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We show that the operators Econdilional cxpectation given a c-field %) and ¢
(subdifferentiation), when applied to a normal convex integrand f, commute if the effective
domain multifunction em—{xgR"|f(w,x)< + o0} is F-measurable.

We deal with interchange of conditional expectation and subdifferentiation
in the context of stochastic convex analysis. The purposc is to give a
condition that allows the commuting of these two operators when applied
to convex integral functionals.

Let (Q. /. P) be a probability space, % a g-field contained in o/, and f
an «Z-normal convex integrand defined on Q x R" with values in R {xc}.
The latter means that the map

wepif(o,)={(x,2)e R""a= flw.x)}

is a closed-convex-valued .«/-measurable multifunction. See [2] and [9] for
more on normal integrands and their properties. In particular rccall that
for any «/-measurable function x: Q- R”, the function

w1 (o, x(w))

is a «/-measurable and the integral functional associated with f is defined
by
IAx)=] fle, x(@)Pldw).
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To bypass some trivialities we impose the following summability
conditions:

(1) there exists a ¥-measurable x:Q—R" such that I (x) is finite,
(2) there exists ve ¥} (%)=L, %, P; R") such that I,.(v) 1s finite,

where f* is the («/-normal) conjugate convex Integrand, ie.
S M. x)=sup,, gul[rx—F (. x)]

Finally, we assume that .«/-- and hence also %-- is countably generated,
and that there exists a regular conditional probability (given %),
P%o/ x Q—[0,1]. Whenever we refer to the conditional expectation given
%, we always mean the version obtained by integrating with respect to
P¥. Consequently all conditional expectations will be regular.

In particular the conditional expectation E¥f of f is the %-normal
integrand defined by

(E%f) (. x) =] f(C. 0P

t;')}

Also given T:Q3IR", a closed-valued .o/-measurable multifunction, its
conditional expectation given % is a closed-valued %-measurable
multifunction obtained via a projection-type operation from a set

L= {ue LYQ, o, P;R)u(w)eT(w)as.} = L)

onto ZH%)I =2 Q,%, P;R". Valadier has shown that a regular version
E*I:Q—R" is given by the cxpression

E*T(0) = cl{{ w(Q)P?(d{|w)|u € Lo(A), u(w) e [(e) as.}.

We refer to [14] and the references given therein for the propertics of E¥f:
in particular to the article of Dynkin and Estigneev [3], which specifically
deals with regular conditional expectations of measurable multifunctions.

We consider T, and Ipe, as (integral) functionals on #%(/) and £ 3(%)
respectively, The natural pairings of . and %' and (£ ™)* yield for each
functional two different subgradient multifunctions. We shall use 07, and
¢lgep for designating #*-subgradients and &*/, and #*,., for (£*)*-
subgradients. Rockafellar [8, Corollary 1B] shows that when the
summability conditions (1) and (2) are satisfied, one has the following
representation for (% *)*-subgradients:
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8*1 (x)={v+ofvelfx).v,e¥ (/) with v [x—x]20YX edomI,|
(3)
where &,(«#) is the space of singular continuous linear functionals on
L), and
domI,={xe L2(A)x)< + 0}

is the effective domain of I,. (For the decomposition of (£)* consult [2,
Chapter VIII]). Furthermore the #*-subgradient set is given by

oI (x)={ve L () p(w)edf (o x(w)as. L (4)

The summability conditions (1) and (2) on f imply similar properties for
E?f. so the formulas above also apply to Iz, Thus for xe £ 7(#) we get

O* T () = {u+ “.s-|” € 8l g flx). u € (%) with u[x—xT20,¥x'e dom Ips,}
(5)
and

Ol pef(x)={ue LG ulw) e CE%f (e, x(w))as.}. (6)

We are interested in the relationship between ¢, and ¢l «, Relying on

the formulas just given, Castaing and Valadier [2, Theorem VIIL37] show
that if in place of the summability conditions (1) and (2), one makes the
stronger assumplion:

there exists x° e #7(%) at which I, is finite and norm continuous, (7
then for every xe % 7(%) one gets:

O o f(x) = E*(E1 {(x)) + re[ 01 e fx) . (8)
where re  denotes the recession (or asymptotic) cone [2,7]. If
xeint dom Igep, ps (x) is weakly compact and then re[ 0 s (x)] =10}, in
which case

This was already observed by Bismut [1, Theorem 4]. For the subspace of
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2% of constant functions, Hiriart-Urruty [4] obtain a similar result for
the e-subdifferentials of convex functions. For finite-valued Lipschitz in-
tegrands, Thibauld [12, Proposition 4.7] obtained recently a related result
involving Clarke generalized subgradients,

Here we shall go one step further and provide a condition under which
the re term can be dropped from the identity (8) without requiring that
xeintdom I, Very simple examples show that the rc term is somctimes
incscapable in (8). For instance, supposc ¥={¢.Q} (so E*=E) and
consider f(w.' )=y, , sup the indicator of the unbounded interval
(—a, &w)]. where € 18 a random variable uniformly distributed on [0.1].
In this casc Y,_,, =Ef=E®f =Ige,, so that &I+ (0)=R. but E*(&1(0))
=I{0}=10}. Thus (8) would fail without the rc term. Another example
appears in [13, p. 63] where it is the condition of the Theorem: “If (x)<
+ w0 for every xeZ7(%) such that x{e)edom flw,:)", that fails to be
satisfied.

