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EBSTRACT

A monotropic programming problem consists of minimizing,
‘subject to linear constraints, a function of the form

F(x} = Ekfk(}l_{{x}) , where each k‘,k ig a linear function on

n 5 i ' s
R and each is a convex function cn R, not necessgarily

=k
differentiable (e.g., piecewise linear or gquadratic). In
such proklems, there are special wavs of generating directions
of descent, and duality can play a very strong role. More

attention paid to these features may make it possible to solve

problems of larger scale than otherwise.
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1. INTRODUCTION

2l

At one end of the spectrum of fZinite-dimensional optimi-
zation problems are the general nonlinear programming prob-
lemz, involving constraint and objective functions that may
or may not ke differentiable. At the other end are problems
of linear programming and network programming, which have a
strongly combinatorizl character. Convex programming prob-
lems lie somewhere in between. They benefit from duality
phenomena, but not in so powerful a manner as do linear pro-
gramming problems. They are often apprcached by the same
techniques as are general problems in nonlinear programming;
the main distinction is perceived in the fact that for one
reason or another, these techniques work better when convexity
is present.

There igs a natural subclass of cocnvex programming prob-
lems that, to our thinking, has not vet received adeguate
attention as a whole. This is roughly the largest class which
exhibits combinatorial properties and duality to the same
degres as in linear and network programming. The preoblems in

gquestion are theose that can be formulated as separable convex

programming problems with linear constraints. We speak o

the subject as monotropic programming, for short. The word

"monotropic", which means "turning or varying in one direc-

tion on , 18 ussd here to convey both the unidirecticnal

curvature of the graphs of convex functions of a single wvari-

able and the monotonicity of their derivative relations.
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Thus, it is intended as a synonym for one-dimensicnal con-
vexity and proposed as a term to be used whenever one-
dimensional convexity is paramount.

Just as a linear programming problem can be described
gualitatively as one where a linear function is minimized
over a convex polyhedron, s¢ can a monotreopic programming

problem be described as one of the form

minimize ${w) over all w £ K,

where K 1is a convex polyhedron in RN (1.1}

- . . \ . N
and ¢ 1is a preseparable convex function on R,

which is to say ¢ c¢an be expressed as

b

where each kj is a linear function on RN and each fj
is a convex function on R . As a speclal case, if

fj(xj] = xf for all j one has in (1.1) the general guad-
ratic convex programming problem with linear constraints.

It is not always to be supposed, however, that each Ij is

ifferentiable or even given as a finite function on all of

o

oY)

To introduce the exact technical assumptions that will
be needed, and to put proklem (l.1) in a convenient "normal-
ized" form at the same time, we specify now that for each

3 =1,...,n wWe have

a nonempty real interwval Cj ' (1.3}
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not necessarily closed, possibly all of

a convex function fj: Cj

uous relative to C.

cutside of

We dencte the left and right endpoints of Cj

sarily contained

a
+
C—l
4

These conditions
but turns out to
duality theory.

side of Cj
(L] (L),

convex functions

In this framework, we are ultimately interested in

only for those wvalues of w

as well as w ¢

terval and ij

{13

K. Note,

is linear, the set of points w
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3 as
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{not neces-

by <.

in Cj and possibkbly infinite) and

, respectively, and make the following closure assumption:

but c. ¢ C. , then f.(x.) + =
J J J ]
+
.y
3 _ (1.5)
but c. ¢ C. , then £f.(x.) =+ =
2 J 3| ]
c. .
J

provide flexibility that is useful in itself

be indispensible in setting up an adeguate
(The device of regarding fj as +«= out-
allows us to identify pairs Cj , f. satisfying

5), with clesed proper extended-real-valued
defined on all of [3, 82471.)

E , see

& (w)

such that

though, that since Cj is an in-

satisfying
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(1.6} is itself a convex polvhedron, or at least it would be

if each C. were closed, In general it is a "partizl con-

vex polyhedron". {Scme faces might be missing, but ¢ goes
to += on these according to (1.5)}. For purposes of nor-
malization, then, it is superflucus to represent the con-
straint w = K apart from (1.6); thes convex polvhedren K
could always be expressed by additiocnal ceonditions as in
(1.6) associated with closed interwvals €. and

J

£. =0 on Cj (so that fj makes no contribution in (1.2)).

From this discussion it is clear that the following pre-

unctions

Fn

cise model can be adopted for monotropic programming: giwven
Cj and f£. as in (1.3), (l1.4), (1.5) for J = 1,...,n,

3
minimize the function (1.2) over all w satisfying (1.6).

Actually, still ancther simplification is= helpful, this time

for the sake of duality. Letting

observe from the linearity of &, that = ranges over a
J
i n N .
certain subspace ( of R ag 2 ranges over R, In the
formulation we arrived at a moment ago, only the values
gj(w) really take part in the action, not w itself, Every
monotropic programming problem can therefore be reduced to

the more fundamental form:
minimize Fix) =

subject to x. ¢ C. for J=1,...,n, (B)
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where C. and f_.I are as in (1.3}, (1.4), (1.3}, for
] -

. : ; = n ; ;
i=1,...,n, and ( is scme subspace of R . This is a

separable convex programming proklem with linear constraints,
gome of which are given abstractly by the condition x ¢ C
but can be represented in other ways as the situation war-
rants.

Having thrown the spotlight on the problems that can be
put in the form (P), we must say what it is about them that

merits careful attention. First there is the fact that non-

differentiable nctions fj can readily be accommodated by
special mechanisms for finding directions of descent in (P).
This is more important than it might seem.

The case of piecewise linear functions f% serves as an

illustration; such functions are not smooth, due to jumps in

their slopes at certain "breakpoints". Suppose each £. in

(P) is piecewise linear with a sizeable number of pieces.
Then, as is well-known, (P) could be recast as a linear pro-
gramming problem and solved by the simplex method, say, but
this would be at a great expense in dimensionality. The co-
efficient matrix for the linear programming problem would be
sxceedingly sparse.

