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For finite-dimensional optimization problems with locally Lipschitzian equality and in-
equality constraints and also an abstract constraint described by a closed set, a Lagrange
multiplier rule is derived that is sharper is in some respects than the ones of Clarke and
Hiriart-Urruty, The multiplier vectors provided by this rule are given meaning in terms of the
generalized subgradient set of the optimal value function in the problem with respect to
perturbational parameters. Bounds on subderivatives of the optimal value function are
thereby obtained and in certain cases the existence of ordinary directional derivatives.

Key words: Lagrange Multipliers, Subgradients, Marginal Values, Nonlinear Programming.

1. Introduction
In this paper we study an optimization problem that depends on parameter
vectors u# = (U, ..., Uy) ER™ and v = (vy, ... , vy) € R4:

minimize fo(v, x) over all x ER" such that (v, x) € D and

=0 fori=1,..,s,
f;(U,X)""ui{:O fori=s+1,...,m,

(PI(. l')

where D is a subset of R x R" and each f; is a real-valued function on an open
set which includes D. We assume that D is closed and f; is locally Lipschitzian
on D (i.e., Lipschitz continuous relative to some R"-neighborhood of each point
of D), Examples where such assumptions are fulfilled include

(a) the smooth case: D =R?XR" and every f; of class €;

(b) the convex case: D closed convex, f; convex for i =0,1,...,s and affine
fori=s+1,..,m;

(c) the mixed smooth-convex case: D =R® x C with C closed convex, filv, x)
of class %' with respect to v (the gradient depending continuously on (v, x)
rather than just v), as well as convex in x for i =0, 1,..., s and affine in x for
i=s+1,..,m.

Clarke [3] has obtained a Lagrange multiplier rule that unifies the known
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first-order necessary conditions for optimality in nonlinear programming prob-
lems of types (a), (b) or (¢) but is applicable as well to the general case of (P, ,).
This rule has been sharpened by Hiriart-Urruty [18]. Our objective here is to
explore the connection between the Lagrange multipliers for the constraints in
(P..) as provided by such a rule, and certain generalized directional derivatives
and subgradients of the function

plu, v) =inf(P,.,) (global optimal value)

with respect to both u and v

The function p is everywhere-defined on R™ X 2¢ under the convention that
p(u, v) = += when (P, ) is infeasible, but it can well fail to be differentiable in
the ordinary sense at points where it is finite, even in the smooth case (a).
Nevertheless, p is of such obvious interest that quite apart from any connection
with Lagrange multipliers, there is strong motivation for pushing beyond
differentiability to some sort of subdifferential theory of its properties. General-
ized derivatives of p have direct significance in sensitivity analysis and in
determining criteria for Lipschitzian behavior of p and the like. They also
furnish information that might be used in minimizing p(u, v) subject to further
constraints on u and v, as can be the task posed in decomposition techniques
where (P,,) appears as just a subproblem of a larger problem.

Of even greater importance, though, is the role that generalized derivatives of
the optimal value function p can have in answering fundamental questions about
the existence, uniqueness and interpretation of Lagrange multiplier vectors,
questions which have a bearing on many aspects of theory and computation.
This role is well understood in the convex case (cf. [26]) and to some extent also
through partial results in the smooth and mixed cases listed above, but it has not
been clarified for (P, ,) in general.

Roughly speaking on the basis of experience in the special cases which have
been tackled, possible rates of change of p(u, v) with respect to u; should have
something to do with possible muitiplier values y; associated with the ith
constraint in (P, ). The study of variations with respect to the parameters v, as
well as u; is approachable by the same idea, because p(u,v) can equally be
regarded as the optimal value in the problem:

minimize fo(w, x) over all (w, x) € D satisfying

I ] =0 fori=1,:..5,
(Pu.) GG rtlE e
—w+1=0 forl=1,...,d.

Multipliers z associated with the constraint —w; +v =0 in (P;.) should be
related to some kind of derivative of p(u, v) with respect to v, but in view of the
equivalence between (P, ) and (P, .), such multipliers are bound to have close
ties with the multipliers y.

Altogether then, a duality may be expected between Lagrange multiplier
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vectors for the constraints in (P, .) and subdifferential properties of p(u, v).
Insofar as this can be formalized, it should afford valuable insight in both
directions. The development of a really far-reaching duality beyond the convex
case has been hampered, however, by a lack of appropriate mathematical tools
and concepts.

Most of the past work on subdifferential properties of the function p has gone
into the determination of formulas for the one-sided directional derivatives

: . plu+th,o+tk)—plu,v)
Lush k)=
p'(u, v; h, k) {1{% .

(1.1)

or bounds on the corresponding upper or lower Dini derivatives, where ‘lim’ is
replaced by ‘lim sup’ and ‘liminf’. In the convex case (b), p(u, v) is actually
convex in (u, v), and p'(u, v; h, k) exists for every (h, k) [26, Sections 28-29]. A
theorem of Gol'shtein [15] shows that p'(u, v: h, k) also exists in the mixed case
(c) when the set of saddlepoints of the Lagrangian in (P, ,) is nonempty and
bounded. This result, proved independently by Hogan [20], generalizes the
Mills—Williams marginal value theorem in linear programming [33]. Dini deriva-
tives were studied by Gauvin and Tolle [13] in the smooth case (a) and by
Auslender [2] in the somewhat more general situation where only the equality
constraints in (a) are €'. Bounds on Dini derivatives were used by Gauvin and
Tolle to demonstrate the existence of p'(u, v; h, k) under certain circumstances
[13] and by Gauvin [11] to get a criterion for p to be locally Lipschitzian in the
smooth case. The cited results of Gauvin and Tolle [13], Auslender [2] and
Gauvin [11], ostensibly treat only parameters of type w; but they can be
extended to parameters of type vy using the reformulation of (P, ) as (P,..). For
a direct approach to such parameters, cf. [12] and related work of Fiacco and
Hutzler [10].

The infinite-dimensional case too has been studied to a certain extent [21-
23, 14]. Gollan [14] gives his own definition of Lagrange multipliers for non-
smooth problems, quite different from the Lagrange multipliers of Clarke
mentioned earlier, but when his results are applied to classical cases they do not
yield derivative bounds as strong as those of Gauvin and Tolle, for instance.
Other work on ordinary one-sided derivatives of optimal value functions that
should be noted for exceeding the framework in this paper in some respects,
although involving significant restrictions in others, is that of Dem’janov etal. [7, 8].

Our objective here is to explore the subdifferential properties of the function
p, including extensions of the results cited above, by means of a broader kind of
nonlinear analysis that has blossomed from ideas of Clarke [4]. This method of
analysis, the pertinent parts of which will be reviewed in Section 2, deals with
certain generalized subgradients of p and corresponding ‘subderivatives’ that are
more suited in some ways to the description of functions as irregular as p can
be. Smoothness or convexity assumptions on (P, ,) are not required, yet the
theory is such that the consequences of such assumptions are readily ascer-
tained.
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Subdifferential analysis in this sense has already been applied to optimal value
functions like p, although not in such a thorough-going manner as in the present
contribution. Clarke himself has employed a mild subderivative condition on p
called ‘calmness’ as a constraint qualification in the derivation of his Lagrange
multiplier rule [3]. A result of Gauvin [11] furnishes an outer estimate for the
subgradient set dp(u, v) in the smooth case (a). This has been carried to certain
nonsmooth cases of (P,.). but with smooth equality constraints, by Hiriart-
Urruty [7] as part of a more abstract study of marginal values. Clarke and Aubin
[6] and Aubin [1] have established for other special cases of (P,.), via some
theorems in a Banach space setting accompanied by a number of convexity
assumptions, the existence in ap(u, v) of certain multiplier vectors—thus, ‘inner
estimates’ for dp(u, v). All these results have concerned situations where p is
Lipschitzian in a neighborhood of (u, v), and the authors (except for Hiriart-
Urruty) have provided conditions on (P,,) that ensure this Lipschitzian
behavior. In contrast, exact formulas for ap(u, v) in the general case of (P,,)
that are wvalid whether or not p is locally Lipschitzian have been given by
Rockafellar [29], but in terms of limits of sequences of special multiplier vectors
corresponding to saddle-points of the augmented Lagrangian in neighboring
problems (P, ).

In this paper we derive inner and outer estimates for dp(u, v) in terms of
Lagrange multiplier vectors that satisfy Clarke’s necessary conditions for (P,.,)
itself (see Section 5). By way of the duality between elements of dp(u, v) and
‘subderivatives’ (see Sections 2-3), we thereby provide for the first time a
general interpretation for such multiplier vectors. We also open the route to
applying to p various fundamental theorems known about subgradients and
subderivatives and we obtain in particular criteria for Lipschitz continuity that
go well beyond previous ones. As a by-product, we get a new proof of Clarke’s
multiplier rule that shows it is valid under somewhat weaker assumptions, and
also in a somewhat sharper form, than Clarke’s or the version developed by
Hiriart-Urruty [18] (see Section 4). We demonstrate that the known bounds on
Dini derivatives of p follow from our subgradient estimates, without the restric-
tions on (P, ) that have been made in the past, and hold actually for Hadamard
derivatives (see Section 7). We prove an extension of Golshtein’s theorem for
the mixed smooth-convex case of (P, .) that requires neither the set of optimal
solutions nor the set of multiplier vectors to be compact.

A novel feature of our approach is that no form of implicit function theorem is
ever used. At the critical stage we rely instead on our augmented Lagrangian
results in [29].

2. Subderivatives and subgradients

The kind of subdifferential analysis initiated by Clarke for nonsmooth, non-
convex functions has in the last several years been expanded and solidified in
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many ways. The lecture notes [30] can serve as an introduction to the finite-
dimensional case with references. There is much to the subject that cannot be
told here, but to assist the reader we shall touch on some of the central facts and
definitions and do so in the notation of the function p. This will facilitate the
applications we wish to make, although for the time being nothing dependent on
the special nature of p as an optimal value function will be invoked.

Recall that a function p : R™ + R? - (R U {* =} is everywhere lower semicon-
tinuous if and only if its epigraph

EZ{(u.v,a)ER’"XRdXR|a3_>p(u,r-)} 2.1)

is a closed set. In this case the matters we must explain are simpler, but we do
not want to be burdened later with having to impose conditions on (P, ,) that
imply such global lower semicontinuity of its optimal value function, For our
purposes all that really is needed is for the epigraph E to be closed relative to
some neighborhood (in B™ XR“XR) of one of its points (u, v, p(u, v)) that
happens to be under discussion. This condition is stronger than lower semicon-
tinuity of p just at (u, v), yet not as stringent as requiring lower semicontinuity
of p on a neighborhood of (u, v) (in R™ xR%). We shall call it strict lower
semicontinuity of p at (u, v); it holds if and only if for some a > p(u, v), there is
a neighborhood of (i, v) on which the function min{p, a} is lower semicon-
tinuous.

