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1. THTRODUCT IOMN
A [unctiun £:0" +R 15 said to be ivecaiey Lipseatitzian 1f for

r

cach <R bhere is a neighborhood X of x such that, for some \ -V
[£ex") = £(x') ! © y|x" =x'| for all x'&X, x"&X %

Examples include continuously differentiable functions, convex
functions, concave functions, saddle functions and any linear

combination or pointwise maximum of a finite collection of such
functions,

Clarke {1975 and 1980), has shown that when f 15 locally

Lipschitzian, the generalized directional derivative

s . Elx'+ ty) - F(x' 5
£ {x;v) = lim sup (x vh=fin’) (1.2)
oo GllE o t
[ )

is f‘or each x a finite, suolinear (i.e., convex and positively

homogeneous) function of v. From this it follows by =lassical

convex analysis that the set

il

i 1 - ity 2
ifix) s -y-?Rﬁ-y-v"fn{x;"} for all vea™ (1.3
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ig nonempty, convex, compact, and satisfies

£° (x;v) = max ly+v |y €3f(x)!] for all veRr' . (1.4)

The elemants of 3f{x)} are what Clarke called "generalized gradients”
of f at x, but we shall call them subgradienta. As Clarke has
shown, they are the usual subgradients of convex analysis when f

is convex or concave (or for that matter when f is a saddle func-
tion). When f is continuously differentiable, 3f(x) reduces to

the singleton (VE({x)} .

In subgradient optimization, interest centers on methods for
minimizing £ that are based on being able to generate for each x
at least one (but not necessarily every) y € 3f{x), or perhaps just
an approximation of such a vector y. ©One of the main hopes is
that by generating a number of subgradients at various points in
some neighborhood of x, the behavior of £ around x can roughly bhe
assessed. In the case of a convex function f this is not just
wishful thinking, and a number of algorithms, especially those of
bundle type (e.qg., Lemarechal 1975 and Wolfe 1375) rely on such an
approach. In the nonconvex case, however, there is the possibility,
without further assumptions on £ than local Lipschitz continuity,
that the multifunction 3f : x —~3f(x} may be rather bizarrely disas-
sociated from f. An example given at the end of this section has
f locally Lipschitzian, yet such that there exist many other locally
Lipschitzian functions g, not merely differing from £ by an addit-
ive econstant, for which 3g(x) = 3f(x) Eor all x. Subaradients alone
canneot discriminate between the properties of these different func-
tions and therefore cannot be effective in determining their local
minima.

Besides the need for conditions that imply a close connection
between the behavior of F and the nature of 3f, it is essential
ta ensure that 3f has adequate continuity properties [or the con-
struction of "approximate" subgradients and in order to prove the
convergence of various algorithms involving subgradients. The key
seems to lie in postulating the existence of the ordinary direction-—

al derivatives

E'(x:v) = lim

s 39|

and some sort of relationship between them and 4f. Mifflin 112774

and 1977b), most notably has worked in this direction.

In the present article we study the relationship between £
and if for several special classes of locally Lipschitzian func-
tions that suggest themselves as particularly amenable to comput-
atiron.  Flrst we qive some new results about continuity properties
of [' when £ belongs to the rather larnoe class of functions Ehat
are "subdifferentially regular". Next we pass to functions £ that
are lower—(" for some k, 1- k<=, in the following sense: for each
point x €™ there is for some apen neighborhood X of x a repres-
entation .

fix) = m Fix,sl for ail z=X, (1.6)

I
m W
=

where 5 is a compact Lopclogical space and F : % %S —«R is a func-
Lion which has partial derivatives up to order k with respect to
#oamd which along with ail khese derivatives is continuous not

st i x, but jointly in (x,5) EX« 5. We review the strong re-
suits obtained by Spingarn {(forthcoming) for luwer—C: functions,
which greatly 1lluminate the properties tLreated by Mifflin (1977b),
and we g3 on to show that for XK 2 the classes of lower—Ck function
4ll coincide and have a simple characterization.