There is advantage in methods capable of handling (F)
without such a reformulation. The advantage becomes even
more apparcnt when it is realized that in many situations
where piecewise linear functions are at hand, they are there

as approximations of more general functions. What if we were

involved in a scheme of successive approximations involwving
more and more linear pieces? Reformulation as a linear pro-

gramming problem at each stage would require hicgher and
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higher dimensionality, whereas a direct method for (P) could
avoid this and might be able to work "locally", with approx-
imations generated arcund a point only as needed, A "local"
method is difficult to implement, when the very identity of
the variables in the problem can be destroyed by a series of
reformulations.

The direction-finding methods referred to will be des-
cribed in §2 and §4. Their interesting feature is that they
genarate descent directions, if such exist at all for the con-
vex function F at a given point =x, from only a limited
and essentially finite class of vectors in (, called ele=
mentary vectors. It is here that the combinatorial under-
pinnings of the subject are apparent,

Much motivation comes from the network case, where
is the space of all "circulations" in a given directed graph

(flows, not necessarily nonnegative, which are conserved at

n
every node: x. is the flow in arc j, and | e..x. =
J j=1 3 1
for all nodes 1, where ({eij)) is the node-arc incidence
matrix of the network). The elementary vectors of ( then

correspond to "elementary circuits" in the network, and to
say that descent in (P) is possible in such cases, is to say
that F can be minimized by a series of corrections to the
initial circulation x that are obtained in terms of flows
around elementary circuits.

Obviously, this is a type of result that has no counter-
part in general convex programming. The fact that it has a
universal analogue in monotropic programming underlines the
distinctive nature of that subject. The analogue in the non-

network case is related to concepts in linear programming such
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as descent along special rays forming the edges of the fea-
sible regicn, instead of steepest descent, Computationally,
it i1s closely connected with pivoting technigques for handling
linear systems of wvariables.

Still ancther feature of mconotropic programming problems
that sets them apart from general convex programming problems
is the existence of a duality theory that is as sharp and
almost as constructively applicable as the one in linear pro-
gramming. This theory has been available for some time [4],
but it does not seem to be widely known. It assigns te (P) a
dual monotropic programming problem (D) cof the same funda-
mental form. In contrast with general convex programming,
but in resemblance to linear programming, the dual (D) can
cften be written down explicitly. This is true, for instance,
whenever the functions £, are piecewilse linear or guadratic,

]
in which event (D) too inveolwves functicns that are plecewlse

linear or guadratic. Thus in particular, duality can be put
to work in piecewise linear problems without having to pass
through a2 linear programming refermulation.

In this paper, we not only demonstrate special desgcent
vector properties of the kind menticned above, but show how

they can be invoked to get a new, constructive proof of the

main duality theorems in monotropic programming.
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2, OQOPTIMRLITY AND ELEMENTARY DIRECTIONS OF DESCENT

In problem (P), the minimand F is a convex function
defined on all of R but (cE. (1.4)) finite only when
Xj € Cj for all j . The problem can be viewed simply as
that of minimizing F over the subspace C, since the con-
straints xj = Cj will be taken care of automatically by in-
finite penalties. Thus x 1is a feasible solution to (P) if

and only if it is a point of ( where F is finite, and it

is an optimal seclution if and only if, in addition,

F'(x;2) >0 for all z ¢ C, (2.1)
where of course
T'(x;z) = lim Fix+tz) -F(t) ] (2.2)
e < 3
(=54
On the other hand, any 2z ¢ ( with F'{x;z) < 0, if one

exists, gives a direction of descent from x: for small

enough t > 0, x + tz is another feasible solution to (B)
and F{x+tz) < F(x) . The guestion to be addressed is:

what are the special conseguences of the separability of F 2

Each £. has a right derivative f3+[xj) and a left
o |
derivative fﬁ_(xj} at every xj £ Cj . These are nonde-

creasing functiong of xj that satisfy
=8 = EL (x.) = £, (%) g &,
= A=Y =TT =
+2 if x. = ci ¢ €. (the case of

Fielxg) = 375

El -

Obviously, :
a finite right endpoint), but Eé+(xj) < += 1if x. < ¢

Likewise fj_{xj} = - 1if Xy = c; < Cj .  but fé_[xj) A

i s B By
if xj cJ



336 R. T. ROCKAFELLAR

Proposition 1l: For any =x satisfying x. « Cj for all j
4

n
and any z < R, one has

B lgal = | T EladwYeo b F L beilme
j:£5>0 3t j:zj<D ] 13

where the convention 1s used in the sum that (+=) + [—e) = 4=

Proof: Bubstituting the formula for F into (2,2), cne sess

that PF'"(x:=z) is

F.o(x. +tz.) - f.(x.) f.(x. +tz.) - £f.
Liml ; j[ 3 i, ; ( 3 f (\j)
t+0|jez.>»0 = 5 2540 t

The result is then obvicus, except perhaps for the claim
about += . However, gince each difference guotient is mono-
tone in t by convexity, it can only approach -« in the
limit, whereas 1t can approcach += only if it is actually
+e=  for all t = 0. In the latter case the overall limit
defining F'(x;z) must itself bhe +w= . This explains why
the conventicon gives the right answers; if none of the limits

fj+{xj)zj or ! (x.)z. of the individual difference quo-

tients 1s += , there is no difficulty about the sum, regard-

L

=

less of any -='s, but if any one of them is +«= , then the
sum must be interpreted as 4w,
As a matter of fact, =-= cannct enter into the formula

in Proposition 1 unless there is some J such that

f3+(x4) = -= aQar f;_[xj) = += ., This ig possible only in
- : - +
Cercalll Ccagses wheres Xj = C. > —o o X_.I = Cj ] f re-
] ]

spectively. Let us introduce the intervals
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0., = Har, eC.| £' {x.) === and fé_(xj) < 4o}

and speak of x as recularly feasible for (P) if =x ¢ C and

Xj € 5; for j = l,...,0. Note that regular feasibility
can differ only slightly, if at all, from feasibility itself;

one always has

The following conclusions can then be drawn.

Proposition 2: If x 1s a regularly feasible sclution to

(P), then T'{x;z) » -= for all z. On the other hand, if

#x 18 a feasible sclution to (P) that is not regularly fea-

sible, but a regularly feasible solution x does exigt, then

"' (x3z) = -» fogr z = % - x e C, and in particular x can-

not be optimal.

