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For flnilc-dimensio.al oprinization probtens with tocaly Lipschilzian cquatity and in-
equality co.straints lnd aho ao abstracl .onstraint described by a ctosed ser, a Lagrange
multiprier rul€ h derived ihal is shup€r is in sone respccrs tha. the ones ot Clarke and
Eirid-Uifuly The nultiplier vec1o6 provid.d by this rule are siven menning in tc.ms of rhe
seneralized sub8radienr set of the opllnal value lunction ib rhe problenj wilh respecr 10
perturbalional parafreters. Bounds on subderilalives of ihe oprinat value tunclion are
thereby obtained and in cenain cases the exislen.e oi ordinary directionat dedvatives.

ri?r {ord\: Lasrange Mulripliers, Subgradienrs, Marsinat Values. NonriDear proennnins.

l. Introduction

In this paper we study an oplirnization problem rhat depends on paramerer
vectors L = (rr,... j lld) € R- and | = (!1,..., 1,a) € Rd:

minimize fo(r,:r) overall ir € Ri such that (.i, r) € D and
(P,.,) " r 0 fori:r....s.

'rr'\r-,,l-o ror i-. r,...,4,

where D is a subset of R/ x R^ and each f, is a real valued function on an open
se1 which includes D. We assume that D is closed and li is locally Lipschirzian
on D (i.e., Lipschitz continuous relative to some R' neighborhood of each point
of D). Examples wbere such assumptions are fulfilled include

(^) the smooth case: D: Ra x R' and every t, of class fl;
(b) the contex case: D closed convex, i convex for i :0, 1, ... . r and atine

fori=s+1,...,m:
(c) the mixed smooth-c D = Rd x C with C closed convex. t(r, r)

of class €rwith respect to I (the gradient depending conlinuously on (!-, r)
rather than just r), as well as conve; in x for i = 0. 1.... . s and afine in r for
i=s+1,-..,m.

Clarke [3] has obtained a Lagrange multiplier rule that unifies lhe known
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first-order necessary conditions for oplimalitv in nonlinear programming prob-

lems of types (a), (b) or (c) but is appticable as well to the seneral case of (P'.')

This rule has been sharpened by Hiriart-Ullutv [18]. Our obiective bere is lo

explore the connection bet$'een the Lagrange multipliers for 1Ie constraints in

(P. 
") as provided by such a rule, and certain generalized direclional derivalives

and subgradients oi the function

p(r, u) = inf(P".") (slobal optimir v'l'el

with respect t0 both r a.d r.
The function p is every{here-defined on R^ x Rd under the conlention that

p({, r') = +- when (P', ,) is infeasible, but i! can well fail to be diiTerenliable in

the ordinary sense at poinls where it is finite. even in the smooth case (a)

Nevertheless, p is of such obvious interest that quite apart from an) conneciion

with Lagrange multipliers, there is strong molivation for pushing bevond

difterentiability to some so of subdifierential theory of jts properties. General

ized derivatives of p have direct significance in sensjiivity analysis and in

determining criteria for Lipschitzian behavior of p and the like. Thev also

furnish jnformation that mighi be used in minimizing p(r, r) subject to further
constraints on ll and o, as can be the task posed in decomposition techniques

where (P,..) appe.rs as just a subproblem of a larger problen.

Of even greater importance, though, js the role that generaiized derivutives of
the optimal value function p can have in answering fundamental questions about

the exislence, uniqueness and interpretation of Lagrange multiplier vectors.
queslions which have a bearing on many aspects of theory and computalion
This role is weli understood in the conver case (cf 126l) and to solne exrent also

ihrough partial resulis in rhe smooth and mixed cases listed above, but it has not

been clarified for (P,,,) in seneral.
Roughly speaking on the basis of experience in the special cases which have

been tackled, possible rates of change of p(r, r,) with respect to rir should have

somelhing 1() do with possible multiplier values )i associaied with the ith
conslraint in (P,,). The rtudy of variations with respect to the parameters rr as

well as lir is approachable by the same idea, because p( , r') can equallv be

regarded as the optimal value in lhe problem:

mrnrmlze

(Pi.,,l

fo(w, r) over all ()e, jr) € D salisfying
t=0 fori=1,....i,

/rrw \)+',r1 =o Ior t= s+1,...,m
)rr+!r=0 for I: l,..., d.

Multipliers :r associated with the constraint rr+rr:0 in (Pi,J should be

related 10 some kind of derivative of p(!., rl) with respect to or, but in view of the

equivalence between (Pl, 
") 

and (P, 
"), such muitipliers are bound to have close

ties with the multipliers yr.

Altogether then, a duality rnay be expected between Lagrange multiplier
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vectors for the constraints in (P",) and subdilierential properties of p(x,r,).
Insofar as this can be formalized. it shonld afiord valuable insighl in both

directions. The developmenl of a really far-.eaching dualiiy beyond the conver
case has been hampered, however, by a lack of appropriatc mathematical tools

Most of lhe past work on subdilTerential properties of the funcrion p has gone

into rhe determination of fornulas for the one-sided direstional derivatives

p \u,t;h.k) tirltut th D -rl) 
pl' r) (l.rr

,t0

or bounds on !he corresponding upper or lower Dini derivatives, where'lim'is
replaced by'limsup and'liminf'. In the convex case (b), p(r,r') is actually
convex in (!r, r), and p'(x, r; ft, k) exists for every (ft, k) [26, Sections 28 29]. A
theorem of Gol'shtein l15l shows that p'(11,,;h, k) also exists in the mixed case

(c) when the set of saddlepoinls of lhe Lagrangjan in (P, 
") is nonenpty ard

bounded. Th;s result, proved independenlly by Hogan [20], generalizes the

Mills williams marginal value theorem in linear prosramming [33]. Dini deriva-
tives were studied by Gauvin and Tolle lll in the smooth case (a) and by

Auslender I2l in the somewhat more general situation where only the equality
constrajn{s in (a) are g'. Bounds on Dini dcrivatives were used by Gauvin and

Tolle to demonstrate the existence of p'(&,.;h, k) under ce ain circumstances

I13l and by Gauvin tlll to ge1 a criterion for p to be locally Lipschitzian in the

smooth case- The cited results of Gauvin and Tolle [13], Auslender [2] and

Gauvin llll, ostensibli treal only parameters of type Lr, but they can be

extended to param€ters of lype ,r using the refornulation of (P,.") as (P1."). For
a direct approach to such parameters, cf. tl2l and related vr'ork of Fiacco and

Hutzler U0l.
The infinite-dinensional case too has been studied to a cettain exlent [21-

23, 141. Gollan [l4l gives his own definition of Lasrange multipliers for non

smooth problems, quite difierent from the Lagrange multipliers of Clarke

mentioned earlier, but when his results are applied to classical cases they do not
yield derivative bounds as strong as those of Gauvin and Tolle. for instance.

Other work on ordinsry one sided derivatives of optimal value funclions tha!
shouid be noted for exceeding the franework in this paper in some respecls.

although involving significant reslrictjons in others, is that of Dem'j an ov et aI. i7, 8l.

Our objective here is to explore tle subdilletential properties of the function
p, including extensions of the resulls cited above, by mears of a broader kind of
nonlinear andlysis lhat has blossomed from ideas oI Clarke [4]. This method of
analysis, the pertinent parts of which will be reviewed in Section 2, deals with
cerlain generalized subgradients of p and corresponding'subdcrivatives'that are

more suiled in some ways to the description of functions as irregular as p can
be. Smoolhness or convexity assumplions on (P!.!) are not required, yet lhe
theory is such that the consequerces of such assumptions are readily ascer
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SubdilTerenlial analysis in this sense has aheadv been applied 10 optimal value

funclions like p. although no1 in such a thorough'going manner as in the present

contibution. Clarke hirnself has employed a mild subderivative condition or p

called'calmness'as a constraint qualilication in the derivation of bis Lagrnree

multiplier rule [3]. A result of Gauvin tlll furnishes an outer est;mate for lhe

subgradient set ap( , !) in the snooth case (a). This has been carried to certain

nonsmooth cases of (P,."), but with smooth equalitv constraints, bv Hiriart

Urruty [7] as parl of a more abstracl study of marginal values. Clarke and Aubin

t6l and Aubin [1] have established for other special cases of (P,,")' via some

theorems in a Banach space selting accompanied by a number of convexity

assumptions,theexistenceindp(.!_)ofcertainmultipliervectors-thus.'inner
estimates' for ap(x. 1)). Al1 these results have concerned situalions where p js

Lipschitzian in a neighborhood of (&, u), and the aulhors (except for Hjriart
Urruty) have provided conditions on (P!.") thal ensure tlfs Lipschitzian
behavior. In contrast, exact formulas for dp(x,!) in the general case of (P!,!)

lhat are valid whether or not p is locally Lipschitzian have been gjven bv

Rockafetlar t291, but in terms of limits of sequences of special multiplier vector\
corresponding to saddle-points of the augmented Lagrangian in neighboring

problems (P"r.,r).

In lhjs paper we derive inner and outer estimates for ap(!]. !) jn terms of
Lagrange multiplier vectors that satisfy Clarke's necessary conditions for (P".,)

itself (see Section 5). By way of the duality belween elements of ap(!, D) and

'subderivatives'(see Sections 2-3), we thereby provide for the first time a
general interpretation for such multipljer vectors. We also open the route to

applying !o p vadous fundamental theorems known rbou! subgradients and

subderivalives and we obtain in parlicular citeria for Lipschitz confnuity that
go weU beyond previous ones. As a by-product, we get a new proof of Clarke's
nultiplier rule that shows it is valid under somewhal weaker assumptions, and

also in a somewhat sharper form, than Clarke's or the version developed by
Hiriart-Urruiy I18l (see Section 4). We demonstrate that tie known bounds on

Dini derivatives of p follow from our subgradjent estimates, without the restrjc_

tions on (P".") that have been made in t}le past, and hold aclually for Hadamard

derivatives (see Section 7). We prove an ertension of Golshtein's theorem for
the mixed smooth-convex case of (P",) that requires neither the se! of optimal
solutions nor the set of multiplier vectors to be compact.

A novel feature of our approach is that no form of implicit funcrion theorem is

ever used. At the cdlical slage ,i'e rely instead on our augmented Lagrangian

results in [29].

2. Subdcrivatives and subgadients

The kind of subdifierertial analysis initiated by Clarke for nonsmooth, non-
convex functions has ir the last several years been expanded and solidified in
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many ways. The lecture notes t30l can serve as an introduction to the finire
dirnensional case with references. There is much to the subject that cannor be
told here, but to assist the reader we shall touch on some of the central facts and
definitions ard do so in the notation of the function p. This will facititate the
applications we wish to make. although for tlle tirne being nothing dependent on
the special nature of p as an optimal value function will be invoked.

Recall that a function p I R'+ Rd + (R U {:r '} is everywhere lower semicon
tinuous if and only if its epigraph

is a closed set. In this case the matters we must explain are simpler- but we do
not want to be burdened later with having to impose condirions on (p,,,) rhar
imply such glob.il lower semicontinuity of its optimal value function. For our
purposes all that reatly is needed is for lhe epigraph E to be closed relative to
some neighborhood (in R'xRdxR) of one of irs points (u,D,p(ll,r))) rhar
happens lo be under discussion. This condition is stronger than lower semicon-
tinuily of p just at (u, r), yet not as stringent as requiring lower semiconlinuiry
of p on a neighborhood of (ll, !) (in R" x Rd). We shatl call ir stict to\t)er
semircntinuitr ol p dl (r. ,); it holds if and only if for some d > p(Il, !-), rhere is
a neighborhood of (,r) on which the function nin{p, d} is lower semicon-
tinuous.