The epigraph point of view and the potential discontinuities of p also force us
to be more subtle in speaking of convergence of (u’, v') to (i, v). We introduce
the notation

(u', v = (U, v),

Gy v')—p)(u, s {D(u’. v") = plu, v),

in situations where it is really just the convergence of the point (1, v', p(u’, v"))
in E to (u, v, p(u. v)) that counts. Obviously, ‘— " is the same as ‘ — ' when p is
continuous at (u, v), and in particular whenever p happens to be locally Lip-
schitzian.

We concentrate henceforth in this section and the next on a point (u, v) where
p is finite and strictly lower semicontinuous. Criteria for this in the optimal value
case will be given in Propositions 8-10 in Section 5.

Using the notation (2.2), we define the Clarke derivative of p at (u, v) with
respect to a vector (h, k) as

pu, vih, k)= lim sup pls Fthuit k) —pla', o)

(u' v") = (0, v} t
140

(2.3)

Clarke actually considered such derivatives only for locally Lipschitzian functions
[4] > " in place of =), but he used them indirectly to develop a notion of
‘subgradient’ for functions that are merely lower semicontinuous and not neces-
sarily finite-valued. We showed in [28] that the generalized subgradients in
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question could be characterized thoroughly and directly in terms of slightly more
complicated limits than the ones in (2.3), namely the so-called subderivatives

inf plu'+th', v +Ik)—p(u,v)J:'.

th'—hi=e t

|k —k|=e

p ', v;h k)y=lim lim sup {
€ L0 iu. vy —=piu, el
4.0,

(2.4)

The remarkable fact is that p '(w, v; h, k), as a function of (h, k), is always
convex, positively homogeneous, lower semicontinuous, not identically + = nor
identically — . Clarke’s set of subgradients is given directly as

pu,v)={(32)ER"XRY |y - h+z-k=p'(u v;h k) for all (h, k).
(2.5)

From this expression and the properties of the subderivative function it
follows by general theorems of convex analysis [26, Section 13] that dp(u, v) is a
closed convex set and

plu,vih k)=sup{y -h+z -k | (v, 2) € ap(u. v)}
= —= for all (h, k), if dap(u,v) =8,
p'(u,vih k)= %= forall (h,k) if ap(u, v)=80. (2.6)

This formula extends one given by Clarke [4] for his derivatives (2.3) in the
locally Lipschitzian case. In that case, ap(u.v) is nonempty and compact;
conversely, as we proved in [25], if dp(u, v) is nonempty and compact, then p is
locally Lipschitzian around (u,v) and the derivatives (2.3) coincide. A more
general relationship between the two derivatives, established in [28, p. 2671, is
the following: the two effective domains

dom p°(u, v; h, k) ={(h, k) | p°(u, v; h, k) < =}, (2.7)
dom p"(u, vs b, k) ={(h, k)| p"(u, v; h, k) <=}, 2.8)

are convex cones containing (0, 0) which have the same interior, and for (h, k) in
this interior one has

:\c>lim[ lim sup [ su pULEil v i) pl )jJ] (2.9)
€10 (', vy =, 0] |J1:_hﬁ-"-¢ t

t1o k'—k|=e

sz(u,v;h, k)=p°(u,v;h k).

With respect to such vectors (h, k), p is said to be directionally Lipschitzian.
(This concept generalizes Lipschitz continuity in a neighborhood of (u, v), which
is the case of (h, k) = (0, 0); then the cones in (2.7) and (2.8) are the whole space,
and (2.9) actually holds for all (h, k), with —, " identical to * = *.) For the many
consequences and uses of the directionally Lipschitzian property, see [28,27].

Formulas (2.5) and (2.6) underline the complete duality between sub-
derivatives and subgradients. If p is convex, dp(u, v) is identical to the sub-
gradient set of convex analysis, while if p is smooth it reduces to the singleton
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{Vp(u, v)} [4,28]. Indeed, ap(u, v) consists of a single vector (y, z) if and only if
p ' (u, v; h, k), or equivalently p°(u, v; h, k), is linear in (h, k), and in this event p
is strictly differentiable at (u, v) with Vp(u, v) = (y, 2):

i plu'+th',v'+tk"y—plu', v")

(h, k= (h k) [
(') = ()
L0

=y sk (2.10)

[4.28]. The implication of this result for our later efforts, incidentally, is that
differentiability of p at (u,v) can be deduced from conditions which imply
op(u, v) has exactly one element.

In general, bounds on various derivatives of p can be obtained from estimates
for dp(u, v), and this is the pattern we shall follow. Besides p°(u,v: h, k) and
p "(u, v: h, k) we shall consider upper and lower one-sided Hadamard deriva-
tives:

plutth',v+tky—plu, v)

p (u, v; h k)= limsup (2.11)
(k' k= (h, k) t
t L0
Dok bl k)= o g, PAUCHELO H IR i v) (2.12)
: : (0, K-+ (R k) t
t L0
Obviously one always has
p-(u, vi h k) =p"(u, vi b, k), (2.13)

and if p is directionally Lipschitzian at (u, v) with respect to (h, k), so that (2.9)
holds, then also

p (u, v; h k)= p°(u, v; h, k). (2.14)

The case where equality holds in (2.13) plays an important role in the literature:
then we say p is subdifferentially regular at (u, v) (cf. [4, 28, 25]).

Note that when p~(u, v; h, k) = p+(u, v; h, k) one has a property stronger than
just the existence of p'(u, v; h, k) as defined in (1.1). This is what we will be able
to establish in Section 7 in cases where other authors have considered only
p'(u, v; h, k), as well as made other restrictions.

In some situations it is crucial to be able to know at least that ap(u, v) is
nonempty. As recorded already in (2.6), a necessary and sufficient condition for
this is the existence of (h, k) such that p "(u, v; h, k) is finite, We now elaborate
the meaning of this.

Proposition 1. Under the assumption that p is finite and lower semicontinuous at
(4, v), one has dp(u,v)#@ if and only if there exist sequences t; | 0 and
(', v') =, (4, v) such that for no convergent sequence (h, k') - (h, k) does one
have

[P + th!, o' + k) — p(u?, )/t > =,
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Thus in particular, ap(u, v) # @ if p is calm at (w. v) in the sense that

v plu',v)—plu, v)
i S )] )
Proof. Because the function p'(w, v;+,+) is lower semicontinuous, positively
homogeneous and convex, but not identically + ¢, it is finite at some point if and
only if it is not —= at the origin, Therefore, dp(u,v)=9 if and only if
p "(u,v;0,0)> — . The first assertion in the proposition merely puts the latter
condition in more specific terms using the definition (2.4). The calmness property
implies the condition is satisfied with (u’, v') = (u, v) for all j and any sequence
t |0

Calmness of p at (u,v) may be thought of as ‘pointwise lower Lipschitz
continuity’. It is a concept that has been used to advantage by Clarke in [3].

3. Singular subgradients

In addition to the subgradients discussed so far, we shall find it helpful to
speak of as singular subgradients of p at (u, v) the elements of the closed
convex cone

8°p(u, v) : = polar of the convex cone (2.8)
={(y, 2) | y-h+z-k=0for all (h, k) satisfying
p'(u, v;h, k)< oo}, (3.1)

It follows from the duality in (2.5) and (2.6) that this set is just the recession
cone of ap(u, v) [26, Section 13]:

a%p(u, v)=0"ap(u, v) = lim sup Adp(u, v) when ap(u, v)# 0. (3.2)
AL

Nonzero singular subgradients thus describe directions which can be identified
with ‘elements of dp(u, v) lying at =’, except that there can be situations where
ap(u, v) =9 and yet a%p(u, v) # 6.

A more geometric description of singular subgradients is possible in terms of
Clarke's concept of normal cones to closed sets in Euclidean spaces. Recall from
the beginning of Section 2 that when p is finite and strictly lower semicontinuous
at (u,v), its epigraph E is closed relative to a neighborhood of the point
(4, v, p(u, v)). The normal cone to E at this point is the nonempty closed convex
cone

NE(H, U, p(.“- U)) & 885(“-- r, p(“: U))a (3‘3)
where &g is the indicator function for E. One has

ap(u, ©) ={(y, 2) | (v, 2, — 1) € N&(u, v, p(u, 0))}, (3.4)
3°p(u, v) ={(y, 2) | (3, 2. 0) € Ne(u, v, p(, v))}. (3.5)
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In Clarke’s original approach [4], normal cones are first given various direct
characterizations, and then (3.4) is taken as the definition of the set of sub-
gradients of p at (u, v). As seen from (3.5), the notion of ‘singular subgradients’
fits neatly into the same picture. The validity of (3.5) stems from the fact that the
cone Ng(u, v, p(u,v)) and the epigraph of the subderivative function
plu,v;, ) are polar to each other; see [28].

(Incidentally, the assertion made in Section that p'(u, v:h, k) cannot be
identically —o as a function of (h, k) follows by duality from the fact that
NEe(u, v, p(u, v)) cannot consist of just the zero vector. The latter is true because
(u, v, p(u, v)) is a boundary point of E, and nonzero normal vector always exist
at boundary points [25. p. 149].)

Several properties of p can be characterized in terms of singular subgradients,
and this will be useful later in seeing the consequences of the estimates that will
be given for 4°p(u, v). The following terminology will expedite matters: a cone M
(not necessarily convex) will be called pointed if the origin cannot be expressed as a
sum of nonzero vectors in M. When M is convex (asin the case M = a°p(u, v)), this
reduces to the property that M does not contain the negative of any of its nonzero
vectors.

Proposition 2. Under the assumption that p is finite and strictly lower semicon-
tinuous at (u, v), one has p directionally Lipschitzian with respect to (h, k) if and
only if for all (h', k') in some neighborhood of (h, k), one has y: h +z-k'=0
for all (y,z) € 8°p(u, v). Such an (h, k) exists if and only if 3°p(u, v) is pointed.

Proof. The condition says that (h, k) is an interior point of the polar of % (u, v).
Since 3% (u, v) is the polar of the convex cone (2.8), this means (h, k) belongs to
the interior of (2.8). Such vectors (h, k) are the ones with respect to which p is
directionally Lipschitzian, as already explained in Section 2. The polar of a closed
convex cone has nonempty interior if and only if the cone is pointed.

Proposition 3. For p to be locally Lipschitzian around (u, v), it is necessary and
sufficient that p be finite and strictly lower semicontinuous at (1, v) and have
3°p(u, v) = {(0, 0)}.

Proof. This is the case of Proposition 2 where (h, k) = (0, 0). Recall that p is
locally Lipschitzian around (u, v) if and only if p is directionally Lipschitzian at
(u, v) with respect to (h, k) = (0, 0) [28].

