +_}'1):l(,\:0,.\'1)+ Z L,(:‘,W,’

=1
and consequently
PWISxo+2,+ ... +ay. (2.21)
In particular, taking any y such that
lyl<e/2 for (=0, | S (2.22)
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and taking
x, =% -UT—0/Tly, for t=0,1,....7T
we have (2.20) holding, with
= —[(T—t+1)Tly, and w;=y,—(1/ Ty,
and consequently .
E

This tells us that (2.21) is true whenever (2.22) is true. Thus the
effective domain (2.10) of ¢ actually includes a neighborhood of 0, so
that condition (2.9), which we know from the proof of Theorem 210
be equivalent to the hypothesis of Theorem 2, 1s certainly satisfied.

Consider now any p and x satisfying conditions (a) and (b) of
Theorem 1. We have by Theorem 1 that j(x)=¢(0) and pe c¢(0), so
that

<lyy|<e and wil < || +[yol s e

.
() Z POy + p-y=jx)+ ZU PV

for all ye(R")™ " and in particular for all y satisfying (2.22). Since
(2.21) holds for such v, we obtain :

T

T T
Y oap—jx)z Y sup poy=(2) ZU |l
=0 1=

ILUIJ‘I\ga_'l
and this is the bound (2.19) that we needed to establish. O

The vectors p appearing in the optimality condition in Thcop:m 1
can be characterized by a dual variational principle, as 1s no
surprise, inasmuch as we are dealing with a problem in the realm of
convex analysis. The duality involves the functions * and L}
conjugate to ! and L, [10, Section 12]. Let

m(bg, by): = sup lag b —ar-by—lag,ap)}=1*bo, —by), (2.23)

g9y
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Mg, r). = sup dowo oz =Lz, w)! = LA(r.gq,).  (2.24)

1 t

Then m and M, are lower semicontinuous, convex functions from
n n 3 . ¥

R"xR" to Ru{+ )} which are not identically +cc, and [ and L,

can be recovered from them by the inverse formulus

I(ao,ar)=bsubp {ao-bOAa,-brfm{bu,br}}=m"(uu, —ay), (2.25)
o r

Lz, w)=suply, -w +r,- Z=Mg,r)f=M2w,z). (2.20)

LI

The problem we identify as dual (o (Py.) is

- maximize —k(p) over all p=(py, p,,.... py)e(R)T* ', where
det

T
k(P) =m(P0’ pl‘) + Zl thtpn AP:)

THEOREM 3 The inequality inf(Py.) Zsup(PY.) always holds. One
has pedp(0) if and only if actually inf(P,.) =max(P3,), and p is
optimal for (P3.).

Proof of Theorem 3 Only a slight extension of the proof of
Theorem 1 is needed. The infimum of expression (2.4) over all x', y,
is by the definition of ¢ equal to

inf{$(y) —p-y} = —p*(p). (2.27)
¥y

But the change-of-variable argument in Theorem 1 showed that this
was also equal to the infimum of the expression (2.7) over all dg, dy,
z,, w,, which by (2.23) and (2.24) is

T
*m(Po-Pr)— Z M,(P,, AP:)= _k(P)-
=1
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Therefore the latter agrees with (2.27), and tor every p we have

—hp)=inf {p —pyh = 0) - prO=mb(Py).
i

Tuaking the supremum with respect  to p. we SEC that
sup (P <inf(Py,) in gencral. Moreover, the equation

—k(p) =sup(Pi.) =inl(Py.)
holds if and only 1f

inf {¢(y) —p-y} is attained at y=0,
y

which is the condition ped@(0). [

CoroLiary  Under the hypothesis of Theorem 2 (or Proposition 1)
one has inf(Pg)=max (P}.).

Proof The hypothesis in question has been shown in the prool ol
Theorem 2 to be equivalent to condition (2.9), which guarantees that

a0y £9. [

Remark A strict feasibility condition for (P§,) can bv.? :,luricd kn)n
close parallel to the one for (Py.) in _Thuorcm 2 ll'nnplm. y
arguments dual to the ones above that min(P,.) =sup(Pi.).

3. SUFFICIENT CONDITIONS FOR OPTIMALITY IN THE
STOCHASTIC PROBLEM

An optimality condition for (P,,) rcscmb}ing lhg one for )(.P'dc_,) l[‘I
Theorem | can be formulated in terms ol cund‘nlmn‘:ﬂ ‘cpru:.d“(-)l{hi
For the conditional expectation given ’ﬁ,,_wg write E' (lor the u:-.t;a
but more cumbersome notation E*). This 1s tuken 1o b‘.: a 'regt: (-Hl'
conditional expectation, ie., representable as an |m{icﬁmlc mﬁl{cir:)
with respect to a regular conditional probability ;1|-|-.) tjn(j" 1
There is really no loss in assuming that such regular con l‘ll-t)rlld‘
probabilitics exist; in practice we can always tuke (£2,.o/, p) as the

e v P e W T M At m

BOLZA PROBLEMS 289
range space of certain random variables, with Q a subset of a finite
dimensional space and & the Borel ficld on Q.