#efore proceeding with this, let us review some of the exis-—
trnee properties of [ and continuity properties of f rhat are
pussessed by any locally Lipschitzian function., This will be use-
tni partly For background but also to pravide contrast between
such properties, which are not adequate for purposes of subgradient
cptimization, and the refinements of “Hem that will be featured

Later,

Local Lipschitz continuity of a function f: R - R implies by
4 classical theorem of Rademacher [(See Stein 19701 that for almost
-hat !

n -
BarTr ow i 7 JiE L PR
wery w = RY V0 is differentiable at x, and moreaver bhat the grad-

Lant mapplng 7E, on the set whaere i+ axisks, 1s 1oc

Ly bounded.
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T n . .
Given any x= R, a point where f may or not happen to be differ—
entiable, there will in particular be in every neighborhood of x

a dense set of points x'

where f(x') exists, and for any sequence
of such points converging to x, the corresponding seguence of
gradients will be bounded and have cluster points, each of which
is, of course, the limit of some convergent subsequence. Clarke
demonstrated in Clarke (1975) that 3f(x) is the convex hull of all

such posgible limits:

3f(x) = cof{lim f(x')|x'=x, f differentiable at x*}. (1.7}

Two ilmmediate consequences (alsc derivable straight from properties

of £° (x;v) without use of Rademacher's theorem) are first that If

is locally bounded: for every x one has that

(] 4f(x") 1s bounded for some neighborhood X of x,
w'Ex 1 1.8)

and second that 4f£ 15 wpper semicontinuous in the strong sense:

for any ¢+ there is a 4 >0 such that

JEix') CHf(x) +eB whenever |x'-x| < § . (1.9)
wWhere

B = closed unit Euclidean ball = (x| (=l <1} . i e

The case where *fix} consists of a single vector y is the
one where £ is striecly differentiable at x with 7E{x) =y, which

by definition means

: Eigel + byl sk i
Lim ) 25 . Yo for all ver”
%' X £,
Ll

5 (1.1

This is pointed out in Clarke (1975}, From (1.7) it is clear
that this property occurs if and only if x belongs to the domain

of 75, and Vf is continuous at x relative to its domain.

= 138=
“We conclude this introduction with an illustration of the
abysmal extent to which 1€ could in general, without assumptlons
beyond local Lipschitz continuity, fail to agree with 7f on the
domain of vf and thereby lose contact with the local properties

of £.

Counterexample

, ; : n N
There is a Lipschitzian function f : KW= R such that

JE(x) = [-1,1] for all xegr® . (t.12)
To construct F, start with a measurable subset A of R such that

for avery nonempty open interval I ¢R, both mes{A nI] »0 and

mes{Aa Yy L] =0 (5uch sets do exist and are described in most texts

an Lebesgque measure.) Define h - R—+H by

t Lo
[ _ ) v if een,
hity = J]'T-) div) where 3{t) = l_1 if tea .
1]
Sinece %4 =1, h is Lipschitzian on R with Lipschitz constant
=1, Hence h'i{t) exists for almost every t, and Ih'ft)ll 1w

In fact h'=+* almost everywhere, from which it follows by the
shoice aof A that the gsets {t|h'{t} = 1! and "t|h*(t) =~1} are both

dense in R. Now let

for x = (x1,...,xn] +

» . . - . -
Then f 1s Lipschitzian on ® with gradient

YEix) = Ih'ix J,‘..,h'[xn]}

7

epxlsting 1f and 2nly Lf W' ix | exists for i=1,...,n. Therefore
- : i

TELR) E[—1,1]n whenever Tfix) exists, and for each of the corner

: A , ) n .
points e of [-i,‘|]J the set {x{Vfix) =r} is dense in R'. Formula

(1.7} implies then that (1.12} holds.

Note that every translate g(x) = [(x -a}l has g =3f, because

5f 15 constant, and yet g - f ray be far from constant,
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2. SUBDIFFERENTIALLY REGULAR FUNCTIONS

A locally Lipschitzian function f : A"+ R is subdifferentially
regular if for every x er" and veR™ the ordinary directicnal de-
rivative (1.5) exists and colncides with the generalized one in

{1.2):
E' (x3v) = £ {x;v) for all x,v.

