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Optima]1 contrel problems of convex type are considered in
which the primal and dual state constraints define cones.
such as nonnegative orthants, and moreover, jumps in the

states might conceivably occur. Necessary and sufficient
conditions for optimality are derived by convex analysis.

INTRODUCT ION

In optimal control problems of convex type, such as often cecur in economic models,
it is typical for the states to be constrained to some convex set, e.g., a non-
negative orthant. Classical theory suggests thatnecessary conditions for opti-
mality should invoive dual {adjoint) state variables which might have jumps. In
fact, a lack of strong growth conditions in some problems raises the possibility
that jumps should be admitted for the primal state variables too. Standard neces-
sary conditions do not cover such situations and indeed may run into other diffi-
culties as well., For example, in an economic problem with states restricted to an
orthant the expression to be optimized may contain a function which is defined only
on the orthant in guestion and cannot be extended smoothly beyond it.

In this paper we use convex analysis to treat an abstract problem with the possi-
pility of all these features, Necsssary and sufficient conditions are derived in
terms of subgradient versions of the Euler-Lagrange equation and transwversality
relation. We have previously developed such conditions for convex variational pro-
blems of similar kinds, but with special structure not allowing for jumps in both
primal and dual variables [1], or not adapted to general boundary terms and con=-
straints [2]. Here, by contrast, we have primal and dual jumps and general bound-
ary terms. However, we make other restrictions of a lesser sort, mainly in order
to simplify the technical discussion and bring out more clearly some of the prop-
erties of greatest interest in economic applications: we only treat autonomous
systems {(data not time-dependent), and we assume that the primal and dual state
constraints concern membership in a convex =

=

For the way the model problem adopted here can be used to represent problems in
other formulations, including those with explicit control variables, see the ac-
count in [3].

Let L and 1 be lower semicontinuous, convex functions from R" xR" to Rui+=}. For
a fixed interval [tu,t1] we wish to minimize

t
(1.1) I{a) = 1{a(ty).q(t,))+ _i't;Liq(t:.ci(t}:-dt

over some space of functions g Pt st »R" q = dg/dt (at Teast in an almost
everywhere sense}, In terms of the effective domains
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(1.2) B {(quQ'l}H{qL}!qﬂ 5 o E = {(xy)|L{x,y) z=}

which are the convex subsets of 8% R" where 1 and L are finite, the inequality
I{q) <= implies that

(1.3) (glt),alt,))Eed (q(t),qlt)) CE  a.e.,

p)a(%y)

and hence in particulear for the convex set

(1.4) Q= ciixer I yeR" with (x,y) SE}
that
(1.5) a(t)eq  a.e.

Thus, {1.3) and (1,5) are implicit constraints in the minimization of I, whatevsr
space of functions g we happen to choose. Condition (1.5) is called the prim::
stale constyalint,

A natural candidate for the spacc over which to minimize is
(1.8 A= g [ty:t,] —~R”|q is absolutely continugust}

On A, [ is 2 well-defined convex functional with values in RUiw=} [{seef3]), Ho
sver, unless L satisfies in particular a certain growth condition that may be <oc
stringant for some apolizanions, there is serfous dount about I actually attain:
& minimum, on A : it is possible that a minimizing sequence Tor 1 tends to a di
tinuous function g not in A, The growth condition in question is fulfilled if
only iT the convex set

(1.7} P=clizer" 2 wer" with INFIL{X0y) ~wex = 2ey] > -}

is all of R", Ac a matter of fact, in the theory developed in (4] to cover pro:
Tems where 1 is minimized over A, the condition

{1.8) p(t) eP(t) a.e,

appears as the dugl aiate consrtraini that must be satisfied by the functions
P:ltyaty] =RN which enter into a certain dual problem related to the character-
izatién of optimality in the original problem. In economic applications, p(t) o*-
ten can be interpreted as a price vector, end the constraint {1.8) may reflect
intrinsic requirements like nonnegativity. In the presence of such requirement:.
therefore, the growth condition on L which is appropriate to & minimization proc-
lem over A fails, and we need to Took instead at an extended problem where th=
function q may be discontinuous.