Given an @/-measurable random variable y, the observable aspects
at time 1 are represented by E'y. We shall be interested in the gain of
information that can be achieved from one time period 10 the next.
For these purposes, we introduce the operator

ba=E-£7 (3.1)

or in the more standard notation EY=E*—E* ' Note that
whenever %, =%, |, which means that there is no gain - of
information from one time period 1 —1 to the next, the E', terms can
always be dropped. This should be kept in mind when comparing
our development for the deterministic and stochastic versions of the
problem.

Again a crucial role in the derivation and analysis of optimahity
conditions will be played by a perturbation function. For

VY=o Yir-- 0 YR EL (o, i, (R )= (3.2)

we define

W®(y): = inf {“E(‘O t ¥o) Exy)

X€N

=1

r
+E z Ll‘(u’ Xy -1 — E5yy - AN+ Efﬂ'l 4 l‘-.!,\',}}‘ (3.3)

where to keep notation as compact as possible we have suppressed
indication of the w argument of the functions x,, F,y, .- ele. (or, as
we really should say in dealing with elements of L*, equivalence
clusses of functions). The functional ® is well defined from 2 (o
Ru{+ oo}, and it is convex. In what follows, we will need (o speak
of its subgradients with respect to the natural pairing belween
functions ye £ and functions

P=(Po,Prs- -, PrIELHQ i (R ) = . (34)
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given by

)
n

.
N2 y>—E{ _ZG P.(w)')u(w)} (
The set of subgradients of @ at y in this sense is

od(y)={pe L' |O(y)ZD(y)+<{p,y —y) forall yex=}
(3.6)

Subgradients of the functions ! and L (w,", ) will also enter the
conditions below. We write

JdL(w, z, w)%sel of subgradients of L (w,,") at (z, w). (3.7)

In other words, despite what the notation ¢L, might suggest, we do
not involve w in the subdifferentiation.

THEOREM 4 A sufficient condition for the optimality of xe A" in
problem (P,,) is the existence of some pe ¥ such that

a) (E°po)(w)=by and p(w)=by for some (by, —by) € dl(Ex,, Exy),
b) ((E'Ap)w), (E'p)(w)) € oL (w, x, _1(w), (Ax ) w)) as.,
C) p,_, is % -measurable for t=1,..., T

Indeed, these relations are satisfied by xe A" and pe #* if and only if
x solves (Pg,) and p e dd(0).

In analogy to the deterministic case, we shall refer to (b) as the
stochastic discrete Euler-Lagrange relation, (a) as the transversality
relation. We can view (p,,t=0,..., T) as a stochastic process of latent
multipliers whose manifestations in time period t, namely

E'Ap, and E'p,

are the usual multipliers or costate variables related to the decision
variables subject to selection in period 1, ¢f. condition (b). These
vectors E'Ap, and E'p, are % -measurable functions of w and can
therefore be calculated from knowledge of their functional form and
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the observations made up to period r. Their values for particular w
do not depend on any information which, as far as period ¢ is
concerned, lies in the future. The latent multipliers pg, ..., p,, on the
other hand, exhibit in (c) a delayed nonanticipativity. These optimal
dual variables do depend on information to be collected in the next
time period, although, by construction, not on the whole future. This
property of the latent multipliers is special to the structure of the
Bolza model adopted here. Ordinarily one could not expect the
latent multipliers to be any better than %;-measurable for all ¢ [15].

Again it should be noted that in identifying the optimality
conditions in Theorem 4 with the subgradient relation pe dd0) we
open the way to interpreting the latent multipliers in terms of
directional derivatives of the optimal value in (P,,) with respect to
certain perturbations.

Proof of Theorem 4 The argument is patterned after the proof of
Theorem | but has to contend with complications posed by the
different information fields %,  To say that x solves (P, and
pe d®(0) is to say that x furnishes the infimum in (3.3) for y=0, and
OO p, yy =d(y) for all ye #£*. This property of xe 4" and pe £ is
equivalent to having the infimum of the expression

T
—E Z P ) -I-.l'(EXi—_, + EyO’ E)‘,T)
t=0

T
+E Zl Ll{w’ x;— 1 _E:.\yi =11 AX; + Eldyrf 1 +Et}’r) (38}
=
over all x'e.1” and ye #* be attained at x'=x, y=0. The theorem
can be established by showing that this holds if and only if (a), (b)
and (¢) are satisfied.
As in the proof of Theorem 1, the trick is to make the right
change of variables in order to separate variables in calculating the
infimum. For arbitrary

vectors dg, ap, in R" and functions sg, sy, u, and z,,
w, b, for t=1,.. ., T, all in ¥*(Q, </, u; R") with z,
and w, both % -measurable, E'v, =0, E'u=0, s, and
s respectively %,- and % ,;-measurable, Es, =0, Es,
=0, (3.9)
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there exist unique x'€. 1 and ye 2’ such that
Exy+ Eyy=dg and Exy=uap,
N+ EVyy — Exy— Eyg =5 and X) — Xy =s,
x; - —E\y -1 =5 fore=1,..., 1T (3.10)
Ax,+ E\y, (HEYy =w fori=1,..., 1,
yo - By y=vifore=1, T and yy - Efyp=u