The interwvals 8f. (x.) are the subgradient sets of the

functions fﬁ in the sense of convex anzlvsis, as the nota-

tlon suggests. For F  itself, the subgradient set is by

definition

Qaz

F(x) = {v R F{x') >F (%) +v» (x'-x) for all x' eRn},(Z.S)
and because of separability this reduces to
)X...Xafn(x . (2a7)

n

Proposition 3: Suppose (F) has at least one regularlv fea-

sibie soluticn., Then x 1is an optimal solution if and only

if x ¢ ¢ and 3F(x) n U # ¢, where 7 = Bt
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Proof: We know from Proposition 2 that any x ¢ C which is

optimal must be regularly feasible, i.e., have 3F{(x) # & .

But since 3F(x) ls a polvhedral convex set by (2.7), a reg-
ularly feasible solution x has 3F({x) n P = ¢ if and only
if 3F(x) and DV can be separated strongly, i.e. there ex-
ists z ¢ 0" = ¢ such that

0 > sup {vrz| vedF(x)} . (2.8)

Recalling {(2.3) and (2.7), we see that the right side of (2.8)
coincides with the expression for F'(x;z) in Proposition 1.
Thus a regularly feasible x fails to have aF(x) n 0 = 4
if and only if there exists 2z ¢ ( with F'(x;z) < 0, i.e.
a direction of descent from ¥ . This establishes the opti-
mality criterion as stated.

The proof of Proposition 3 uses the fact that &F(x) is
a convex polyhedron, but there is more that can be said on
the basis of 3F(x) actually being a product of intervals.
Another concept is needed.

An elementary vector of the subspace ( 1is a vector

z ¢ C such that =z # 0, yet there does not exist another

vector z' ¢ C for which {j] 25 #0} 1is a nonempty, proper

subset of {j| 2 #0} . It can readily be demonstrated (see
[5], [3, 822]) that if =z and z' are any two elementary
vectors of ( having {j] 2 #0} = {3] zj #0} , then =z and
z' are scalar multiples of each other. Thus, up to scalar

multiples, C has only finitely many elementary vectors.

Another way of saying this is that there are only finitely

many "elementary directions" in O .
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The combinaterial nature of this concept is well illus-
trated by the network case, where ( 1s the space of circu-
lations in a directed graph. Then the elementary vectors of
£ can be identified with the special flows which involve a
fixed guantity flowing around a single elementary circuit in
the graph and nothing flowing in any arcs that do not belong
to the circuit. The elementary directions in (¢ thus cor-
respond one-to-cone with the elementary circuits. (See [5],
[6]1.)

In other cases too, 1t may be expected that in focusing
on the elementary directicns in C one is bringing to the
fore whatever combinatorial structure i1s inherent in the con-
straint = =« C. Be that as it may, one can always fall back
on a certain "tableau" representation of elementary vectors
and deal with them computaticnally by means of pivoting oper-
ations., To see why this is so, recall that the condition
x ¢ U 1s equivalent to a system of homogenscus linear rela-
tions in the wvariables Xj g Such a system can be solved for
a maximal set of warizbles in terms of the others so as tc
reduce it to a set of eguations of the special form giwven by

the rows in the following tableau:

e
\\ 154
i
| .
- a. |= = (2.9
3 ik ' 3 el
|
D — ~
= v
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This is a Tucker representation of (; a general wvector of

¢ is obtained by giving arbitrary wvalues to the variables

%y at the top of the tablesau and letting the wvariables Xj
have the cocrresponding values glven by the row eguations in
the tzabkleau. Incidentally, the columns of such a tableau fur-
nigsh at the same time a Tucker representation of the comple-

L

LSE

mentary subspace [

There are only finitely many tableaus giving Tucker
representations ¢f (€ and 7, and it is possible to pass
from any one to any other by & sequence of pivoting transfor-
mationg. We shall not go into this matter more deeply here
but merely wish to point out the fundamental connection with
elementary vectors (see [5], [6]): each column of a Tucker
tableau as above yields in a certain way an elementary vector
of (, and conversely every elementary vector cf ( can be
obtained from some column of some Tucker tableau. (In similar
fashion, rows of Tucker tableaus correspond to elementary
vectors of the subspace 7T.) Thus the language of "elementary
vectors" provides a means of describing the properties of
homogeneous linear systems of eguations that can be uncovered
or manipulated in terms of pivotal algebra, but are not
strictly tied to any one tableau. There 1s a close relation-
ship between "elementary vectors" and the "basic solutions”
(nct necessarily feasible) that play a role in linear pro-
gramming theory.

Elementary vectors are important in the present context
because of the following result in the theory of linear in-

equalities.
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Combinatorial Separation Theorem [5], [3, §22]: Given sub-

spaces € and 7 = st in " ana any nonempty real inter-
vals Ij + 3 =1,...,n (not necessarily closed or bounded),

one has

[I;%...xI 1 0 D= ¢

if and only if there is an elementary (!) wvector z of

such that

v*z < 0 for all v = {vl,...,vn) £ 11X...XIn.

Applving this to the closed interwvals Ij = 8fj(x) , We
can draw a conclusion from Proposition 3 that reveals very
clearly the combinatorial substructure that is a special fea-

ture of descent theory in monotropic programming.

Theorem 1: A regularly feasible solution x to (P) fails to

be optimal if and cnly if there is a descent direction from

x which is one of the finitely many elementary directions

in €.