Then in particular E'(x;v) is a finite, subadditive function of
v; this property in itself has been termed the quasidifferen-
tiability of £ at x by Pshenichnyi (1971).
THEOREM 1. (Clarke 1975). [If I 18 conver or £uuer—fk
on R® for gome k> 1, then £ ia not only loeally Lipsehitazian

but subdifferentially regular.

Clarke did not study lawer—ck functions as such but proved
in Clarke (1975) a general theorem about the subgradients of “"max
functions" represented as in ({1.6) with F(x,s) not necessarily
differentiable in x. His theorem says in the case of 1ower—Ck

functionsg that

af(x) = co [V Fix,s) | sexix)t (2.1)
where
I{x) = arg max F(x,s) . (2.2)
SES

It follows from this, {1.4), and the definition of subdifferential
regularity, that

£'{x;v) = max iVxF(x,s]-v isel(x)} (7.3

1 i
for lower-C functions,a well known fact proved earlier by
Danskin (1967).

The reader should bear in mind, however, that Theorem 1 says
[}

considerably more in the case of lower-C® functions than just this.
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By asserting the equality of £' and £°, it implies powerful things
about the semicontinuity of f' and strict differentiability of £.
We underline this with the new result which tollows.

THEOREM 2. For a funetion £: RT =R, the following are
equivalent:

(a) £ ta locally Lipsehttzian and aubdifferentially
regular;

(b) f'"(x;v) exrists finicely for ali x,v, and i3 upper

samicontinKons in XK.

Proof.

(a) = (b). This is the easy implication; since f'= £°
under subdifferenciai regularity, we aeed only apply (1.4) and
(1.3},

{b) = (a). For any x' and v the function Q{t) = E({x"' + tv)

has both left and right derivatives at everv t by virtue of (b):
Q' (k) = E'x' +Ev V), Q'_(t) = =€ (x'+tv; —v) (2.0

Anreover, the upper semicontinuity in (b) Implies that for any
Fixed x and v there 15 a convex neighborhood X of x and a constant
A -0 such that

Ehin'+ tv v} A and =f'{(x'*ktv;v) - =% when x'+tve X
{2.5)
Since Q has right and left derivatives everywhere and these are
locally bounded, it is the integral of these derivatives (cf.
S5aks (1937)):

ey ~Qity) = | ! Q' tudr = ' ¢ 2 {ridr
b L ! -
o 5
‘rom this and (2.3%) it fullews tnat
(E(x'+ tv) = Fi{x')i - 't when xX'SX, x'+Ev-X .

Thus the local Lipschitz property (1.1) holds as long as x"- x'

15 some multiple of a fixed v. To complete the argument, con-

5ider not just one v but a basis Vigeaoa ¥ for Rn.
n
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Each x € R” has convex neighborhoods xi and constants Ai_iﬂ such
that

| £{x'+ tvir —f(x‘)[ < .Xit when x'e}(i, '+ tvie Xi (2.6)

Then there is a still smaller neighborhood X of x and a constant

@ > @ such that for x'€X and x"€ X one has

X" o= X'F L.V, bl bt v
; G| nn

with x' and x'+t v . &€X. , x'+ t.v. and (x'+twv,) +tv, €4, , and
T 1 11 1 2 2

5o forth, and

leql+een+ e | = alk"=x!
n —

Then oy (2.6)

[£ex") - €(x") = | £+ tlvlj - Elxty| o+ |f(x'+t;‘.rl+ bv_ ) - f{x'rtvlJ| - -

o depftyg AE 2 non

C oA + o Moo
T PR Y - xty .

In other words, f satisfies the Lipschitz condition (1.1) with
A o= {A1 e +in)u - Thus £ is locally Lipschitzian.

We argue next that f£'(x;v) < £"(x;v) for all x,v by (1.2},
and therefore via {(1.7) that

£29% :v) = iim sup EMwtaoang 4 L7

'+ x

The "lim sup” in (2.7) is just ' {x';v) under (b), so we conclude

that £'(x;v) = £{x;v) . Thus (b) doas imply (al, and the proof of

Theorem 2 is complete. [

=1 33=

COROLLARY 1. Suppone f s locally Lipsehicatan and
subdifferentially reqular on R™ and let D be the get of all
petnts where € lhappens te be df fferentiable. Then at each
X&), £ i3 In fact strictly diffeventiablea. furthermore,
the gradient mapping is coniinuous relative to D.