Ihe truth of this assertion may not exactly “meet the eye”, but it 1s
not as miscrable 1o verify as one might imagine from the complexity
of the system o be solved. Namely, we observe al the outset that
(3.10) implics

Ny =5y +ag (4 -measurable). (3.11)

Next, since =, is given as 4,-measurable. we sce by applying £ ' 10
both sides of the equation «, = E\y,. =z that the latter holds for
a 4, -measurable v o (as required by the condition X'e. )l and

only af

« =E"'z for t=1...T (3.12)

By, =E 'z—z for 1=1.., 1 (3.13)

5 =
These relations with (3.11) determine a unmgue X'c.bas well as

place conditions on y that must be satsfied if the system (3.10) 15 to
be solvable at all. Another implication of (3.10) 1s that

E'y,=w,—Ax;—Eyy, . =w, =X+ 5 Ey

(3.14)
=z,+w,—x, for 1=1,....T
For t = T we thereby oblain, since y = E'y=u, that by (3.11)
Yr=U+Ip+wp—Xp=Iptwp—sp—drti (3.15)
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From the identity

Vo= - —E'y )+ ELy, i E IJ. (316)

1

on lhe ulhgr hand, we deduce via the last condinon o (3.10)
combined with (3.13) and then (3.14), that o

Yi -l=vr+(E!_l:|—Zl)+:( ]*'Wt*l_"\; i

(317)
=0 —Z; 2= W, =y for !:2\...,1;

the last by (3.12).

Finally, from (3.16) for t=1 we obtain b ; ‘ '
. y the last condit
(3.10), then (3.13) and the second line of (3.10): o

Yo=ro—E'yo) + Eayo+ E%Yq

(3.18)
0., % . X '
=v, +E"z -z +3,+ Exg+ Eyy—xg=10y —2, +5,+ dy,

where in the final equality the mitial condition of (3.10) 15 invoked
ulgng with (3.12). Equations (3.15), (3.17) and (3.18) dctermine a
unique % -measurable ye Z°* 1o go with the umque v'e. 1 already
determined by (3.11) and (3.12), and this x" and v do sausty (3.10), as
can readily be verified. '

Thus in taking the infimum of (3.8) over all X'e. 4 and ¥ ,-
measurable ye %, we can just as well make the substitutions (3 H]J)
and take the infimum subject to (3.9). Under the 5ubslilulion.we
obviously have

WExy + Eyo, ExT)=ay, ar),

Liw,x; .\ —Eyy, -1, A — ELy, -, + E'y) = Ly(w, 2, w)).
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Furthermore, since (3.10) entails (3.15), (3.17) and (3.18), we have

1=
=
=

It

Po (V1 —2y+So+ag)+pr (zr +wr—sp—ap+u)

=0
T-1
+ Z p,'(U,+1*Zl+l+Z‘+WI)
=1
T
=Ppo (S0t ao)—py (sp+ap)+ Z Pz +w) (3.20)
=1

T
+ Z pl*l'(vl_zi)+PT'“
t=1
#
=po-(So+ao)—pr-(sr+arp)+ Y [Ap, z,+p, w,]
t=1
T
.t Z! Pi—y 0t pyou
=
The conditions on s, s, and z; in (3.9) imply also that

E{py-(so+ao)—pr (sp+ag)}

=(Epy) - ag—(Epy)-ar+ E{(EUPO —Epy)-sg “ETPT_ Epy)-sef,
(3.21)

while those on v, and u give us

ef

Therefore, when the substitutions (3.10) are made the infimum of
(3.8) over all x'e 4" and ¥ ,-measurable ye #*“ is converted into the

1=

]

.
P 'U;+PT'“}=E{Z (P2 —E'p, n)'U:+(PTETPT)'“}-

1 1=1

(3.22)
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infimum of

={Epg) - ag+(Epy)- HT—E{(EOP* Epg) - s '”(ETPT —Epy)- sy

N - )
= 1 Z [AP,‘Z,"FP,‘W,]E{ZI (Pt—l_EtPr1)'vr+(PT?E1PT)'“}
=

r=1
;
+lag,ap)+E Y Liw, z,w)
r=1

subject to (3.9). What we must show in order to prove the theorem
is that (a), (b) and (c) hold for xe 4" and pe.Z" if and only if this
infimum is attained at

ag=Exy, ar=Exy, z,=x,_,, w,=Ax,, v,=u=0,
(3.24)
30=XO_EXD., SszT*ExT

(since these are the relations which imply x’=x and y=0 in (3.10)).

