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A nonotrolic prosraming problen consists of ninimizing,
- 'subject to linear constraints, a funclion of the for(

F(xl = Ikfk(4i(r)) , Fhere each {k is a tinear function on

Rn and each i. is a convea functior on R , not lecessarily

diffelentiable (e.9., piece\dise linear or quadratic), In

such problens, lhere ale special wats of generating directions

of descent, and duality can play a very stronq ro1e. More

attonrion paid to thesc fealures may frale it possible to sotve

p ob --s o l 9- " - 'no' o
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I. INTRODUCTION

at one end of the sFectru of finite dinensional optimi

zation problems ale the general nonlineaf, proqlanminq prob-

rems, involving .onstraint and objective functions that nay

or nay not be differentiable. At the other end are problens

of rinear programinq and netrork plogramning, which have a _

strongly conDinatoriaL chafacte!. Convex ploqranming F!ob-

lems 1!e somewhere in betveen. They benefit flon duality
phenonena, but not in so po\rerfuL do linea! p!o-

granminq plobLems. rhey are often approached by lhe sane

techniques as are qeneral problefrs in nohlinear proqraminq;

the main distinction is perceived in the fact that for one

leason or anothe!/ these techniques sorh betler when convexity

Thele is a nalulal subcLass of convex programing prob-

lens that, to ou! lhinking, has not yet received adequate

attention as a khole. This is loughty the Lalgest class which

exhibits combinatolia1 propellies and duality to the sane

degree as in linear and netwolk programinq. The problens in

question afe those that can be formulated as sepafable convex

progranminq ploblems Hith linear constiaints. i,re speak of

the subiect as monotropic proqraminq, for sho!!. The qold

limo4otropicri, Hhich neans "turninq or varyinq in one direc

tion on]y", is used heie to convey both the unidirectionaL

culvatu!. of thc glaphs of convet iunctions of a sinqle vari-

abLe and the monolonicity of their derivative relations.
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Thus, it is intended as a synonlT for one-dinensional con-

vexit! and proposed as a tern to be used whenever one

dimensional conve:ity is paranoun!,

Just as a linea! programinq problen can be descf,ibed

qualitatively as one i{here a linear function is ninimized

polyhedron/ so can a monotiopic proqraming

PlobLem be described as one of !h. folm

nininize o{r) over alt . K ,

rhere ( is a convex polyhedlon

and o is a preseparable convex

which is lo sat can be expressed as

01, = J f_1,_lt)r /
l=L i i

tunction on nN ,

(1.1)

(1.2)

where each l. is a Linear function on RN and each f))
is a convex funclion on R . as a special case, if

ralic .onvex ploqraminq probtem with linear constraints.

It is not always to be supposedr ho\revef,/ thai each f. is

diffeleDtiable or even given as a finite function on all of

ro introduce the e:act technical assmptions that sill
be needed, and to put probten (1.1) in a convenient "no!mal-

ized" form at the same tine/ He specify row that for each

I = 1,...,n we have

a nonempty leaL intervaL c r (r.3 )



330 F. T. BOCKAFELLAF

not necessality closed, possibly all of R = {--, -) , and

a convex function f : c. i R which is contin-))
uous lelarive to c.. (Reqard f as + - (1.4)

ourside of c.. )

we denote the left and risht endpoints of C, {nor neces-

scrr y.onldi 6d , cJ " o possior" f-ia rF' o) ; nd

cj 6-pe.r 'e]w, )nd "\e

if c1 .- I't .1 "c tn"
' J 1 1 

Jrx 
) - @

lr
ir c:>-- oot. gc, lhen r.(:.);- 

(1 s)

as x .tc,
))

These conditions provide flexibility that ls usefur in itsetf
but lurns oul to be indispenslbLe in sertinq up an adequale

dualitt theofy. {The device of reqarding f as +o out-

side of c. alloqs us to idenlify pails c, r f. satisfying
(1.3), (1.4), (1.5), with closed ploper extended-leat-vatued

convea funclions defined on alt of R, see [3. !24].)
In this franework, we are ultinately inreresred in o{ )

only for those vatues of w such thar

lj(w) . c fo! j = 1,...,n,

as wetl as w . (. Note, thouqh, that since c. is an in-
telva1 and L is linear, the set of poinrs sarisfying
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(1,6) is itseLi a convex polyhedron, or at least ir wouLd be

if each c were c1os.d. In .:ene!al it is a "partial con-

vex polyhedron". (Some faces night be missins, but O goes

these accordins to (r.5)). ror purposcs of nor-

malizalion, then, il is superfluous to represent the con-

straint w : 1l apart fron (1.6); the .onvex Folyhedron I
could alwats be explessed by addirrional conditions as in
(1.6) associaled wirh closed inrrervals c. ard funciions
'. 0 o, c (.,_,

From this discussio" t. t" 
"t.". 

that rhc foltortrs pre-

ci.6 od-_ .o, oF oF eo _o ro or'op c p-oq o

c and f. as in (1.1), (1.4), (r.5) fo! j = 1,...,n
mini{ize the funci:ion (1.2) over a1L k sarisfying (}.