STATEMENT OF THE MAIN RESULTS

In formulating and justifying the appropriate extension of the problem of minir-
izing I over A, we shall 1imit attention nere to the following situation.

- nuous @id
t2 Q omd P Zn {1.4) and (1.7) ave conza with

(2.1} DcOx=g .
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ASSUMETION &, There {oat lzasl one [unciion GQEA such that

2.2) q(t)€int Q(t)  for all telty,t,). ,

23) [Ea(e, dtde <

A453UMPTION 3, The pslative inierior o the eonves sel D meete the valalive
inferior of the aonvex set

2.4) C= {(qt.J.qﬂ?-__-l qEA satisfying (2.3) wizh q(ty) = q4:6(t) = g}

s in [2], we shall work with the space
2:5) B=i{g: [tn,t1] +R"| q is of bounded variation}

under the convention that two functions g. and g, in B are identical if g.(t+) =
2:(t+) and a1 (t-) = gu(t-} for all te[t,,ty) i at the endpoints of [tg;,t:] we
interpret

2.6) q(to-} = q(t;) and q{t,+) = q(t;) for geB .

7ecall that a function g&B does have a rignt 1imit q(t+) at every t&([tg,t:) and

= left Timit g{t-) at every te{ty,t:1 , and the jump Aq(t) = g(t+) - q{t-) can be
nonzero for at most countably many values of t. The derivative § still exists al-
75t everywhere, but it is noz necessarily true that

2.7) aly#) = qlr =)+ L1a(t)et for all g ] Cltgat]
Y :

znd indeed the latter property holds if and only if g belongs to the subspace A of

In general, the RM-valued Lebesque-Stieltjes measure of dg on [t;,t,] may have a
singular part, which in turn can be decomposed intc an atomic measure (correspond-
ing to jumps in q) but possibly also a nonatomic component. The measures dq can
oz identified with the continuous 1inear functionals on the Banach space

2.8) C=Ar: ltu’t1] ~R"r is continuous} |,

nd the correspondence q < (q(t,),dq) therefore furnishes an isomorphism between

and R'x (%, where C* is the dual of C. In this way a Banach space structure is
induced on 8, but we shall be more concerned with the weak*zupsiogy on B, by which
w2 mean the topology induced by the weak*topclogy on C* under the isomorphism just
==ntionead.

2

PEFINITION, A funclion (€8 will be ealled P-singularly monotone <f for avery
interval [TeaT1] €[tosti] one hao

2.9)  qltyt) ~q(ty") - .L,_'Jq(t)dtev"

_lhewise, a funetion pEB will be called Qsinguiarly movetone if [or svery
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](-_ft[},t

il ['rU ,'r,] T]

(2.10) plogtl -plrgt) < [ plrjdted

Here, of course, Q" is the polar of the cone 0,

If P = R", the P=singular monotonicity of g reduces to the requirement that g=-.
wnile iF P = R} it means that :

. ] o W a
(2,593 q(-_.|+) < -:=-;t0—) + _|TUL(q(t.],q[t))dt for all ["_'_,J,T,l:] C[to,t_l_l

In the general case it says that the singular part of the meoasurs dy is PP-vaius=-.

An impartant consequence, seen by taking Ty T Ty =0T in (2.8), is that

{2.12) ag(t) eP” for all tClty,t,]

Since every element of A i3 in particular a P-singularly monotone alament of . —-
qardless of the choice of P, the Following functional T is an extension of 1 =-——
4 to B:

i Tia) I{g) it o is P-singularly monotone with (altgleqitydl o= .
13 J-\q =
+=  otherwise .

The problem of minimizing 7 over B turns out to be the naturz] “closure" of the
problem of minimizing [ over A,

[2.14) inf T(g)
qEB

Logy of B of some min
on B, In porticular, oo

Moz
4

QEA whinh min

The extended problem of minimizing T over B has the implicit constraint Tiq) < =.
This forces q to satisfy the conditions in (2,13) a5 well as the ones noted ez~ =
for I, namely the elementary implications of having

t

altg),a(ty) <= and [

0

L{g(t).4(t))dt < »

The extended problem therefore can be steted equivalently in greater detail as

e i
minimize 1(a(to),a(ty)) + f L{a(t),a(t))dt
over all g8 such that

(altg)halt)) €D u (q(th.d(t)) €€ a.e.
q{t+} =0 and git-} =0 for all te[to,t_l] 7
and g is P-singularly menotone.