The epigraph poin! of view and the potential disconrinuiries of p also force us
to be more subtle in speakins of convergence of (Ir,. !.1 ro ( . r'). We introduce
the noiation

E={r'r.r.a)eR'.rq' n lo: ptll. r rl (2. r)

(2.2)t (x', 
") 

+ (u, l,),
Ip( ,. r,) , p(I/,.-),

in situations where it js realiy just ihe convergence of the point (!],, r,', p(1,, !'))
in E to (I'l, r, t(r, !)) that counts. Obviously, 'J p' is the same as ' J ' when p is
continuous at (r,r,), and in particular wbenever p happens to be locally Lip-
schitzian.

We concentrate henceforth in this section and the next on a point (x, r) where
p is finite and strictly lower semicontinuous. Criteria for this in the oprimat vatue
case will be given in Propositions 8 10 in Section 5.

Using the notation (2.2), we define Ihe Clatke defi&tiE of p at (4!) wirh
respect io a vector (ft, k) as

(2.1)

':0
CIarke actually considered suchderivatives only forlocalty Lipschitzian functions
I4l ('+' in place of ''p'), but he used them indirectly to develop a notion of
'subgradient'for functions that are merely lower semicontjnuous and not neces-
sarily finite valued. We showed in t28l rhat the generalized subgradjents in

p\u. D:h.kt- 
"rim-r,p ,4! l!.! ll! li ' '
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queslion could be characterized thoroughly and directly in terrns of slightly more
complicated limits than the ones in (2.3), namely rhe so-called r&bdu,.jrotirpJ

t
p \u,t;h,l) lim lin\up , 'nf 

ff' th I t[ t pttt t't 
L.";.Lri.: ll

(2.4)

The remarkable fact is that pr(u,r;ft,k), as a funcrion of (h,k), is always
conuex, positively homogeneous. lower semicontinuous. not identically +D nor
identically -- Clarke's set of subgradienrs is given direcrjy as

,p('r. r) = {(}, :)€R' : R, l ) . ft +?. k <p 1(&, .l; h.,.) for a (n, k)}.
(2 s)

Fron this expression and lhe properries of the subderivative funcrion it
follows by Ceneral theorems of convex analysis I26, Secrion t3l rha p(u, r) is a
closed convex set and

p 1(r. !-;h, k) = sup{) h+:./. (}.2)€d?(r,!)}
> a for all (h,k), if ap@,x)to,

p1(,r;h,k)=,toforall (tr, k) it aptu.r)=fr.
This formula extends one given by Clarke t4l for his derivarives (2.1) in rhe
locally Lipschitzian case. In thar case, rp(ll.r) is nonempry and compacl;
conversely, as we proved in 1251, if dp(r, !-) is nonempry and compact, then p is
locally Lipschitzian around (lj, o) and the derivar.ives (2.3) coincide. A nore
general relationship between the rwo derivatives, established in t28, p.2671, is
the foliowingr lhe rwo efieclive domains

dom p'(4, r; h, k) = {(ft, k) | p"(1, a; h, k) < o},

dom p 1(!], r; h, t ) = i(h, k) pr(lt, r;n, k) <ol,
are convex cones containing (0,0) which have the same inrerior, and for (11, k) in
this interior one has

, rimf rim,up f .uo I'a rt' . r '-rl r pra., r-1-1 t2el
' 'l' : fl; : :1 

i-J-r, .u:h.()-p1x, D;ft,t).

With respect to such vecrors (h,ft), p is said ro be dirediondlt) Lipschitzian.
(This concept generalizes Lipschitz cortinuity in a neighborhood of (&. r). which
i. lhe c".e of ri. k, (0. 0): rher the.one. in t2.7r and t).tr dre rhe qhote rpd.e,
and (2.9) actually holds for all (ft,l). with .+"' idenrical ro .+'.) For the many
consequences and uses of the direcrionally Lipschirzian property, see t28.271.

Formulas (2.5) and (2.6) underljne the complere duality berween sub_
derivatives and subgradients. If p is convex, Ap(L, r,) is idenricdt ro rhe sub_
graCienl set of convex analysis, while if p is smooth it reduces to the sinsieton

(2.6)

12.7)

(2.8)
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{Vp(r, !)} ta,28l. Indeed, ap(4 r) consists of a sinsle vecror (), z) if and or y if
p r( ,,; h, &), or e{ruivalenuy p'( , r;h, k), is linear in (h k), and in rhis event p
is strictl) dilierentiable at ( , r) with vp(L, !): (), z):

.. rGt -th., rk),tx.Lr \.r ..[ t2 t0](rl,,0ro.o t
(r /)'l!,,)

14,281. The inplication of this resuli for our later efforts, incidenralty, is thar
diferenliability of p at (!l, r) can be deduced from conditions wtich imply
ap(&, !) has elactly one element.

In general. bounds on various derivatives of p can be obrained from eslimales
for dp(L,!), and lhis is the pattern we shal1 follow. Besides p.(r,rlft,k) and
p t(r, D; ll, k) we shall consider upper and lower one sided Hdddndrd deriva-

p/u,1);h,ki= Im nf p("+ttu"r+tk') p(lr'l,)
t

Obviously one always has

p-{u, q h,k) = p I lu, ra h, k),

and if p is directionally I-ipschitzian at (L, r) with respect to

p.(x, r,; h, k) =,lim sup)
,Lo

p(u + th', | + tk') p(u. r)
t (2.l1)

(2.l2)

(2.11)

(h. k). so that (2.9)

p*(r, ,; ft, k) < p'(r/, .,; h, k). (.2.t4)

The case where equality hoids in (2.13) plays an importanr role in the lilerature;
then we say p is subdinerentiLtllr rcuuldr at (Il, r) (cf. t,1,28,251)-

Note that when p'(1, r; h, k): p.(u, r; h,k) one has a property srronser than
just the existence of p'(&, r; h, ft) as defined in (l.l). This is what we will be able
to establish in Section 7 in cases where other aurhors have considered only
p(u.';h,k),^, sell r. naJe orher re\r'iction5.

ln some situations it is crucial to be able to know at least that 6p(x,r) is
nonempty. As recorded already in (2.6), a necessary and sufficient condition for
this is the existence of (tu, k) such that p 1(!]. !; i, ft) is 6nite. We now elaborare
the meaning of this.

Propositton L Undet the assumption that p is fnite tlnd tower semicontinuous at
( ,u), one hds aptu,r)+6 iJ and only if there exist sequences tt I0 Mtt
rr.,l-olr.fr \uchth. lot no roau*E t \cquptl.. rh.(jr -rh.(itl"e.one

[rtu' + r)hj, ti+ t,k,t ptut.t tll\- -.



RT. RockdJelLdt I Lqrose muLtipli.^ and subdetiwtites

Thus in patticulat, ap(u,1,) t g iJ p is caLm 6t (u, r) in the sense that

.. " p(u', L')-r(&. !)
! ,,-{,,.r (, . D ) ('l. Lr

35

(2. r5)

(3.1)

(3.3)

(3.4)
(3.5)

Proof, Because the function pr(x, r;.,.) is lower semicontinuous. positively
homogeneous and convex, but not identically +-, il is finite at some point if and
only if ii is not € at the origin. Therefore, dp(r,!)iJ, if and only if
pt(x, ,;0,0) > r. The 6rst assertion in the proposition merely puts the latler
condition in more specific lerms using the definition (2.4). Tbe calmness property
rmplie, rhe condiriun ir.ari,fied $irh ' tur dJl i and an) \equerre
tilo.

Calmness of p at (!], !) may be thought of as 'poinlwise lowc. Lipschirz
continuity'. It is a concepl thal has been used to advanrage by Clarke in I3l.

3. Singular subgradients

In additjon to the subgradienls discussed so fal, we shall find it helpfut to
speak of as singular subgradients of p at (!]. .,) the elenenls of ihe closed

,0p(!, o): : polar of the conver cone (2.8)

= {(r, z) I } ft + z.k<0 for a1l (ft, k) satisfyins
p t(r. r;h. k)< @l

h follows frorn the duality in (2.5) and (2-6) that thjs set is jusl the recession
cone of dp(L, N) 126, Section l3l:

aop(l/, D) = 0.6p(r, N) = lin sup lar(!r, !) when ap(Il. r) * 0. (3.2)
r L0

Nonzero singular subgradients thus describe directions which can be identified
with 'elements of ,p(r, 1') lying at 6', except that there can be situaiions where
dp(u, o)= 0 and yet aop\,r)tA.

A more geometric desc.iption of singular subgradjents is possible in terms of
Clarke's concept of normal cones to closed sets in Euciidean spaces. Recall from
the beginning of Section 2 that when p is finite and strictl) lower senicontinuous
at (ll,!), its epigraph E is closed relative to a neighborhood of the point
(x, r, p(x, D)). The rolnal cone to E at lhis point is the nonernpty closed convex

NE(u, 1), p(!r, 
")) 

= a6E(x, o, p('r, !).),

where 5F is the indicator function for E. One has

ap(!], r) = {(}, z) I (y, ?, l) € NE(x, !, p(!]. r))},
aop(x, l,) : {(}. :) (), 2,0) € NE(r, ll, p(r, r))}.
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In Clarke's original approach [4], normat cones are first given various direct
characterizations. and then (3.4) is raken as the defnition ot the set of sub-
gradients of p at (r, r). As seen from (3-5), the notion of'singular subgradients.
fits neatiy into the same picture. The validity of (3.5) sterns from rhe fact that the
cone NE(r. 1,. p(r. u)) and ihe epigraph of the subderilative funclion
p t(!., .,; , ) are polar !o each other; see [28].

(Incidentally, the assertion made in Section that pr(l1,r,:ft.k) cannot be
identically -- as a function of (ft.i) follows by duality from lhe fact rhat
NE(!l, r, p(Ir, r)) cannoi consisi of just lhe zero vector. The tarter is true because
(&, ,-, p(!r, r)) is a boundary point of E, and nonzero normal vecror always exisr
at boundary poinis t25, p. 1a91.)

Several properties of p can be characterized in terms of singular subgradjents,
and this will be useful late. in seeing the consequences of the esrimates thar will
be given for ,!p(r, r). The following terminology will expedire nauers: a cone M
(not necessadly convex) willbe called pojnfed if the origin cannotbe exDressed as a
\um ol nonzero r ecro . rn M. \ hen M i.converra. rn rhe cJ.e M - .^t(lj. , ,, rhi,
reduces to the property that M does nol contain the negative of anv of its nonzero

Propositlon 2, Untler the assumption th!1t p is Jinite nnd stictt| lower semicon
tinuous at (u.1)), one has p directionatlJ Lipschitzidn t ith respect to (h, k) il and
onlr il fot aU (h',k"t in some neiehborhood of (h.kJ. one has I .h,+ z . k,<0
rul dll {).:re oop{/., r. 5x, fi n4 rh. L, pyt\,r t/ and ot't" it -aptu.t t i\ pointed.

Proof. The condition says thar (ft, Jr) is an interior poinr of rhe polar of aop(r, !).
Since aop(I/, u) is the polar of the convex cone (2.8), this neans (i, k) bel;nss to
the interior of (2.8). Such vecrors (ft, k) are the ones wirh respecr to which p is
directionally Lipschitzian, as already exptained in Secrion 2. The potar of a ciosed
convex cone has nonempty interior if and only if the cone js pointed.

Proposilion 3. For p to he locally Lipschitzian arcu iL (u,x). it is necersurJ dnd
sufr.cient that p be f.nite and stictlr lower semicontinuous at (u.x) and hale
a0p(r, !) = {(0,0)}.

Proof. This is the case of Proposition 2 where (h,k)=(0,0). Recatt thar p is
locally Lipschitzian around (r, r) if and only if p is direcrionaily Lipschilzian at
(&, Ll) with respect to (h. k) = (0,0) t281.