Proposition 4. Under the assumption that p is finite and strictly lower semicon-
tinuous at (u, v), if 8°p(u, v) is pointed and does not contain any vector of the form
(y,0) with v# 0, then
3.p(u, v) C{z | 3y with (v, 2) € ap(u, v)}, (3.6)
3ip(u, v) C{z | Iy with (y,z) € 8°(u, v)}. (3.7)

In particular, (3.6) is valid if p is locally Lipschitzian around (u, v). (Moreover,
equality holds in (3.6) and (3.7) if p is subdifferentially regular at (u, v).)
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Proof. From a result in [27, p. 350], (3.6) holds (and with equality in the case of
subdifferential regularity) when the interior of the convex cone (2.8) contains a
vector of form (0, k). The separation theorem for convex sets enables us to
translate this condition into the nonexistence of a vector (y, 0) # (0, 0) belonging
to the polar of the cone (2.8), namely 4"p(u, v) (cf. Proposition 2). The locally
Lipschitzian case of (3.6) follows via Proposition 3. There are several ways to get
the parallel inclusion (3.7), but the simplest perhaps is to observe that the cited
result in [27, p. 350] is a corollary of a theorem that actually yields more when
specialized to the case in question: for the function g = p(u, *), one has

g'(w:k)=pTu,v:0,k) forallk, (3.8)

(and equality holds in (3.8) when p is subdifferentially regular at (u, v)). There-
fore

(k)| h=0,q"(v; k) <=} D{(h, k)| p " (u, v h, k) <=} [0} x RY].
(3.9

Since the interior of the cone (2.8) contains under our hypothesis a vector of
form (0, k), we can take polars on both sides of (3.9) and get

[R™ X 3°q(v)] C 8% (. v) + [R™ x {0}],

which is equivalent to (3.7).

Remark. The Lipschitzian case of Proposition 4 was first developed by Clarke,
who pointed out that without some condition like subdifferential regularity, there
may be no inclusion either way between ap(u, v) and d,p(u, v) X d,p(u, v). See
[17, p. 308] for an example of this phenomenon.

4. Lagrange multiplier rule

Our main result about subgradients of p when p is the optimal value function
in Section 1 will involve Lagrange multiplier vectors that appear in extended
first-order necessary conditions for optimality in (P, ). This section is devoted
to formulating the conditions in question and comparing them to previous
contributions. The necessity of the conditions, however, will actually be
established in Section 6 as a consequence of our estimation theorem, rather than
as a preliminary to it,

Henceforth our notation and assumptions are those in Section 1, but we apply
freely the general subdifferential theory exposed in Sections 2-3.

Each function f;, being locally Lipschitzian on an open set containing D, has a
nonempty, compact, convex subgradient set 3f:i(v, x) at every (v, x)E D. We
emphasize that this is the subgradient set of convex analysis if f; is a convex
function, and it is just {Vfi(v,x)} if f; is of class %€'. When f; is mixed
smooth-convex as in case {¢) of Section 1, it turns out that
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dfi(v, x) = (V.fi(v, x), .fi(v, x)) 4.1)

(because f2= f}in this case, as can be verified by direct calculation).
Since D is closed, the indicator function

0, if (v.,x)ED,

dplv, x) = {cc,_ if (v,x) & D,

is lower semicontinuous everywhere. Its subgradient sets are the normal cones
to D:

Np(v, x) = #6p(v, x) for each (v.x) € D, (4.2)

(When D is convex, the vectors (z, w)&€ Np(r, x) are the ones such that
(z,w) (v, x")=(z,w) (v.x) forall (v.x")E D.)

The optimality conditions we shall be concerned with are related to such
subgradients. as will be explained below, but they generally take the form of
associating with some x which in particular satisfies all the constraints of (P,.,) a

pair of vectors ¥y = (y,..., ¥m) and z = (21, ..., z4) such that
viz=0 and w[filv,x)+w]=0 fori=1,..,s5, (4.3)
(Z. 0) ca |:f{)+ 2 \al}ct = SD](L‘, xJ). (44)
i=1

For some purposes, we shall need to look at the corresponding degenerate
conditions where f, does not appear, i.e.. where (4.4) is replaced by

(2.0 € a[ 3 fi+ 800, ). 4.5
i=]

We let

K (u, v, x) = set of all (y, z) satisfying (4.3) and (4.4),

K(u, v, x) = set of all (v, z) satisfying (4.3) and (4.5). (4.6)
The targeted Lagrange multiplier rule is an assertion that K (u, v, x) # @ in certain

situations. For immediate comparison with classical conditions, observe that in
the smooth case (a) of Section 1, (4.4) reduces to

0=Vfolv,x)+ >, wVfilv,x) and z=V.folv,x)+ > vV filv, x),
i=1 i=1

4.7)
while (4.5) reduces to
0=> yVdf(v,x) and z=2 V. ilv,x). (4.8)
i=1 i—1

Since (0,0) € Ky(u, v, x) trivially always, interest in the set Ky(u, v, x) will
center on whether it also contains some (v, z) # (0, 0). The condition Kg(u, v, x) =
{(0, 0)} will serve as one kind of constraint qualification. A more subtle constraint
qualification that will also play a role can be stated in terms of ‘calmness’.
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Localizing a definition of Clarke’s [3], we say problem (P, ,) is calm at x, one
of its locally optimal solutions, if there do not exist sequences x/ — x and
(ul, v)y = (u, v) with x' feasible for (P, ./ such that

fU(L‘-j- -‘Ci)_fu(l‘-, X) g

(!, oM — (u, v)|

0

Clearly this does hold when p is calm at (u, v) in the sense of (2.15) and x is any
(globally) optimal solution to (P, .). Calmness of p at (u, v), without reference
additionally to any point x, is a condition that Clarke calls simply the calmness
of problem (P, .). The exact relationship between this ‘global’ calmness and our
‘local’ calmness will be shown later in Proposition 12 (see Section 6).

Theorem 1. Let x be any locally optimal solution to (P, ).

(1) If (P..) is calm at x, then K(u, v, x) = 0.

(ii) If Ko(u, v,x)={0,0)}, then (P,.) is indeed calm at x, and moreover
K(u, v,x) is compact.

As already remarked, this theorem will not be proved until Section 6, where it
will appear chiefly as a sort of corollary of Theorem 2 of Section 5. We have
stated it at this early stage in order to put the multiplier sets K(u, v, x) and
Ky(u, v, x) in the proper perspective. The rest of this section deals with further
clarifications of the nature of these sets. We start by citing a fundamenta] rule of
subdifferential calculus.

Proposition 5. Let g, and g, be extended-real-valued functions on a Euclidean
space which are both finite at a point w. If either g, or g; is locally Lipschitzian
around w, then

a(g1+ g2)(w) C agi(w) + aga(w).
Moreover, equality holds if either g, or g, is of class €' in a neighborhood of w,

or if both g, and g, are subdifferentially regular af w,

Proof. This is an immediate consequence of a much broader result obtained in
[27, p. 345], except for the business about g, or g, being of class €'. If g, say, is
of class €' around w, then g, and — g, are both locally Lipschitzian around w
and have dgis(w)={Vgaw)} and a(— g.)(w)={—Vegyw)}. The basic rule gives
both

dlg+g)(w) Cagw)+ Vgaolw)
and
dgiw) = (g1 + 82— )W) T a(g + g)(w) — Veaw),

and this implies d(g,+ g2)(w) = dgi(w) + Vgo(w) and finishes the proof.
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In the situation at hand, we want to apply Proposition 5 to the expressions in
(4.4) and (4.5) along with the elementary rule that (inasmuch as f; is locally
Lipschitzian)

d(yf) v, x) = yidfi(v, x) for all y; ER. (4.9)

For this purpose we note that the property of subdifferential regularity (see
Section 2) holds everywhere for f; when f; is convex, of class %', or a mixture of
the two as in case (¢) in Section 1. It holds everywhere for both f; and —f; (i.e.,
for yfi regardless of the sign of y;) if and only if f; is of class %€". It holds for &,
if and only if D is tangentially regular in the sense that at all boundary points of
D, the Clarke tangent cone and the classical contingent cone coincide, as is true
certainly when D is convex or a ‘smooth manifold’; see [4, 27] for more on such
properties.

At all events, the strong form of Proposition 5, where equality holds, is
thoroughly applicable (together with (4.9)) in cases (a), (b) and (c) of Section 1
and more generally in the following cases of problem (P, .):

(d) the subdifferentially regular case: D tangentially regular, f, subdifferen-
tially regular for i =0, 1,..., s and of class €' fori=s+1,..,m.

(e) the extended smooth case: D an arbitrary closed set, every f; of class €.

Clearly (e) subsumes (a). while from the remarks above, (d) subsumes (a), (b)
and (c). This allows us to draw an important conclusion.

Proposition 6. In condition (4.4) of the definition of K(u. v, x), one has
a[fo+ 2 3+ 80 ]2 0 € [ fot 3, w0, 10+ Notw, )
i= i=1
C afo(v, x) + 2, vidfi(v, x) + Np(v, x).  (4.10)
i—1

Moreover, equality holds in cases (d) and (e) above and hence in particular in the
smooth, convex, and mixed smooth-convex cases (a), (b) and (c) of (P,.).
Similarly for condition (4.5) of the definition of Ky(u, v, x).

The second inclusion in Proposition 6 does not depend on the full force of
Proposition 5: it is already apparent from an earlier formula of Clarke [4] where
g1 and g, are both locally Lipschitzian.

Observe that in the mixed smooth-convex case (¢), where (4.1) holds and
D =R"x C, Proposition 6 allows conditions (4.4) and (4.5) to be written instead
as

0€ [ fo+ 3 v )+ Ne) and 2= Vifolv, 0+ 3, 9o, )
= i=1
(4.11)

m

0E 3, [2 _\‘aﬁ'}(u, x)+ Ne(x) and z= 2 vV filv, x). (4.12)

i=1
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Due to convexity in x, these indicate that when (y, z) € K(u, v, x), the pair (x, v)
is (as expected) a saddlepoint of the ordinary Lagrangian for (P,,) on C X
[RIXR™], and similarly when (y, z) € Ky(u, v, x), except that then it is the
degenerate Lagrangian not involving fi.

Only in situations where strict inclusions can be encountered in (4.10), and
thus never in cases (a), (b), (c), (d) or (e), is the multiplier condition K(u, v, x) = @
in Theorem 1 any sharper than the ones of Clarke [3] or Hiriart-Urruty [18],
Clarke’s rule corresponds to substituting the largest of the sets in (4.10) for (4.4),
while Hiriart-Urruty uses the middle set.

These earlier rules do not actually take the parameter vector v into account,
but they can be adapted to yield conditions in the present format simply by
posing (P..) equivalently as the problem (P;,) in Section 1. Conversely, of
course, Theorem 1 can be applied with v held fixed and suppressed from
consideration. The corresponding multiplier conditions then say nothing about a
vector z, and they have in place of (4.4) and (4.5) the relations

0e Bx[foJri .\.‘-u".-'—SDJtt,x). (4.13)
i=1
0€ a3 wii+ bo].n), (4.14)
i=1

which again could be elaborated as in Proposition 6. As far as necessary
conditions for optimality are concerned, there is no distinction to be made
between the two formulations in cases (a) or (¢) (where (4.4), (4.5), become (4.7),
(4.8), or (4.11), (4.12)). Nor is there any real distinction in the convex case (b), or
for that matter in the subdifferentially regular case (d): then (4.13) holds if and
only if there exists z such that (4.4) holds (apply the equality clause in
Proposition 4 to the functions in question). Generally speaking, however, neither
formulation of the conditions directly subsumes the other.