We know, of course, that the infimum in (3.23) is not + oo, since
the one in (3.8) is not + oo (due to our assumption in Section 1 that
J(x') <o in (P,) for at least one x e .47). It is possible therefore, to
choose the elements in (3.9) in such a manner that the expression in
(3.23) 15 not +oco. The infimum in (3.23) can therefore be
decomposed into the sum of the separate terms

mf E{!i (pi-1—E'p, 1) v, +(pTETp-,~}'u}, (3.25)
inf E{—(E°po—Epy)-so+(E"pr— Epy)-sq}, (3.26)
S5y

inf {I(ag, ar)—(Epo)-ao+(Epy)-ar}, (3.27)
dg-
)i inf E{L(w,z, w)—E'Ap,-z,— E'p, w,}, (3.28)
e

©"

none of which can be + co. In each term, the minimization is subject
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I : inl 15— ounless
.0 the restricuons in (3.9). In (3.25) the infimum s u

a l'
pe o =Epo for t=1,....,T and p;y=E'p;
otk I "
in which event it is 0 and attained at p, = u=0; simularly 1 (3.20), the

infimum 1s — . unless
E%po=Ep, and E'pr=Epp.

in which event it is 0 and uuainc_d at sy =s7=0. lktgflh}:'r‘[.l‘]f:‘\iii;
impossible for the infima in (}.23] and (3.26) ,m.i-JL .:;u;”:. ;.“:U
when they vanish, in which cvent lhcyf are ‘ultl.l”.]t"f. yd ."nl, - !;
sp=xy —Exy, ap=Nipe- Ex,, morcover this 1s the %.%an. |.‘Uan :b y It
satisfics condition {¢y of the lh‘cm}:m am‘d has .(Ldp},‘,.),:ub o
polw) = by for some (hy, b ER" x R". l'hcp bpu".":hu_fl? : _.;(:,;‘:d Bnly
the infimum in (3.27) is attained at uosz(,.and gy j.\,i ": s
if condition {a) of the theorem holds. F}nully, SHI-L-C d‘,d].lnd .
corresponding linear terms are ‘.*}":norqml mtcgtm}d;} d,[:/ T,R"' 1hé
can be arbitrary %,-measurable 1unc.lmn_5 m .f’ .[‘ ,l,u, 3'&]7 ¢
infimum in (3.28) can be taken pointwise [12. I'heorem :

reduces 1o

‘ ' 't T l I
i b{ il L, 5, W) - E'{Ap N w) 2z, — E'pw) n(][ (3.29)
! l:.'!i Rr"

I n o= ; f
and is attained by the functions 7, =X, and Wi =Af L‘md L?l";iy'll
the infima over " in (3.29) for cach @ arc attamed ullmus.l surely a
< =x, (w) and w;=(Ax)w). But this property Is the u;u, 'm
;:Jnd:litill (b). In conclusion, 1t is true that (a), (b) :l"m_l (<) hulld or;;
ve. b and pe 't af and only if the infimum of (3.23) subject to (3.9)

is attained at (3.24). (O]

4. NECESSARY CONDITIONS FOR OPTIMALITY IN THE
STOCHASTIC PROBLEM

- 1 . . ]Il
The question now is how 1o know when the optimality LL)[ldIllUtI}]} '
3 ERE 2 = . 0

Theorem 4 is not only suflicicnt but necessary. From the me
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“used an the deterministic case, the reader may expect that all we need

to do 1s ensure M0} #0 by means of some finiteness property of &
on an ¥ *“-ncighborhood of 0. Matiers are not so simple, however.
The best that a finiteness property of @ can give us is the eaistence
ol a subgradient with respect to the putring between #* and (27 *)*.
What we want here are subgradients pe #!. A general clement of
(2*)* could have, besides an ! component, a  “singular”
component [17, 11]. To eliminate having to deal with stngular
components, we must make further assumpuions about (£,,). These
assumptions will allow us to apply earhier results [15] about @
multipliers for the nonanticipativity constraint xe. 1" in order to
obtain the desired result.

Duvinition 1 Problem (P,) will be said to satisly the bounded
recourse conditionif fort=1,..., T,

3

a) for every p>0 and o >0 there is a summable function B Q—-R
such that almost surely with respect to weQ,

[z, Z{w) and

A
i B

=p weeF(w) and }w,}'\_?rij

=L (@, 2, w) = ), (4.1)

b) for every p>0 there 15 a p'>0 such that almost surcly with
respect Lo wef),

[z,eZ(w) and J.’.’J Spl=[3w el (w,z) with

zi+w e, (w) and l;‘,+n',|§p'_]; (4.2)

interpret Zp, (w) as all of R" for this purpose.

Since L {w, ") is lower semicontinuous, property (a) implies that
Fw, ) 1s a mulufunction with closed graph whose domuin Z,(w) is a
closed set.

The bounded recourse condition is satisfied in particular if for 1
=1,...,T there are bounded sets B, cR"xR" and summable
functions f, such that almost surely in w the graph of the
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multifunction F (. ) is mcluded in H,,_und all ol Is 'clcnu:n[:;_ (:in“l;:
sausly L(w, 2, w) = filw) and z, + woeZ, , lw) lh.c I.m rnqgtrgx.;cc
can be weakened to the followm{::: for ﬁ.\cd‘(u, a »lguor bL‘k’]l::. o
Xgo X, -0, X, that satisfies A.\',eh(m,x,_l}. h.)‘r ti.,..l.l..l %.dl'-ﬁcs
extended almost surely by Xpvproon Xp l_o d s.uqum.u: t ‘f[bm ::;d .
Ax e F(w,x, ) for t=1,..., T This special case whuc. thLl uux; ;
recourse condition is satisfied corresponds to the comt_n‘n.uu.un ‘odl e
boundedness and essentially complete recourse L‘Umj.l.lfum.‘m,c[‘ol,:]
[16]. except that the latter, when appllcq 1o lhc‘ pru,mfl situation,
would also place restrictions on the cndpuu_u set ( =giom P |