Proposltion 4. Under the 
'jsumption 

that p is linite an(j stric r towet semicon-
tinuous at (u, r), il Aap(u, D) is pointed and does not cont\in any &ctor of theJom
(),0) ujlh ] 10, lien

d,p(!, r) c {: I l} "ith 
(}, ?) € ap(ir, x)}.

tr;ptu, Dt. tz l) wrlfi (y, .) C d'r,(r, I )1.

(3.6)

\3.7)
ln patticular, (3.6) is 1)!1li(t il p is tocattJ Lipschitzian arcund (u.1)). (Morco1)et,
equalitJ holds in (3.6) and (3.7) if p is subdifercntjauJ rcsutar st (u.,r).\



Proof. From a result in I27, p. 3501, (3.6) holds (and with equality in the case of
subdiferential regularily) when the interior of the convex cone (2.8) contains a
vector of form (0, k). The sepa,ration theorem for convex sets enables us to
translate this cordilior inro the nonexistence of a vector (), 0) + (0,0) belonging
to the polar of the cone (2.8), nanety dip(&, !) (cf. Proposition 2). The tocally
Lipschitzian case of (3.6) follows via Proposition 3. There are several ways to get

the parallei inclusion (3.7), but the sinplest perhaps is to observe that the cited
result in [27, p. 350] is a corollary of a theorem that actually yields more when
specialized to the case in question: for the function q = p(u, ), one has
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q 1(o;t) < p1(!, or0, k) forallk, (l.8)

(and equaiity holds in (3.8) when p is subdilTerentially regular at (I], r)). There-

(i, k) lh = 0, .j i(D;k) < -l r {(ft, k) ]p t(tr, r;h, k) <-} n (0}xRdl.
(3.9)

Since the interior of the cone (2.8) contains under our hypothesis a vector of
form (0, k), we can rale polars on both sides of (3.9) and get

lR' x ,oq(!)l c aop(x. r) + IR' x {0}1,

which is equivalent to (3.7).

Remark. The Lipschitzian case of Proposition.{ was tust developed by Clarke.
who pointed out tha! without some condition like subdifterential regularity, there
may be no inclusion either way between rp(!4!) and a,p(Ir,r)xaQ(u,D). See

[1?, p. ]081 for an example of this phenomenon.

,1. Lagrsnge mulliplier rule

Our main result about subgradients of p when p is the optimal value function
in Section 1 will involve Lagrange muitiplier vectors that appear in extended
first-order necessary conditions for optimality in (P,."). This section is devoted
to formulating the conditions in queslion and comparing them to previous
contributions. The necessity of the conditions, however, will actually be

established in Section 6 as a consequence of our estimation theorem, rather than
as a preliminary to it.

Henceforth our notation and assumptions are those in Section I, but we apply
freely the general subdifferential theory exposed in Sections 2-3.

Each function tr, being locally Lipschitzian on an open set containing D, has a

nonempty, compact, convex subgradient set ai(.),:{) at every (r,r)eD. We
emphasize that this is the subgradient set of convex analysis if i is a convex
function, and it js just {Vr(tl, r)} if i is of class g'. When i is mixed
smooth-convex as in case (c) of Section 1, it turns out thal
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aJi(r, ir) = (vl,(!, r), aJ,(!, r))

(because l?: J: jn thjs case, as can be verified by direct calculatjon).
Since D is closed. the indicator function

10. jf {u:t)€D.dDlr'1)= 1a. rt r!.\,eD.
is lower semicontinuous everywhere. Ils subgradient sets are the normal cones

to D:
ND{u, :t) = a6D(r,:r) f or each (,r. i) € D. @.2)

(wlen D is convex. the vectors (2,r,)€ND(r,.r) are the ones such that
(2,11,) (!', r') < (:, lr) (i,.,r)forall (D',ir')€D.)

The optimality conditions we shall be concerned wjth are related to such
suberadients, as will be explained be1ow. but they generally lake the form of
associating with some j! which in particular satisfies alt the conshaints of (P,, 

") 
a

pair of vectors ) : ()r,... , )-) and z : (2,.... , zd) sucb that

(4.1)

11.3)

(4.4)

r,>0 and J,tl,{!,n)+L,l=0 fori= 1,...,s,
r.at

(-:.0) € a lo+ ). !1,+5Dl(1.:r).- 
--! 

- 
l

For some pwposes, we sball need tu iook al tbe corresponding degenerate
conditions where lo does noi appear. i.e., where (4.4) is replaced by

r,.orea[i v,r + a,ltr,.:, r.rE'' l

K(u. o, .I) : sel of all (], :) satisfyins (4.1) and (4.4).

K( , r,:!) = ser of all (r. z) sarisfying (4.3) and (a.5).

The targeted Lagrange multiplier rule is an assertion that I((r, r..x) + 0 in cerlain
situations. For immediate comparison with classical conditions, observe that in
the lrnooth case (a) of Section 1, (4.4) reduces to

while (4.5) reduces to

(4.t)

(.t.ii)

Sirce (0,0)eI<0(Il,,,.x) trivially always, interest in the se1 ](0(Il,D,:r) will
center on whether it also contains some (), u ) I (0,0). The condition Ko(&, !, r) =
{(0,0)} will serve as one kind of constraint qualification. A more subtle constraint
qualification that will also play a role can be stated in terms of'calmness'-

(4.5)

(4.6)

0 = v;l(r, r) +) ),vJ,(r,-() and : = vl0(r, ir) + > )rv,,i,(r, r),

0=> ),vJ,(r,-r) and z=> )iv,/,(1J,r).
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Localizing a definiiion of Clarke's [3], we say problen (P. 
") 

is cdlm at r, one
uf ir' lucall) oprimal \.lurion.. il lhere do n.r e\i\r .equence. y'- \ dnd
(x', !i) + (x, 1]) with ri feasible for (P,j.J) such that

fo(!j, .xi) fo(r,:r)

Clearly this does hold when p is calm at (ll, r) in the sense of (2.15) and r is any
(giobally) optimal solution 1o (P..). Calmness of p at (n,r), without reference
additionally 10 any point r, is a condition that Clarke calls simply ihe cdlmness
of problem (P, 

"). The exact relationship between this'slobal'calnness and our
'local'calmness will be shown 1a!er jn Proposirion 12 (see Section 6).

Theor€m 1. Let .r be dny locaLly optittal solution to
(i) rl e, ,i ir cdln dt r. then K(u, r, x) + A.

(ii) f K(!,!.r):{(0.0)}, then (P,,.,) is indeed
K(u,,,. x) is compact.

(P,.,).

calm dt \, &nLI morcowr

As already remarked, tiis theorem will not be proved until Section 6, where il
will appear cbiefly as a sort of coroUary of Theorem 2 of Section 5. We have
stated it at this early stage in order to put the multiplier sets X(lr,r,r) and
K0( ,!,r) in lhe proper perspective. The resl of this section deals with furrher
claifications of the nature of these sets. We starl by citing a fundamental rule of
subditrerential calcrhrs

Proposition 5. Let h and g2 be e\tenlledreal-xalue(l functions on u Euclidean
lpace which are both fnite tt d point \\,. U eithet gt or g2 is bcaLlr Lipschitzian

,G1+ sr(w) c asr(l') + as,(wl.

Moreol)er, equalit\ holds il either h or s? is ol clasr (t in a neishbothood ol \|,
ot if both h Md g, are subditerentiall, rcguhtt Ltt \r.

Proof. This is an immediate consequence of a much broader resuit obtained in
[27. p. 345], except for tlle business about s, or sl beins of class gr. If sr, say, is
of class {1 around }r, t}len s? and s: are both locally Lipschitzian a-round l'
and have ,s,(}1,): {vs,(w)} and d( 8r(w)={ vs:(}r)}. The basic rule eives
both

a(sr + sr(lr) c ds(u,) + V8r(lr)

dsr(w) = a(sr + g,- 8r(w) c d(Br + sr('') Vg,(w),

and this inplies t(s, + s,)(w) = ,g1(w)+ vs,(w) and finishes the proof.
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In the situation at hand, we want to apply Proposition 5 to the expressions in
(4.4) and (4.5) along with rhe elementary rnle that (inasmuch as /i is locally
Lipschitzian)

(.e)

For this purpose we note thal the prope(y of subdifrerential r€g latl} Gee
Section 2) holds everywhere for /r when J, is convex, of class g', or a mixture of
ihe two asin case (c)in Section 1. Il holds everywhere for bolh l, and -J, (i.e.,

for )1, regardless of the sign of )r) if and only if i is of class g'. It holds for 5D

if and oniy if D is tdngenfidll) r€8 ldr in the sense that a1 all boundary points of
D, the Clarke tangenl cone and the classical contingent cone coincide, as is true
certainly when D is convex or a'snoolh manifold'; see [4,27] for more on such

At all events, the strong form of Proposition 5, where equalily holds, is
thoro ghly applicable (together with (4.9)) in cases (a), (b) and (c) of Section 1

and more generally in the following cases of probtem (Pa.):
(d) the suhdifrerentiallr regulor caset D tangentially regular, .ir subdiferen-

tially regular for i=0, 1,..., s and of class g1 for i=r+1.....rn.
G) the extended smooth cd.!e: D an arbitrary ciosed set. every tr of class €'.
Clearly (e) subsunes (a), while from the remarks above. (d) subsunes (a), (b)

and (c). This allows us 10 draw an important conclusion.

Proposition 6. In condition (4.4i of the delnition ol K(u,!. x). one hos

c df(u, -r) + > J,al,(!, r) + ND(!, r). (4.10)

Morcowr, equalit! holds in .oser (d) dnd (e) dbo\e and hence in particulu in the
smooth, conrex, and nixett smooth-conr'€r cdses (a), (b) and (c) ol (P,.").
SimitartJ fot conttition (4.s) of the defnition of Kr(u,1r, x).

The second inclusion ir Proposition 6 does not depend on the full force of
Proposition 5: it is already apparent from an earlier formula of Clarke [4] where
gr and g? are boti locally Lipschitzian.

Observe lhat in the mixed smooth-corvex case (c). where il.l) holds and
D = Rd x C, Proposition 6 allows conditions (4.4) and (4.5) to be written instead

a()tf,)(', x) = ),af,(r, r) for all ), € R.

a 
[1.* 

j y,L r a,]1,,..1c aF0+ i )J,l(r, r) + N"(!, x)

oc lj yl,l'.'..,,- \.,r, and z - j u.o,1,1,.,,.Li: '- I 7t

(1.I])

(4.t2)



Due to convexily in .r, these indicate rhat when (), z) € K( . !, x), the pair (r J)
is (at expecled) a saddlepoint of the ordinary Lagrangian for (P,") on Cx
tRl;R'"1, and sinilarly when (), z) € Ko(r. 1), r). except that then ir is rhe
degenerate Lagrangian not involving I0.

Only in situations where stricl inclusions can be encountered :n (,1.10), and
thus never in cases (a), (b), (c), (d) or (e), is rhe mulriplier condiiion K(!], !, j!) + 0
in Tleorem 1 any sharper lhan the ones of Clarke l3l or Hiridrr Urrury [18].
Clarke's rule corresponds 1(r substituting the largesl of the sets in (4.10) for (4.4),
*'hile Hiriart-Urruty uses the middle set.