Convex control problems 343

The form of the state constraint here is derived from the earlier form (1.5) using
the closedness of 0, the endpoint constraint {q{t:}.a(t:))=D, and assumption (Z.2].
Limits alone would only give q{te+) and g{ty-} in O and tell nothing about the
Zrug endpoints of g.)

Theorem 1 will pe proved in the next section along with the Tollowing characteri-
zz2tion of optimality in terms of subgradients [5,823] of the convex functions 1
znd L,

(a) (pltg)e-Plt;)) €31(a{E,)a(E, D)

(b} (plt).plt))yesllalt).git)) Jor almssz avary LtE [tg,t.]] 3

(c) q(t*) €Q and p{t=)EP for ail L€ [L.t4],
(d) qis P-gingulariy monctone and P de Qeaingnlarly monotons,

{e) g-p fz aiaoluiely soniimius on [tﬂ,t]] -

In {(e)., of course, we must appeal to the conventions used in defining the space B:
we really mean that g-p can be Zisni<7<s7 with @ function r:{i,,%;]1 =R of bounded
variation in the sense of having r(t) = g{t+)-p(t+) = g{t=)+p(t=). Most of condi-
zion (c) is redundant and is included mainly for emphasis; all but the assertion

that

2.15)  {p(ty)splty)) EP xP

‘s actually a consequence of (a) and (b] .

Special cases of the "transversality" condition (a) and "Euler-Lagrange" conditien

) in Theorem 2 have been described in [3]. (See [6] for generalizaticns of such
subgradient conditions to nonconvex problems over A). Condition (d) implies that
the measure dp is J°-valued and in particular

2.156) rpltiE0® for all tE Iy, ty]

This and (2.12), wnich likewise iz & conseguence of (e), tell us in conjunction with
c) and the relation

2.17) GlE+) e pltt) = gqlt-) - p{t-) For a1l telty.tl
«nich holds under {e}, that

2.18) glt') - £p{t) =0 and p(tr) -2q(t) =0 for all telt,,t,1 .
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PROOFS

The arguments will be based mainly on our previous results in [2] for convex oriz-
lems of Lagrangs. Thessz results concern the minimization of the functional

i |
(310 I(a) = | Lla(t),4(t))ds

R0
on A subject to endpoint constraints of the elementary form g{ty) = g, and (s =
g;. They likewise involve an extended problem over B where the functional is

I, (g} if g is P-singularly monotone,

(3.2) T (q) = ‘
+= otherwise.

This expression is simpler than the general ons in [2]: it corresponds to th
present case where P is a cone rather than an arbitrary convex set. Other s
fications over the situation in [2] occur because L is merely a convex functi
RM < RM and dees not vary with t. so that the sets 0 and P do not vary with t
Cur assumption that O and P have nonempty interior ensures that the basic assu
tions (S;), (Sz) and (53} in [2] are Tulfilled. (Q and P are the ciosures of
convex sets denoted in [2] by X and P.)

(14}

Duality is an essential feature of the results in [2]. Since L is a lower se=--
continuous. convex function from R" «RM to B Ui+l which is not identically +=
{due to Assumption 2}, the function
{3.3) Miz,w) = sup {zoytwex -L{x.¥}* = L (w,z) .

Kly

* -
wnere L is tne conjugate [5,312] of L, nas these properties toc and satisfies

(3.4) L{x,y) = sup {zoy +wex =M{zow)] = M (y,x)
ZaW

Duality properties have to do with the functional
[t1 .

(3.5) Iylp) = | Mie(t).p(t))de
.to

on A and its corresponding extension on B:

IM(p} if p is Q-singularly monotone,

(3.6)  Tylp) = _
+= otherwise.