Actuatly, still another sinplification is helpful, this
for the sake of dualiir. r-ettin.l

331

observe from the linearity of 1.. that : ranges over a

certain subsFace C o! RD as z ranses over nN r. th"
fornulation we arrlved at a moment ago, onLy the values

ij (w) really take parl in thc aclion, not w itself, Every

nonolropic Floqramlng problem can therefore be reduced to
the mor. flndanenlnl forn:

I =Ll(') ,

F (r) =

slbject to x. .

x = {x1,...,xn) ,

I r-(-)
i=1 I l

6).

l

x= (:1'...':n) . c'

(!)
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flhere c. and f are as in (1.3), (1.4). (1.5), for
Il

j = r,...,n, and c is sone $!e!3!9 of nn. rni= i".

separable .onvex proqra@ing problem wlrh linear constraints,

some of \rhich are qiven abstractty by the condition x ! C

but can bc represented in olher ways as the situation wa!-

Having rhrown the spotlight on the probiens that can be

put in the forn (r), e nusl say vhat it is about then thar]

merits careful atlentiot1. First there is the fact r:hat non-

diiferenr:iabre functions f. can readily be accomodaled byj

spe.ial mechanisms for iinding directions of descent in (P).

This is more inpoltant than it night seen.

The case of piecerise linea! functions f.

illustration; such functions are not smoolh. due to junps in

^ejr 
..op.s -' - .in "b!--(poiaF-". c .po ' '1.f in

(P) is piecewise linear sith a sizeabLe nufrber ot Pieces.

Then, as is welr-knolr, (!) could be recast as a linear Pro-

qraming ploblen and solved by the sinptex method, say, but

this would be at a great e.pense in dimensionality. rhe co-

eificient natli. for the linear ploqlaming problen tould be

exceedingly sparse.

There ls advantage in ftethods capable of handting (P)

withour such a reforfruLation. The advantase becones even

more appar.nt \ihen it is realized that in nany situations

where piecewise linear functions are at hand, lhet are there

as appxo:imations of nore qeneraL funclions. whar: if te were

involved in a scheme of successive approximations lnvoLvinq

frore and nore linea! pieces? Refornulation as a linea! p!o-

qramins probLem al each stage would require hisher and



higher dinensionalily, whereas a direct nerhod for (p) could

avoid this and niqht be able to work "1oca11y", wilh approx-

imations qenelale{l around a point only as needed. A "tocal"
method is difficutt to implement, rhen the very ldentity of
thc vallables in lhe problem can be destloyed by a series of

The direction-findibg methods referred to wilt be des-

cribed in 52 and 54. Their inlerestinq feature is that they
generale doscent directions, if such exist at all fo! the con_

vex function I at a given poinr x , floF onLy a Iimited
and essentialLy finite elass of vectors in C , calted et+
nentary veclors. rt is here that the conbiDarorial unde!-

i'.s.D-e.LoAoopo!..'

iluch notivation comes fron the network case, whele C
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is the space of all'cilcutations,'in a given direcled graph

(f1ors, rot necessarily nornegative, which are conserved at
every node: xr is rhe ftow in arc j, and i ..... = o:t l
for all nodes i, where ({e..)) ls the node-arc incid€ncerl
natri: of lhe retaork). The elementary veclols of C then

correspond to "elementary circuils" in rhe 4etFolkr and to
say that descent in (P) is possible in such cases, is ro say

that F can be mininized by a series of cofections ro the
initial circulation : that are obrained in tef,ns of flows

around eLementary circui!s.

obviously, this is a lype of resuMhar has no countei-
part in generat convex proqraming. The fac! thar it has a

universal analoque in nonotropic proqraming unde!lines lhe
distinctive narure of rhat subjecr. The aralogue in rrhe non-

nelwork case is related to conceprs in linear proqraming such
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as descent along special rays forninq the edqes of the fea-

sible region, instead of steepest descent, compulationally,

it is closely connected with pivoting techniques for handLing

Lineai systems of varlables.

Still anolhe! feature of nonotropic programing Froblems

lhal sels them apart fron general convex programing probLens

is the exislence oi a duaLity theory that is as sharp and

almos! as constructively applicable as the one in linea! pro-

qraming. This theoly has been avaitable for some tine [4],
but it does no! seem to be widett known. rt assiqns to (P) a

duar monollopic programinq ptoblen (D) of lhe same funda-

nenlal form. In contrast with general convex programing,

but in lesenrbtance to linea! programing, the duaL (D) can

often be wrilten dovn e.plicitLy. This is !!ue, for inslance,

wheneve! the functions f. ale piecewise Linear or quadratic,

in vhich even! {D) loo invoh.es iunctions !ha! are piecewise

llnear or quadratic. Thus in particuLar, duality can be put

to wolk in piecewise linear problems wilhout havins to pass

through a linear programinq refornulation.