In the smooth case (a), the constraint qualification Ko(u, v, x) = {(0, 0)} asserts;

m

there is no y# 0 satisfying (4.3) with >, v;V.fi(v, x) = 0. (4.15)
i—1

This property is equivalent by duality with the Mangasarian—-Fromovitz con-
straint qualification [24]:

the gradients V.fi(v,x), i = s+ 1,..., m, are linearly independent, and
there is a vector w such that

Vi, %) w{ <0 fori=1,..., s having fi(v, x) =0,

=0 fori=s+1,...,m. (4.16)

Related conditions for nonsmooth cases of (P,,) have been introduced by
Auslender [2] and Hiriart-Urruty [18, 19]. Our condition K(u, v, x)={(0,0) is
sharper than these in the sense of the inclusions in Proposition 6, but Hiriart-
Urruty gives a treatment of equality constraints that is in other respects more
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refined. On the other hand, Hiriart-Urruty does not prove a multiplier rule based
on ‘calmness’.

The result in Theorem 1 that the constraint qualification K(u, v, x) = {(0, )}
implies calmness at x is new, although in the extended smooth case (e) with D
convex it follows in terms of the Mangasarian-Fromovitz qualification via the
stability theory of Robinson [31, 32]; c.f. remark of Clarke [3, p. 173].

There is a relationship between Ky(u, v, x) and K(u, v, x) that sheds some
further light. Recall that the recession cone of the (not necessarily convex) set
K(u, v, x) is by definition

0"K(u, v, x) =1im sup AK (u, v, x)
Al

= {lim ;¥ 2 | A L 0, 3, 2 € K(u, v, x)}. (4.17)
A nonempty set in a Euclidean space is bounded if and only if its recession cone
consists of just the zero vector.
Proposition 7. For any feasible solution x to (P,.), the sets K(u, v.x) and
Ko(u, v, x) are closed and
0°K(u, v, x) C Kolu, v, x). (4.18)

In cases (d) and (e) above (and hence in particular in the smooth, convex, and
mixed smooth-convex cases (a), (b) and (¢), K(u, v, x) and Kyu, v.x) are also
convex. If in addition to this K(u, v, x) is nonempty, then equality holds in (4.18)
and

K(u, v, x)+ Ky{u, v, x)=K(u, v, x). (4.19)

Proof. To demonstrate that K(u. v, x) is closed, suppose (¥, z) € K(u, v, x) and
(yl, z1) = (v, z). For all j, one has

4‘{'30 fori=1,...,s having f(v,x)=0,
Y =0 for i=1,....s having fi(v.x) <0,

so the same holds for the multipliers y; = lim;y.. Also

(,0)e [fwil Vi + 80 | (0. )

= a[f0+Zl vfi + SD+ZJ (_\_r’,:—}'[)f;](v. x). (4.20)
Applying Proposition 5, we get
(Zf._ 0 e 3[f0+ z:[ yifi + SD}(’% x)+ 2 ()‘i — yi)afi(u, x).
i= i=1

Since z/ = z, yl —y; = 0, and 4fi(v, x) is compact (due to fi being locally Lipschit-
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zian), it follows that (4.4) holds. Thus (y, z) € K (i, v, x), and K(u, v, x) is closed.
The proof that Kg(u, v, x) is closed is identical.

The proof of the inclusion (4.18) is along similar lines. Suppose NGy, ) =
(v, z), where A; | 0 and (¥, ') € K(u, v, x). The critical observation this time is
that (4.20) can be written instead in the form

Az, 0) e d (,\,- [fﬁré yifi + SDD(L'. x).

= a[i vifi + 8p+ Afot+ Z{ (A= }"i)f&J(b‘: x)

i=1

so that by Proposition 5

Az, 0)Ed {ZI vfi + 60](1.\. x)+ Ndfolv, x) + E} (Ayi— yoafi(v, x).
Since Az/ = z, Ayl—yi = 0, ;; | 0 and dfi(v, x) is compact, we get (4.5) in the
limit and hence (v, z) € Ky(u, v, x).

In cases (d) and (e), we know that equality holds in (4.10) and that df;(v, x) is
just a singleton for i = s+1,..,m. Using this in (4.4), it is easy to verify the
convexity of K(u, v, x) and similarly that of Ky(u, v, x), as well as the relation

Ku, v, x)+ Kolu, v, x) C K(u, v, x). 4.21)

(Recall that (a + B)C = aC + BC when C is a nonempty convex set and o =0,
B =0; cf. [26, Section 3].) When K(u, v,x) is convex and nonempty, (4.21)
implies Ko(u, v, x) C0*K(u, v, x) [26, Section 8], whence equality in (4.18) and
(4.19).

Remark. In the convex case (b), the condition K(u, v, x)=#@ is, of course,
sufficient for a feasible solution x in (P, .) to be optimal. Indeed, the multiplier
relations reduce then to the description of a saddlepoint of the Lagrangian for
the equivalent problem (P} .) in Section 1. Because of this, the set K(u, v, x) is
actually the same regardless of which optimal solution x is being considered, and
similarly for Ko(u, v, x). Another special result in the convex case, besides the
ones noted in Propositions 6 and 7, is the converse of Theorem 1(i): if
K (u, v, x) # @ for an optimal solution x, then (P, ) is calm at x; in fact p is calm at
(u. v). For this, see [26, Sections 28-29].

5. Tameness and subgradient estimates

Our main result will be stated in this section after some preliminaries having to
do with lower semicontinuity of the optimal value function p and the existence
of solutions to (P, ).

We shall say for a given (u, v) that problem (P, ,) is tame if there is a set
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A CR" with the property:

A is compact, and for every

€ =0 there exist § =0 and a = p(u, v) such that

when [(u’, v")— (i, v)| < & and p(u', v') < e, the addition of the
constraint dist(x, A) =€ to (P, ) would not

affect the infimum p(u', ¢') in (P, o). (5.1)

The virtues of this condition are proclaimed in the next three propositions.
(Recall the meaning of ‘strict’ lower semicontinuity, as defined at the beginning
of Section 2.) Note that ‘tameness’ is not a constraint qualification like ‘calmness’,
but merely a weak sort of local boundedness assumption on the way the feasible
solution set varies with the parameters.

Proposition 8. Suppose (u, v) is such that (P, ,) is tame in the above sense. Then
p is finite at (u, v) and strictly lower semicontinuous at (u, v). Furthermore (P, ,)
has at least one optimal solution; indeed, if A is any set with respect to which the
definition of tameness is fulfilled, then (P, ,) must have an optimal solution lying
in A.

Proof. Taking (u', v') = (u, v) in (5.1), we see in particular that p(u, v) < =. Define

B = liminf p(u',v)=pu, v). (5.2)
(o', 0= (1w, v}
Select any sequence ¢ | 0 and corresponding sequences of numbers §; and «;
In view of (5.2), a sequence (u',v') = (1, v) with p(u!, v’) = B exists having
actually |(u, v/)— (4, )| < & and p(u’, v') < @;. Then for each j, (P,i ) has feasi-
ble solutions which also belong to the set

{x | dist(x, A) = &} (5.3)

(which is compact because A is compact), and the infimum is unaffected if
restricted to such feasible solutions. Since the objective function in (P, .1 is
continuous and the set of all feasible solutions is closed, it follows that (P, i)
has an optimal solution x' in the set (5.3). Then fy(v/, x’)=p(u’, v') > B and
dist(x!, A) - 0. Passing to subsequences if necessary, we can suppose (again
because A is compact) that x' - x, where x is some element of A. The
continuity of the functions f; and the closedness of the set D imply that, since
(), v') = (u,v), x is a feasible solution to (P,,) with fo(v,x)= 8. We may
conclude then from (5.2) that x is optimal and 8 = p(u, v).

Proposition 9. A sufficient condition for (i, v) to be such that (P,,) is tame is the
existence of 8,>0 and ao> p(u, v) with the property: the set of all x’ satisfying
A(u’, v") with |(u', v") —(u, v)| = 8 such that
x' is feasible for (P, ) and fo(v', x") = ay (5.4)
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is a bounded set. Indeed, the definition of tameness is then fulfilled with this set
as A.

In particular, (P,.) is tame if it has feasible solutions and D is of the form
R? x C with C compact. (Then C can serve as the A in the definition of tameness.)

Proof. Denote the set of x' satisfying (5.4) by A and observe that it is compact.
To verify the rest of (5.1) consider any € >0 and let § = 8;, « = ay. Then for
(u', v") with |(u', v")| = (4, v)| < 8 and p(u', v') < e, all the feasible solutions x’ to
(P, ) with fo(v', x') = a belong to A and therefore satisfy dist(x’, A) = 0. Hence
the constraint dist(x, A) < e can be added to (P, ,) with impunity.

Proposition 10, A necessary and sufficient condition for (u, v) to be such that
(P,..) is tame is the existence of 8,=> 0 and ay > p(u, v) with the property: there is
a bounded mapping &£ from the set

{w', v ! pu,v)<ay and |(u',v")—(u, v)| < &g} (5.9

to R" such that for every (u'.v') in this set, £(u', v') is an optimal solution to
(Pu'_.u')-

Indeed. the definition of tameness is satisfied with respect to a particular
compact set A if and only if for some such mapping & A includes all the cluster
points of &(u'. v") as (u', v") =, (u, v) in the sense of (2.2). (These cluster points
themselves form a compact set of optimal solutions to (P, .).)

Proof. If there is such a mapping & and C denotes its set of c¢luster points of
E(u', v’ as (', v') =, (4, v), then C is a compact set of points x which (by the
closedness of D and continuity of f;) are feasible solutions to (P,.) having
folv, x) = p(u, v). Thus C consists of optimal solutions to (P, ,), and for any € =0
there exist § >0 and @ > p(u, v) such that whenever (u', v') satisfies |(u’, v') —
(u, v)| < 8 and p(u’, v') < @, one has dist(£é(u’, "), C) =e. Since &(u', v') is optimal
for (P, ), it follows that for such (u’, v') the constraint dist(x’, C)=¢ can be
added to (P, .) without affecting the infimum in the problem. The same then
holds for any compact A D C; such an A therefore satisfies (5.1).