THEOREM Suppose [ is an «/-normal convex integrand such that the
closure of its effective domain multifunction

w—D(o): =cldom flw, )=cl{x e R"|f(c, x) < + o} (10)

is %-measurable. Assume that I/ (x)<+ % for every xe % 7(%) such that
o

x(w)edomf(w,?) as., and thar there exists x"e L 0(%) at which 1, is finite
and norm continuous. Then for every xe ¥ °(%) one has

G, (x())=EPoft, x()) ass., (1)
or in other words, the closed-valued %-measurable multifunctions
w—EE*flo, x(w))

and
w— E*LEfl, x()](w)

are almost surely equal.
Proof. From (8) it follows that
Sl e r(x) 2 E5(01 p(x)).
In view of (6) and (4) this holds if and only if
GE*f-,x() = E?fl-, x(-) a.s.

It thus suffices to prove the reverse inclusion. Let us suppose that
e JE¥f(-, x(). For every ye R", define

gl yy=1(c, y)— ulw)y.
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This 1s an .&/-normal convex integrand which inherits all the properties
assumed for [ in the Theorem (recall that ue.#L%)). Moreover
0edEYg(,x()). We shall show that 0= FE*dg(-,x(-)), which in turn will
imply that ue E¥6/ (. x(")) and thereby complete the proof of the Theorem.
Since almost surely 0edE (. x(w)), we know that
0edlps,(x) = 0*ga,(x). Hence x minimizes e, on % 7(%). Let inj denote
the natural injection of #7(¥) into ;7 (/) with
Wo=1nj [ F(%)].
Now note that inj x=x also minimizes Ips, on W < # (/). or
equivalently I, on #", since the two integral functionals coincide on #°
(by the definition of conditional expectation.) Thus
0 3%(L, + Y )0)
where 1), Is the indicator function of ¥, or equivalently:

0 d*L(x) 4 0%y (x),

since g is (norm) continuous at some x”=injx"=%" By (3), this mcans
that there exist ve ¥1(/), v,e ¥ (=), such that

vlw) e dglow, x(w))as., (12)
v [x—x7z0 for all x'edomI,, (13)
and —(v+u,) is orthogonal to #7, ie.
(e+u)[x]=0 for all x" e %" (14)
This last relation can also be expressed as
{v4+v,) [injy]=0 for all ye #1(9),
or still for all ye Z(%)
inj*(e+v,) [v]=0,

where inj*:(Z % ())* —(# 7 (%)* is the adjoint of inj. Thus the continuous
linear functional inj*(r+v,) must be identically 0 on ¥ 7(%), i.e. on # (%)
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one has
inj*y, = —inj*v=— E%. (15)
The last equality follows from the observation that E¥=inj* when inj* is
restricted to &, (.#). cl.[2, p.265] for example.
We shall complete the proof by showing that the assumptions (12), (13)
and (15) imply that
(v —E¥%) () € dalw, x(m)) a.s. (16)
This will certainly do, since it trivially yields the sought-for relation
0=E*(v—E*0)e E*0g(, x(")).
To obtain (16). it will be sufficient to show that
E{(—E%) [x—)1} 20 (17)
for all yedom [, c % (#/). To see this, recall that the relations (17) and
vedl(x) (cf. (12)) imply that v—E®vedl,(x), from which (16) follows via
the representation of #!-subgradients given by (4). In fact, because the
effective domain multifunction, or more preciscly its closure w—D(w), is
%-measurable, 1t is sufficient to show that (17) holds for every
vedomI,n ¥ . Suppose to the contrary that (17) holds for every
vedoml, n ¥ -- or equivalently because of the = inequality that (17)
holds for every yecl dom I, n %" -- but there exists je.%;(=/) such that
I ()= + = and for which (17) fails, i.e. we have
E{(—E%v): [x—7]} <0.
Because — E¥v and x are 9-measurable, this inequality implies that
E{(—E®y)-[-E®§1} <O. (18)
Moreover, since I,({) < + o, it follows that almost surely
Yw)edom glw, )< Dlw).