These earlier rules do no1 actually take the parameter vector I into account,
bul they can be adapted to yield condirions in rhe present format simply by
posing (P,..) equjvaiently as the problem (p1..) in Secrion 1. Conversely, of
course, Theorem I can be applied wirh I held fixed and suppressed from
consideration. The colresponding mulriplier conditions then say norhing abour a
vector;, and th.y have in place of (4.4) and (4.5) the relations
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(4.13)

(4.11\

there is no ]+ 0 satisfyins (4.3) (4. r 5)

r.r,r,,,, 'u[ | l"'i ' :: ' h"!ing r rr'rr n'
:u lorr=s+1.....llr, (.1. t6)

o. ,, [i, * 
j o,r, * a"]1,. a.

o. a.[5 r,i,r o,]r",,,r,

which again could be elaborated as in Proposirion 6. As far as necessary
conditions lor optimality,rle concerned. there is no disrjncrion to be made
between the two formulations in cases (a) o. (ci (where (a.a). (4.5), become (4.?),
(,{.8), or (4.11), (a.12)). Nor is there any real distincrion in the convex case (b), or
for that matter in lhe subdilTerentiaily reguJar case (d): then (a.13) holds if and
only if there eisls : such that (4.4) holds (apply the equatiry ctause in
Proposition 4 to the functions in questior). Generatty speaking, however, neirher
formulation of lhe conditions directly subsumes the orher.

In the smooth case (a), the constraint quaiification K(r, D, r) = {(0,0)} asserts:

wirh ) )rvJ(r,:!)=0.

This property is equivalent by duality wirh rhe ManeN'sotian-Frcmoritz con-
st ruint qu aLif c at io n [2411

the gradients V!1,(!. r), i = r + l, ... . ln. rre linearly independent, and
there is a vector !r such that

Related conditions for nonsmooth cases of (p,.") have been inrroduced bv
Au're1de. l2l and H rarr-( flur) lt8. tol Ou, condirron Ku(r.,."r- ,ro,Ort i.
sharper tban these in the sense of the inclusions in proposition 6, but Hiriart_
Ulruly gives a treatrnent of equaljty constraints that is in othe. respects more



refined. On the other hand, Hiriart-Urruty does not prove a multipli€r rule based

The result in Theorem I that the constraint qualification K(tr, r, r) = {(0,0)}
implies calmness at r is new, although in the extended smoolh case (e) wift D
convex it follows in terms of the Mangasarian-Fromovilz qualification via the
stability lheory of Robinson ill,lzj; c.f. remark of Clarke [3, p. 173].

There is a.elationship between I<0(r, r,,-r) and K(L,u,r) ihat sheds some
furlher light. Recall that the recesshn cone of rhe (not necessarily convex) set

K( ,,. n) is by definition
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0r-K(Il, 
",:r) = lim -sup 

^K(r, ", 
.r)

= {lim r,(},,;j) 
^, 

l o,()i,:j)€K(1,r,:r)}. (4.t7)

A nonempty set in a Euclidean space is bounded if and only if its recession cone
consists of just the zero vector.

Proposition 7, For anr Jeasible solxtion :! lo (P,,), lh€ s€is K('r,r,r) and
Ka(a, N,x) ate closed and

0'Kir, u, {l c Ko(r, !, r). (4.ld)

In cdres (d) and (e) dboxe (and hence in particuldr in ttu smooth, conuex, u d
mixed smooth con!€r .ds€r (a), (b) d'1d (c), -K(I'l, r, -r) and Katu, x, \) ute also
conrex. If in aAdition to ttuts K( , r,'r) is nonempty, then equalitr hol(ls in (4.18)

I((Il, 1],:r) + ]<o(n, r, "r) = ((Il, r, r) (1.1'r)

Proof. To demonstrate that K(x, r. r) is closed, suppose ()i. -zi) € -K(I!, 1,, -I) and
(]', zi) ' (y, z). For all j, one has

,rJ 0 f^r i 1. ... . . having / r,. r) - 0.'l 0 fnr i .1....,\ havingJ.!,.\) 0.

.o the .d]le h.,lJr for the multir'tier, J ti11 t. {'..

(4.2O)

Applying Proposition 5, we get

rz,, oi e afl,+) rll,+ a,]rr,, rl

= ir p.r j yy, * o, n j {i1 - r,rr,lr,, -.r.

,..0'.r{1.* j,,r' r,J,,.,,. j,,; y,,"1,,,.,,

Since zj - z, yi yJ J 0, and af,(!, r) is compact (due to l, beins locally Lipschit-
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zian), it follows ihat (4.4) holds. Thus (y, z) e K(!/, r, x), and K(l., !, -r) is closed

The proof that Ko(!., !,-r) is closed is identical.
The proof of rhe inclu\ion r,1.l8r i\ along tinildr line\' supro.e \,rr"; , '

(y, z), where Ij I 0 and ()j. 
'i) 

€ K( , r, jt). The critical observation this time is

that (4.20) can be written instead in the form

4 t\
'\...0,co(\ 'o )\1 '.Dllru.rr.

"i,.r,a. rr,, iL.^,: yrr.lL."r,

so that by Proposition 5

Since,\jzt-:, I;)i J' + 0, I, J 0 and dJr(,, r) is compact, we get (4.5) in the

limi! and hence (), ?) € I(o(Il, r,.r).
In cases (d) and (e), we know that equality holds in (4.10) and that at(!,:r) is

just a singleton fo. i = r + 1,... , m. Using this ir (1.4), it is easy to verify the

convexity of K(r,!,r) and similarly that of K(l],r,:!), as well as ihe reialion

K(u, 1,,r)+Ko(, 1,,r) c K(u, r,i). (4.211

(Recall that (o + p)C : dC + pC when C is a nonempty convcx set and d > 0,

B>0; cf. 126, Secrion 31.) When ((u,r,:r) is convex and nonenpty, (4.21.)

implies K(&, o, .r) c 0+K(!. .l, r) 126, Seclion 81, whence equaljty in (4 18) and
(4.19).

R€mark. In the convex case (b), the condition K(!,,,:r)10 is. of course.

sDliicient for a feasible solution -x in (P, 
") to be optimal. Indeed, the multiplier

relations reduce then to lhe description of a saddlepoint of the LaSrangian for
the equivalent problem (P; ,) in Section 1. Because of this, the set K(!], .l.:r) is
actually the same regardless of which optimal solution i is being considered, and

similarly for Ko(u, r, r). Another special result in the convex case, besides the

ones noted in Propositions 6 and 7, is the converse of Theoren 1(i): if
K(x,r,r)l0foranoptinalsolution-r,ihen(P,.,)iscalmatr:infactpiscallnat
(r. r,). For this. see 126. Sections 28 291.

5. Tam€ness and s bgradient estimates

Our main resull will be stated in this section a.f1er some preliminaries having lo
do with lower semicontinuity of the optinal value function p and the exislence

of solutions to (P, ,,).

We shall say for a given (x,r) that problem (Pa,,) is tan€ if there is a set



A c R' with the property:

A is compact. and for every

€ >0 there exist 6 >0 and o >p(u,r) such that

when l(r', r') (r, r)l < 6 and p(I]', r') < a, the addition of the

constraint dist(-{, A) < € to (P, 
") would not

aftect the lnfimum p(!l', !') in (P, .r. (5.1)

The virtues of this condition are proclaimed in the next three propositions.
(Recall the meaning of'strict'lower senicontinuity, as defined al the beginning
of Section 2.) Note that 'tameness' is not a constraint qualification like 'calmness',
but merely a weak sort of iocal boundedness assumption on the way the feasible
solution set varies with the parameters.

Proposition 8. Suppos€ (r, r) is rxch tidt (P,.,) is tame in the ubolre sense. Then
p is frnite at (u,,J) and stnc J lo\r semicontinuous ut (.u,r). Furthermorc (P".,)
has uI least one optimal solution; indeed, if A is an! set with respect to v,hich the
definition of tameness is lulfiIled, then (P4") must hane un oplimal solution lying

Proof. Taking (!', o') : (I!, r) in (5.1), we see in particular that p(Il. r) < -. Defne
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P = lim inf p(u',x'J= p@,r).

{x dist(r A) < €j}

a@',x') u)ith (!l', ll') (4, !,) < 30 srcft tfidt

\' is feasible Jot (P",."\ and Jr(I,', x')= aa

Select any sequence €, J 0 and corresponding sequences of numbers 6j and dj.
In view of (5.2), a sequence (rj, r,) J (a, rl) with p( j, ri) + p exisrs havins
actually (ltr. ,i) (x, r) < 6r and p(ri, r,) < @j. Then for each i, (P.,.,, has feasi-
ble solutions which also belong to the set

(5.2)

(5.3)

(wbich is conpact because A is compact), and the infimum is unafiected if
restricted to such feasible solulions. Since the objective fonction in (P,j.., is
continuous and the set of all feasible solutions is closed, it fotiows that (P,j "thas an optimal solutiofl riin lhe set (5.3). Then fo(rl,,:r):p(&,.lJ)'p and
dist(.x', A) j 0. Passing to subsequences if necessary, we can suppose (again
because A is compact.) thal ili - r, where -r is some element of A. The
continuity of the functions t and the closedness of the set D imply that, since
( j,ri) + (L,N), r js a feasible solution ro (p".") wirh lo(r,j)=/1. We may
conclude then from (J.2) lhat :r is optimal and Il = p(a, r)).

hoposition 9. A r ffcient condition J or (u, r) to be such that (P ,.,) is talne is the
etirtence of 3a>I and ao>p(L,r') lritft the prcpertlt the set ol all x' satisJyins

(5.4)



is a bounded set. Indeed, the defrnition of tame ess is then fulflled with this set

In pdrti.ular, (P" 
") is lame it it hds Jeasible solutions ond D is of the form

lld \ C ',rith C compacL (Then C cun serre as the A in the Llefinilion of t6meness.)

Proof. Denote the set of r' satisfying (5.4) by A and observe that it is compact.
To verify the rest of (5.1) consider any €>0 and Iet 6=60, d=ao. Then for
(r', r') with (I'l', r') (I/, !) <6 and p(u', r')<d. all the feasible solutions r' to
(P,. 

") 
witl /0(r',-r') < a belong to A and therefore satisfy dist(x', A) = 0. Hence

the constraint disi(.r, A) < 6 can be added to (P,..".) with impunity.

Propositton 10. A necerrdr) und sufrcient condition for (u,1)) to be such thot
(P, 

") 
is tdme is ffie er.istence of 6a>0 Md dr> pfu, x) \\,ith the prcperttt therc is

a bounded mappins t f/o the set

{(r',,-)lp(a',r')<oo dnd l(n',1,') (u,r) < s0}

to R.t such that for erery (u',,r') in ttuis set, {( ',!') is 6n optifltuL solution to
(P,,."r.

Indeelj. the defnition oJ taneness ts sdlisji€d )'ttft respect to u particul|r
compact set A if and onlr il lDr some such mapping t. A inclules all the cluster
poinls ol si(!]'. !') ds (Il', r') '. (x, r) in the se se of (.2.2). {These cluster points
thenselLes lorn a compact set ol optimdi solirlions lo (P""))

Proof. If there is such a mapping t, and C denotes its set of cluster points of
€(L', !-') as (r', !') +, (n. r), then C is a compact set of points x which (by the
closedness of D and continuity of J,) are feasible solutions to (P,,") having

/0(,, i) = p(n, 1,). Thus C consists of oplimal solutions to (P,."), and for any € > 0
there exist t > 0 and d > p( , r) such that whenever (u', u') satisfies (&', !') -
(r, ,)l < 3 and p (r', !') < a, one has dist({(L', .'), C) < €. Since €(L', L") is optimal
for (P,,,), it follows thal for such (x',r') the constraint dist(-r'. C) < € can be
added to (P,.,, without afiecling the infimum in the problem. The sarne then
holds for any compact A I C; such an A therefore satisfies (5.1).

Conversely, suppose A is a set with property (5.1)- Choose any sequence
€j I 0 Gtarting with i -0) and corresponding values 5j and &, as in (5.1); the
latter values can systematically be lowered, if necessary, so that also 6j J 0 and
aj 1. p(&, r). Let

Aj={r' dist(:r',A)<€r,
a j = tQ'. r)l ptu', t') < a; and (l',r') (a,l)i<6;).