Conversely, suppose A is a set with property (5.1). Choose any sequence
¢ | 0 (starting with j =0) and corresponding values §; and o; as in (5.1); the
latter values can systematically be lowered, if necessary, so that also §; | 0 and
a; | plu.v). Let

A;={x'"| dist(x', A) = ¢},
B;={(u',v" | pu',v) <o and |(u',v)—(u, v) <8}

Then A; is a compact set such that for every (u’, v') € B; (and in particular for
(', v")=(u, v)), problem (P, ,) has feasible solutions in A;, and over these the
infimum of fo(v', ) is still p(u’, v’). Since this restricted infimum concerns a
continuous function over a certain set that is nonempty and compact (because A;
is compact, D is closed, and every f; is continuous), it is attained at some point.
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Thus when (u', v') € B;, there is an optimal solution to (P, ) in A; (and for
(u', ") = (u, v) there is an optimal solution to (P,,) in (7); A; = A). For each j
and each (u', v') € B; with (u', v") € Bj.y, select some optimal solution on (Py,.)
in A; and denote it by £(u’, v'); let £(u, v) itself denote some optimal solution to
(P..) in A. Then ¢ is a well-defined mapping on the set (5.5) (identical to By in
the present notation), and £(u’, v') € A; when (u’, v') € B;. This mapping meets all
prescriptions: inasmuch as ¢ | 0, § | 0, and «; | p(u, v), all cluster points of
E(u',v") as (u', v") =, (u, v) are contained in (M); A; = A.

Remark. The tameness condition we have been exploring was inspired in part by
a condition introduced by Hiriart-Urruty [17] in a related context. This is
clarified by the equivalence in Proposition 10. Hiriart-Urruty’s condition is
essentially the one in Proposition 10, but stronger in having ordinary topology
appear in place of the ' =’ topology.

Other authors who have dealt with this subject have relied on still more
stringent assumptions. For instance, to follow the pattern of the papers of
Gauvin and Tolle [13], Gauvin [11], Gauvin and Dubeau [12], the multifunction
that associates to each (u’, v') the set of all feasible solutions to (P, ) would be
assumed to be bounded on an ordinary neighborhood of (u, v). See also earlier
work of Evans and Gould [9], Greenberg and Pierskalla [16], on upper and lower
semicontinuity properties of optimal value functions.

In our main theorem, which we are now ready to present, ‘co’ denotes convex
hull and ‘cl’ closure. Again we use the concept of ‘pointedness’, as defined in
Section 2 for cones that are not necessarily convex.

Theorem 2. Suppose (u, v) is such that (P,.) is tame, and let X be any set of
optimal solutions to (P, .) that at least includes whatever optimal solutions to
(P.,.) happen to lie in A, the set invoked in the definition (5.1) of tameness. (In
particular, X could be taken to be the set of all optimal solutions to (P, ,).) Then

ap(u, v)=cl co{(r LE_,)L K(u, v, x)J N aplu, v})
+-U K(u, v, x}}ﬂaop(u, v)}, (5.6)
L v X
3% (u, v) Decl co{ [ l:,l Kolu, v,x)] N a%(u, v)}. (5.7

Equality holds in (5.7) if U.cx K, 0,x)N0p(1, 0) =8, or if the cone
[ L!( K(u, v, x)] M a'p(u, v)
X

is pointed: in the latter case 3% (u,v) foo is pointed, and the closure operation is
superfluous in both (5.6) and (5.7).

Although the proof of Theorem 2 will not be laid out until Section 6, we shall
proceed immediately with some corollaries. Consequences about directional
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derivatives will be saved for Section 7. The reader should note, incidentally, that
Theorem 2 and everything that will be based on it remain valid if K(u, v, x) and
Ko(u, v, x) are replaced by other sets that at least are sure to include them. In
particular, the multiplier conditions (4.4) and (4.5) could be supplanted by the
slightly weaker ones of Clarke [3] or Hiriart-Urruty [18] corresponding to the
inclusions in Proposition 6.

Corollary 1. Assuming tameness as in Theorem 2, one has

ap(u, v) Cclco{ U K(u, v.x)+ U Ko(u, v, x)}. (5.8)

xEX

If in addition the cone |, . Ko, v,x) is pointed, then 8%(u, v) is pointed and

3% (u, v)Cel co{ U Kolu, v, x)}. (5.9
xEX

Corollary 2. Assuming tameness as in Theorem 2, suppose Ko(u, v, x)N

3°p(u, v) = {(0, 0)} for ali x € X (as is true certainly if every optimal solution x to

(P, .) satisfies the constraint qualification Kq(u, v, x) = {(0,0)}). Then p is locally

Lipschitzian on a neighborhood of (u. v) and

ap(u, v)=cl co.{[g K(u, v, x)} N ap(u, 15)}; (5.10)
in particular,

ap(u, v) Ccl ca{ l:J\ K(u, v, x)}, (5.11)

8,p(u, ) C cl co{z 3y with (5, 2)€ U K v,x)}. (5.12)

This follows via Propositions 3 and 4. It encompasses the estimate of Gauvin
[11] for the smooth case (a), namely: under the assumption that p(u, v) << and

{x | (u, v') with x feasible in (P,..), [(u’, v) — (u, v)| = 6}

is a compact set for some 8 == 0, (5.13)

if every optimal solution x to (P, .) satisfies the Mangasarian-Fromovitz con-
straint qualification (4.16), then p is locally Lipschitzian on a neighborhood of
(u, v) and (5.11) holds. Corollary 2 also covers the estimate of Gauvin and
Dubeau [12], which is (5.12) under the same assumptions. Of course {5.10) is a
stronger assertion than (5.12). and Corollary 2 shows that it is valid under far
more general circumstances than established previously. Corollary 1, on the
other hand, shows that Theorem 2 vyields outer estimates for dp(u, v) even in
cases where p is not locally Lipschitzian around (u, v). This is a new level of
result.

Outer estimates for 4,p(u, v) more subtle than (5.12) can be produced by
combining Proposition 4 directly with Theorem 2. We leave the details to the
reader.



48 R.T. Rockafellar/ Lagrange multipliers and subderivatives

Corollary 3. Assuming tameness as in Theorem 2, one has for the closed convex
cone

G=U{hKk|y-h+z k=0forall (y,2) € Ko, v, x)} (5.14)

xeX

that p is directionally Lipschitzian with respect to every (h, k) €int G.
Proof. Apply Proposition 2 and Corollary 1.

Corollary 4. Assuming tameness as in Theorem 2, if dp(u, v)# @ (as is true in
particular whenever p is calm at (u, v), cf. Proposition 1), then (P,,) has an
optimal solution x € X for which there is a vector (y, z) € K(u, v, x) that belongs
to dp(u, v).

This result demonstrates that Theorem 2 yields not only ‘outer estimates’ but
‘inner estimates’. Corollary 4 extends a result of Clarke and Aubin [6] for
problem (P, ,) in the ‘almost convex’ case, where everything is as in case (b) of
Section 1 except that the objective function f; is not necessarily convex. It also
covers a somewhat more general result of Aubin [1], although the connection in
this case takes more effort to establish. The results in question are posed in
terms of a problem structure that is different from the one in (P, ), although
ultimately encompassed by it. However they also apply to infinite-dimensional
problems, in contrast to Corollary 4.

The results in our earlier paper [29] can also be mentioned in conjunction with
Corollary 4. These show the existence in dp(u, v) of certain limits of multiplier
vectors that satisfy higher-order optimality conditions.

Corollary 5. Under the hypothesis of Theorem 2, if X is a singleton {x}, and for
this x the set K(u,v,x) is a singleton {(y, z)} and the constraint qualification
Ko(u, v, x) ={(0,0)} is satisfied, then p is strictly differentiable at (u, v) with
Vp(u, v) = (y, 2).

Proof. The assumptions imply via Theorem 2 that dp(u, v) = {(y. z)}, and this is
equivalent to p being strictly differentiable at (u, v) with Vp(u, v) = (y, z), as
already noted in Section 2.

Remark. The constraint qualification in Corollary 5 does not have to be pos-
tulated separately in cases (a), (b), (¢), (d) or (e) of (P,,). In those cases it
follows from K(u, v, x) being a singleton; cf. Proposition 7.

Corollary 6. Suppose there is a mapping & as described in Proposition 10, and let
X be the set of all cluster points of £(u', v') as (u',v') =, (u, v) (in the sense of
(2.2)). Then the hypothesis of Theorem 2 is satisfied, so the conclusions in
Theorem 2 and Corollaries 1, 3 and 4 (and under extra assumptions about X the
conclusions in Corollaries 2 and 5) are valid.



R.T. Rockafellar] Lagrange multipliers and subderivatives 49
Proof. This follows from Proposition 10.

Corollary 7. Suppose either that (P, ) is tame and has a unique optimal solution x,
or that (P,.) has an optimal solution x that can be perturbed continuously in the
sense of the existence of a mapping & as in Proposition 10 with &', v)—x as
(t', v =, (u, v). If (P,,) falls into the subdifferentially regular case (d) or extended
smooth case (e) in Section 4 (or in particular one of cases (a), (b) and (c) of Section
1), then

ap(u,v)C Kiu, v,x) and 3°p(u, v) C Ky(u, v, x). (5.13)

Proof. Either way, we can apply Theorem 2 with X ={x} (c¢f. Corollary 6).
Furthermore, the conclusions of Proposition 7 hold in their strongest form. The
formulas in Theorem 2 then reduce to (5.15) by virtue of dp(u, v)and 8°p(u, v) being
closed and convex, with 3°p(u, v) equal to the recession cone of dp(u, v) unless
ap(u, v) = 0.

6. The main arguments

We proceed now to derive Theorem 1 from Theorem 2 using a certain
characterization of our calmness property, and then to prove Theorem 2 itself by
means of a new general result about limits of subgradients.

Proposition 11. Let x be a locally optimal solution to (P, ). Let 8 ; [0, %) = [0,=)
be any increasing convex function with 8(0) =0 and 6'(0) = 0, and let € = 0. Then
the parameterized problem

minimize fo(v', x) = fo(v’, x') + 8(|x' — x|) over all x’ satisfying
P.ow) @, x)ED={('x)ED|

x'—x|=¢€} and

j’gﬂ forb= 1,058,

f,-(t.x)+u;{.=0 fori=s+1,..,m

in place of (P, ) again satisfies the fundamental assumptions of Section 1: D is
again closed and fy locally Lipschitzian. Moreover, the term g(x") = 0(|x' — x|) in

fo is a finite convex function of x' (therefore locally Lipschitzian) which is strictly
differentiable at x' = x with

Ve(x)=0, g(x)=0, g(x"h =0 for x'#x (6.1)

Furthermore, if € <<p, where p is the radius of a spherical neighborhood of x
with respect to which the local optimality of x holds in (P,..), then x is the unique
(globally) optimal solution to (P, .), and the optimal value function

pu’, v)=inf(P, ) (6.2)

has p(u, v) = folv, x). If in addition x is actually a globally optimal solution to
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(P,.), then

Plu,v)=pu,v), while plu’, oD =pu', o) forall (u',v)# (U, ).
(6.3)

Proof. All these assertions are elementary, except for the differentiability pro-
perty of g. The convexity of g allows us to compute g'(x; h) = 8’(0)|h| = 0 for all
h, from which it follows (cf. [26. Section 23]) that dg(x) = {0}. Then g must be
strictly differentiable at 0 with Vg(x) =0, according to the results cited in Section
2.