Summarizing the above results in operational terms, we
have a special descent procedure that can be implemented in
monotropic programming. Given any regularly feasible solution
x to (P), we may form the nonempty closed intervals 3f. (x.)

in (2.3) and test for the existence of

m

v o= (vl,...,vq) e P with Vj

Sfj[xj}, 3 Sl gty (sG]

If such a v 1is found, then x is optimal (Proposition 3).
If not, then there will be instead an elementary vector =z

of C giving a direction of descent from x.
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Since U can be described by a system cof linear egqua-
ticng and each Sfj[XA) ig a closed interval, it 1s evident
J
that the existence of v satisfying (2,10) could be settled

as a problem in linear programming, by means cof the simplex

id not exist, this would bs detected

oL

method, say. If W
in such a way that a descent vector 2 would somehow be fur-
nished instead. The trouble with a conventional linear pro-
gramming approach, however, 1s that it would require a sub-

stantial reformulation of (2.10) to bring it in line with the

"standard form" used for problems in linear programming. The
fact that the exact character of the interwvals ij(xj} can—
not be told in adwvance makes matters worse. Any reformula-

tion that involwves supplemsntary wariables, for instance,
would in effect replace 1 Dby some other subspace and thereby
alter the wvery combinatorizl structure we wish to exploit.

What is better for purpcses of monotropic

a subroutine that can determine the existence or nonexistence
of w satisfying (2.10) simply by starting from any Tucker
tableau (2.%) for C and ¥ and performing a series of
pivot steps dictated by the intervals ij(xj} 3 In the case
of nonexistence, it should be possibkble to cbtain the desired
elementary descent vector 2z from some column of the terminal
tableau. Such methods are indeed possible; one is given in
detail in [6, 10K-10L]. This is a topic that certainly de-
serves a great deal more investigation than it has received.
Much of the advantage that might be gained in monctrovic pro-
gramming in terms of combinatorics and the ability to handle
" "

cost functions with "corners" seems to hinge on the develop-

ment of a truly efficient subroutine along such lines.
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Of course in special situations such as network program-
ming, it may be possible to execute the test in a purely com-
pinatorial manner. This too deserves more exploration. One
could begin with cases where there is underlying structure
similar to what is found in ordinary network problems, for
example certain problems inveolving networks with gains or

multicommodity flows.
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3 CONJUGATE FUNCTIONS AND THE DUAL PROELEM

We have already seen that the analysis of problem (F)
leads to the consideratiom of certain vectors v in the sub-
space D = €T . Now in general, any preoblem where an
extended-real-valued convex functicn F {closed and proper)
is minimized over ( can be dualized tc a problem where the

negative of the conjugate convex function

G(v) = sup{vex-F(x)} (33
XﬁRn
is maximized over U . The difficulty one often runs into,
though, is that the conjugate cannot be written down in
"closed form" on the basis of the defining formula (3.1),
although this is indeed peocssible in a number of hichly sig-
nificant cases.

We want to emphasize here that in monotropic programming
the circumstances are much more favorable. Not only are
there effective, alternative ways of constructing G, but
because of geparability, the duality theory that is ocbtained
is unusually complete and exhibits several properties not

enjoyad by other classes cf convex programming problems,

To gtart with, the fact that Fix) = Ejfj{xj) , where
f. 1is a clocsed proper convex function on R {regarded as
having the wvalue +e= cutside of C. as explained in §l),
vields at once via (3.1) that G(v)_z Ejgj(vj} , Wwhere gj
is the closed proper convex function on R conjugate to fj:
95 {'fj) = xsipR{v.xj - Ej (xj) k5
- Mg
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211 gquestions zbout conjugacy can therefore be reduced to one
dimension. We shall see in a moment the special manner in
which such questions can then be answered. The important

thing to note right away is that the set

D. = {v. e R . L)o= 3.5
: ; Igj[ij w} (3.3)

is & nonempty real interval; the pair Dj and gj again

satisfy not only (1.3) and (1.4), but alsc (1.5). Thus t%e
information embodied in Cj, fj is dualized to information
of the same kind embodied in Dj' gj , and the dualization

iz completely reversible.
Obvicusly G(v) < « if and only if v belongs to
Dlx...XDn : The problem dual to (P} can therefdre be stated

as follows.

n
maximize -G(v) = - § g.(v.)
21733
J
subject to vj = Dj 8 3§ = Taseen ol (D}
v o= (Wl, ,vn} s B

This is another monotropic programming problem in fundamental
form, and its dual is in turn (P).

It may help the reader's appreciation cf the scope of
this form of duality to think not in terms of subspaces C
and T but two homogeneous linear systems of wvariables as
expressed mutually by some Tucker tableau cf the type de-
scribed in £2, (RAny such tableau can be interpreted as giving
Tucker representations for a complementarity pair of subspaces
in Rn.) In the primal proklem, we are concerned with the row

system; each wvariable has an asscociated feasibility interval
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(of arbitrary tvpe), and a sum of costs for each variable
must be minimized. Linear programming is the case where the
costs are all linear on the interwvals in guestion (maybe
identically zero for certain wvarisbles). In this very general
situaticn, without reducing to anvthing more uniform in its
description even in the linear programming case, we can pass
directly to a dual problem. In the dual we are concerned
with the column system in the tableau. Again each variable
has an associated feasibility interval and cost expression,
and the sum of the costs must be minimized (its negative max-
imized) .

Let us now tackle the issue of how gj {and Dﬁ) can be
constructed from fj {and Cj) without explicit calculation of
the supremum in (3.1}, even though such a calculation is some-
times quite easy. The main idea is to rely on the correspon-
dence between closed proper convex functions and their deriva-
tive relations,

From fj ; we presumably know how to get the left and
right derivative functions f5+ and fﬁ_ on Cj and there-
fore the multifunction ij in (2.3). Denote by Fj the

graph of ij ; thus

2

T, = V. e DF, (%)),
{(Xj;vj)| vy e j(xj);

L
=y

sf. (x.) = {v.| (x.,v. L 3.5
UJ[XJ) {], (3\71)5 5 { )

Although we shall not go into the details here (=see [3, §24]),
the geometric appearance of Tj is wvery close to that of the
graph of a nondecreasing function, except that it can include
vertical as well as horizontal segments., The sets ?j that

arise in this way can be characterized as the "maximal totally
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n i ; i ; ]
ordered subsets of R ." The crucial fact is that, just as

', can readily be determined from f_.J by differentiation,
so can f. be determined from ?j by integration. Specif-