Then Ar is a compact set such that for every (n', ,') € Br (and in particular for
(r', r') = (r, !)), problem (P, 

") has feasible solutions in 4, and over these the
infimun of l(!',.) is still p(I]',r'). Since this restricted infimum concerns a
continuous function over a certain set that is nonempty and compact (because Aj
is compact, D is closed, and every Ji is continuous), it is attained at some point.
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(5.5)
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Thus when (!',r')EBj, there is an optimal solution to (P..") in Aj (and for
('', r') = (x, l)) there is an optimal solution to (P!.") in nj 4 = A) Foteachj
and each (x', !J')€ Br with (lt',.')eB,lr, select some optimal solution on (P..')
in Aj and denote it by 1(u', ,'); let €(x, r) ilself denote some optimal solution to
(P. 

") 
in A. Then { is a well-defined mapping on the sel (5.5) (identical 1o Bo in

the presenr notation), and €(x', i-') € Aj when ( ', !') e Bi- This mapping meets all
prescriptions: inasmuch as ti I 0, 6; l. 0, and cr I p(l.,r), all cluster points of

€(L', r') as (u', !')+p (r, D) are contained ir Tlj Aj : A.

R€msrk. The tameness condition we have been exploring was inspired in part by
a condition introduced by Hiriari-Urruty [17] in a related conlext. This is
clarified by the equivalence in Proposition 10. Hiriart-Urruty's condition is
essentially the one in Proposition 10, bu1 stronger in having ordinary lopology
appear in place of the ''p' topology.

Other authors who have dealt with ihis subject have relied on still more
stringent assumptions. For instance, to follow the pattern of lhe papers of
Gauvin and ToUe llll, Gauvin Illl, Garvin and Dubeau [12], the multifunction
that associates to each (!', r') the set oI all feasible solulions ro (P.. ,..) would be
assumed to be bounded on an ordinary neighborhood of (x, r). See also earlier
work of Evans and Gould [9], Greenberg and Pierskalla [16], on upper and lower
semicontinuity properiies of optinal value functions.

ln our main theorem, which we are now ready to present,'co'denoles convex
hull and'cl'closure. Again we use the concept of'pointedness', as defined in
Section 2 for cones tha! are not necessarily convex.

Th€orem 2. S ppos€ (x, ii) is sucft tndt (Pa") ts tame, and Let X be a y set ol
optinal solutions ro (P"") lldl at least inLludes whatewt optimal solutions to
(P,,) happen to lie in A, the set innked in the def.nition (5.1) of tameness. (ln
pafticulsr, X could be taken to be the set of r l optim( solutions to (P..,I) Then

",',.,,-.,*{(l.q x',. - r'1, an,,. 
"1

*[ U r,t,, ,, o] n r'0r,, ,r],

a'p(r,',') rcrco{l! K.r,,,,'r] n a'p1,, ,y}.

Equalitr holds in (5.7) if U,.rX(r,u,r.)nap(r,r)=b, or if the cone

(s.6)

(5.7)

[! rtu, ,, 'r] n a'rtu, ,r

is poinled; in lhe lallet case Aap(u,D) toa is painted, a d the closurc operution is
superfluous in both (5.6) and (5.1).

Although the proof of Theorem 2 will not be laid out until Section 6, we shall
proce€d immediat€ly with some coroUaries. Consequences aboul directioflal
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derivatives will be saved for Section 7. The reader should note, incidenially, that

Theoren 2 and everything that will be based on it remain valid if K(r. r, r) and

i<o(L,r,r) are replaced by other sels that at leasi are sure to include them. ln
particular. the mulliplier condilions (4.4) and (a.5) could be supplanted by the

slightly weaker ones of Clarke [3] or Hiriart Urruty l8l corr€sponding to the

inclusions in Proposition 6.

Corollary 1. Asslr ing ldnen€ss as in Theotem 2, one h/ls

anra. r rcclro{ I I Kru.,.rr+ li x^,.,.,r1. rs.8)' t-. -\ .l

If in addhion the cone l),.\Ka@,L,x) is poinrcd, then AapQ,o) is painted dnd

-" (,,-- Io"pr,. "J - clcoj U,(o(,.'. \,J. {5.q)

Corollary 2. Assxrning ldm4ess as in Theorcn 2, suppos€ Ko(r,!-,.r)n
dop(r, u) = {(0,0)} ,o/ dli x e X (o! is true (:ertainlJ if eRrJ optimal solution x to
(P, 

") satisjies the constrcint qudilcatbal Kr@. !, xt = {(0,0)i). Then p is locall}
Lipschitzian on a neighborhood oJ fu.,r) and

(5.10)ap(u, 1.) = cr c,){[u K(,, ,,,r] n apr,, ,r];

ap(4 r)cctco{! K(!4 ,, r)},

a,,p(u,,) c cl co{u I lr *,irt' (}, , e ! K(u, o, j)}.

This follows via Proposirions 3 and 4. lt eo€ompasses the estimate of Gauvin
[11] for the smootb case (a), namely: underthearsumptionthatp(,,)<6and

{r l( '. r') with r reasible in (p,.,), l(!,. ,,') (1, r) < 5}

is d compact $er fol ror € 6 > 0, (5.1r)

(5. r 1)

(5.12)

if every optimal solution r to (P".) satisfies the Mangasarian Fromovitz con-
straint qualification (4.16), rhen p is locally Lipschilzian on a neigiborhood of
(!r,o) and (5.11) holds. Corouary 2 also covers the estimate of Gauvin and

Dubeau 1121, which is (5.12) under the same assumptions. Of course (5.!0) is a
stronger assertion than (5.12). and Corollary 2 shows that it is valid under far
more general circumstances than established prevjously. Corollary 1, on lhe
other hand shows that Theorem 2 yields outer esrimates for dp(x,r) even in
cases where p is not locally Lipschitzian around (.r, r,). This is a new tevei of
result.

Outer eslimates for a.p(x,r) more subtle than (5.12) can be produced by
combining Proposilion 4 directly with Theorem 2. We leave the derails ro lhe
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Corolary 3. Arsuming lamrr€ss dr in Theorem 2, one has Jot the closed corcex

G = U (ft, k) ) h +: k <0 for all (), z) e K(,, r, r)) (s.14)

that p is directionullr Lipschit.ian with rcspect to erer! (n. t) € int G.

Proof. {ppl) Propo.ition 2 dnd Coroll"r) L

Corollary 4. Assumil€ tameness as in Theorem 2, if apfu,r)+g (as is trle in
patticulat wheneller p is calm at (u,,i), cl. Proposition l), the (P"") hljs o
optimal soLution , e X lor which there is a *ctor (), :) € K(u, !. r) that belongs
b ap(u, N).

This result demonstrates that Theorem 2 yields nol only 'outer estimates'but
'inner estimates'. Corollary 4 extends a result of Clarke and Aubin [6] for
problem (Pr 

") 
in the 'almost convex' case, where everything is as in case (b) of

Section i except that ihe objective function J0 is not necessarily convex. li also
covers a somewhat more general resull of Aubin Ii], althoush the connection in
this case takes more elTort to establish. The rcsults in question are posed in
terms of a problem structure that is difierent from the one in (P,.,), altho gh
ullimalely encompassed by i!. However lhey also apply to infinite-dimensional
problems, in contrast to Corollary 4.

The results in our earlier paper [29] can also be nentioned in conjunction with
Corollary 4. These show the existence jn ap(!, r) of certain limits of nultiplie.
vectors lhal satisfy higher'order optjmality conditions.

Corollary 5. Under the hypothesis of Theorcm 2, il x is d singleton IxJ, ana for
this r r,1? ser K(ll,o,r) is d ringletor {(},u)} and the constraint ctudlifimtion
Ko(u, r', r) = (0, 0t is sdtislied, then p ir stJ'ictl) diffetentiuble ut (u,n) with
vp(Il,,) = (), ,).

Proof. The assnmptions imply via Theorem 2 that tp(, r) = {(), z)}, and this is

equivalent to p being strictly dilTerentiable at (L,r) with Vp(tl,1,): (). r), as

already noted in Seclion 2.

Remark. The constraint qualification in Corollary 5 does not have to be pos-
tulated separately in cases (a), (b), (c), (d) or (e) of (P,,). ln those cases it
follows fron ((r, ,, r) being a singleton; cf. Proposition 7.

Corollary 6. Suppose there i:t Li muppinq t us descibed in Prcposition lO. and let
X be the set oJ alL cluster points of EO', N') as ( '. r') +, (Il, u) (in the sense of
(2.2)). Then the h\pothesis of Theorem 2 is rotis./i€d, so the concl!]siors jn

Thearem 2 and Corollaries 1.3 and 4 (.6n1 un(ler extra dssumptions about X the
conclusions in Corcllaies 2 and 5J are ralirl.
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Proof, This follows from Proposition 10.

Corollarr ?. Sl/pror€ €ithetthat (P",j is tame andhas a unique optimal solution x,
or that G".") hc,s an optimdl solution x lhal cdn be pertutbed continuously in the

sense ol the existence ol o mappinq las i Ptopositbn 10 lrith t(u',D')ix as

(u', ,') i r(u, !l). Il (P".,) fdlls into the subtliffetentiollr rcsulat case (d\ ot extended

snooll case (e) in S€ction 4 (ot in p articuldr one olcdses (a), (b) dnd (c) ol Sectidn
1), then

P.oof. Either way, we can apply Theorem 2 with x={r} (cf. Corollary 6).
Fufihermore, the conclusions of Proposition 7 hold in their strongest form. The
formulas in Theorem 2then reduce to (5.15) by virtue of dp(I/, r) and d0p(u, r) beins
ctosed and convex, with aop(u, r) equal to the recession cone of dp(r, r) unless
ap @, r,) : g.

6. The nstn arguments

We proceed now to derive Theorem I frorJr Theorem 2 using a certain
characterization of our calmness property, and then !o prove Theoren 2 itself by
means of a new general resull about limits of suberadienls.

Proposition 11. Let x be a locallJ optimal solution to (P! ,). Lel 0 : t0. @) + I0,.)
be un, incrcasing conrel funr:ti(, \tith0(g=0.!nd8(0)=0, Lrntl let e.-.0. The
the p riameterized prcblem

mininize io1', x') = lo(i,.', r') + o(li' -{ ) or,er dil .r' sdriv)ins
(P,,") (r"r)e.D=(u"r)eD x', x <€l und

,t 0 /ofi 1,...,\,
0 i.'i . 1,...,-

in pluce of (.P,..,) dg!1in satisfres the funddmental lssumptions of S€cti.,r 1: i is
asain closed and fo locaLly Lipschitzian. Moreol,er, the iern g(r') = d(lr' r ) in
in is t finite comex Junction of x' (.thereforc locall! Lipschitziun) which is strictty
differentiable at x' = x \)ith

op{r. i ) Klr.,..rt and o'p'u., r-Kor.u.)1. (5.15)

vc(.t) = 0, 8(.r) = 0, s(r') > o /rlr i!' ; :r. (6. t)

t(!r'. r') = inf(P,, ,.i

Furthetmote, iJ €<-p, \there p is the rddius oJ d spheric( neighborhood of x
with rcspect to which the local optimalit! of x holds ja (P,,,,). the x is the unique
kllobally) optinal sofurion to (F" 

"). and the optimal Dalue fun(:tion

(6.2)

hdr t(!r, r)= /o(!, r). If h dddition i is a.t&all) a sbbaltt optimal sotution to
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(P,.,J, then
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tto(Dr, rr) fo(r, r)l/(Lr, rj)- ( , !) + o (6.4)

t(u.r):p(u,r). white FQ' , ]..') = p(u' , D') lor att (u',n')+lu,n).
(6 3)

Proof. All these assertions are elemenlary, excepl for the difierenliabilily pro'
perty of g. The convexity of g allows us ro conpute s'(n; tu): 0'(0) hl:0 for all
I, from which ir follo\rs (cf. 126, Seclion 231) that a8(.r): {0}. Then 8 musl be

strictly dillerentiabje at 0 with Vs(-r) = 0. according to lhe results cited in Section
2.