In this paper, se not only denorstrate speciaL descent

vector ploperlies of the liind nentioned above, but show how

they can be invoked to qel: a newr conslluctive proof of the

n ir oucl t/ o o iop p oq dT: 'q.
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2. OPTIITIALITY AND ELEVENTARY DTRICTIO}iS OI DESCENT

In plob1em (P), rhe mininand F is a convex function

defined on all ot Rn but (cr. (1.4) ) flnile only when

x . c. for dll I The p-Jblen cdn be vieHed simPly as

lhat or' mininlzing F over the subspace c , sincc the con-

slraints x. . C. $i11 be taken care of au:onatically by in-))
finite Fenalties, Thus x is a fcasible solullon to (P) ii

and onty if it is a point of a shere F is finite. ane it

is an optimat solution if and only ifr in.dditlon,

F'(x;z) > 0 for all z. C. (2.1J

(2.2)

0n lhc o!he! hand, anl z r c \{ith Fr (x,z) < 0 , if one

exists. gives a dilection of descent flom x: for snal1

enouqh t > 0 , x + tz is another feaslble solurion to (P)

and r(x +!z) < I(x) thc queslion to be adcressec is:

irhai are ihe speciat consequenccs of the separabiliiy oi . ?

L-cn -. has d rlqhE o..!va!-v- f' (' ) ano , left

delj JdLive i I (x. ) dt c: These ar e ionde-j- I I l
creasind funclions of x. tnat satisfv')

-F rl l*.) fl (r.) < -l- I - l+ I -

obvious \, al ..x ) -." 1: x. - c. c. , p case or' t+ t I :l l
a frnrre lrehr endgoinLr, bur f.l,rx.) < r- if x. < cl .J' ] J ]
rike( se i'- rr = -. t' r r " .j cl , ou! , :. .xl

7)

-. F(x +tz) -f(t)ili---
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Proposilion l:

and ant ?.Rn
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!'tt;z) = .l.>ar\+t'j) z j +

where the convention is used in the

)

I r'. tx \2.
1:;)a)- ) 1

lor any t
)

IrilL

(+d) + (- @) =+o

?roof: Substitulino the fornula for inro (2.2 ) . one sees

t(x+rz)-r(x) + I 
trlxr+tzlr-filxil

i:zl 0 
l

The result is then obvious, except perhaps for the claim

about +- However, since each difference quotient is mono-

tone in ! by convexity, ir can only approach -@ in the

1init, wheleas ii can aFproach +- only if it is actuaLL!
+d for a1l t > 0 . In the latter case the overall limit
defining r' (r;z) nusl itself be +@ . This e:plains why

the convenlion girres the right answersr if none of the tinits
a r'. .. /. . t no. .d - oi . ren.- q o-l+ I I I I l

tients is +- , there is no difficulty about the sun, reqard-

less of any --rsr but if any one of then is +6 / rhen the

sun nust be interpreted as +- .

As a matter of iact, -- cannot enler into the foimuLa

in lroposirioD 1 unLess lhere is some j such lha!
fi /\. -6 o- I \ ni.r-oos o-otyin

- e..h-- lllt
spectivery, I,et us introduce lhe intervals

lfj(xj) = {vj.n f1-{:j):vj:fj+(aj)'r , \2,3)
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'l

j

. cj f]+(xj) > --

. ci I 3fi {aj) I $l
12.4)

feasibte fol (P) if x . C

= 1,...,n - Note that regular feasibility

sliqhtlj', if at all, from feasibility ltself;
lt

(.j, .]) . cj .

The folLow!nq conclusions

cj . cr aj . t"l, "1,

can lhen be drawn.

(2.s)

?roposition 2: If : is a reqularLy feasible soLulion to
(P), l!S! r'l'rz) > -' for all z . on the other hand, if

r is a feasible solution !o (!) lhat is not reguLarly fea-
'-"" bt- so - o' i oo-s ex-sl, Lnm

r'(:;z) =-- f9! z=i-:.c, and in FallicuLa! x l:tF
not be optimat.

rhe intervals af . (:. ) are the subgradient sets

iunclions f. in the sense of convex analysis, as lhel
tlon sugsesls. Eor I itself, lhe subqradient set ls

aF(x) = {!'.Rn r(!') >.(x) +v. (x'I-:) for all x'€Rn},(2.6)

anc because of sepalabirily this reduces to

. rx ) ... ' (2.J)

lroposilion 3: Suppose

sible solulion. Then x

(P) has a! least one reqularly fea-

is an optimal sotution if and only

,1d,, where t=crif x.C and ar(x) n
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Proof. We know
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from Proposition 2 that any x . C which is
reguLarly feasible, i.e., have lI(.) I I .

is a polyhedlal convex set lry (2.?) i a req-

solurion x has aF(!) . , = 4, if and onry

, can be separated strongly, i,e. there e:-

optimal nust be

But since ar (x)

isls z.11 =C

0 > sup lv.z v. aF{x) } (2.8)

Recallinq (2.3) and (2.7), ke see that the rlghr side of (2.8)

coincides with lhe e:pfession for f, (:;z) in proposirion 1.