]
ically, one can begin with the interwval
Ef =

C. = x.-projection of T, (3.6
j B j )
and any point §4 £ é; . The next step i1s to select any
4 o
function i C, » R such that (x., +v.(x.)) ¢T. for all
Lo j 3’ T3 3
xj € Cj i (According to (3.5) and (2.3), the latter gondi-
tion is eguivalent to f;_ < 1] < f3+.] Than
X,
Films) = [ . {t)dt + const. for x. ¢ C. . (3.7
373 fogUEl i 5 )
]

Leaving aside the choice of the constant of integration tem-—
porarily, we observe that this formula suffices to determine
fj not only on Ej but everywhere else as well., There is a
unique way of extending fj to be continuous on the closure
of Cj , and in view of (2.5), fj has the wvalue <+« at all
points outside this closure. It is possible too for the ex-

tended fj to have the value +« at a finite endpoint of
éj which does not belong to Cj . This the source of what-
ever discrepancy there may be between Ej and the interwval

C, = fxy =R £.0x;) <=} . (3.8)

These facts are all explained more fully in [3, §247.

The key to the alternative construction of gj ; knowing

5

Tj  is an elementary consequence of the definitions (3.2)

and (3.4):
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2
Fo({x.) + g.iv.) — v.v. » 0 for all (x.,v.) € R
5% 3l i3 - b '
(3.9
and eguality holds = (x,,v.) ¢ T. .
B 13 J
Since the relationship between £. and g. 1ig entirely sym-

J
metric, it is clear from (3.9) that Fi describes the dif-

ferential properties of gj as well as it does those of .,

]
The roles of Xj and v. need only be reversed. Thus cne
B
has
T, = {(x.,v.) eR| x, eaq.(vi)}, (3.10)
J J ] ] 1 3]
dg. {v.) = {x, g BT i

g; (vy) jI([x:I v]) 3} i (3.11)

where
(v.) = {x. eR| gl (v.) <x. <g! (v.)}. 3.12
“93Y5 5 <Rl 95 vy) <x5 2gd, v, ( :

In parallel with the construction of fj from Fj'

the interval

D, = {v. eD.| g'(wv.) »= and g' (v.) <+4=}
iyl S -y (3.13)

= {w.
3

fal
o
=3
Ite)
<
L
e
>
=

can be determined by

(e

. = vj—prcjection of B s (3.14})

Taking any Vj g Bj and any function ¥.: 5; -+ R such that
J J

(¢j(vj},vj} £ Fj , one obtains

\-7j

g.(v.,) = [ by(t)dt + const. for v, s D. . (3.15)
o
v

3
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The next step is to extend gj continuously to the closure

of D. and give it the value += everywhere else; then Dj
is recovered from (3.3). A&s for the constant of integration
in (3.15), this is adjusted to the cone in (3.7) by the egua-

tion

fo{x.) + g.(v.) - x.v. = 0
3 3) g]( J) i3] 4

which according to (3.9) must hold for any convenient choice

of a point (x.,v,) lying on T. .
Y ]

Two examples worth bearing in mind are listed in the

next propositions, ("Piecewise" refers here to finitely many

pisces.)

Proposition 4: The following are eguivalent:

{a) £. iz piecewise linear (Ej =Cj, closged) ,

]
(k) gj igs piecewise linear (Dj==Dj, closed) ,
{c) Fj is a staircase relation (comprised of

finitely many line segments, alternately

vertical and horizontal).

Proposition 5: The following are eguivalent:

(a) fj is piecewise guadratic {Ej =Cj, closed) ,

(b) gj ls pilecewise quadratic (Dj==Dj, closed) ,

(c) Ij iz a polygonal relation {(comprised of

finitely many line segments, which mav be

wvertical, horizontal, or of positive slope).

The dual of a piecewise linear monotropic programming
problem is therefore piecewise linear, and the same for
piecewise guadratic. Moreover, in these cases no distinction

is necessary between "feasibility" and "regular feasibility".
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Obviously there is no difficulty in passing from fj to Fj
to gj by the method above when Fj is of such type.

To drive this point home and make apparent the direct-
nesgs and flexibility of this duality scheme in monotropic
programming, we turn to the example of (P) as a general linear
programming problem with both upper and lower becunds for each
variable., Linear preogramming theory is incapable of producing
a dual without first subjecting the problem to a transforma-
tion into one of the canonical forms where no single variable
is bounded in both directions. In the monotropic programming
context, however, we can regard a problem of this sort as
arising from the row system of some Tucker tableau as in §2

together with the specification of an interwval
+ - +
Cc. = [ec.,c.] , =< g, <¢c, € = ,
J J J
and cost term

B, ) = 3. BEBE E. G
R 11 1 ]

n

for every variable. The corresponding ij then consists of

three segments: the horizontal line segment joining the

roints (c;,dj) and [ct,dj} in Rz , the infinite wvertical
J
. + e :
ray extending upward from [cj,d;) and the infinite wvertical
ray extending downward from (c;,dj} 5 It is easy to see by

either the integration technigue or the definition (16) of

g. that
+ i
c.(v. =-4d. £ . > 4.
o gty —ag) A vy 24y
Avl) = (3.16
gj 3 ) { )
ety =gl R swn €ads
L3 3 J 11— 3
D = (--ca a:)
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The dual consists of maximizing the negative sum of these ex-
vessions over the column system of wvariables in the tableaun,
there being no ineguality constraints at all.