Proposition 12. Let x he Ll ljcaLlt aptimal solution to (P".,). For (P, ,) to be cdl'n
al r, il is ne.cssd/) and sufrcient that Jot ewrJ lunction 0 as in Prcposition 11,
one has for aLl . > o suff cientL| tmdl thdt th? modifed optimal Lalue function i
in Prcpo!'ition ll is.dlm .ri (u,x) (in the sense of Proposiitur 1).

Proof. The argument will utilize the notaiion and conclusions of Proposilion 11.

Nec€rsil]. Suppose (P, , ) is caln at i. and fix any d as desoribed. If for some
€€(0,p) the function F is not calm at (r,r), there exist for any p€R points
(!l', N') arbilrarily near to (I/, x) and yieldins

lntu',n') i(.u,1))ll(.u', !') - (u, r)l< p.

Here i(a, !) = f0(!. r). so the inequality ncans by the dcfinition of i that

ffo(!'. i') + s(:r') fo(r,-I)l/l(',r') (ll,r)l<p
for some feasible solution x/ b (P,,,") with r' :! -<€. Th s if there is a
sequence of va.lues €j L 0 such that the corresponding functions i are not calm
at (&. 1J), we can seiect for any sequence of v,rlues Pi .l -, correspondins
points (ui. 1)i) arbitrarily near ro (!, r) and feasible solulions .!i to (P,,,, wirh

lrt xJ< e1 and

lJ0(Nj, .xi) + s(-ri) 101u, x)l/ (l,,, Ni) (r, D) < p,.

Then 1t j .r and (since s :0)

ln particular. (ri, r)') can be selecled so as to converge to (L, r), and a contradic-
tion is then obiained lo the assumplion tllat (P,,) is calm at r. Hence under this
assumption there cannol exist a sequence of values €, J 0 such that i is not
calm at (x. r). and this is what we needed lo prove.

S ficipncJ. Suppose (P. ,.) is nol calm at r. Then there exist ( j. ri) i (r4 !)
and rt j:r such thal :!, is feasible in 1P,'.,, and (6.4) holds. Let 6j=
]( r, or) (rr, rl)l and €j : .rr :! ; passing to subscquences if necessary, wc can
suppose that 5j and €r are strictly decreasing in i. lbe line segmenr joining the
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points (€r,6Fr) and (€i*j, 6i,r€i*, in R: has slope

Ij: (8j€j 6r*r€Fr)/(€j €,*r)

5,.rr i, r. 165l

Let 0 : [0,6) i [0. ') be the funclion whose graph is the union of all these

segnents and (0,0); then d is continuous with

0(€j) = 3j€, for all j, 0(0)- 0.

From (6.5) we have.\i>.\;*,> >0: hence 6 is actually convex and increas-
ing. Thus 0 belonSs to the class of functions under consideration. and

(6.o)

It will be demonstrated now that for this d and any E € (0, p), the function i is

not calm at (u, r). Indeed, since rj is a feasible ldution to (P,'.", with l:rj r =
€j. it is a feasible solution to (p,,,, for j sulliciently large, and then

i(Li, Dj) = fo(!i, ni) + 8(ij :r).

We also have i('r,!-)=Jo(r,r) (becalrse €<p), and since (6.4) holds for the

chosen sequences, we see via (6.6) that

fo(rj. x') - Jo(r, r)
l(!ri. !i) (r, r)l

Thus

0( jrt x )/l(!', Ni) (ll. r)l = €, J 0.

itui. ail plu. ul -(&r,r)-('r,r)

.. , i(n . !') t(ll..)
,,,r'Tlll1,, l, ,-a tt.;[=

Prool of Theorem 1 ('rsing Theorem 2). Suppose r is a locally optinal solution to
(P, 

"). 
Then for 0 and € as in Proposition 11 wilh € < p, ,I is lhe unique optimal

.olurion ro rhe m.JrfieJ pr..l-l(m ,p, ' Theorem 2..,n be applied ro rP, ,,ct.
Proposition 9). Taking x = {ir}, we conclude in particular that

apra.,r-clco{Kra.r.\r K,r r. r". and if krr.,.yri. poinr.d.
also adi(r, !) c cl co Ko(r, n, -r), (.6.'7)

$here K(lr, u, yl .'nd Ko(r, r, \l Jre lhe rnullinlie- .er. c,'rr(.n.ndirg ru (P" L
i.e., with fi and D is place of fo and D. Aciually

K( ,1,. r) = K(!. r, {) and K('r, ,,:r)= Ko(&, r, r).

a[t.*i rr, * au]r,, 
"i = a[r"+j r,r,+a,lr,."r:

(6.8)
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tlis is due to the fact that i and D coincide in a neighborlood of (r. -r), while lo
and f0 difier only by a function whose gradient vanishes at (o, r): cf. proposition
5.

If Ko(,r, tl, r) = (0. 0)L we have 0+K(". r, r) = {(0, 0)} (Proposition 7). so
K(u, 1,, r) is not just closed (Proposition 7) bul compact. Then roo, aop (l/, !) =
{(0,0)} by (6.7) and (6.8). Hence according ro Proposition 3, i is Lipschitzian
around (&, ,) ard in particular calm at (u, r,). Since rhis hotds regardless of the
choice of 0. as long as € € (0, p), it is clear from Proposition 12 that (P" 

") musr

However, if (P,.") is calm at:r, we know from Proposition l2 that when € is
sufficiently srnall, F is calm at (u, ,) and therefore by proposition 1 that
ap\,N)rg. Then we deduce from (6.7) and (6.8) thar I((!/.!.ri;:o. This
completes the derivation of Theorem 1.

Next on the agenda is the proof of Theorem 2. The foltow;ng result is the first

Proposition 13. Slppos€ (u, D) is rrcft tftdt (P".") is !dn€, and let A be a set Jot
\\hich the Aefnition (5.1) ol tanen?sr is fulf.lled. The there are numbers b >0
and a > p(u, r\ and d compdct set I) c D, such that the rcpt.tcement ol D b\ b
does not affect the inf.mum p(u',1,') fot anr (x', r') sdlirfyi,rs (ri,,,,) (!],.,)l<6
and plu', a') < a, not does it dltet the set of optimal solutions x to (p,,) i,hich lie
in A or the sets K(u,1), x) and KrQ, r, 't associated \eith ary such x.

Proof. Fix any € > 0 and corresponding 5 and d as in (5.1). Let

D=(o',:r)€D dist(jr',A)=€ and .,'-r <61.

Since A is compact and D is closed. D is compact- Tbe assertions are rhen all
obvious from (5.1) and the fact that rhe sets {r ] (r, r) € D} and {r | (N,.r) € D}
agree in a neighborhood of A.

We will also need a new general result about convergence of subgradients.

Proposilion 14. Suppose 1or j- l.2.....,1or \' lurri\hc, o linite tr.,tl minimun
oJ J +ej, wherc f u d sjarc lower semicontinuous Junctions Jrcm R" lo ( --, -1.
lf ri + r, l(r) i /(r) (fnite) and igj(.rt + {0} (.in the sense that lor e1)ery
neighborhood U of 0 one has 6t agj(xi)cLt when i is sufrcienttr ltrrce). then
0 e tl(:r).

Proof. SDppose 0 € al(r). Then there exists a vector I such thar l1(.r;h) <0.

l(.r'+ rfi') F(r')l Irllo - tim rim \up I inf
€10 !-f lr r-
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(cf. the general formula (2.5) for subgradients in tcrms of subd€rivatives). In
particular, for every € >0 and sequence tj J 0 one has

o 'im,unf irr lrr - Il r -ft.x:)]
'.'Lr ,

The assumplion that t + 8r has a local minimum at r' implies

/rr'-r,i r-Lrr' l,il I /r.yir-g,r.r'l

for any l'once i is larg€ erough, and this can be writt€n

t/{\i .r,h r- t{r,rl/r,> l8r{.rr-r,l'l rj,rr'll/1,.

Hence by (6.9), for every € > 0 and sequenc€ t I 0, one has

o ri,".,nfl,,s"P. clr!+;Lll"l.

(6.9)

(6. t0)

Next we use the fac! that agr(xi) + {0}; passing to A subsequence if necessary, it
can be supposed thal

0* aer(x)ct" I wl<^il where 
^j 

10. (5.11)

In particular a8i(.rr) ir bounded; hence gr is locally Lipschitzian around xr[25,
Theorern 41. Moreover, (6.11) implies that for all Ii e R"

r,lft >max{w.k I w E asl-r')}

",. _rk) g,r\,1g'tx':(r-,im,sup" '-,

'10
(recall from S€ction 2 that I l(x'; k) reduces to g9(.ri; li) in the locally Lipschit-
zian ca!e), Thus Ii serves as a Lipschitz constant for Il in some neighborhood of
nr, say in a ball of radius 5r aro nd r'. Fixing €>0 a.rbitrarily, choose the

sequence l, J 0 so that it + tjll'belongs to this neiShborhood for all ll'satisfying
l' h <€ (it sufnces to have 0<ti<6j/€). Then for all j sufrcienllv large one

has

u,(.xj+ lih)- gj(ri) s tr;lh'l wheneverlh'-hl=e,

and hence from (6.l0)

0 < lin inf lj( ft + €).

This contradicts lhe fact that li I 0 and esrablilhes that 0e a/(.x) after all.

Proof ol Theo.en 2, Proposition 13 gives us license to sLrppose wilhout loss of
generality lhat D is a compacl set. It is elemenlary then that (P,.., has an
optimal solution for every (,1',u') such that it has a feasible solution (in
particular for (It,!), because p( , !)<a by hyporhesis), and that p is lower
semicontinuous everywhere and globally boDnded below. By means of the
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reformLrlation in Section 1, we can also reduce everything to the rolationally
simpler case where there are no vectors r and z The reasoning here, as far as

the equivalence of the multiplier conditions is concerned. is based on Pro
position 5: the reformulatior involves the introduction nerely of linear con-

straint functions, and a(gr + 8,) = Vgi + ,gz in particular when gr is linear.

In this reduced case wiih D compact, a formula proved in [29' Theorem 2] in

terms of the (quadratic) augmented Laelangian function becomes applicable:

,p(L) = cl colY + %l and aop(u)=clcov0,

Y = {} | lrr >, L and }' an augmented multiplier

vector for (P"r, such that )ri ))'

% = {) ] 3 u' +n u, I; J 0 and )i an augnented multiplier

\ector for lP. ,. \uch lhal \rt . )'.

Here )iis called an'augmented multiplier vector' for (P,,) if for all ri>0
\uffcier)rly large. rhe oprimal \olutiuns lo rP r are preci\el! lhe \eclor. x 'uch
that (ri. )') is a (slobal) saddlepoint of tbe augmenled Lagrangian

(6. r2)

(6.13)

(6.14)

> t),+ 4f,(i)+ l)ll
Il(i, ,:\, ], rl = lo(.x)+ -

2r"til
with respect to r € D and ) € R'. (We are using the nolation that s* = max{s,0}.)
Since ap(u) and t0p(u) are closed convex sets, we will be able to deive formulas
(5.6) and (5.7) in Theorem 2 by showins that

r),+r,(J,(r)+ ri)]'1 ;lj':

Yc U K(x,r) and Yoc U I<o(4x) (6.15)

consid€r now any sequences yi> y and u''pL such as in the definition
(6.13) of Y. Since D is compacl and definition (5.1) is fulfilled by A, there is (for i
sufrcienuy large) a sequence of points xj such that xiis an optimal soiution to
(P,t and dist(r', A) j 0. Passing to a subsequence if necessary, we can suppose

ii converges to some:r€A. Then r is an optimal solution ro (P,) (by the

conrinuiry of rhe funcrion' /r and rhe lacl thal pru; t pr u t'. ond x belonE\ lo.\
(the hypothesized set of optirnal solutions to (P,) whjch includes all those in A).
We will demonstrate that ) € -K(u, r), and tlis will establish the first inclusion in
(6. !5).