Proposition 12. Let x be a locally optimal solution to (P, .). For (P, ) to be calin
at x, it is necessary and sufficient that for every function 8 as in Proposition 11,
one has for all € =0 sufficiently small that the modified optimal value function p
in Proposition 11 is calm at (u, v) (in the sense of Proposition 1).

Proof. The argument will utilize the notation and conclusions of Proposition 11.

Necessity, Suppose (P, ) is calm at x, and fix any 6 as described. If for some
€ €(0, p) the function p is not calm at (u, v), there exist for any B €R points
(u', v") arbitrarily near to (u, v) and vielding

[B(u’, v")— p(u, )|’ ) — (1, v)| < B.
Here p(u, v) = fo(v, x), so the inequality means by the definition of p that
[folv’, x) + g (x") = fulv, O, o) —(u, ) < B

for some feasible solution x' to (P,..) with |x'—x|=e Thus if there is a
sequence of values € | 0 such that the corresponding functions p are not calm
at (u, v), we can select for any sequence of values f3; | —=, corresponding
points (u!, v/) arbitrarily near to (u. v) and feasible solutions x' to (P, ) with
Ix! — x| = ¢ and

[folv!, x4+ g(x") — folw, )|, ') = (u, v)| < B;.
Then x’ — x and (since g = 0)
[folv!, x7) = folv, )|ty 1) = (u, v)] = — 2. (6.4)

In particular, (u’, v/) can be selected so as to converge o (. v), and a contradic-
tion is then obtained to the assumption that (P, ) is calm at x. Hence under this
assumption there cannot exist a sequence of values g | 0 such that p is not
calm at (i, v), and this is what we needed to prove.

Sufficiency. Suppose (P, ,) is not calm at x. Then there exist (u, v!) = (u, v)
and x’ - x such that x! is feasible in (Pyi) and (6.4) holds. Let § =
(!, v") = (4, v)| and ¢ = |x' — x|; passing to subsequences if necessary, we can
suppose that §; and ¢ are strictly decreasing in j. The line segment joining the
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points (e;, 8;g) and (gj.1, 8;.1€+1) In R has slope
Aj = (8jg; — 8j-1€141)1(g — €41)
which satisfies
8 > A > 8. (6.5)

Let 0 :[0.%) — [0, =) be the function whose graph is the union of all these
segments and (0, 0); then 6 is continuous with

Ale;) = 8ig; for all j, #(0)= 0.

From (6.5) we have A; = Aj.1> -+ > 0; hence 0 is actually convex and increas-
ing. Thus 8 belongs to the class of functions under consideration, and

B! — x/l(u!, vy = (u, v)| = ¢ = 0. (6.6)

It will be demonstrated now that for this 8 and any e € (0, p), the function p is
not calm at (u, v). Indeed, since x' is a feasible solution to (P, ) with [x/ — x| =
g, it is a feasible solution to (P ) for j sufficiently lurge, and then

plul, vy = fo(v), )+ 8(|x’ — x|).

We also have p(u. v) = fo(v. x) (because € <Zp), and since (6.4) holds for the
chosen sequences, we see via (6.6) that

ﬁ(llfg ’""'i')—ﬁ(u. v){fﬂ(t'jnx'ij_fo(b‘, x) | o
S O R U R ) I A
Thus
W plu’, v —pu, L-‘)_
(ul':l[I-!-]l—lR::f‘,_—} |(M’, U’)—(u‘ L‘):

as claimed.

Proof of Theorem 1 (using Theorem 2). Suppose x is a locally optimal solution to
(P..,). Then for 8 and € as in Proposition 11 with € < p, x is the unique optimal
solution to the modified problem (P,_,). Theorem 2 can be applied to (P, ) (cf.
Proposition 9). Taking X = {x}, we conclude in particular that

ap(u, v) Cecl co{K(u, v, x)+ Koy, v, x)}, and if Ko(u, v, x) is pointed,
also 8°p(u, v) Cclco Ky(u, v, x), (6.7)

where K(u, v, x) and Kyu, v, x) are the multiplier sets corresponding to (P, ).
i.e., with f, and D is place of fy and D. Actually

K(u,v,x)=K(u, v,x) and Ko(u, v, x) = Kolu, v, x). (6.8)

because

a[fﬂ+i yifi + SEJJ(I-"- x)=4 [f:>+2 yifi + 5»](& x);
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this is due to the fact that D and D coincide in a neighborhood of (v, x), while fn
and f, differ only by a function whose gradient vanishes at (v, x); cf. Proposition
a)

If Ky(u,v,x)={(0.0)}, we have 0°K(u, v, x)=1{0,0)} (Proposition 7), so
K(u, v, x) is not just closed (Proposition 7) but compact, Then too, 8°p(u, v) =
{(0,0)} by (6.7) and (6.8). Hence according to Proposition 3, p is Lipschitzian
around (u, v) and in particular calm at (u, v). Since this holds regardless of the
choice of 6, as long as € € (0, p), it is clear from Proposition 12 that (P, ,) must
be calm at x.

However, if (P, .) is calm at x, we know from Proposition 12 that when e is
sufficiently small, p is calm at (i, v) and therefore by Proposition 1 that
dp(u, v) #0. Then we deduce from (6.7) and (6.8) that K(u, v,x)#@. This
completes the derivation of Theorem 1.

Next on the agenda is the proof of Theorem 2. The following result is the first
step.

Proposition 13. Suppose (u, v) is such that (P, ,) is tame, and let A be a set for
which the definition (5.1) of tameness is fulfilled. Then there are numbers 8 >0
and « > p(u, v) and a compact set D C D, such that the replacement of D by D
does not affect the infimum p(u', v') for any (u', v') satisfying |(u’, v') — (u, v)| <
and p(u', v') < a, nor does it alter the set of optimal solutions x to (P, ) which lie
in A or the sets K(u, v, x) and K(u, v, x) associated with any such x.

Proof. Fix any € =0 and corresponding & and « as in (5.1). Let
D={x,x)ED | dist(x’, Ay=e€ and |v' — v| = 8).

Since A is compact and D is closed, D is compact. The assertions are then all
obvious from (5.1) and the fact that the sets {x |(v,x)ED} and {x ] (v.x) € D}
agree in a neighborhood of A.

We will also need a new general result about convergence of subgradients.

Proposition 14. Suppose for j = 1,2, ..., that x' furnishes a finite local minimum
of f + g, where f and g; are lower semicontinuous functions from R" to (— =, ].
If X! = x, f(x') > f(x) (finite) and 8g(x;) - {0} (in the sense that for every
neighborhood U of 0 one has §# dg;(x’)C U when j is sufficiently large), then
0 € af(x).

Proof. Suppose 0 & df(x). Then there exists a vector h such that f'(x; h) <0,
1

inf f(x’+fh’}—f(x')”

0 = lim lim sup ]—
|h'—h|=e t

el0 x'-ox
]
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(cf. the general formula (2.5) for subgradients in terms of subderivatives). In
particular, for every € >0 and sequence t; | 0 one has

0= lim sup[ e LG {)df{xj)]. (6.9)
|

i hise i

The assumption that f + g has a local minimum at x’ implies
f+ th) + gi(x! + 4h') = f(x) + gi(x)

for any h’ once j is large enough, and this can be written
[f(x"+ k") = fCDE = — [gi(x! + k) — g (D)1,

Hence by (6.9), for every ¢ = 0 and sequence t; | 0, one has

0<lim inf[ su gix'+ t;h*)—g,(,ﬁ)]_

joem ih'—hi=e f,

(6.10)

Next we use the fact that dg;(x') — {0}; passing to a subsequence if necessary, it
can be supposed that
@# agi(x")C{w ||w| <A} where A; | 0. 6.11)
In particular dg;(x') is bounded; hence g; is locally Lipschitzian around x’ [25,
Theorem 4]. Moreover. (6.11) implies that for all k ER"
Ajlk| > max{w - k | w € ag;(x")}
3 . b Gl — Z !
= gj(x’;k) =1lim sup gix — tk) — g/(x’)

1=y t

1io

(recall from Section 2 that g [(x'; k) reduces to gJ(x'; k) in the locally Lipschit-
zian case). Thus A; serves as a Lipschitz constant for g; in some neighborhood of
x;, say in a ball of radius & around x’. Fixing e >0 arbitrarily, choose the
sequence t; | 0 so that x’ + t;h’ belongs to this neighborhood for all k' satisfying
lh'— h| = € (it suffices to have 0 < t; < §/e). Then for all j sufficiently large one
has
gi(x'+ th")— gi(x) = tjA)|h’| whenever |h' - h|=e

and hence from (6.10)

0 < lim inf Aj((h| + €).

jo=

This contradicts the fact that A; | 0 and establishes that 0 € af(x) after all.

Proof of Theorem 2. Proposition 13 gives us license to suppose without loss of
generality that D is a compact set. It is elementary then that (P, .) has an
optimal solution for every (u',v’) such that it has a feasible solution (in
particular for (u, v), because p(u, v) <« by hypothesis), and that p is lower
semicontinuous everywhere and globally bounded below. By means of the
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reformulation in Section 1, we can also reduce everything to the notationally
simpler case where there are no vectors v and z. The reasoning here, as far as
the equivalence of the multiplier conditions is concerned, is based on Pro-
position 5: the reformulation involves the introduction merely of linear con-
straint functions, and 3(g,+ g2) = Vg1 + dg, in particular when g, is linear.