COROLLARY 2. If E

1 s locaily Lipsehitzian and subdif-

. oo n ) i o
ferentially regular on R, then 3f 7ig actually single-valued

n
at almeat every xR .

Thege corollaries are immediate from the facts about differ-
entiability of f that were cited in §1 in connection with formula
(1.7). The properties they assert have long been known for convex
functions but have not heretofore been pointed out as properties
af ali Lower—Ck functions. They hold for such functions by wvirtue

of Theorem 1.

CORCLLARY ).  Uuppose £ fs locally Lipsenitzian and sub-

Soaq . n - - * .
differentially regular on RV. If g ta another loecally Lip-

el bl

o - . . n : ik v
daartazian function on R swel that dg = 3f, then g = F+ const.

Prooy. By Corollary 2, 3g is single-valued almoast avery-

where.  Recalling that g is strictly differentiable wherever
49 is single-valued, we see that at almost every x R the
function h = g - f is strictly differentiable with Yhix) =

T i) = VE (x)

0. Since h is locally Lipschitzian, the fact
that Vh(x) = 0 for almost all x implies h is a constant func-
tion. 0

COROLLARY 4, Cuppose [ {8 locall W obipeenttzian and sub-
i S + n I o - T
drffeventially regular on R, Then For o very continuously

differentiable mapping 5:R--RY, the Ffunction ie) = £{51ed)

nas righc and a7t derivacives G ) and Q'it) everywhere
= P - >

nd Lhaese datig;

it

Qi) = lim sup QL () lim sup Q' (1)
Tt e

(2.4)

I

Qi) = Lim inf UL(TJ iim inf Q' (1) .

T il Ti=+ Iz
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Proof. The function Q is itself locally Lipschitzian
and subdifferentiably regular (cf. Clarke 1980). Apply
Theorem 2 to Q, noting that Q! (t} = Q'(t;1) = Q°(t;1) and
2'{t) = -Q'{t:;=1) = -Q°(t:-1), and hence also 3Q(t) =
(@l (t),Q (k}]. The reason Q;(r} and Q' (t} can appear inter-
changeably in (2.8) is that by specialization of (1.7) to
0, as well as the characterizations of O; and Q' just men-

tioned, one has

Qp (1) = lim sup Q'{1") Q'(7) = lim inf Q'(T'} ,
g s T

where the limits in this case are over the values 7' where
Q'(r') exists. a

3. LONER-C1 FUNCTIONS AND SUBMONOTONICITY

The multifunction 3f :Rn;:Rn is sard to be monotone 1if
(x'=x")+ {y'-y") >0 whenever y'e 3f({x'}, y"ed£{x") (3.1)

This is an important property of long standing in noniinear ana-
iysis, and we shall deal with it in 54. [n this section our aim
15 to review results of Spingarn (forthcoming) on two generaliz-—
ations of monotonicity and their connection with subdifferentially
regular functions and lower—('1 functions. The generalized prop-

erties are as follows: af is submonotone 1if

lim ing X=X '=9) 5 o, wx, wedf(x)

K x [x"= x|
y'e If(x") R d
and it is secrietiy submonotone if
Lim bne Iz ¢ (ptept) 00, WX
%' x Ix"=x*| (3.3)
X" =X
y'e 3f(x")

Y“E AF(x™)

=335+

T state Lhe results, we adopt Spingarn's notation:
3L (%) = {y €30 (x) [ (y'=y) v < 0, ¥y'e if (x)) (3.4)

Thus af(va is a certain face of the compact convex set 3f(x),
the one consisting of all the points y at which v is a normal

vector. Let us also recall the notion of semismoothness of f

tntroduced by Mifflin (1977): this means that

34x, vjwv, tj#O. yl*Y. with

yje af(xJItj vJ) , then one has yev=£"(x;v) . [3.5)

whenever x

THEOREM 3 (Spingarn (forthecoming)). Tae following
groperties of a leoeally Lipsehritzian function f:RU R are

wguivalent:

fa) £ fs both subdifferentially regular and semisamooth;