To \d) lhdr (.x. \' ' i' a.addlepurnl of I rr. \. ). r r$ilh respe.l (o i - D anJ

), € R' is to say that

/r.\'r l1 0. ): -0. ':1.u;r l]il 0 fur i- l... . ..

ti(ii)+xl=0 fori=s+1,...,m, (6.16)
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and rhbr \t gr\e, lh. gl,,bal ririnimu.n .ve' D of l rx. v. r,). Bur r6.tor impiie,
rhdl lhe luller tuncrion ieduce, locdll) ar,,unJ r'ro

.i ..I Z\'U. u] l{) ,t. ,,-r ) t/. ll1,1. rb.l-)

Io0) = set of all i € {1,... . s} wirh yl :0,
J(i): set of all other constrainr indices.

This reduction makes use of the reJrlion

f itrl+,,ii, +,)t: rriil

llLJt 
+ uil++ff,+ u'tt1 where/,+,,j> ri/rj,

' -r', ''.'- wh.'e/j.x: rlr,.

{6.19) simply gives tf,+,lli.)
From (6.16) we know rhar in rhe ljmil as j > 6:

t,(_r)rl],=0, ),>0, r,t/,(r)+ll,1:0 fori_1,...,s,

lr.rl l]-0'ori . 1....,r'r.

(For activc inequality constrainr indices i with )i>0, onc has )j/r,<0 bur
llxj)+ui=0, so only the firsr alrernarive in (6.19) hotds tn o..rtui., n"igr,to.
hood of -rj. For all other inequality constraint indices one has rj=0. so that

(6. r8)

(6. r9i

(6.20)

On the other hand, we have seen that x, gives a iocal minimum io the funcrion
(6.18) over D This tells us that .rj gives a local minirnum to / + sr. where

I =fo+> )oi, +5D

gt= Z\.J t )J,+: > h,),

t:JU,+ull f,,rielrjl.
" li , rnr i.rrir. f6..2lj

The functions hi, alt vanish at.xiby vi ue of rhe definitions (6.18). and these
functions are all locally Lipschitzjan. In applying to (6.22) the rules of
subdifierential calculus for sums and squares (cf. proposilion 5 and tj. Secrion
l3l). we get

where lJi(:r') = 0; the second sum lierefore drops ort. But lim,()i-.',i):0 aDd
li'nsupa1.r'r 1rir1.1*1 rbecdu.e / i. t,\a ) Lip.chit,,ian "nd \ ..r, ct. llJ).

(6.2r)

(6.22\

rq,.r , >, {: r.,,i'r,'r)i,,,dh,r\,)=i i=
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Hence agj(rj) + {0}, and we may conclude from proposirion 14 that 0 € a/(r) for
I as in (6.21). This property along with (6.16) means rhat I € K(lt, .I) as ctaimed.

The argument is very similar in the case of ),, xi and I, such as jn the
definition (6.14) of Y6. The diference comes in muttiplying (6.17) rhrough by,\i
and .haracreri/rng r' accordingl] a\ a locat minimi/er of / . L rdten a\

.f=) yJ,+6o

8, \Jo I > liJ rj)t .:>,,1,

with i,, as in (6.3). Again ,s,(ri) + {0}, so 0€ rj(:r) by proposition 14. and rhe
conclusion is obtained that J e Ko(L,.x).

Thus the second inclusion in (6.15) is vatid too, an{t formutas (j.6) and (5.7) of
Theorem 2 are then true in consequence of (6.12), as already explained.

To obtain via (6.12) and (6.15) the final asserrions of Theorem ?, abour equality
holding in (5.7), it will suffice to prove rhat

doP(r) = cl co Yo

if either Y = 0 or Y0 is pointed, and that in the iatter case one actuallv has

(6.26)

in R'x R by the formulas

ap(a) = {) | (}, -l) e cl co N}, aop(u): {r' | (),0) € ct co N}. (6.27)

(See t29, Theorem and its proofl.) It was observed also that

(6.25)

Here we must delve deeper into the arsument in [29] by means of which (6.t2) was
established. The argument was based on representing ap(r) and a0p(r) in terms of

dp(L) = colY + Yol and dop(a): co Yo.

N ={.\(), -r) | } € y, r >0}u(y,0) | y e y1}

oe %r o-Y := {} ] l),e Y, r, ,l o,wirh^,)jJy},

(6.24\

(6.28)

or what amounts io the same thing, rhatN is closed and nonempty. The statements
about (6.24) and (6.25) at the beginningof rhis paragraph, as well as (6.12) irself, are
irnplied by this represenration. as we demonstrate in tlle following geomerric
proposition, thereby completing proof of Theorem ?.

Proposition 15. Let Y and Ya be any clor€d srt sets o/ R. sxch that ya is a cone
rdris/)ins 16.28), an.l let N be the closed cone in R^ ,. R defrned by (6.26\. Then

{) l(}, 1) € cl co N} - cl cot]. + yol, (6.29\



(6.-10)

Eq&dlir],lolds in (6.30) i/ Y =9, ot iJ \ is pointerl; in the latter case co Yris itselJ
closed ond pointed, ds is co N, dnd one dctxali) has

{} l(}, 1) € cico N}: cotY + Yol.

{} | (},0) € cl co N} = co Yo.

Pr R!, trt4\r I It,t!\ .,ot,,t ,+ Jn I .ul r?tt, o ,, ^

{J' | (}, 0) e cl co N} r cl co yo.

On the other hand, since y0 is a cone containing 0, we find frorn (6.26) that

(6.r1)

(6.35)

Proof. ll istrivialfrom (6.26) that(6.30) alwaysholds,andthatirholds wirhequaliry
when v = 0. Note loo thatwhen y = 0, (6.29) and (6.31) hold with both sides empty.
We can lherefore suppose henceforth that Y+ 0. Then N meets both of the open
half-spaces bounded by the hyperplane H = {(}, -l) | I E R'}, so co N cetuiniy
cannot be sepa.ated from H and hence H o ri co N + 0 [3. Section 1]1. This inplies

HnclcoN=cllHncoNl

[3. Section 6], or equivalenuy,

{) | (}, 1) € cl co N} = cl{r- | (}, l) € co N}.

(6.11)

(6.32)

(6.-r])

{) | (}, 1) e co N} = cotY + y01,

{} (),0) € co N} = co Yo.

The combination of (6.33) and (6.34) yields (6.29).

We shall demonstrate now that if Y0 is pointed, then co Yois closed and pointed.
Sirce N, like Yo, is a closed cone containing ihe origin, and since N obviously is
poinled if and only if Y0 is pointed, co N too is closed and pointed. Then (6.31) and
(6.32) will be seen sirnpiy as restatements of (6.3a) and (6.35).

Assume Y0 is pointed. Because Y0 is a cone in R" containing the origin, we have
(by Carath6odory s theoren t3, Section 171)

roYr lt ; ly-).r.
If co Y0were not pointed, we could represent the origin as a sum of nonzero veclors
in co Y0. This would give arepresentation ofthe origin as a sum ofnonzero vectors
in vo, contradicting the pointedness of y0. Thus co y0 is pointed.

Proving that co Y0is closed when Yois pointed amounrs toprovingin thecase of

W=Yx.xYc(R'")"i
and linear transformation

A: w = (.'-1,..., -,"''')' y'+ . +r' '



that

if l', € W and A(l') = 0 inply lr = 0, then A(W) is closed. (6.36)

sutn,i.e {(!41 ue-e nol co\ed. lhen rhere ould e\i'l tt e W \uch lhal

A(wi) ' qts A(w) The sequence {}ri} could not have a bounded subsequence, for
if so it would have a cluster point, and then A(w) = q. Theref ore l}1'jl + o, and f or
*j= wll}l,jl we would have }fj € w Gecause w is a cone) and

A(t',r) = A()')/lw' i0.
Since }'jl= l and W is closed, the sequ ence {*j} wouid have a clusterpoint lf € \v
satisfying lu = I and A(ir) = 0. This argumenl verifies (6.36) andfinishes the p.oof
of Proposition 15.

R€mark. The need for some further conditions on y0 in order to elrsure equality in
(6.30) is demonstrated by

Y = {(),, ), € R1 ri< yl}, v. = {(y', y.) e R' I r, - o}.

In this case one has (6.28) satjsfied bul cl co N = {()r, )r, ?r) I rl =0}. so that

{(J-,, },) l(),, i:,0) e cl co N} = R'7, cl co Y! = Y0 = Rix {0}.

7. Application to gen€ralized directional d€rivatives

The estinates in Theorem 2lead tu results about the various derivative
functions p r, p0, p*, p* and p'discussed in Seslion 2. We have already seen one
consequence in Coroilary 5; there (2.10) holds, and in pariicular p'(r, ';h, k) =
] . ft +, . k for all (h, i.).

Theorem 3. Wilh (ll, r) dnd X solisl)in8 the hJpothesis ol Theorcn 2, let (h, k)
be d 1)ectot belonging to the closed conrex cone

R.T. Ro.tdfulidr Ldn/dn!e rnkiriDii€rr dnd rrbderiNdhDer

G= n (i,ft)l-.!,.i+z k<0foratt (). z) € K0( .r.:!)). (i 1)

If either pt(u,r;h,k)<- or there is at least onexeX,nith K( , r, r)- 0, or€

p ,&.u:r./.,. .,tl ,,lC r, ,,,, /,.1. (7.1)

(i,hete an emprr suprcmum is interyretetl as -6). This inequtiit, is ntrli(l in
particultt fot all (,1, t) - int C; h fact for such (h,k), (2..9) holds anLt one hur
the fufthet eltimdes

r-1Il, r;rr, t) <;nr 
[,,.,,spn,.,, {r 

.rr + z l}]. (7.1)
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r,-{r, f. h, -[)< inf I \uP

Pr$ot. The lirst estimate (7.2) is obtained

Corollary I and the formula

pr(r, !;h, k): sup{r 'h +.? & (),:)€aP(,u)}'

which we know fron (2.6) !o be correct \^'henever pr(ll,t;h,,.)<'o or

api,D)+g.In taking the supremun of ) ft +z k over all ().r) belonsing to

the right side of (5.8), we can certainly ignore the 'clco- Thus for the sets

M= U K(,!,r), Mo= U K,,(u,r,'), (-.s)

{ r.r : r}1. (t.1\

estimate (5.8) in

p 1(a. r; h, ir)=sup(y.h + z. k + t0 h + z0 t I 
(), :)€ M, ()0. :0)< M,,l

provided that eirher p 1( , u; tu, k) < - or M + Mo i 0. Here Mo is aclually a cone
(not necessarily convex) which contains (0.0), and C is i1s polar. so that

.uo.o rr _:o i ,,0,0,_ uo, ll iili ll;E
Thus M + Mol O if and only if M+ 0, and for (h, k)€ C the risbl side of (7 6)

sup{) ft+z ft ().:)EM}.

In this manner one oblains the validily of (7.2) for all cases having either

p1 (, r lh,k)<. or Mi0, as asserted

We have already noted in Corollary 3 that p is di.cclionally Lipschitzian wilh
respecr to (h. k) € in! C. which neans that (2.9) holds (see Section 2)

To derive (7.1), we initially fix any -r € X and consider tb€ modified problem

(P, 
") 

in Proposition ll. As long as € is small enough, this has ( as its unique

optimal solution and again satisfies all our assunplions. including tameness (with

respect ro A = a u {:.}). The results obtained so far for (P, .) can therefore be

rpplied to (p,.) witb -* = lrl: for (i1. k) bclongins lo th€ interior of

C = (ft, ell) ft+; l = 0 f or all (y, z) € Ko( .r.:!)).

i 1(Il. u r h, ft) <,, .,sup ,. ,,1) h+k:1.