The bounded recourse condition of D_chmuun l s a :;ub:l:i‘nllldl
improvement over such previous cond:nuns,_ bCC'.ll‘.l‘bf.:”Il.t[’nd 9] [k:;
theory applicable to evolutionary systems not ngu.ssari'y .n‘mlt_'.. %
with bounded feasible regions, such as stochastic dynamic u’wa‘
models with only nonnegativity constraints. It can be sh.own“lhalbtf
multistage stochastic linear programming problem, whu,h L%[l It.l
formulated as a stochastic optimization problem of Bolza lyp(,.,'Wfl
satisfly the” bounded recourse condition whenever .[hc undbl;n[-;l
problem satisfies the essentially complete recourse condition .u:l ¢
matrices involved satisfy a condition somewhat weaker th‘an fg mlwf
rank. The feasibility sets need not be bounded, much less uniformly
bounded.

Derinimion 2 Problem (P,,) will be said to satisfy the I'FI!L’I‘J'()!"
Seasibility condition if for some xe.t’, £>0, and summable functions
a,:Q2— [, one has
(Exy, Exp)eC, (4.3)

uand for r=1,..., T almost surely with respect 10 we (), also

neZ(w), welFlwz) and Llwz,w) <z (w) (4.4

“i ] 1 ] ] »
whenever

Z, =X, (w)|Se |w,—AN(w)| S

“r

5 i - . iy & H e
This is a constraint qualification that corresponds in th
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deterministic case to the one in Proposition 2, rather than the milder
one in Theorem 2.

TueOREM § Suppose problem (Pyo) satisfies the bounded recourse
condition and the interior Jeasibility condition, and the multifunction 7,
is 9, -measurable Jor t=1,..., T. Then Jor xe V7 o be optimal in
(P,), it is necessary, as well as sufficient, thu there exist a pe 4!
satisfying (a), (b) and (¢) of Theorem +.

The proof of this theorem relies on a resulr for multstage
stochastic programs first derived in [15]. In particular, Theorem 2 of
[15] shows that if the constraint multifunction is nonantcipative, the
multipliers  associated  with the nonanucipativity  constraint
(xe.4"= %) can be chosen in #', rather than in the dual of ¥«
(In other words, there is no need (o introduce the singular part of
the continuous linear functionals defined on <) An important
consequence of all this is that the optimality conditions can be given
d pointwise representation. This is exploited at various stages in the
prool. In order to be able to apply these results we need some
technical facts that relate the bounded recourse condition to the
conslraim-nonanticipalivity condition as it appears in [15].

DeriNimion 3 A compact-valued multifunction D:Q—(R)T+' will
be called nonanticipative if for each (=0, L,..., T the projection

D'(w):-—-{(xo,...,x‘)jil{x”,,...,.r-,‘] with
(xu,...,x,,xH,,...,x,-)el)(cu)} (4.5)
depends %,-measurably on .
ProrosiTion 3 Suppose problem (Py) satisfies the bounded recourse
condition, and Z, s %, - \-measurable for =1, I Then for
arbitrary p,>0, t=0,1,..., T, there exist constants M 2P, such thur
the compact-valued multifunction D:Q)—(R")T*1 defined by
D(w): = {x=(x,,. axp)||x|Sp, for 1=, L....T and

(4.6)
Ax,e F(w,x,_,) for t= | S—
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is nonanticipative. Morcover, there are swmmable junctions 1,0 R

such that almost surely
IL,((u, Ky s A,\"l[ Sale) when  xe Diw), (4.7)
Proof  Start with p, = p,, and for this as p (b) of Dehnition 1,

choose u corresponding p'=py such that (4.2) holds for r=1. Then
almost surely

(xy,€2Z,(w) and I.\'[,l <pol=[Iw, e F (w.x,) with
Xo+w €Zx(m) and xS p0l, (4.8)
or in other words, taking p, =max {p, gy},
[xoeZ(w) and i-"ul‘él’ﬂ]
=[Ix,eZw) with |x,|Sp, and Ax,eFw.xg)]  (49)

Continue recursively in this manner until for a certamn p, 2 py we
have almost surely

[x; 1€Zw) and |x,. ||§P1' N

=[3x,eR" with |.\,-|:§,u,- and  Avpe Fplo,n, )] (410)
From the chain of imphcations (49),..., (4.10), we observe that
almost surely, starting with any  and x, € Z, . (w) with || p,, we

can generale X, , . ..., xp such that

lgp, and AveFfwox, ) for r=r+1... T

It follows that the projecuion (4.3) of D{w) can be written

D'(ew) =Dl ifxg ..o . \'l)‘,\‘t—z, L)y, (4.11)
where
Bliug=lxge )il Sne Br F=01.... I
and  Ax e Flo,x, ) for t=1,.... I (4.12)

S ———
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We need 1o show that D' is a %, -measurable multifunction. Since

the multifunction Z, ., is closed-valued and %, -measurable, so is the
multifunction

(UH'{‘XLN + #ag XI)E‘“@")I #l |IIEZ‘+ l(“"]:- !4'3}

(12, Prop. | I]. As for the multifunction DY, let us observe that the
relation Ax, € F (w, x,_,) can be written

(x. -, Ax,) e C (w),

where
Clw) =gph F(w,)=dom L (v, -, ).