(k) 3E iz aubmonotone;
{e) 3f s Jdirecttionally upgper semicontinuous in thae
. - n n .
saense that for every XSR, VER ond £ >0, there

tg 2 4§ 20 such that

Af(x +Ev') < IF(x}, +eB  when lv'=vj < 4§ and D <t 5 .
(3.6)

THEOREM 8 (Spingarn (forthcoming)). Tau lollawing
propertize of a locally Lipschizzian Junction £:RT=R are

viutvalent:

th)  VE fa atrietly submonotone:

fe)  3f is strietly directionaliy upper zermicontinucus
. 5 4 _ N L o1 3
n the senae that For every XER, vVER and e >0,

there i3 a 5 >0 that
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(¥7=y')rv' > -e when [x'-x| < &, [v'-v]|«&,0<tcs,
y'Eaf{x') and y"E Af(x'+ kw') .,

(3.7}

Spingarn has further given a number of valuable counter—

examples in his forthcoming paper. These demonstrate that
3f submonotone # 3f strictly submonotone , (3.3)
1
£ subdifferentially regular # f lower-(C > {3.9)

f quasidifferentiable and semismooth #* f subdiffer-
entially regular. 300

Comparing Theorems 3 and 4, we see that lc)wer—{,‘1 functions
have distinctly sharper properties than the ones of gquasidiffer-~
entiability and semismoothness on which Mifflin, for instance,
based his minimization algorithm (1977al. In perhaps the majority
of applications of subgradient optimization the functions are ac—
tually lower—C1, or even lower-(C . This suggests the possibility
of developing improved algorithms which take advantage of the
sharper properties. With this goal in mind, we explore in the
next section what additional characteristics are enjoyed by lower-
Ck functions for k > 1.

4. LOWER"CZ FUNCTIONS AND HYPOMONOTONICITY

The properties of lower—Ck functions for k =2 turn out,
rather surprisingly, to be in close correspondence with properties
of convex functions It is crucial, therefore, that we first taka
a look at the latter. We will have an opportunity at the same
time to verify that convex Functions are special examples of
lower-C” functions. The reader may have thought of this as obvi-
ous, because a convex function can be represented as a maximum of
affine (linear~plus—-a-constant) functions, which certainly are C .
The catch is, however, that a representation must be constructed
in terms of affine functions which depend continuously on a para-
meter 5 ranging over a 2ompact set, if the definition of lower-¢™

is to be satisfied,.

e 3=

We make use now of the concept of monotonicity of 3f defined

at the beginning of 53.

; o ; o . n
THEOREM 5., For a locally Lipsehitaian funetion £:R —R,

the Following properties are equivalent:

fal £ fLa convex

(b}  Af fLs montone ;

(e} for sach xeR" there i3 a netghborhood X of x
and a pepresentation of £ as in (V.6) with 5 a
campact tepologteal space, Fix,s) affine in x

and continuous tn s .

Praa ., [a) ={c}., In terms of the conjugate f* of the

convex function £, we have the formula

fix) = max {y+*x -£*(v}] for all x , (4.1
ye RP

whera the maximum is attained at v if and only 1if ¢ € 3f (x)
fsee Rockafellar 1970, $23). Any x has a compact neighborhood
X on which 3f is bounded. The set

YNGR with pe Sl Somynn=Eli |

5= [{y, %) &R

15 then compact, and we have as a special case af (#.1)

Six) = max [y-x=-dgi .
{y,8) €5

This is a representation of the desired type with s = (y,3d},
Fix,s5) = yex -4 .
tc) = f{a). The representations In (g) imply cer-

tainly that { is convex relative to some neighborhood of each
polnt.  Thus for any fixed x and v the function Q(f) = E{x + tv)
has left and right derivatives Q' and QL which are nondecreasing
in some neighborhood of each t. These derivatives are then non-

decreasing relative to t& (-=,%), and it follows CFrom this that
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Q is a convex function on (-=,=) (cf. Rockafellar 1970, q20)
Since this is true for every x and v, we are able to conclude

that f itself is convex.