In this reduced case with D compact, a formula proved in [29, Theorem 2] in
terms of the (quadratic) augmented Lagrangian function becomes applicable:

ap(u)=clcolY + Yyl and 8"p(u)=clco Yy, (6.12)
where

Y ={y|3u’ »,u and y' an augmented multiplier
vector for (Py), such that ¥/ — y}, (6.13)

Yo={y|3u’ »,u A | 0and y’ an augmented multiplier
vector for (P,), such that A;y' = y}. (6.14)

Here v! is called an ‘augmented multiplier vector’ for (Py) if for all r, =0
sufficiently large, the optimal solutions to (P,) are precisely the vectors x’ such
that (x’, ¥7) is a (global) saddlepoint of the augmented Lagrangian

LG, 3, ,7) = fol) + 51 3 [+ (60 + w3

2n e
Bt i [y; + r;(fi(x) + ui)f—i'vﬁ
Ppikys AR [ 2
with respect to x € D and y € R™. (We are using the notation that s, = max{s, 0}.)
Since ap(u) and 8°p(u) are closed convex sets, we will be able to derive formulas
(5.6) and (5.7) in Theorem 2 by showing that
Yyc U K(u,x) and Y,C L,LKn{u,x). (6.15)
xEX X<
Consider now any sequences y' - y and u’ - ,u such as in the definition
(6.13) of Y. Since D is compact and definition (5.1) is fulfilled by A, there is (for j
sufficiently large) a sequence of points x! such that x/ is an optimal solution to
(P, and dist(x!, A) — 0. Passing to a subsequence if necessary, we can suppose
x! converges to some x € A. Then x is an optimal solution to (P,) (by the
continuity of the functions f; and the fact that p(u') — p(u)), and x belongs to X
(the hypothesized set of optimal solutions to (P,) which includes all those in A),
We will demonstrate that y € K(u, x), and this will establish the first inclusion in
(6.15).
To say that (x, y') is a saddlepoint of L(u', x, y, ;) with respect to x € D and
y ER™ is to say that

filx)+ul=0, yi =0, Vi[fixh)+ull=0 fori=1,...s,
fich+ul=0 fori=s+1,..,m, (6.16)
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and that x’ gives the global minimum over D of L(u), v/, r,). But (6.16) implies
that the latter function reduces locally around x! to
h+iyﬂﬁ+uﬂ+%(2,m+um—32_m+uW) (6.17)
=1 i €L
where
Injy=setof all i €1, .... s} with v =0,

Ii(j) = set of all other constraint indices. (6.18)

This reduction makes use of the relation
]. i iv2 in2
7y i+~ udlz = ()

Vilfi + uf] ¢—L[f +ull® where fi+ul= — yilr,

i { i (6.19)

—,},—r_(y!.')2 where f; + ul = — yifr.

(For active inequality constraint indices i with yi =0, onc has — y! {7y <0 but
filx’)+ ul =0, so only the first alternative in (6.19) holds in a cer tam neighbor-
hood of x'. For all other inequality constraint indices one has vi=0. so that
(6.19) simply gives [f; + ul]%)

From (6.16) we know that in the limit as j — :

filx)+u, =0, vi=0, vilfibe))+u1=0 fori=1,..,s,
filx)+w;=0 fori=s+1,..,m. (6.20)

On the other hand, we have seen that x’ gives a local minimum to the function
(6.18) over D. This tells us that x! gives a local minimum to f+ g, where

f=h+;y&+%, (6.21)

i

=2 Ol=yfi +3 th (6.22)

fies {[ﬂ- +ull. for i€ Iyj), (6.23)

Si+ul for i € I,(j).

The functions hy all vanish at x! by virtue of the definitions (6.18), and these
functions are all locally Lipschitzian. In applying to (6.22) the rules of
subdifferential calculus for sums and squares (cf. Proposition 5 and [3, Section
13]), we get

dgi(x) C Y (vi— y)afix’) + 1 > hy(xl)ohy(x)),
i=1 =]

where h;(x') = 0; the second sum therefore drops out. But lim;(y! = v) =0 and
lim sup;dfi(x’') C afi(x) (because f; is locally Lipschitzian and x' — x, cf. [3]).
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Hence 3g;(x’) = {0}, and we may conclude from Proposition 14 that 0 € 3f(x) for
f as in (6.21). This property along with (6.16) means that y € K (4, x) as claimed.

The argument is very similar in the case of y), u' and A; such as in the
definition (6.14) of Y,. The difference comes in multiplying (6.17) through by A,
and characterizing x/ accordingly as a local minimizer of f+ g taken as

M

= vifi + 8.

1
8 = Ao+ 2 Ayl =y +';1ZI ki,

i=1

with hy; as in (6.3). Again dg;(x') - {0}, so 0 € 4f(x) by Proposition 14, and the
conglusion is obtained that y € Kg(u, x).

Thus the second inclusion in (6.15) is valid too, and formulas (5.6) and (5.7) of
Theorem 2 are then true in consequence of (6.12), as already explained.

To obtain via (6.12) and (6.15) the final assertions of Theorem 2, about equality
holding in (5.7), it will suffice to prove that

a'p(u)=clco Yy (6.24)
if either Y =@ or Y, is pointed, and that in the latter case one actually has
dp(u)=co[Y + Y] and 4°p(u)=co Y. (6.25)

Here we must delve deeper into the argument in [29] by means of which (6. 12) was
established. The argument was based on representing ap(u) and 3°p(u) in terms of
the cone

N={G.-D]yEYA>0U{(,0]ye Yy (6.26)
in R™ % R by the formulas

apw)={y|(y,~1)EclcoN}, a°p(u)=1{y |(v,0)Eclco N (6.27)
(See [29, Theorem and its proof].) It was observed also that

0EY,D0Y :={y|Iy €Y, | 0, with Ay’ > v}, (6.28)

or what amounts to the same thing, that N is closed and nonempty. The statements
about (6.24) and (6.25) at the beginning of this paragraph, as well as (6.12) itself, are
implied by this representation. as we demonstrate in the following geometric
proposition, thereby completing proof of Theorem 2.

Proposition 15. Let Y and Y, be any closed subsets of R™ such that Yy is a cone
satisfying (6.28), and let N be the closed cone in R™ x R defined by (6.26). Then

{vy|(y,—1)Eclco N}=clcolY + Yo, (6.29)
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{y|(z.00EclcoN}Dclco Yy (6.30)

Eguality holds in (6.30) if Y =@, orif Y, is pointed; in the latter case co Yy is itself
closed and pointed, as is co N, and one actually has

{y|(,\>,—l)ecl co N}=co[Y + Yul. (6.31)

{y | (v, )Eclco N}=co Y. (6.32)

Proof. ltis trivial from (6.26) that (6.30) always holds, and thatitholds with equality
when Y = @. Note too that when Y = @, (6.29) and (6.31) hold with both sides empty.
We can therefore suppose henceforth that Y # . Then N meets both of the open
half-spaces bounded by the hyperplane H = {(v. —l)l ¥y ER™}, so co N certainly
cannot be separated from H and hence H Mrico N # @[3, Section 11]. This implies

H NclecoN =c¢l[H Nco N]
[3, Section 6], or equivalently,

{y|(v.-DeclcoN}=clfy | (y,~1)Eco N}. (6.33)
On the other hand, since Y, is a cone containing 0, we find from (6.26) that

{y |(,\.‘,—I)Eco N}=colY + Y] (6.34)
and of course

{y|(3,00EcoN}=co Y, (6.35)

The combination of (6.33) and (6.34) yields (6.29).

We shall demonstrate now that if Y} is pointed, then co Yy is closed and pointed.
Since N, like Yy, is a closed cone containing the origin, and since N obviously is
pointed if and only if Y, is pointed, co N toois closed and pointed. Then (6.31) and
(6.32) will be seen simply as restatements of (6.34) and (6.35),

Assume Yy is pointed. Because Y, is a cone in R™ containing the origin, we have
(by Carathéodory’s theorem [3, Section 17])

c0 Yo={y'++ o+ y™'| y* € Vg

If co Y were not pointed, we could represent the origin as a sum of nonzero vectors
inco Y,. This would give a representation of the origin as a sum of nonzero vectors
in Yy, contradicting the pointedness of Y, Thus co Y, is pointed.

Proving that co Yy is closed when Y, is pointed amounts to proving in the case of
the closed cone

W=Yx.--.-x YC(Rm)nHI
and linear transformation

A.'W=(_\-"I', H‘.ym—l)_b}_l_{__ 3 _+ynl—i
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that
if w€E€ W and A(w) =0 imply w=0, then A(W) is closed. (6.36)

Suppose A(W) were not closed. Then there would exist w' &€ W such that
A(w)—> g€ A(W). The sequence {w'} could not have a bounded subsequence, for
if so it would have a cluster point w, and then A(w) = g. Therefore |w’'| = %, and for
w! = wi|w!| we would have w' € W (because W is a cone) and

AW = Aw)/|w!| =0,

Since |w/| = | and W is closed, the sequence {W'} would have a cluster point w € W
satisfying |[w| = 1 and A(W) = 0. This argument verifies (6.36) and finishes the proof
of Proposition 135,

Remark. The need for some further conditions on Y, in order to ensure equality in
(6.30) is demonstrated by

Y ={(y, WER*| yi=|yd}, Yo={(y, y)ER*|yi=0}

In this case one has (6.28) satisfied but clco N ={(y, ¥, n)] 7 =0}, so that

{(y1. ¥2)

(yi.¥2, 0)EclcoN}=R?* c¢lco Yo=Y,=R'x{0}.

7. Application to generalized directional derivatives

The estimates in Theorem 2 lead to results about the various derivative
functions p ', p", p*, p, and p’ discussed in Section 2. We have already seen one

consequence in Corollary 5; there (2.10) holds, and in particular p'(u, v: h. k) =
vy h+z- kforall (h k).

Theorem 3. With (u, v) and X satisfying the hypothesis of Theorem 2, let (h, k)
be a vector belonging to the closed convex cone

G=1) {(h, k) | yoh+z k=0 forall (v.2)€ Kolu. v, x)}. (7.1)
xEN

If either p "(w. v h. k) <= or there is at least one x € X with K(u, v, x) = 0. one
has

p"(u,u;h,k)‘_f-sup[ sup {)‘--h+z»k}—], (7.2)
xEX | (v 2)EK I, nox)

(where an empty supremum is interpreted as —=). This inequality is valid in
particular for all (h,k)eint G; in fact for such (h, k), (2.9) holds and one has
the further estimates

p(u, vy h k)= inf { sup  {y -h+z-k}], (7.3)

X Liv, z)eKiw, v
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p-(u, v —h, —k)ginf[ sup {—y-h—z-k}]. (7.4)
xEX iy s1EKu v x}

Proof. The first estimate (7.2) is obtained from the outer estimate (5.8) in

Corollary 1 and the formula

pl(u.v;hok)=sup{y-h+z k |(y,z)E ap(u, v)},

which we know from (2.6) to be correct whenever p "u.v:h, k)<= or
ap(u. v) #@. In taking the supremum of y - h +z -k over all (y. z) belonging to
the right side of (5.8), we can certainly ignore the ‘clco.’ Thus for the sets

M= U K(u, v, x), M,= U Ky(u, v, x), (7.5}
=X

xCX
we have

plvih k)y=sup(y-h+z k+y*- h+z"k|(y2EM, (¥ "€ M}

provided that either p "(u, v; h, k) <= or M + My = 0. Here M, is actually a cone
(not necessarily convex) which contains (0, 0), and G is its polar. so that

Frai O a® L0 = g — 0. if (h,kyeq,
sup{y"-h+z"-k |{} L2 E M= {x‘ it (h.K)E G,

Thus M + M, # @ if and only if M= @, and for (h, k)€ G the right side of (7.6)
reduces to

sup{v -h+z-k | (v.2)E M}

In this manner one obtains the validity of (7.2) for all cases having either
p! (u,vih k)<= or M#0, as asserted.

We have already noted in Corollary 3 that p is directionally Lipschitzian with
respect to (h. k) € int G. which means that (2.9) holds (see Section 2).