Like T, Ty is a well-defined convex functional from B to RWU{+=}. In fact botr
functionals are iower semicontéinmuous ©n the wegk topology on B (as defined in :iZ
The reasoning behind this is given in [2, pp. 186-190, starting with (6.24)], wre-=
it is shown that (in present notation and simpler circumstances) the expression

ﬁft’l i, et

£ sup {| r(tledp(t) + | @(t)-p(t)dt - j
rep LtC’ “ty t,
qs4

Ler(t).a(tdt ),
0




Convex control problems 345

squals In(p) when it is not += (and trivially then too even when it 15 +=, because
of (3.3) and the monotonicity condition in (3.6)); this says that Iy is the point-
dise supremum of a collection of weak™ -continuous Tinear functionals on 8 [ane for
sach xCC and g4 such that the last integral in {3.7) is finite). and hence Ty

“s weak® lower semicontinuous. The zame holds then for I, by symmetry,

Tne basic results we must invoke rom [2] involve the following convex functions
on RN . RN.

3.8) fLldge0y) = Infil (q)laeAia(ty) = qg.a(t,) =g,

f o _—-B; - s o | i i _ 3

) 4G9 ) = InF (0} [ €Bag(ty) =qgaalty) =q,F
‘CB 3 T 053 = f i) I e 3

K TU} ‘M{pn’p-[) - .Inf'--IM(?);"p‘E:ij\tU;=DO,,G":\..I‘.—D.I_'

A o , .
Joserve that the set C in (Z.4) is dom fls where "dom" derotes the effective domair
T & convex function (the set of points where it is not i}, Denoting by "ri" the
czlative interior of a convex set [5,36], we may quote the key facts that will bSe
nzeded,

3 [2.p.180].

3.11) ri([Q =g] ndom ff} = ri dom f

gal T—B p A.
10) da ¢

312} sup gy “GgtPg = FLlegsaq 0t ={
G204

L R A ey ) ML,

" i
Tne first part of this result, along with the weak lower semicontinuity of IL' is
what will give us Theorem 1. Obviousty

~ \ ". \
3.13)  inf I(q) = inf {1(qgaq) = f] (95:0,)] .
%9
3.14)  inf Tta) = inf 11(q5,0,) +%](9559,)}

o=8 G4y

Since the infimum of a convex function T an RMsR" is the same as the infimum of f
sver ri dom F [5,87), the infimum on the right in (3. 3] s unchanged wnen restricted
to

ri dom(1+£1) = ri(dom 1dom ) = rigency

Anile the infimum on the right in (3. 4) is unchanged when restricted to
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(3.16) i dom(1+f5) = ri(dom 1 ndom £°)

ri(011Q % Q] Ndom f‘E}

Here we have written DN [QxQ] in place of D as justified by condition (2.1) in
Assumption 1.

We know from Assumptions 2 and 3 that
(3.17) fnt Qxint QINC #4 and vi DNriC #2
and since € = dom 'Fi = dom fE the first fmplies
¢ # [int Qxint Q] Nri dom ff = int[Q = Q] Nri dom ff

The calculus of relative interiors [5,86] then yields via (3.11) that

4 # ri(DC) = ri DNPri C
ri DOrF(10*Q Ndom 1)
= ri DNintI0 = 0] Nrd dom ff

7 (D Q% Q] Ndom ff)

(3.18)

Combining this with (3.15) and (3.16}, we see that the infimz on the right_sides o°
(3.13),and (3.14) are both unchanged when restricted to ri DMri C. But 7 agrees
with f|' on ri C by Theorem 3, so this allows us to conclude the two 1nf1ma are eguz .
Thus (Z.14) is true, as claimed in Theorem 1.

The other assertion of Thecgem 1 is now easy to verify. If g=B is the weak limic

of a minimizing seguence tq”} of I on A we have T{gJ) = 1(gd) and hence by the lows-
semicontinuity of T that

inf,1 = lim I(q) = 1im T(e?) > T(a) > infg] .

J-me Jee

Since the extremities of this chain ars equal, &s just demonstrated, we nave 1(a) =
infgl. The proof of Theorem 1 is thereby finished.