Mote that in this example the dual of a linear program-

ming problem turns out, in general, to be merely piscewise

linear. It is no wonder, then, that linear programming theory
cannot fully capture such duality. Other forms of linear pro-
¢gramming problems can be handled similarly. In essence, one

need only modify the formula in (3.16) in the obvious way to

cover the cases where ¢. = et or ¢l =« or ¢. =-=; the
J J 5] ]

feasibility interval D. shrinks to (-w,d.] if c::. = =,
3 i i

to [dj,w) if c; = —= , and to [dj,dj} in the case cof

The monotone relations jj have an importance far be-
vond their possible use in constructing gj from £. . The
condition (xj,vj) € ri turns out to bes the correct general-
ization in monotropic programming of the familiar complemen-
tary slackness conditions in linear programming. To under-

stand this better, let us look at the following eguilibrium

problam:

find % « C and v ¢ U such that (x%,v%) & T,

far J = lpwwsall o

The role of this problem in characterizing optimality is as

follows.
Theorem 2: A pair (x,v) solves (E) if and only if x 1is
an optimal solution to (P) and v is an optimal solution

to (D)
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Theorem 3: Except in the case where inf(P) = += and
sup(D) = -« (i.e., neither (P) nor (D) ig feasible), one has
inf(P) = sgup(D)

These two theorems, which are closely related, have
already been established elsewhere [5] by inductive arguments.
One of the contributions of this paper will be to supply in
§4 a constructive proof based on descent properties in monc-
tropic programming that augment the ones already discussed

2

e

in
Actually, much of the content of the theorems can quickly

be deduced right from the basic conjugacy relation in (3.9):

adding over j = 1,...n, one sees that
Fix) + G(v) - =x*v > 0 for all x = Rn,
v ¢ R©, with eguality if and only if (3.17)
(8. ;770 = T for 3 =1,...,n.
374 3 ' !
Since x+v =0 for x ¢« C, v ¢ D, it follows that
Flx) » -G{v) for all x « C, v = U,
with equality if and only if also (3.18)
{omygwn ) e Ty | =oks srasrns
3T s

Thus 1iaf(?) > sup(D) , and the solutions to (E) are the
pairs (%,v) such that x is feasikle in (P) , v is fea-
gible in (D) , and Fix) = -G(v) . The only thing missing,

in order for us to draw all the conclusicns in Theorems 2
and 3, is the assurance that a "duality gap", whore
inf(P) » sup(D), is impossible when either problem is fea-

sible. This is what will be sgupplied in 4.
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Incidentally, Thecrem 3 is unusual in the annals of
duality theory in not containing at the same time some asser-
tion about the existence of an optimal solution to one prob-
lem or the other. Most duality theorems involwve a primal or
dual constraint qualification and assert either that
inf (P) = max(D) or min(P) = sup(D). The results for geometric
programming problems and the like are a partial exception
(cf. [7]1, [8]) but they lack the symmetry of Theorem 3. This
is not to say, however, that existence theorems are absent
from monotropic programming. Indeed, existence criteria are

quite simple and complete.

Theorem 4 [&]:

(a) An optimal solution te (P) exists i1f and only if

(P) is feasible and (D) is regularly feasible.

(b) &n optimal solution to (D) exists if and only if

(D) is feasible and (P) ig regularly feasible.

(c) (E} is solvable if and only if (P) and (D) are

both regularly feasible.

This result will not be treated further in this paper,
although some of it is already evident from the foregoing.

A special case worth recording is the one where Cj = Cj and

Bj = Dj for all 3 as is true for instance in plecewise
linear or piecewise quadratic monotrople programming (c£.
Dropositions 4 and 5). There, since "regular feasibility" is
no different from "feasibility", the conclusion is that none
of the problems (P), (D), (E) is solvable unless all three

are solvable, and this holds if and only if (P} and (D) are

both feasible.
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In the network case particularly, the equilibrium procb-
lem (E) is interesting to interpret. Then C( 1is the =pace
of all "circulations" in a certain directed graph, as dis-
cussed earlier. The vectors v 1n the complementary space
P are "tensions" arising from potential functions defined on
the nodes of the graph; vj is the rise in potential as the
arc ] 1is traversed in the direction of its orientation.
The condition (x.;v.) e Ij express a certain relation that
must be satisfied by the flow and tension in the arc j, a
sort of generalization of the kind of resistance relation
represented by Ohm's law in electrical networks. A problem
of the form (E) can well arise on its own; corresponding prob-
lems (P) and (D), unigue up to an additive constraint which
makes no difference in the optimization, can be constructed
from (E) by the integration techniques explained earlier in
this secticn. Viewed in this light, Theorem 2 is a wvaria-
ticnal principle that characterizes the solutions to (E).

Minty in 1960 [2] was the first to present eguilibrium
problems in quite so broad and refined a framework, although
he dealt only with the network case and did not capture de-
tails of the kind that depend on possible distinctions be-

tween C. , D. and &, ; D.
J J J J

Another observation about problem (E} is this., Just as
aF (x) = Bfl{xl}X...xafn{xn),
one zlsco has

3G (v) = 8g; (vi)x...x3g (v _} , {3:019)
1
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and hence by (3.5) and (3.11);

o

Vo< F(x)“EKEBG(V}‘=’(X.,v,)eFj for J=dyeespl. (3.20)

173
The conditicns in (E) are therefore gsimply a symmetric version
of the optimality conditions derived in more direct fashion
for (P) in Proposition 3. Conclusion: in the kind of descent

algorithm for (P) outlined in £2, when the test procedure pro-

duces a vector v ¢ 3F({x) n " rather than a descent vector
z , not only is =x an optimal solution to (P) but v 1is an
optimal solution to (D). Such an algorithm then, if it ter-

minates at all, cannot help but solve both (P) and (D) simul-
tanecusly.

In §4, we will look at a modified wversion of the descent
algorithm for (P) that produces an "approximately" cptimal
sclution to (P) in predictably many iterations. ZAgain it will
turn out that the method produces such a solution not only for
{P}, but for (D) as well.