{a) = (b). <his is well-known (cf. Rockafellar
1970, 524).

(b) = (a). A direct argument could be given, but
we may as well take advantage of Theorem 3. Monotonicity of
3f trivially implies submonctonicity, so we know from Theorem
3 that f is subdifferentially regular. Fixing any x and v,
we have by the monotonicity of 3f that

((x+t"v) =(x+t'v)) - (y"-y') > 0 when

Bl< £, v'edfix+t'v), y"&3f(x+t"v) .

This implies

sup 5"' .y :__ inf Y"' ” - -sup [—y -«’} ¥
y'Edf(x+ t'v) y'E BE(x + ") Mz abix k E"r)
or eguivalently (by 1.4) and subdifferential reqularity}
E'i{x +t'vi;v) < =f'(x +t"vi-v) when t'<t" . (.2

Since also
=£r (x*i-v} E'(x";v} for all x',v,

by the suolinearity of ['(x';-), {(4.2) telis us that the [unc-
tion Q(t) = f(x + tv) nas left and right derivatives which are
everywhere nondecreasing in t & (-=, *j. Again as in the argu-
ment that {(¢) implies (a), we conclude from this fact that

; n
is convex on R . [

n

(4]

CORQLLARY 5. Every convexz function £:R —R tn par-

¥ = -
tiouidar lower-C .

i o

'roof. In the representation in {¢) we must have F(x,s) =
als) x -1(s) for certain a(s) €R" and 1(s} €£R that depend con-
tinuously on x. This is the only way that F{x,s) can be affine
in x and continuvous in s. Then, of course, F{x,s} has partial
derivatives of all orders with respect to x, and these are all
continuous in (x,s). O

Lat us now define two notions parallel to Spingarn's submon-

otonicity and strict submonotonicity: 3f is hypomonctone if

lim inf X'=xJ+(y'-y) > -= for all x and y € 3f (x)

X' x fx'-x| 2 (4.3)
y'eEdf (x')

and strtetly aypomonotone if

Lim ing {x"—-x'} +(y"=y"'") > -» for all x .
o |xu_x.!2

K x (4.4}
y'edf({x"')

YUEAF(x")

Clearly hypomonotone implies submonotone, and strictly hypomono=-
tune implies strictly submonotone. We have Lictle ko say here
about hypomonotonicity itseif, but the Linportance of strict hypo-
monotonicity is demonstrated by the following result.

THEOREM 6. For a localiy Lipschitatfan “unction £ on RV,

-

o g U . - 3 3

Lae joleowinyg propareias are aquivalent:
Py g b e -,

i £ ts cower-C7

‘bi 3f s serietliy awpomonotone ;

A 2 RS (R . i
fel For o gvaery XERT there s 1 convex welgiborhood X
27 x on wiadea £ has 1 represenctation
f =g-hon X with g convexr, h juadratie sonver. (4.5)

(d) For every xaR" thope fa o nedgtbortocd X af X

and a represent af o ag tin {1.6) wirs

wn
¥

campact copologteal apace, P(x,s8) gquadratio in

X and zoentinions in s.
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Proof.

{a} = (c]. Choose any x and consider on some neighborhood X
of X a representation {1.6) of f as in the definition of f
being lower—Cz: Fi{x,s5) has second partial derivatives in x, and
these are continuous with respect to (x,s). Shrink X if

necessary so that it becomes a compact convex neighborhood of x.
: Do s
The Hessian matrix Vx Fix,s} depends continuously on {(x,s)

ranging over a compact set X % 5, su we have

min v -?z Fix,s)v » —-=m
(x,3) EX =5 X

[v] -

Denote this minimum by -p and let

Gix,s) = F{x,s) + {p/2) |x]| 2 . (4.6}
Then
el 2
v -uw Glr,8lv = v« [T Fix,s) +pllv 3‘0 (4.7)

for all {x,s) €X x5 when |v| =1 and hence also in Fact for all
vEERn, because both sides of (4.7) are homogeneous of degree 2
Wwith respect te v. Thus ?i Glx,s) 15 a positive semidefinite
matrix for each (x,s) €X =5, and Gi{x,s) is therefore a convex

function of ®x €X for esach 55, The function

gix) = max G{x,s)

se5

1s accordingly convex, and we have from (4.6} and (1.6) that
2
]

{4.5) holds for this and nix) = (nA2) | x

{c) = (d}). Given a representation as in {c}, we can translate
it into one as in {d) simply by plugging in a representation of
g of the type described in Theorem 5(c).