Thus a regularly feasibLe : fails to have eF(r) n t = 9

if and onl]l if there e:lsts z . C rith F,(x;z) < O , i.e.
a direction of descent from x . This establishes rhe opri-
mality cliterion a€ stated.

The proot oi lroposition 3 uses the facr lhat Ar(x) is
a convex polyhedionr but there is more that can be said on

the ba6is of eF(x) acluaL]y being a producr of inlelvats.
Arother concept is needed.

An elenenlary vectoi of the subspace C is a vecror
z . C such tllaL z I 0 , yet there atoes hor e:ist anothe!

I ro, r'.- -l,l-0 s c none pr-, prop6.

sxbse! of {r I zr + o} . It can readiLy be demonstrated (see

Isl , t3, 5221) that if z and z' are any two elehentary
vectors of c havinq {jl z lo} = Ij zJlal , rhen z and

z' ale scalar muttiples of each other. Thus, up to scalar
muLtipLes, C has only finirely nany elemenlaly vectors,
Another way of sayinq this is lhat there are only finirety

!!!y "elenenrary directions" in C .
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The conlinatorlal nalure of this concept ls w.11 itLus-

traled by l:he ne rorl case, vrhere C is the space of circu-

lations in a dilcctcd qraph, Then the elementary vectors of

a can be identified with lhe spccial frows which involve a

iixed quantity iloring arornd a sinqle elementary circuit in

lhe sraph and nothing iLowins in anl' arcs ihat do nol belong

!o the circuit. The elenentart direclions in C thus cor-

respond one to-one with the alenentart cir.uits. (see I5l ,

l6l.)
rn olher cases too, lt may be expecred that in focusinq

on the elementary directions in C one is bringins to r]he

fore rhaiever conbinatorial srrructure is inherent in the con-

strainr .. c Be that as rt may, one can aLsays fal1 back

on a certain "tableau" replesentation of elenentary vectors

and deal lrith them computationallr by means of pivotinq oper

ations. To see {hy lhis is so, recall that the condition

x . C is equivalent to a stslem of honogeneous Linear rela-

lions ir the variables x. such a systen can be solved forl
a marinal se! oi 1-ariables in terns of the others so as to

reduce it to a set of cquations of the speciat form siven by

lhe rows in the folloring tableau:

a

l t2.9)
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This is a Tucker !
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esentation oi c ; a general vector of

C is obtained by givinq arbitrar' values to the variables

:k al the top of the lableau and Lettinq the variables ..

have the correspondinq values qiven by the row equations in

the tableau. IncidentaLly, lhe colums of such a lableau fur-

nish at the same time a Tucker representation of the compLe

mentary subspace t = C] .

There are only iiniteLy nany tabLeaus qiving Tucker

represenrations of c and , , and it is possible to Fass

from any one to an!- other by a sequence of pivotinq transfor-

malions. we sha11 not qo into this malter mole deeply here

but nereiy wish to point out the fundamental connection with

eienentary vectols (see lsl, 16l) : each column of a rucke!

tableau as above yields in a certain way an elenentary vector

of C , and converseLy every elementary vector of C can be

obtained fron sone co1@ of sone Tucker tableau. (In simiLar

fashio!, r:]:)m of Tucker tableaus collesPond l:o elemenlary

vectors of the subspace t.) Thus lhe lanquage of "elenentary

vectorsii provides a means of describinq the properties of

homoqeneous linear systems of equarions tha! can be uncovered

o! nanipulared in telms of pivolal algebra, but are not

strictlr- tied to any one tableau. There is a close relation-

ship between 'eLenentary vectors" and the "basic solulions"
(nor necessarily feasible) that play a role in linear pro-

graming theory.

llenenrary vectols are imporlant in the plesenl conlext

because of lhe folloFiDq resuLt in lhe theo4/ of Linear in-
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ccnntrinalolia1 separation rheorem Is], [3, 922] , Sl]ga E!!
spaces C and t = Ct !a Rn and any nonenpty reat inter-

felg I., j = 1,...,n (not necessality cLosed or bounded),

341

IIrr...:Inl r , = {

'! neae is -n elenen -,

v.z<0 to! alL v = (v1,...,vn) . I1r...rrn

applyinq rhis to the closed intervals r. = af (u) , re
can .iraw a conclusion fron proposition : lhar reveaLs vely
clearly lhe conrlinatorial substructure that is a special fea-
I !e o d--ce - Lneo'1 1 plodra .-9,

Theorem l: A regulalty feasible sotution : to (p) faits to
be optimal if and only if there is a descent direclion from

: rhich is one of the finirely frany elementary direclions

i:t c.