All this leads us to one of the most intriguing applica-
tions of the duality theory above, the dual approach to
solving a given menotropic programming problem (P). This
consists in executing a descent algorithm on (D) (perhaps we
should speak of "ascent", since (D) has been stated as a max-—
imization problem, but computaticnally (D) is eguivalent to
minimizing G over U, and this symmetric interpretation is
more convenient for now). The procedure is possible whenever
(D} can be written down explicitly, as for instance in the

plecewise linear or quadratic cases.
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It goes as follows. Given any regularly feasible solu-

tien v to (D), i.e. wv ¢ D satisfying vj € 5j for
ji=1, 5 we test for the existence of
= R 4 E B iR 2 g R e J Slipas el o 3
x = (%, \n} C wit xj &bdj{ j) i=1 /0 (3.21)
If such an x 1is found, then (x,v) sclves (E) , so that
¥ solves (P) and v solves (D) (Theorem 2). If not, there

will instead be an elementary vecter w of 0 giving a
direction of descent for G from wv. Replacing v by

v' =wv + tw for some t > 0 (determined perhaps by a line
search), one will have ancther reqularly feasible solution
te (D) with Gi{v') < G(v)

Of course, (P) cannot actually be sclved by such an
approach unless the algorithm terminates at some state with
an x satilsfying (3.21). Otherwise cne never even sees a
candidate for x that might "approximately" be a solution
to (P). For this reason the modified algorithm to be de-
scribed in the next section, with its property of certain
termination, is of particular relevance to the dual approach

in monotropic programming.
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4. FORTIFIED ALGORITHMS WITH GUARANTEED DESCENT

& vector =z is said to give a direction of e-descent

in (P) from a feasible solution x, where g > 0, if z ¢ i

and
Flx+tz) < F{x) - & for some t > 0. (4.1)
Then x +tz 1is feasible solution to (P) which is better than

% by more than <. Clearly, such a 2z exists if and only

if x is not an e-optimal sclution to (P} in the sense of

having F(xz) < inf(P) + €. Since F is convex, the dif-
ference quotient [F(x+tz) -F(x)]/t is monotone in t, so
any 2 which satisfies (4.1) in particular has F'{x;z) < 0,
i.2., gives a direction of descent as defined in §2.

We now ask whether it might be computationally pessible,
by a modification of the basic algorithm 82, to generate
directions of e¢-descent for prescribed e , perhaps even
elementary directions of such type. This could provide a
means of circumventing some of the convergence difficulties
that might be encountered in naive descent, such as the pro-
duction of a sequence of feasible solutions {xi} with
lim F(x") > inf(P).

q:
A useful concept in the study of this matter is that of

the s=-subgradient set of the conwvex function F at x:
Suagraclele

3 F(x) ={v R F(x') >F(x) +ve(x' -x) ¢, ¥x' eR' L (4.2)

This may be compared with the ordinary subgradient set 3F(x)
in (2.6), where ¢ 1s replaced by 0 . Expressed in terms
of the conjugate function G (think of (3.1) with x' in

place of x) we have
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BEF(X) = {v eRn| Fix) +G6{(v) -x el , (4.3)

and since the ineguality in this characterization is symmetrie

in x and v, we deduce that
ve 3 F(x) = x ¢ 3 Gv), (4.4)

cf. (3.17). If = 1is any point where * is finite, for
instance any feasible sclution to (P), then for all ¢ > 0

the set SEF{X) is nonempty, closed and convex with

Flx++tz) —F(x) +¢

sup v *z = inf = for all z e R", (4.5)
ved _F(x) t=0
(ef. [3, §23]).
Proposition 6t For x ¢ C and v ¢ D, one has v « BEP(X)
if and only if F(x) < -G(v} + £, in which event x is an

e-optimal solution to (P} and v 1is an e-optimal solution to

(D).

Proof: The first assertion is based on (4.3) and the comple-
mentarity of € and ¥, while the second is a consequence
of the fundamental inequality (3.18), which implies

inf (P} > sup(D).

Proposition 7: A vector =z gives an ec-descent direction in

(P) from a feasible solution =x if and only if =z strongly

separates aEP(x) from T in the sense that z L 7 and

sup vz < 0
VESEF(X)
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Proof: Thisg is apparent from (4.5) and the relation ©( = pt

Bertsekas and Mitter [l] discovered the fact in Proposi-
tien 7 in the case of a general convex function F and were
the first to propose its use in descent algorithms. In prin-
ciple, the procedure would be to take any feasible sclution
¥ to (P) and test for the existence of v ¢ BEF[X} n . If
such a w 1is found, the conclusion 1s that = and v are
g-optimal sclutions to (P) and (D) (Proposition 6). If not,
then since 3 _F(x) is convex one may hope to determine in-

stead a vector =z providing strong separation of EFF(X)
from U as in Proposition 7. 1In that event z gives a
direction of c-descent and one can pass by line search to a
new feagible solution x=' +to (P) with F(x') < F(x) - =.
There are serious difficulties in implementing such a
procedure directly. Even with F a separable convex func-
tion ags hers, 3 Fix) is typically not a product of inter-
vals (in contrast to 3F(x)) but some nonpolyhedral convex set,
The description of BEE(X) by (4.2) or {4.3) may not lend it-
self to computation. Testing for the existence of
v e 3 _F(x) n 0 may be as hard a problem as (P) itself, Fur-
thermore, while the ncnexistence of such a v implies that
3 F(x) n U can be separated, it does not necessarily {in
cases where EEF{X} is unbounded, as is true when x 1s not
an interior point of Clx...xcn) ensure the possibility of
strong separation.
Our aim is to demonstrate how to capitalize on the sep-

arability of F in monctropic programning by working instead

with the product of the szets
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(4.8)

; (x.) +gu (%) —x.v. <}
{vj| fj{xj) gj(xj) xyvy <€)

Note as a one-dimensional specialization of the properties of

z-gubgradients cited above that for any Xj £ Cj and £ * 0,
agfj(xj} is a nonempty closed interwval:
: - S+
g fF.lx.) = iv. eR| AL <w. <X, 4.7
EL]( j) 5 | g B¥LE j} ' (4.7)
where l; and l; are the possibly infinite values given by
fo{x. +1) —f. (=) +E
AL = ing 1 J 1 J (4.8)
1 ts0 t
B fo{x.+t) -f.(x.) +¢
V. = sup ——d = l 3 (4.9)
= +=<0

In terms of practicality, much will depend con the ease with

s + L= R : _
which Aj and b can be determined, given Xj and e . We

shall return to this matter after a look at what it is we can

accomplish if such wvalues are available.