{d} =(a). Any representation of type (d) is a special case

of the kind of representation in the definition of £ being lower-
i - o i : : =
€ {in fact lower-{ ); if a quadratic Function of x depends

=141=

continuously on 5, 50 must all its coefficients in any expansion

as a polynomial of degree 2.,

(c) = (b)), Starting from {4.3) we argue that 3f{x) =
ag (x) - dh(x) (cf. Clarke 1980, §3, and Rockafellar 1979, p.345},
where 3g happens to be monotone (Theorem 5) and 3h is actually
a linear transformation: ye3fi(x) if and only if y =Ax, whare
A 15 symmetric and positive semidefinite. For y%3f({x'), y"=3f(x"
we have y'+ Ax'€©3gix') and y"+ Ax"=3g(x"), so from the menoton-

icity of d3g it follows that

O < A= x" - (ly'+ Ax"] = [y Ax"])

{9_8
- {}('— x") .(l{l__yn] o= x") s Alx'-x")
Chaosing o » 10 large enough that
;i ey
grRv € pwvy for all vER
we abtain from (4.E) tnat
2
(=) winea ol ) w0 g Pty when x'@X, x"eX,
y'e 3 (x"),; {4.93
y'e 3E{x") .
Certainly (4.4) holds then for x=3x, and since X was an arbi-
trary point of R" we conclude that 3 is hypomonotone.
{b) = (¢) . We are assuming (4.4), s0 for any x we know we

can £ind a convex neighborhood X of X and a ¢ » 0 such that (%.7)
halds. Lat gix) = {ix) +[o/2)|xi2, s¢ that 3g = 3F + ol (cf. Clarke
1940, 33, and Rockafellar 1979, p.345). Then by (4.3), g is
monatone on X, and 1t follows that o is5 convex on X (cf., Theorem 5;:

] s : : n
the argument in Theorem 5 is in terms of functieons on all of R,

B e . o . n =

but Lt is easily relativized to convex subsets of R"). Thus (4.5)
]

holds for this g and hix) = (. 2)!x|~. O
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s : 2 ;
COROLLARY 6. [f a function £:R"+ R is lLower-C y B
ta actually tower-C". Thua for 2 <k <« the classes of

Lowar=CE functions all coinecide.

Proof. As noted in the proof that (d) = (a), any re-
presentation of the kind in {d) actually fits the defini-
tion of f being lower-C .

COROLLARY 7. fLet £:RP+R be Lower-C%. Then at almost
evenry xer?, f is twice~differantiable in the sense that

there 78 a quadratie function q for which one has
Elx') = qix') +of|x'-x|2) .

Proof. This is a classical property of convex func-
tions (cf. Alexandroff 1939), and it carries over to gener-

al lower-C? functions via the representation in {(c}.

Counterexample

Since the lower—Ck functions are all the same for k:IZ, Qi
might be wondered if the lower—C1 functions are really any dif-
ferent either. But here is an example of a lower-C1 function
that is not lower-C2. Let f£(x) = —1x{vz on R. Then f is of
class C!, hence in particular a lower—C),and there would exist by
characterization (d) in Theorem 6 numbers a,f,y, such that

2

Flx) > a+Bx+yx for all x near 0,

with equality when x =0 .

3fn -

Then a = £{0) =0 and - Ax +7x2, from which it follows on

X

dividing by |x| and taking the limits x +} 0 and % t 0 that £ =0,

Thus  would have to be such that —-|>c|‘]"'2 > v|x|? for all x suf~
ficiently near 0, and this is impossible. Therefore [ is not
lower-C*<
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