Sumarizi.g lhe above resulls in operational terfrs, we

har'e a special descent procedule that can be rmptenented in
monotropic programinq, civen any !e9u1ar1y teasibte solulion

(he non- ,.- c oseo i .--, "ts d x. .

in (2.3) and res! for the exisrence of

.. , i-n /, - t,..,,r. r.t.-or'll

If such a v is found, then x is oprinal (pfoposition 3).
If not, then there wilt be insread an etementary vecror z

of C qivinq a direction of descenr fron x .
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since , can be described by a systen of linear equa-

I r'6-var, i I 6.ro6r

thar the e:istence of v satisfying (2,10) courd be settted

as a ploblem in linear proqrami4g, bI means of lhe sinplex

method, say. If v did noi: elist, this kould be delected

in such a ray that a descelt vecror z wouLd somehow be fur-

nished instead. The trouble with a convenlional linear pro

graminq approach, houever, is that it would require a sub

stantial refornulation of (2.10) to brinq it in Line \iith the

"slandard form' used for problems in linear programing. The

a-\- l .,6 t\-i-- ".;t-\j .,.

not be told in advance nakes naiters wolse. A4y reformuLa-

tion lhat involves supplenentary variables, fo! instance,

woutd in effect replace t by sone other subspace and thereby

alter the very conbinatorial structure He wish !o elpLoit.

\'rhal is belter for purposes of nonolropi. proglaMing is

a subroutine thar: can delernine the eristence or nonexisten.e

of v satisfying (2.10) sinpiy by slartinq fro( any Tucker

tableau {2.9) for C and , and performing a series oi
-,- i ,c- -.s o- y

of none:istence, it should be possible to oblain the Cesired

elenentary descent vccto! z flon some coLum of the terminal

tableau. such nethods are indeed possible; one is qiven in

detail in [6, 10K-10r]. This is a topic that certainly de-

serves a qreat deaL nore investiqation than ir has received,

Much of the advantage lhat miqh! be gained i! monotro ic pro-

graming in terms of combinatoiics and lhe ability to handle

cost functions with "colners" seons to hlnqe on the develop-

ment of a trult efficient subrouti.e alons such lines.
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of course in special situations such as network progran-

minq, it fray be possible to e.ecute the test in a purely con-

binatorial nanner. This loo deselves nore exptoration. one

could begin with cases where there is undertyinq structule
similar to whal is found in ordinary netqork ploblens, for
ef,ample certain problens invotvinq networks wilh qains or

nulticomodity f1ows.
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3. CONJUGATE IUNCTIONS AND THE DUAL PROIiNM

We have already seen lhat the analysis of problem (P)

leads to the consideration of certain vectors v in the sub-

space , = Cr . uow in general, any ploblen where an

extended-real-vaLued conve: function r (closed and prope!)

is mininized over C can be dualized to a problen where the

negalive of the conjuqate conve. functioi

c(v) = suF {v.: - r{x)} (3.1)
t' Rn

is ma:imized over , The difficulty one often runs into,

thouqh, is that the conjuqate cannot be written do n in

"closed form' o! the basis of the defining fornuLa (3.1),

although lhis is indeed possibLe in a number of hiqhly siq-

!!e want to enFhasize herc that in monolropic proqraminq

lhe circunslances are much nore favorabLe. Not only are

there effectiver alternalive rays oi constlucting c , bul

because ot separability, the duality theory that is obtained

is unusualll complete and e.hibils several plopelties not

enjoyed by other classes of convex pro-qraming problens.

'' \l ' ir - _

f. is a closed proper conve. fun.lion on R {rcsarded as

havinq the value +- outside of c. as explained in !1),
r--ro -lr" :,
is the cL.s.d proper convex iunction on R conjugare to f :

q (v ) = suDlr.: -f Lx r1,I I 
"._n 

ll ) )I (r.z)
i.(r ) = suD r.r -q i\ rlI I I' R I I -t l
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All questions about conjuqacy can thelefore be leduced !o one

dimension. we shaLL see in a noment the special nanner in

which sdch questions can then be answered. The important

thlng to note liqht away is that the set

Dj = ivj.R sj(vj) <-] (3.3)

is a nonempty real interval; the

satisfy not only (r.3) and (I.4)

information enbodied in c,, f,

of the sane kind enbodied in D.
)

is conpLeteit- reversible.

obviously c(v) < a if and

Dtr...xDn The ProbLem duat to

Drir D. and a. aoain_ I '1 '
, but also (1.5). Thus the

is dualized lo infornation

, 9: , and the duaLization

only if v belongs to
(P) can therefaie be stated

m.xrmize -clv) =- l s-lv_r
l=1 i i

subje.t to v.D for j=1,

v = (v1,

{D)

This is another monotropic programing problen in fundanental

fo!n, and its dual is in turn {P).