This set 1s the image of the epigraph of L(w, ) under the

projection (z,, w,, 2)r(z,, w,), and it is closed as a consequence of

(a) of Definition 1, as noted earlier. Since the epigraph of L (w, ", ")
depends % -measurably on w, it follows that C, likewise depends
¥ -measurably on w. The multifunction
w—C () x ... x C(w)
15 therefore closed-valued and %,-measurable [12, Prop. 1 1] (recall
that ¢ -measurability implies 4,-measurability when t<1)
Moreover, we have
Difw) = {(xq,.... x) €S| Alxy, ..., x)eC () x ... x C {w)]

where

S::{(x.;,,...,x,)”,r,lgp,ﬁ,

Aixg ..y X (xg, Axy, X, AXy, oo, X, -, AX).
This implics that D is closed-valued and ¢,-measurable |12, Cor.

10], and then, since D' is by (4.11) the intersection ol two such
multifuncuions, we may conclude D' is itsell closed-valued (actually
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compact-valued) and % ,-measurable [12, Theorem 1 M]. Thus D s
nonaniicipative as claimed.

Finally, by applying (a) of Definition | with p and g large enough,
we get the existence of a summable function /# such that almost
surely

xeDlw)=Liw, x, ,Ax) = flw).

On the other hand, from our basic assumption in Section | that
(1.10) holds for some summable 3, we get almost surcly

xeD(w)=Lw, x,_;, Ax) Z(w).

Combining these two inequalities, we obtain the last assertion of
Proposition 3. [0

Proof of Theorem 5 The first part of our argument will
characterize the vectors by and by which appear in the optimality
condition in Theorem 4. Only later will a function p be determined
in its entirety. For each (ag, ap)e R" x R, let

T
hlug, a;)= inf{E z L(w, x; - (w), Axi(w))]x’ et Exg=ay, Ex]._ar}
=1
(4.14)
The function h is convex from B" x R" to Ru{ t x}, and its effective
domain

C': =dom h={(ag, up)|hlay, dp) < G} (4.15)

has nonempty interior under our interior feasibility assumption.
Indeed, for the function £ in this assumption and a function f§ as in
property (a) of the bounded recourse assumption, for p and a
sufficiently large, we have

.

L{w, x,_ (w), Ax;(w)) £ flw) when ||x —x
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hence
(Exy, Exp)e Crint C (4.16)

Furthermore,
inf(Py,) =inf {{(ay, ar) + hag, ar)|(ag, ap) e C ()
=inf {l(ag, ap) +h(ay, ar)|(ag, ap)eri Cnint '} (4.17)

bccausc Cnint C'#0 by (4.16) [ 10, Sections 6-7]. Since h is convea,
it cannot have the value —oc anywhere unless it is — oo identically
on the set int(dom h)=int C' [10, Section 7], in which event inf(P,,,)
=—w by (4.17). In Theorem 5 we are only concerned with the
situation where (P,,) has a solution x, and then inf(P,,)=J(x)#
— 00. Therefore, in what follows we may suppose that

h(ag, ar)> — oo for all  (ag, ar)e R" x [R", (4.18)

Then there is no question of co — oo arising when we form [ +h in
(4.17), and we have the following criterion for optimality: v solves
(P,,) if and only if

inf {lay, ay) + h(ay, ay)}  is attained at
(ao,a.rjsﬁ'!ll"

{aOVHT) :(EXD»EXT)- (4‘9)

the infimum in (4.14) for
(ag, ap) =(Exy, Exq) is attained at x. (4.20)
We can characterize (4.19) by means of subgradients: it s

equivalent to having (0,0)e !+ M) Ex,, Exy). Since
domInint(dom hj# @ by (4.16), we can calculate 4

O+ hWExq, Exp)=0l(Exg, Exg)+ ch(Ex,, Exy)

[10, Section 16]. Hence (4.19) is equivalent to

I(by, —by)€ U Exq, Exy) with (—bg, by) e dh(Lxy, Exy), (4.21)
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where the sccond relation means

inf Ihiag, ap) +bo-ug—bp-ap} 1s attained at (£x,, Exq).(4.22

(ag ap)e H" x H"

But this and (4.20) say together that

T
inf {bU'E.t},—bT-Ex}+E Z Liw, x;_(w), Axw))] (4.23)

x'eA =1
is attained at x'=x.

Our task therefore in proving Theorem S is to show that if the latter
holds for some (by, by) and x, then there exists pe ' satisfying with
these elements the relations (a), (b) and (c) of Theorem 4.