(1.7)

(7.8)

and moreover (2.9) holds for F. so that aciually

i'(.!rft.t)<ir(r,!;h,,.). \19)

Al the same lime we have i and p relaled by (6.3) in Proposition ll, and this
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implies

pr(l].1];h k) = i+(r, D; ft, k). (7.10)

Putting together (7.8). (7.9) and (7.10), we see that

p-(r. r: ft. k) < sup {!. n +:.k} when (li, k)€ int 6.
r].tr€((! 1.n

Since C I C, and r was an arbilrary poinl of X, the irutb of (7.3) for all
([. ]) € int C is imrnediale from this.

The a.gument for (7.4) is ditrerent. B€ar in mind tbat p is finite and lower
semicontinuous al (u, u) under our hyporhesis (cf. Proposition 8). Denoting the
risht side of (7-2) by B, we see that (7.4) can be written in the form

rin ,r,n pl-!.') p(u th I - tI ) . p. !-. r rlI

white what we know from {7.2) and (2.10) is tha!

.. D(t' ' Iil .L -rL'J.,1".ilI]1.t - p. (-.r:)
th i')-(r.rl

Our task will be to derive (7.11) from (7.12.). I-et d denote the value of the
'lin sup' in (7.1l). and consider any consequences (,1j, k)'(h, k) and ti I 0 for
which it is attained:

, f(r. r ) p(lr lii. ! Ikr)I'm o. (-.I1)
I

We need to show a=B, and for this p rpose it is enough to look at the case

where d > - Passing to \ubsequences in (7.13) if necessary, we can suppose
that

t-limp(u tihj,x tikj)

exists. Since a > , and t, > 0 in (7.13) it musr be true rhat "y < p(I/, r), yl.r the
opposite inequality musl hold too. because p is lower semicontinuous at (1.,).
Hence

plu tjhj,r tjkj) - pltt,x)- (j.14)

Define (1,, rj) = (r1 r,irt. , tjlii). Then

.. p\Lt + t,hi. rr + t,ht) Dtu.Ltl
j-- tj

br' (7.13), and (tr. fi) ' r (r. r,) by (7.l4). It follows from (7.12) that a = fi. and
this completes our proof.
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Renlark 1. lnequalil-v (7.1) could also be expressed rs

p (r. N; h, k) = sup I sup {r' h +: k}],

where in parallel kr rhe dennition (2.11)of t (r, | ! i. k) one take!

D(Lt th t l() P'x '/' {r.r,l'.4)_ lr1 . p 

- - 
-

t

6l

(7.15)

(t.16)

Renark 2. Inequaliiy (7.3) holds in a more general form. as shown by the proof:
for nn drritrdr! set Xo of optimal solulions to (Pr .), if (h k) € in! C!, where c0
is the conc obtained \{len X js replaced by X0 in (7.1). rhen (1.3) roo is valid
with X replaced by Xo.

Cororlary l. $/ittu (u, r) dnd X s.rtiflins the hlpothesis ol Theorem 2. \uppose
thut the constraint qldlijtcdtion -K (r, r, r): 1(0.0)] holds lor .r€r) i € x. Tien

Jor all (h, k) € R"' x R'r one has 0.9) awl

tlr,L:]] Ar. tn, ,. ,:yo , t'

p,.:t,.r' i_rI n'

Il h rJd;tion k r,r. , . .(, l. d .ia8l"ro. {r ' 
r

d€rirdlires p'(r. !i n, ft) €nisi, dnd ir /aci

p.(u, .; h. k) = jr (n. ri n. ft): inf 1)(r) .n +:i:r) . ft1. (7.19)

ft +:. ft]].

h +.' . k )1.

r),:(.r))l i.,r

(7.t7)

(7.18)

euch x€ X. then the

Proor. This is the case of Th."r.," 3 *h... C is all of R'' x R?, so that (i, k) and
( h, k) both al$aysbelongto inlG. Theinner'sup'in (7.17) and'inf in(1.18)
coincide. of cour\e, when I((l]. r.:r) is a singleton.

Corollary I gencralizes resuhs of Gauvin and Toll€ [13], Gauvin 1111, Gauvin
and Dubeau I12l in the snooth case (a) of (P,,,). and of Auslender l2l jn lhe
somewhat more seneral case where the ineqrdlil) constrainii need Dot be

smooth- Corolla.y l allows nonsmooth equaUly constraints too, plus abstract
constraints represenled by (D,-r)€D, and at the same time yields slronger
conclusions in terms of Hadamard deri!alives instead of just Dini derivalives.

Corollary 2. With (lr, r) dnd X as in lhe hypothesis oJ Theorcm 2, dnd G the &ne
in (1.1),if i^IG+0 on?hljs eithet p'lu,t;h,k)-.. -fot ll (h,t)eintCo/

p-(r,rrtu.1)=p-( .r;ft.k)= - for /]tt (h,k)€intG.

the luttet tose occurrins if and onty if K(u, r, x)- g lot some \ € X.

(r :0)



62 R T. Ro.tdlelld// LdB/drBe ultipli.L thd trb.ietiLrntet

P.oof. Apply (7.1) and use the facl lhal p =p .

Corollary 3. I the case where no putameter xector ! (.or corresponding

nultiplier De<:tot z) it bring consiAered. dnd all the axplicit const'uints in lP") dre

inequalities (notationall)i r = /n). r,lppos€ r is sucft tldr lP,) it t.tne, and let X
be the set of all aptimal rol&lioril ,d (P,). Then far e,,er.\ stri(tl! negutiDe .^ecbt h

(i.€., ft e in!RT).,nc nds

Proor. Here Ki(r,:!)cR? for all r€x. so thal lhe
R'1". Every strictly negative tu thcrefore beiongs to

obtained as a special cale of (7.3).

p'( , ft) = inf f,rue.j r h] <o

n.,.,.,:h.r,j,nr[, :1.9,,,,,

0€>

c= [l [r,tr i rrr rrr.LrA+hr-o,Er I =

(1 21)

cone C in (7.1) includes
inlC. and (7.21) can be

(7.1)

\'7.23)

Our final result treat\ only a sp.cial, bul nevertheless very important class of
problen,j. It exlends the marginal value theorem of Gol'shlein 15. Section 7l to
the case wbere ihe set of Kuhn Tucker pairs as!ociated with (P" ,l i! not
necessarily compacl. Again, conchrsions are obtained for Hadanard dcrivrtivcs
ralher than just Dini derivatives.

Theo.em ,1. Ir the mixeC \mooth (c) in Srciion 1, anLt vith (u,r)
nntl X \uch thot the hlpothe\i\ of Theorcm 2 is Jdlis./i€d, ore ftds f.,/ dll (n, ,()l

The set ol iectors !eR'' sdlis/)tr8 for o

slackness conditions (4.3) dnd

- tr] 0.22)

giren r€X the complenlentur!

r-JdJ,(r.:r) + N( (r).

is acl dllr- d .losed .onrer cone Ya intlepen.lent ol x. The rcni'ex <:one in

drd Jor .rll (1, k) € int G ord hds

p'(x.r;ft.k):p ra,r,;rr.i)-mlni,,.,spr,,,{i h+z t}1. 0.21)

Proof. Since (7.22) is trivial if p.(a, r;ft, k) suppose in proving
(1.22) lhat

(7.25)
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for certain sequences lj L 0 and (hr, i.I) ' (n. k). Lci

(ri. 1,,) - (r + ljhi, | + ijkj) - (r, r).

Then p(lrr, ij) - p(ll, D)by (7.25) and the lower \emiconlinuilv of p al(rr' r)' rhe

latter being a consequence of thc lameness condition in the hvporhe\i! of

Theorem 2 (cf. Proposition 8). Thus (ri, rr) - i (rr, r) lntroduce rert a mapping {
as in Proposilion 10 whose cluster points as ( ', u') i|('1,i)allbelong!otheset
A rn..ked in he r nece.. denn,.r.'_ t'. r. re'rrp ' rr'r ', r and pd\'rag lu

\uD\equer(e.orre.e..ar\.qeger!. _\.-ge..equer'.eorurliral.r'lul:.'r .' r^

(P, ,t whose linil is a certain optimal soluiion i e A to (P,. 
"). 

Then 1 € X, since

under the hypolhesis of Theorem 2 ever,\ oplimal solution lo (P,. 
") 

in A js also in X.
Note that f0(rj .\i) = p(uj. r') and J0(r,:r)= p('/, ,,), and hence

fi( rr,.\ ) fi(f, 1)
I

b) (7.25). Consider now an arbitrary ()-,:)e K(r1,i.
(4.4), but since we are Cealing with thc mixed case

$'rillen as (4.11), or in lerms of the function

(1 26)

.r). This salisfies (4.1) and
(b) of (P, 

"). 
(,1.,1) can bc

lin

0 € a,l(N. -\) + N. (:r) and :=V,.1(D.-r) ('.)7)

Hcre I inherits frorn ihe functions fr the propcrty of bcing convex in the second

argument. and ?r in the first argument with gradient depending continuously on

boll ar-sumenls. This joinl continuity cnsures (via the mean vatue theoren) that

. l(r +rki.nl) ltr.rit -.l.r --* "' -r/r',,) i j (,
t- ll

(7.28)

l=fo+> !J,

even nrore !imply as

a facl that will be pul to use presently. The convexiry property of l. on the olher
hand. allo$,s us to rend the first condition in (7.27) as sayins lbat l(r, ) ariains i1

min mun o\er ( ar r (f 126. lheore.r )-.41,. Since ( r. l(r,il-le IJr rP" l, ,n,l
hence in particular:r'E c. it follows from this that

r( D. rj) > l(r. -r) (1.29)
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and from (4.1) thal

r-ilt(r. n)+ Lrl = l(0. r) + l . r.f,(,, ') = f'(r,. r) + )

fo(r'. rj) = ,i(r', ii) + >

(7.30)

(7.1l)

Therefore

fo(!,, ri) f0(u, r) > tl(ri. xi; + y ajl tl(Il. r) + y !ll
:J tu ut /ir'. \ ' r,i..Y )

: l,r' . hi+ [i(r + /,kr, ir') l(!. ri)].

Usine this estimate in (7.26) and jnvokins (7.28), we -qei

P,(u,r;ft.k)>).h+! k.

This beins lrue for arbitrary {}, ,) € K(u. o, j), we conctude thar

p (r,u;h.,():- slp {} h+: k} ('t.32)

for tlre particular r € X which has been conslructed, and hence rhar (7.22) is

The rest of the proof of Theorem 4 is mostly a malier of alplying Theorem 3,
specifcally (7.1). The special form for C is readily derived from rhe fact rhal
condition (4.5) in the definition of (01I/. u, r) reduces in the present case ro (.t.t2l
(cf. also Proposition 6). As pointed out in Section 4 in the remar*s fotlowing
(4.12). the first condition in (4.i2). together wnh (4.3) and the feasibiljry of r,
constitute a certain saddlepoint condition on (-r, )). As js well known. rhe set of
saddlepoints of a given function is always a product set; the set of )'s
corresponding to a given r is independent of the choice of x.

Corollary. Under the assumptions in Theorcm 4. iJ the set Ya consisrs of irs!
| =O, then p is locgll)- Lipschitzian arcund (.u,1)) dn.1 ('7.24) hokls for dU \h.k).

Proof. To say that Yo:{0} is to say rhar Ko(r.r,:r)={(0,0)} for each r€X
Then I is locally Lipschitzian by Corotlary 2 ot Theorem 2ln Secrion 5.

),,t/,(!,. r') + uil : l(r,j. rr) + ) r.,
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[2] A. Auslender, Dilie.enlial nlbility in nonconvex dd non ditierentrable Frogranmins.,, in: ?
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