It may help lhe leader's appreciation of the scope of

this form of duality to think not in tems of subspaces C

and t but two honogeneous linear systens of variables as

e:plessed mutuaLly by sone Tucker tableau of lhe lype de-

scribed in 92, (any such lableau can be inrelpleted as giving

Tucker representations foi a conpLenentarill' pair of subspaces

in Rn,) In the primal probten, we are concerned Hlth the row

systen; ea.h variable has an associated feasibility intelval
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ij = {(:j,vj) v.8fj(xj)},

tfj(xj) = {vjl (aj.v ).r ).
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(3.4)

(3.5)

(of albitraly type), and a suh of costs for each vaiiable
must be mininized. Linear ploqraming is the .ase I'hele the

costs are all linear on lhe inielvals in question {maybe

idenlica1lt zero for certain variabres). In lhis very qeneral

situation, \iilhout leducing to anything mole uniforn in its
o-sc! p.lon i F-. proa atu ng .os-, q. c.n p.si

directly to a duat problem. h the duat ae are concerned

with lhe colum system in the tableau. Again each variable
has an associated feasibility inrervaL and cost e:pression,

and the sum of the costs must be mininized (its negative na.-

Let us now tackle the issue of how Sj (and D.) can be

constructed fron t (and c ) wilhour e*plicit calcutarion of
the supremun in (3,1), even thouqh such a calcutation is sofre-

tines quite easy. The Min idea is to rely on rhe correspon-

dence belveen closed proper conve: functions and thcir deriva-

rrom f. , we presumabiy know how to qet the left and

riqht delivative functions fl and fl on c. and there-7+j-)
fole the hultifunclion Af. in (2.3) - Denore by ]. the

oraDh of if. : lhrsl

Although qe shall not go into the detaiLs here (see [3, q24]),

the qeometlic appearance of Ir is very close to that of the
glaph of a nondecreasing function, except that it can include

veltical as sell as holizontal seqments. The sels L that
arise in thls way can be .haractelized as the "naximat totalLy
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ordered subsets of Rn." The crucial fact is rhat, just as

f. can readily be deternined irom f b]. difierentiation,

so can fr be deternined fron :. by integration. specif-ll
icafly/ one can be..,in with the interval

= x. -projection of i (3.6)

j

l .o.- on... a...
i.

c = {x .R f {x )<-}.

rhese facls are all e:ptained more fu11y in [3, !24].

The key to lhe altelnative construction of g. /

I. , is an etenentaly consequence of ihe .leflniii.ns

(3.8 )

c l

and any point i . 6 , or" ne:r: step is to seLect any

:unclaon 1.: a. R such that {}' j' ')'*t'
": . i; . (Accordidq to (3.s) and {2.31 , rhe rafter condi

Lion " eo,i\-Ienl ro r: rl .) rh n

Leavinq aside the choice of lhe constant of inteqration ten-

porarily, we observe lha! this fornula suffices to deternine

f not ontv on i. lut evervrhere else as werl, There is a)'\'
. iq.- .-, or -\.a o ,q - o.- or.h-. o,. -

"- i , ,.a ., :-^ o \.

points outside this closuie. It is possible too for the ex-

tended f. to have the vaLue +- at a finite endpoint oi

6. which does nor belonq to C tli. lhe source ot what-:l-l
eve- ois.-epdrct -nere hay oe o.r"".n i. ond r.a i -a oll

(3.7)

(3.2)
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o! a _ lx.,\', R,)-
holds : ;,..lr7

ci, a - 6 6tdrion -_p oer,ee i 6nt i16.j r/--

metric, it is clear fron {3.9) that L describes the dif-

ferential propelties of q. as welt as it does those of i. .))
The roles of : and v. need onlv be reversed. Thus one)l

r = {(:j,vj).R2 x .rsj(!j)},

ae. (vj) = {:jl((xj,vj) . rj},

(3.10)

(3.11)

tsj(vj) = {x .R ej-(.j):xj:sj+(vj)}. (3.12)

In parallel {ith the construction of f. fron l, ,

; = {"j.D ei(vj) >- and sj_(vj) <+-} 
(3.13)

= lv .D 0ej(vj) l+]

can be deterfrined by

D_ = !_-projecLio. of I (r.14)

ratinq any i, . n, ""a any function {j: i. ! R such that
(,lj(vj),vj) . L, one obtains

I

','.'I .'d-

;.j
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The next step is to e:tend qr continuously to the closule

of ij and give it the value +- eveltwhere else; then D.

is recovered fron (3.3). As for the constant of integration

in (1.15), this is adjusted to the one in (3.7) by the equa-

I {i.. - q.(t , - i.l. o,I I I I ll

which according !o (3.9) must hoLd for any convenient choice

of a Dornl l; .; r lvana on I'))'-l
Two e:anpLes worth bearing in nind are tisted in the

ne:! proposilions. ("Piecewise" refers here to finitely nany

troposiiion 4: The fotlowing are equivalent:

rd r. is Diecer se tine-r c -c c-oseo,,

b, a is olecewrse ]i, e"! .i D , c1o6-dr ,

r 'dse eldi io o-p 1s6d or

finitely hany Line segnents. alternately

ve!ricai and horizontaL).

Proposltion 5: The fol1oflinq are equivalent:
q.rdraLlc rc. C., clo-_d ,

! pleceHlse q!"d!" . 6. D. , c_ osad ,

(e) I. is a polrqonal reLation (conprised of

iinitely many line segrenls, vhich nat be

verticaL. horizontal, o! of positive slope).