Note thal since we are dealing with a convex problem in (4.23),
any local solution (with respect to the 2 norm on ) is a global
solution. It suffices therefore to restrict attention to x €.+ satisfying
x|l <p. say, where p>0 is sufficiently large in the sense that
p>max {||x|., [|%||.}. where x is the solution being analyzed and x
is the function in our interior feasibility assumption. Applying
Proposition 3 with p,=p for ¢=0,....7. we may obtain a
nonanticipative compact-valued multifunction D satisfying (4.6) and
(4.7) for vectors e(R")" "' (we use X here in place of x, since x has
already been used in the present argument to denote a solution to
(Pyo).) Let

i T
[ by Xog—br - Xr+ ): L(w, X, Ax) of |»‘:':| =
[ |
Slw, %)=+ for t=0,...,T,
l + 20 otherwise,

so that by the choice of D we have
dom f(w, )= D(w)
and also

|j‘((u, ,\E)L Cagta (W)t ... trapdw) for xeD(w), (4.25)
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where
Ay = |bulpu + Ib-‘,‘lp—l»g “)U “Xg—by X [-I for Xe D(w) (4.20)
and the functions a,...,a; are summable and satisfy
a(w)Z|L(w, %, - ,A%)| for xeDlw) (427)
Since L, is a %,-normal integrand on Qx R"x R", hence also /-
normal, because ¥, < «/, it follows from (4.24) that f is an ./-normal

intggrgnd on Qx(R)'Y [12, Proposition 2M]. For x'e.|
satisfying ||x'||, £ p, we have |xj(w)| < p, almost surely, so that

‘ , i , T
Slw, x(w)) =by" xg(w) —by-xp(w)+ Y Liw, x| (w), Ax(w))

=1
when  [|x], < p.

Thus, since the solution x in (4.23) satisfies ||x
(4.23) is equivalent to

. <, the assertion

@nf' El f(w, x'(w))} is attained at ' =x. (4.28)
The equivalence of (4.23) and (4.28) cnables us to apply our
previous results in [15] to obtain #'-muluplicrs for the constraint
x'€.4. We have observed that f 15 an .o/-normal integrand whose
effective  domain multifunction D is compact-valued, uniformly
bounded, nonanticipative and such that the bounds (4.25), (4 26) und
(4.27) hold. We also have available to us a function v satisfying the
interior feasibility condition and having [[x||, <p. These properties
imply that for some é > 0 sufficiently small,

XeD(w) when |¥—x(w)| <9,
and also
Liw, z,,w)=x(w) when |z,—%,(w)|<3,|w, —Ax ()£,

(4.29)

[by - Xglw) — by Xp(w)] £ 2.
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measurability [12, Cor. 2X]. Thus € and €, are o/ -measurable
multifunctions in (4.34), and hence so is their Cartesian product [12,
Prop. 11] and its inverse image under 4 [12, Cor. 1Q]. This proves
the .o/ -measurability of T,

We have established the existence of an .o/-measurable p* such that
(4.35) holds, where I'(w) consists of the vectors p satisfying (4.33),
and all these are known to obey (4.34). Observing [rom (4.32) that

AN(ay, ap)=1{(by, —br—qr(w))],
JLE(z,, w,) = 8L (w, £, W) — (g, = 1(w), 0),

while by (4.26) and (4.27) (since x(w) € D(w) almost surely)

T
|j“(x(w))| =[x o(w), xrw)) + Y Le(x, - (o), Ax(w))]
=1

<
'

|-‘(|{(U)| ’ |q,(u1)| + [bu “Xolw)—byx f'l“))l

i

=
[

gk

pulaw)] + 20 + 2, (w) + .+ xlw),

we see that when p'(w) is substituted for p in (431} and (4.32) we
have almost surely :

(Polw), — prlw) +qw) =(by, = by), (4.37)
(Apj(w)+q,  (w), pilw)) € CLiw, x, (w), Ax(w)), (4.38)
as well as
T

T T
2 |p1(wll§2[210+2 Y afw)+ ) P.iql(m)l]/ﬁi-
=1 (]

t=0

This last inequality assures us that p'e #', since ge #' and the
functions a, are summable.
The final stage of the proof has been reached. We set
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pi=E%Yp,—q) for 1=0,1,...,T—1,
pri=Pr—4r.

Then p, ., i1s ¥'-measurable for t=1,..., T so (¢) of Thecorem 4 is
fulfilled. We also have via (4.30) that

E'p,=E'p,—E'q=E'p, for 1=0,1,...,T (4.39)

Considering this for t=0, we see from (4.37) and the definition
Pr=pr—4r that

(E°po)(w), —pw))=(bo, —by) as,

which is (a) of Theorem 4. Another implication of (4.39) is that

b'(AP; +4q, - l.) =E‘(p: —p;, 1t - l):El(pl “pPi-a t qr)
(4.40)
=E'Ap,+ E'q,=E'Ap,.