Proposition 8: (For any = satisfyving X € Cj for
i=1,...,n (i.e. F(x) finite) and any &€ > 0, one has
= 3 S c 5. Fi(x) . "
& F(x) J:fl(xl)k o n(Xn) - (%} {4.10)
Proof: If v =« & F({x} , we have

£ S A ) =x.v.] £ &
l[ j(ij gj(xj) X]v:] <

by (4.3), and this implies wvia (3.9) and (4.6} that
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vj € d“fj(xj} for all j . The latter, on the other hand,

implies itself via (4.6) that

and therefore by (4.3) that v ¢ 3 Fix)

A wvariant of the Bertsekas-Mitter approach that we shall
call the fortified descent algorithm for (P) can now be
stated. Given any feasible sclution x to (P) (which does
not have to be regularly feasible, as was regquired by the

descent algorithm in 52), test for the existence of

; =D it} 7 £ G G =
l,...,vn) « 0 with \j cdgfj(xj} v I = Lpweepty (a1}

(This test has the same character as the one in §2, since
each 3€fj{xj) is a closed interval; it could be implemented
in terms of the simplex method, if nothing else.) If such a
v is found, then in particular v « BneF(x) by virtue of
Propositicn 8, and we may conclude from Proposition 6 that x

is an ne-gptimal sclution to (P} and v is an ne-optimal so-

luticn to (D), with

F(x) < =G(v) + ne . (4.12)

If not, there will be a vector =z that strongly separates

EE;l(xl)X...xa f (x_ )} from 0, indeed such a 2z which

£En n
happens alsc to be an elementary vector of (¢ (cf. the Com-
binatorial Separation Theorem §2), This z will be particu-

lar separate EEF{X} strongly from ¥ by the first inclusion
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in Propositicn 8, and hence it will provide a direction of
e-descent.
Before discussing the implementation of this method in

finer detail, we draw some theoretical conclusions.

Remainder of proof of Theorems 2 and 3: As explained in §3,

only the inequality inf(P) < sup(D) 1is still needed in order
to establish the validity of both theorems, and this only
under the assumption that either inf(P) <= or sup(D) »-=.
If inf(P) < =, the fortified descent algorithm is appli-
cable starting from any feasible solution and for any & > 0.
If it continues for infinitely many iterations, then since

the okjective function decreases each time by more than = ,
we know 1inf (P} = -« < sup(D) . If it terminates after
finitely many iterations, it does so with feasible solutions

x and v that satisfy (4.12). This insguality tells us that
inf (P} < sup(D) + ne . Since £ «can be chosen arbitrarily,
we can be sure therefore that inf(P) < sup(D) in all cases
where 1inf(P) < = . To see that inf(P) < sup(D) also in
all cases where sup(D) > -= , we need only invoke the sym-

metry of the relationship between (P) and (D).

Theorem 6: For any ¢ > 0 and any feasible solution x to

(P) which is not ne-optimal, there is an elementary direc-

tion of (¢ which is an e-descent direction from =x .

This says roughly that a monotropic programming problem
can be solved to any degree of accuracy, starting from any
feasible solution (which does not have to be regularly fea-

sible) and performing a series of line searches in elementary
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directions of € alone. The algerithm actually enables us

te give in advance an uppser bound on the number cof iterations
that will be needed.

Let us state our computational goal as follows: given
some & > 0 and o £ R, as well as an initial feasible so-
lution XO to (P), we want to determine a feasible solution
¥ which is either é-optimal or satisfies F(x) <o (In
practical terms, a might, for instance, be a wvery large
negative number that furnisheg a stopping criterion for de-
cilding "approximately" whether 1inf(P) = -=.) The algorithm

lets us accomplish this in no more than m iterations with

£ = 4/n, as long as

0

m > nl[f(x") -—maxia, inf(®P)}]/ 6 .

If the algorithm terminates with a #-optimal solution to (P),
it provides also a e-optimal solution to (D). If it termin-
ates with F(x) < &, the practical conclusion to be made
about (D) (assuming ¢ is a large negative number) 1s that
(D) is "approximately" infeasible (sup(D) = -=). Note that

1f a feasible solution vo to (D) 1s known at the start, one

has —G(vo) < inf (P} , and it suffices to take
m > nir") +ev®)1/8

Further discussion is now in order about how the inter-
val bounds (4.7) can be calculated, since all these are needed
in a crucial way in every iteration. There are 2n of the

R N = - x ;
values X. , *. , and formulas (4.8) and (4.9) appear to re-

J
guire a line search to determine each one. Things are not so
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bad as this, however. Even if true line searches were re-
guired, they would at least be simplified by the fact that
the difference guotients are convex as functicns of 1/t (see
[3, §23]1). Also, the only kj's that need to be computed in
any iteration are the ones which have changed from the pre-
ceding iteration, namely in the case of having arrived via

a descent vector =z , the ones for indices j such that

z, # 0. Interestingly encugh, the effect of restricting
attention to elementary descent vectors is to insist on
having only a minimal set of indices that reguire updating
in any iteration.

Nevertheless, the prime targets for success in imple-
menting the fortified descent algorithm must be monotropic
programming problems in which the formulas for A; and Ag can
be replaced by expressions in closed form such as one might
hope to have for the true derivations f5+(xj} and (fﬁ-(xj)'
or i1f not that, at least by very simple subroutines requiring
a2 relatively small, number of steps. Piecewise linear or
guadratic problems fit this prescription, for example. When
fj is a piecewise linear convex function (with finitely many
pieces), the minimization in (4.8) and maximization in (4.9)
can be carried cut discretely: only values of +t which are
breakpoints of fj {points Xj where the slope jumps,
f%_(xj} < f3+{xj)} need be inspected. The pilecewise quad-
ratic case can be worked out similarly. In that case, besides
the breakpoints where the guadratic pieces are linked to-
gether, one must check for each interval whether the minimum

{or maximum) of the difference expression in question is

attained at an interior point of the interval. This is easy
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to do, because the minimizing point is given by a simple
formula in the guadratic case.

Qguite a few possibilities can be explored here, not only
in termg of special classes of functions fj , but also var-
ipus ways that the wvalues of t which yield 1; and Aj
in (4.8) and (4.9) can bhe used in determining an appropriate
step size for descent later in the direction of the vector =z=.

We conclude by underlining the fact that the fortified
descent algorithm can be applied to (D) ags well as to (P),
and that this furnishes a second method of generating, in
finitely many iterations, approximately optimal sclutions to

both (P) and (D).
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