The dual of a piecevise linear monotropic programing

Froblem is therefore piecewlse tinear, and the same for
pieceFise quadlatic. Moleove!, in these cases no distinctlon

is necessary belween "feasibllltyri and rirequlai feasibility".
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o.\'ous ) -\e e rs no drrri-ulty 
'i 

pasq!o I om .J .o .J

to q bv lhe method above when L is of such type.'1 " l
To drive this point home and make apparent the direct

ness and flexibility of this duality schene in monotlopic

programing, we turn to tlie ezafrpre of (P) as a general linea!
programinq pioblem with both upper and lo{er bounds for each

valiable. I-inear programing theoly is incapable of producing

a dual without first subjectinq the probten !o a transforna-

tion inlo one of the canonicat forns wheie no sing1e valiable

is bounded in both directions. In the monotropic programins

context, ho ever, re can reqard a problen of this sorr as

alising from the row system of some Tucker tableau as in 52

together with lhe specification of an interval

ci = rci,cjl ,

fj{:j) = dl.j fo! x €cj

fof, every variable. The correspondinq f then consists of

!h!ee segmenls: the horizonlal line seqnent joining the

po -s ..-,d- - d l,d-' i- / , .. a-i- r- v-r. co'ttr'l
ra exrendina c ,o.) dno ne inrrn e \erl c-l_tl
ray eatendins dosnward fron (cj,dj) . It is easy to see by

either the integlation technique or lhe definitior (16) of

-d) if vj:dj,

-d ) if v . d
I l- l

ej

D.
)

f"l'"'(vj) = j

Icj 
(vj

= (--, -)

{3.r6)
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The dual consisls of na:inizinq the neqative sm of these ex-

pressions over the co1utr systeh of variables in the tabLeau,

there being no inequalilt constlainis .l atl.

Note that in ihis example lhe duat oi a linear progran-

ming problem turns out, in general, ro be nerelv piece{ise

Linea!. It is no wondet, then, thal linear Programing lheorv

cannot futLl capture su.h duaLily. othe! iorns of Linear Pro-

graming problems can be handred sinilarlv. In essence, one

need only modify the formuLa in (3 16) in the obvious wav ro

''-" c;- or

re-ci. ri. nlervrl D I -
")JL

ro td ,-) ir cl = --, and to [d.,d.] in the case of
lll

The monotonc relations i have an imporlance far be-

-.posib- o, ;. he

.ondition (x ,v ) . r. rrurns out to be the correct qeneral-
:ll)

ization in nonottopic programing of thc iamiliar conPlemen

taly slackness conditioDs in Lineat ploqraming. To under

stand this betier, ter us look at the following equiLibrium

probLem:

find:.C and v.t such that

for j = 1,...,n.

(r ,v ) tj
(N)

The lole of this problem in characterizing optinaLitt is as

{E) if and onLy if x is

,r is an opiifral solutions.lurion to (P)
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Theoxem 3: lxcept in the case vheie inf(P) = +- and

sup(D) = -@ (i.e., neither (P) nor (D) is feasibre), one has

inf (p) = sup (D)

These tFo theorens, rhich are closeLy related, have

atready been esiabLished ersewhere [5] by inductive argunents.

one of the contributions of this paper witL be to suppty in
94 a constructive proof based on descenl properties in mono-

tropic proqraming that augnen! the ones al!€ady discussed

i-r\ 52.

Actuatly, nuch of the content of the theorens ca! quickly
be deduced right from the basic conjuqact relation in (3.9):
addirq over j = 1,...n, one sees that

F(.) + c(v) x.v > o for all : e Rl ,

v . Rl , kith equality if and only if (3.17)

'":,' o j-r,....n.

since ..v=0 for x.C, v.D, it follows thar

F(r) > c{v) ior aLl x.C, n.D,
riith equatity if and only if also {3,r8)
(:,v ) . r , j = 1,...,n.

Thus inf(P) > sup(D) , and the solutions to {t) are the

pairs (x,v) such that . is feasible in (!) , v is fea-

sibre in (D) , and F(x) = c(vl . rh. on1! thirg rissinq,
in of,dei for us to draw arl lhe concLusiols in Theorens 2

aad 3, is the assurance that a "duatiry gap", Fhere

inf{!) > sup(D) , is inpossibte when either problem is fea

sibLe, Tiis is erhat wilr be suppLied in 94.
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Incidenlally, Theorefr 3 is unusuaL in the annals of

duality lheory in not containinq at the sane tine sone assei-

lion aboui the existence of an optinaL solution to one Prob-

len or the other. Most duality theorens involve a priruI or

dual constrainl quaLification and assert either that

inf(P) = nax(D) oi frin(P) = sup(D) . rhe results for seonetric
proqraminq ploblems and the Like are a partial exception

(cf. t7l, t8l) but they lack the symetry of Theoren 3. This

is not to say, holrever, that existence theoiens are absent

from nonotropic programinq. Indeed, existence clitelia af,e

quite simple and conplete.

1a) An optimal solution to
(P) is feasible and (D)

(b) An optimal solution to
(D) is feasible and (P)

(c) (n) is solvable if and

{?) e:ists if and only if

is reqularlI feasible.
(D) g!!q-q3rg lrlf !
is regutarLy feasibte.

oniy if (P) and (D) are

both reqularry feasible.