Now the multifunction on the right side of (4.38) is 1s % -measurable,
because L, is a %,-measurable multifunction, and x, | and Ax, arc
both %,-measurable [12, Cor. 2X]. Since this multifunction is also
convex-valued, we can take the conditional expectation with respect
to %, on the left side of (4.38) and obtain by (4.39) and (4.40) that

(E'Ap)(w), E'p(w))€ L (w, X, - (w), Ax,(w))
almost surely. This is relation (b) of Theorem 4.
In summary, we have constructed a function pe ' satisfying (a),

(b) and (c) for the given solution x to (Py,), and this 1s all we had to
do in order to prove Theorem 5. []

5. THE DUAL STOCHASTIC PROBLEM

The function p in the optimality condition in Theorem 4 turns oul
to solve a certain dual problem, which we now formulate. Define the
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We can now apply (15, p. 182] and conclude there is a function

i =g i gy) in " for which

Elq,=0 for t=0,1,..., o, . (4.30)
and
inf [E{f(w, ¥(w)} — E{q(w) x(w)}] (4.31)
T 1s attained at x =x'.
Since f is .o/-normal, this minimization over 2'* (rather than 1)
can be reduced to pointwise minimization [12, Theorem 3A|:

inf | flw, X)—glw) X} is attained al X=x(w) as.

L
te(kmt

Using the definition (4.24) of f and the fact that ||x||,<p, so
|x,(w)| < p < p, almost surely, and hence

- o
inf {bo'fﬂ—br-ir+ Y Liw X, A%)— Y q,((u)i,}

xe(amr=1 =1 t=1
is attained at X =x(w) as.

But this means that almost surely x(w) is a solution to a problem in
the deterministic format, depending on w:

minimize over all X € (R")" ™! the function
(B .,
JAR) =1%o, Xp) + Y. LR, -1, AXY),

where

[“(ag, ap): =bgy ag—(byr+gylw)) ay,
(4.32)

L:u[:u W) = Liw,z,w,)—4, lw) -z

For fixed w the hypothesis of Proposition 2 1s satisfied almost surely
for (P,) by x{w) in view of (4.29). There does then exist by Theorem
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2 a corresponding vector pe(R")7 " with

(Po, = Pr) € Al°(xo(w), x (),

(4.33)
(Ap, p)edLly(x, [(w),Ax(w)) for t=1,..., T
and every such vector has
1‘ -
L [Pl =2 ton(@) 4w —fwn)fo. (434

Let ['(w) denote the set of all pe(R™)™! for which (4.33) is
fulfilled. We have just seen that almost surely [(w) is nonempty and
bounded. We must establish next the existence of an .o/-measurable
function p’ such that

pPlw)el{w) as. (4.35)
(From such a p' we will subsequently be able to manufacture the
desired pe #' satisfying (a), (b) and (c) of Theorem 4 for the b, b,
and x at hand.) It suffices to verify that the multifunction

IMwr—1(w) is closed-valued and &/-measurable [12, Cor. 1C]. We
use the representation

Mw)=A4 " YClw) x C,(w) x ... x CHw)), (4.36)
where
Clw): = 0l°(xg(w), x (W), Cw): =0LZ(x, - ((w), Ax,(w),
AP, Brs - Pr) oy Prs Boy AP 1 P APy - Pro 1, APT):
The subgradient sets C(w) and C,(w) are of course closed, and A 15
just a linear transformation, so (4.36) implies [(w) is closed. As

functions on 2 x R" x R" the expressions in (4.32) are o/ -normal and
the functions g, are w/-measurable [12, Prop. 2M]. In forming Ciw)

and C,(w), therefore, we are merely putting &/ -mcasuiable arguments

into the subgradient multifunctions associated with certain /-
normal integrands, and this operation is known to preserve -
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function m on R" x R" as before (¢f: (2.23)) and let

""ll(w’ "II" rl): Sup {ql . WI +rl:l - [‘I(:l’ “'l)}' (51)

Then M, 1s a %,-normal integrand [12, Theorem 2K ] and

L(w,z,w)=supi{g,-w +r -z, —MJq,r)} (5.2)

91,
Let

2 ={p=(po....,pr)€L"|p, -, is % -measurable
(5.3)
for t=1,..., T, and E°p, and p; are constant}.

This is a closed subspace of &', The problem dual to (P,,) is

maximize — K(p) over all p=(py, p,,-.., pr)€P, where
(P

sto.

F
K(p): =m(E°py, pr) + E { );l M, (w, (E'p,)(w), (E'Ap,)(w)}}.

The functional K is well-defined from 2 to Ru{+ =}, convex, and
lower semicontinuous with respect to the #'-norm on 2.

THEOREM 6 The inequality inf(P,,)Zsup(P%) always holds. One
has ped®0) if and only if actually inf(P,,)=max(P%), and p is
*

optimal for (P%,).

Proof of Theorem 6 This is a consequence of the proof of
Theorem 4, just as Theorem 3 was a consequence of the proof of
Theorem I. The trick is to calculate the conjugate ®* from the
definition (3.3) of ® and the formula

~®%(p)= inf (@) —(py)) for pe.

The change-of-vaniables argument in the proof of Theorem 4
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demonstrates actually that

Kip) f pe,
(D*(p}:{

+ oo for all other pe 2"

The argument for Theorem 3 then takes over, word for word, and
gives the claimed result via Theorem 4. O

Cororrary Under the hypothesis of Theorem 5 and the additional
assumption that (P,,) possesses a solution, one has min(P,,)
=max (P},)

Proof The assumptions in question imply according to Theorem
5 the existence of a function p satisfying (a), (b), (c) for a solution x
to (Py,). Then pe d®(0) by Theorem 4, and the desired conclusion is
given by Theorem 6. [
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