To derive (7.3), we initially fix any x € X and consider the modified problem
(P..) in Proposition 11. As long as € is small enough, this has x as its unigue
optimal solution and again satisfies all our assumptions, including tameness (with
respect to A=AU {x}). The results obtained so far for (P,.) can therefore be
applied to (P, ) with X = {x}: for (h, k) belonging to the interior of

G ={(h, k;l y-h+z-k=0forall (v 2)€ Kyu, v, x)}, (7.7
one has

plwvih k)= sup {y-h+k-z}, (7.8)
and moreover (2.9) holds for p. so that actually

pr(u,vih, k)=pt(u v;h k) (7.9)

At the same time we have p and p related by (6.3) in Proposition 11, and this
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implies
piu, v h, k)=p"(u, v; h, k). (7.10)
Putting together (7.8), (7.9) and (7.10), we see that

p(wvih k)= sgfp J{y “h+z-k} when (h,k)EintG.
(v EK(u, v x
Since G DG, and x was an arbitrary point of X, the truth of (7.3) for all
(h, k) €int G is immediate from this.
The argument for (7.4) is different. Bear in mind that p is finite and lower
semicontinuous at (u, v) under our hypothesis (cf. Proposition 8). Denoting the
right side of (7.2) by B, we see that (7.4) can be written in the form

lim sup plu,v)—plu—th', v —tk’)
(h'..k’JI—»LEh,L—} 1
[ |

=B, (7.11)

while what we know from (7.2) and (2.10) is that
lim sup plu' +th', o' +tk"y—pu', v")

{u', ::')—-F(u. ) t
(R kD= (h k)
te

=p. (7.12)

Our task will be to derive (7.11) from (7.12). Let a denote the value of the

‘lim sup’ in (7.11), and consider any consequences (h', k') = (h, k) and t; L 0 for
which it is attained:

s B3 e

im 20 0) — p(u — th', v — k')

jo= [

= . (7.13)

We need to show a = B, and for this purpose it is enough to look at the case
where a > —«. Passing to subsequences in (7.13) if necessary, we can suppose
that

vy =lim p(u — t;h!, v — k)

j—==

exists. Since a > —= and t; >0 in (7.13) it must be true that v = p(u, v), yet the
opposite inequality must hold too, because p is lower semicontinuous at (u, v).
Hence

plu—thl, v -tk = p(u,v). (7.14)
Define (u', v') = (u — t;h/, v — £;k’). Then

: T+ thl o+ thY —p !, of
llm p_(u_ et ! ) p(u'a U ): v

j—== IJ'

by (7.13), and (4!, 1) =, (u, v) by (7.14). Tt follows from (7.12) that « = 3, and
this completes our proof.
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Remark 1. Inequality (7.4) could also be expressed as

pu v h,ky=sup[ sup {y-h+z- -k}, (7.15)

XEX (v EKu e )
where in parallel to the definition (2.11) of p™(u, v; h. k) one takes

. +th',v+tk)— D
p(u,v; h.k)= limsup AR b T L).
(' kY (h k) t

(7.16)
Remark 2. Tnequality (7.3) holds in a more general form, as shown by the proof:
for an arbitrary set X, of optimal solutions to (P, ), if (h, k) €int Gy, where G,
is the cone obtained when X is replaced by X, in (7.1), then (7.3) too is valid
with X replaced by X,

Corollary 1. With (u, v) and X satisfying the hypothesis of Theorem 2, suppose
that the constraint qualification Ky(u, v, x) = {(0, 0)} holds for every x € X. Then
forall (h,k)ER™ xR one has (2.9) and

ptu, v:h._k)ﬁéinf{ sup  {y -h+z-k}}, (7.17)
xEX Ly, 2)EK(u, 0, x)

il k)zinf[ Wt »h+z-k}]‘ (7.18)
xEX Ly, 2)EKin vx)

If in addition K(u,v.x) is a singleton {{y(x), z{(x))} for each x € X, then the
derivatives p'(u, v; h. k) exist, and in fact

pru,vih,k)=p(u,vih k)=inf {y(x) - h+z(x) k}. (7.19)
xEX

Proof. This is the case of Theorem 3 where G is all of R™ x R4, so that (h, k) and
(— h,—k) both always belong to int G. The inner “sup’ in (7.17) and ‘inf’ in (7.18)
coincide, of course, when K(u, v, x) is a singleton.

Corollary 1 generalizes results of Gauvin and Tolle [13], Gauvin [11], Gauvin
and Dubeau [12] in the smooth case (a) of (P, .), and of Auslender [2] in the
somewhat more general case where the inequality constraints need not be
smooth. Corollary 1 allows nonsmooth equality constraints too, plus abstract
constraints represented by (v,x)E D, and at the same time yields stronger
conclusions in terms of Hadamard derivatives instead of just Dini derivatives.

Corollary 2. With (u, v) and X as in the hypothesis of Theorem 2, and G the cone
in (7.1), if int G= @ one has either p (4, v; h, k) > —3 for all (h,k)Eint G or

piu,v;h,k)y=pu,v;h, k)= —= forall (h,k)Eint G, (7.20)

the latter case occurring if and only if K(u, v, x) =@ for some x € X.
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Proof. Apply (7.3) and use the fact that p. =p~.

Corollary 3. In the case where no parameter vector v (or corresponding
multiplier vector z) is being considered, and all the explicit constraints in (P,) are
inequalities (notationally: s = m), suppose u is such that (P,) is tame, and let X
be the set of all optimal solutions to (P,). Then for every strictly negative vector h
(i.e., —h €intRTY) one has

pluih)= inf[ sup ¥ - h] =0. (7.21)
eX [ yEKu x)

Proof. Here Ky(u,x)CRB7T for all x € X, so that the cone G in (7.1) includes

—RT. Every strictly negative h therefore belongs to int G, and (7.21) can be

obtained as a special case of (7.3).

Qur final result treats only a special, but nevertheless very important class of
problems. It extends the marginal value theorem of Gol'shtein [5. Section 7] to
the case where the set of Kuhn-Tucker pairs associated with (P, ) is not
necessarily compact. Again, conclusions are obtained for Hadamard derivatives
rather than just Dini derivatives.

Theorem 4. In the mixed smooth-convex case (c) in Section 1, and with (u, v)
and X such that the hypothesis of Theorem 2 is satisfied, one has for all (h, k):

plu, v h k)= inf [ sup  {v+ h+z- k}], (7.22)

xeX Ly, 2)EK{u. 1. x)

The set of vectors v €R™ satisfving for a given x € X the complementary
slackness conditions (4.3) and

0e Z vidofi(v, x) + Ne(x),
i—1

is actually a closed convex cone Y, independent of x. The convex cone in (7.1)
takes the form

G= ﬂx {{h. B iV b, 00k 4 bl =0 For il y 2 Y} (7.23)
f = i=1 ¥

and for all (h, k) Eint G one has
p'u, v h, k]=p_('u.v;h.k)—min[ sup  {y- h+z-k}]‘ (7.24)

=X Liv, 21K, 0 x)

Proof. Since (7.22) is trivial if p.(u, v; h, k) = +2, we can suppose in proving
(7.22) that

s gy Dt ) p G ),

jo 1y

(7.23)



R.T. Rockafellar| Lagrange multipliers and subderivatives 63
for certain sequences t; | 0 and (h', k") = (h, k). Let
(u, v =(u~+ tj-hf, v+ tk') = (u, v

Then p(ul, v') = p(u, v) by (7.25) and the lower semicontinuity of p at (u, v), the
latter being a consequence of the tameness condition in the hypothesis of
Theorem 2 (cf. Proposition 8). Thus (u!, t!) =, (4, v). Introduce next a mapping £
as in Proposition 10 whose cluster points as (u', v') =, (1, v) all belong to the set
A invoked in the tameness definition (5.1). Setting x' = £(u’, v’) and passing to
subsequences of necessary, we get a convergent sequence of optimal solutions x to
(P ) whose limit is a certain optimal solution x € A to (P, ). Then x € X, since
under the hypothesis of Theorem 2 every optimal solution to (P, ) in A is also in X.
Note that fo(v!, x)) = p(u’, v!) and fy(v, x) = p(u, v), and hence

i folv!, x1) = folv, x)

=p.(u.v:hk) (7.26)

by (7.25). Consider now an arbitrary (v, z) € K(u, v. x). This satisfies (4.3) and
(4.4), but since we are dealing with the mixed case (b) of (P,.), (4.4) can be
written as (4.11), or in terms of the function

f:fo‘f'Z i
i=1

even more simply as

0€ dd(v.x)+ Ne(x) and  z=V,I(v, x). (7.27)

Here | inherits from the functions f; the property of being convex in the second
argument, and %' in the first argument with gradient depending continuously on
both arguments. This joint continuity ensures (via the mean value theorem) that
actually

IR RS e
ll.mf(L-+I_L,.Y) I(L,x)=

Vo(e,x)-k=1z-k, (7.28)
j=e t
a fact that will be put to use presently. The convexity property of [, on the other
hand. allows us to read the first condition in (7.27) as saying that I(¢, - ) attains it
minimum over C at x (cf. [26, Theorem 27.4]). Since x/ is feasible for (P,i ,i), and
hence in particular x! € C, it follows from this that

o, x)) = 1(v, x) (7.29)
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and from (4.3) that

folv, x) = folv. x)+Z] vilfile, x)+u]=1(v, x)+ v - 1, (7.30)
folv!, x7)y = folv!, x")+§m: vilfi(ol, xD+ull =1, xH) + y - ul. (7.3
i=1

Therefore
foo!, x) = folv, ) = (1, XD+ y - W] = [[(u, x)+ v - u]
=y —u)y+ I, D)= 1w, x))
=ty - h'+[l(v+ k', x') = I, x")].
Using this estimate in (7.26) and invoking (7.28), we get
pilu,v; hk)=zy-h+z k

This being true for arbitrary (v, z) € K(u, v, x), we conclude that

plu,vih k)= sup {y-h+z-k} (7.32)

(v 2)EK{u, v x}

for the particular x € X which has been constructed, and hence that (7.22) is
indeed true,

The rest of the proof of Theorem 4 is mostly a matter of applying Theorem 3,
specifically (7.3). The special form for G is readily derived from the fact that
condition (4.5) in the definition of K(u, v, x) reduces in the present case to (4.12)
(cf. also Proposition 6). As pointed out in Section 4 in the remarks following
(4.12), the first condition in (4.12), together with (4.3) and the feasibility of x,
constitute a certain saddlepoint condition on (x, y). As is well known, the set of
saddlepoints of a given function is always a product set; the set of y’s
corresponding to a given x is independent of the choice of x.

Corollary. Under the assumptions in Theorem 4, if the set Y, consists of just
y =0, then p is locally Lipschitzian around (u, v) and (7.24) holds for all (h, k).

Proof. To say that Y,={0} is to say that Kg(u. v.x)={(0,0)) for each x € X.
Then p is locally Lipschitzian by Corollary 2 of Theorem 2 in Section 5.
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