Taking conditional expectation on both sides, we see that

(E¥7)(w) e E* D(w)= D(w), (19)
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because D is a closed-value %-measurable multifunction. Naturally
E’fe’. Because 1, is by assumption finite on {zeZ%(%)
zlw)edom g(w, )as.}. and Diw)=cl dom glw,"), it follows from (19) that
E¥yecl dom I,. Hence (17) cannot hold for every yedom I,n%" since
E®Y belongs to (¢/ dom 1,) n# and satisfies (18).

There remains only to show that (17) holds for every ye #7%(%) such
that inj y=yedom I, Bul now from (13) we have that for each such y

vlx—yl=vJinj x—injy] 20,
or again equivalently: for each yedom I,».% (%)
(inj*vg) [x—y]1z0.

But this is precisely (17), since we know from (15) that on Z1(%), inj*v,=
—E%. O

COROLLARY Suppose [ is a =/-normal convex integrand such that F(x)<
+ oo whenever x edomf(w, ) a.s., where

F(x)=E{f(w,x)}.

Suppose moreover that there exists x*eR" at which F is finite and
continuous, and that the multifunction

w—D{w)=cldomf(w,")
is almost surely constant. Then for all xe R",
E[Of (-, x)]=0F (x), (20)

where the expectation of the closed-valued measurable multifunction T is
defined by

ET =cl{[ v(w)P(dw)|ve L), viw)eT(w)as.}

Progf Just apply the Theorem with G={¢,Q}, and identify the class of
constant functions- -the %¥-measurable functions--with R*. [

This Corollary was first derived by loffe and Tikhomirov [5] and later
generalized by Levin [6]. Note that our definition of the expectation of a
closed-valued measurable multifunction 1s at variance with the definition
now in vogue for the integral of a measurable multifunction, which does
not involve the closure operation. {Otherwise the definition of the integral
of a multifunction would be inconsistent with that of its conditional
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expectation, in particular with respect to ¥ ={¢,Q}, and also when I'-ET
is viewed as an integral on a space of closed sets it could generate an
clement that 1t 1s not an clement of that space.)

Application

Consider the stochastic optimization problem:
find

inf E[f(w, xi(w), xp(w))] over all x, e & 7(F), x, € &5 (), (21)

where «/ and % are as before, and f is an .o/-normal convex integrand
which satisfics the norm-continuity condition:
there exists

(0.1 € L7(9) x L)

at which I, is finitc and norm continuous. Suppose also that the effective
domain multifunction

w—dom (e, )= {(x;,x2) € R" x R"| (e, x,,x5)< + 0}
is uniformly bounded and that there exists a summable function he ¥'(/)
such that (x;,x,)edomf(w. ) 1mplies that |f'{c9,xl,x3];§h(m). Finally
suppose that the multifunction

w—D (m)=cl{x, e R"|3x, e R™ such that f(w.x.X,)< +ow0}

15 %-measurable. For a justification and discussion of these assumptions cf,
[11, Section 2]. From Theorem 1 of [11], it follows that the problem: find

inf E[g(w, x,(c))] over all x, € # /(). (23)
where
glo, x)=E?[inf . guif (-, x5 %50 (o),
is cquivalent to (21) in the sense that if (x,,%,) solves (21), then %, solves
{ 23), and similarly any solution x; of (23) can be “extended” to a solution

(x,,x,) of (21). Both problems also have the same optimal value.
The hypotheses imply that

(e, X =inf,_f(w, x5, x,)



CONVEX FUNCTIONALS 181

is an /-normal convex integrand, since the  multifunction
w—epi(inf,_flm,x,x,)) 18 closed-convex-valued and @/-measurable. Iis
cffective domain multifunction, or more precisely

m—D, (@) =cldom g(w. "),

is %-measurable. Combining (11) with the representation for the
subgradients of infimal functions [15. VIIL4], we have that for cvery
x e, (%)

8al,x,() = EZ{0(0)|(),0) &, & (0, x4(w). x2)
for some x, &R 2} (),

from which Theorem 2, the main result of [117, follows directly.

Remark 1If the underlying probability measure P has finite support, then
(#ry =L and (11) and (20} are satisfied without any other restriction.

On the other hand, if P is nonatomic, and the cffective domain
multifunction (or its closure) is not ¥-measurable, then the identitics (11)
and (20) do not apply. More precisely, suppose that there exists a subset C
of R" such that the ./-measurable set

{oldomflw, )~ C+£¢)

has (strictly) positive mass and is not %-measurable. Then the term
re[ 01 ge(x)] can never be dropped from the representation of ¢l,., given
by (8). as can be seen from an adaptation of the arguments in Seclion 4 of
[10]. In those cases the inclusion EYffcdE*f will be sirict for at least
some xe ¥7(%)
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