Turning to the proof of Theorem 2. we note first that ¢ minimizes T over B if anc
only if for a certain pair (go.q:) in R" xR" we have that

(3.19)  (9,,q,) minimizes 1 + ff over R"xR"
(3.20) g provides the minimum in (3.9) for {30.31)

We shall analyze these optimality properties separately, using the fact that wher
they hold we must have

(3.21) 138 + f(@p8y) = T(a) = 1(3psq,) + I (q) (Finite)
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The analysis of (3.19) siarts with the cbservation that it is equivalent in terms
3

of subgradients [5,323] o having
[ PR RN R 2By i~
.""12] (0.0 ¢ ~"(1+‘ .!\qD:C11 .

By (3.18) and the relation D[ ~0] = D = dom 1 (cf. Assumption 1), we also know
that

@F ri Dint[Q =01 = vi(DNO[Q=0]) = ri dom 1
and conseguently, again via (3,18}, that
ri dom 17vri dom fE # 0

This is a sufficient condition for

d A == - “.r"" Y
3(1 +f|_,h sQ-11 = :“{Qosq-i} *--'f]?'\qosq‘-]:'

[5,323]1, in which case {3,2Z) corresponds to the existence of {nc,o ) eR"x R"
such that
(3.23) (Bgs-Py) ©21(0y00,) (implying (§,.8,) €0x0),
5 <o me v ellies
[3"{4) (—polpT.}E’jfL(qo’q'l) &
Recall next that {3.24) means
\qﬁ,q.ljea'rgma? Q4 p1 g ‘po—fﬁqusﬂ-E:} 3
QG!LI'i
which is eguivalent by eguation {3.12) in Theorem 3 to having
(3.25) (By+5;) €P <P and fu(5,.B,) = T,-5, -8,°B, - £(7,4,)
i G 2 Al T i A oo ik R *

Altogether, then, (3.19) holds if and only if there exists (30,31) for which (3,23)
and (3.25) are botn fulfilled.

Condition (3.20), on the other hand, is squivalent to

f g _ Ghs

‘3'26} (q{tG)BQEt‘I)) - {qrsq J and TL':q) - fL{qU!Q-I

similarly, the infimum defining f:( Py EH} is attained by pEL iF and only if
(3.27) (Q(—O lp(t 1) = (13{3:91.:' and T, (p:’ = fM(PQ'p‘M s

and according to Theorem 3, therefore, tnnve is at Teast one pEB satisfying the
Tatier regardless of the choice of (p »P1). It follows that (3,13) and (3.20) to-
gether are chavacterized by having (3,26), and for some pef satisfying (3.27), con-
ditions (3.23) and (3.24) as well. Thus ¢ minimizes T over Bi€ and enly if it ful-
fills along with some pe8 the conditions
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(3.28) (p(ty)s - Pty )) €31 (a(ty)sa(ty))
(3.29) {alty)»0(t;)) €QxQ and (p(ty)sp(t,)) €PxP

(3.30) T, (9) = f(atty)alty)) and Ty(p) = Fplty)op(t))
(3.31) Do) sp(ty)) = alt,)ep(t,) - qlty)plty) - FElalty) alty)

Here (3.28) is the same as condition (a) of Theorem 2, while the other three co—
ditions are together equivalent by [2,Theorem 2] %o having (b}, (c}, and {d) rz =
and the Tollowing (real-valued) measures vanish:

p.+(dq-qdt) = p_+(dg-qdt) =0 ,
(3.32)

q.+(dp-pdt) = q_+(dp-pdt) =0 ,

where pu{t) = p{ty), and so forth, Since the function p, is P-valued while th=
singular measure dq -qdt is P -valued by {d), the measure p,.{dg-qdt) is in
case nonpositive, and the same is true also for the other three measures listec ==
(3.32). Since the identity

d(gen) = p,+dq+g_+dp = p_-dg+q +-dp
is valid for any gqeg and peg {cf. [Z,p.161]), it fellows that (3.32) is equi-
valent {in the presence of (c) and (d} of Theorem 2} to

d(qep) - [p*q +apldt = 0 ,

which is (e} of Theorem 2. This finishes the proof of Theorem 2.
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