This resuLt will not be treated further in this paFe!,

although some of il is aLready evident fron the foregoinq.

q cpF.o_ .o.6 9 r L,F o,6 .'-. i -. ".)1
i. = o. lo. all . , as is true for instance in piecewlse
ltl

linea! o! piece$ise quadratic nonotropic proqraming (c!.

ProFosilions 4 and 5). There, since "reguiar feasibilitl" is

no different fron "feasibiril!", the conclusion is that none

of the problems {!), (D) , (E) is solvable unless a1t three

are soll-abie, and this holds lf and only if (P) and {D) are
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1! the netwolk case partlcularly, the equitibrium prob-

ren (!) is interesling lo irleiplet. Then C is the space

of a1L "circuLations" in a certain dilected giaph, as dis-
cussed earlier. The vectors v ln the complementary space

t ale "tensions" arising fron Folential functions defined on

the nodes of the graph; v. is the rise in potentiat as rhe

arc j is tiaversed in lhe dilection of its orienration.
The condition (xj;vj) . Ij e.press a certain reLarion that
nust be satisfied by lhe flow and tension in the arc j , a

sort of seneralization of the kind of resisrance relation
repres€nted by ohm,s 1aw in elecrfical nerworks. A problem

of the forn (E) can well arise on its @n; correspondins prob-

1em6 (P) and (D) , unique up to an additive constraint which

makes no difference in the optimizaiion, can be constructed

from (E) by the integration techniques e:plained ea!1ier in
this section. Vieved in this liqht, Theoren 2 is a varia-
tionat principle that characterizes rhe sotutions ro (E) ,

Mlnty in 1960 t2l ras the first to present equiriblium
problems in quite so broad and lefined a framework, although

he dealt only vith the netsoik case and alid not capture de

lails of the kind lhat depend on possibte distinctions be-

tween c. o. ana i o17tl
Ahother obselvation about probtem (E) is this. Jus! as

aF (x) = lf1(xl)t...:afn(:n) ,

aG (v) = ls1(v1) !. (3 .19 )
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and hence by (3,5) and (3,11) ;

v.ar(x) € x. ac{v): (' ,v ).I for i=r,...,n, (1.20)

The conditions in (E) are therefore sinply a symetric version

of the optimality condiiions deri!'ed i. nore dj-rect fashion

for (P) in lroposilior 3, conclusion: in ]:he kind of descent

algorithn for (!) outlined in !2, when the test procedure pro-

duces a vector v. !r{x) r t rather than a descenr vectoi
z , not only is x an optimaL solulion to {P) bul v is an

cptinat solution to (D) . such an algorithn then, if irr ter-
ninates at aLL, cannot help but solve both (?) and (D) sinul-

In 54, \re {i1L lool at a modified version of the descent

algoriihn fo! (r) that produces a! "appro:inately" optinal

soluLion lo (p) in predi.tably nany itelations, Aqain it rill

tuin out hhal the nethod produces su.h a sotutio! not only ior
(P), but fo! (D) as we11.

A11 lhis reads us to one of the most intriguing applica-

tions of the duality theory aborre, the duat approach to
solving a given monotropic prograhminq probLem (P). This

consisls in e:ecutinq a descent alqorithm on (D) (perhaps we

should speak of "ascent", since (D) has been stated as a frax

imization probren, but conpulationallt (D) is equivalenl to

mininizing c over , , and this symetlic interpretation is
more convenien! for now) . The procedure is possible qhenever

(D) can be tritten down expticitlll as for instance in the

Fiecerise linear or quadratic cases.
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It goes as follows. civen any reqularry feasibLe sotu

o D, v , s s- ino 6, o

j = r,. . , ,n for ihe existence of

I .1 1 ,. I

I!' such an r is found, then {x/v) sotves (E) , so that
: sorves (P) and v solves (D) (Theorer 2). rf nor, thele
{i11 instead be an elementary veclor w of , givinq a

direcrion of desceni for c from v - RepLacing v by

for some r : O {determined perhaps by a line
search)r one will have another regularty feasibte sotution
to (D) wirh c(r,) < c(v)

of course, (P) cannor acrualLy be soLved by such an

apFroach unless the algorithn terminares at some state wirh
an : satisiying {3,21). otherwise

caldidate for x that migh! 'approxinatety" be a soiution
to (P) . For lhis leason the modified alqoxithn to be de

scribe{l in the ne:r sectlon, vrith irs propelry of cerrain
ternihation, is of particutar reLer-ance to the duaL approach

in nonotropic proq!aminq.
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4. IORTIFIID ALGORITHMS I']ITH GUA!.qNTIED DESCEIiT

A veclor z is said to give a direction of

(P) frofr a feaslb]e soLution :, where .>0, if z'C

(4.1)

aer(x) ={v.Rnl r(x') >!(x) +v'(x'-x) -€, vx'.Rn}. (4.2)

Then x+tz is feaslble soLution to (?) which is better than

z by nore than € Clearly, such a z e:ists !f and onlv

if x is not an e-optinaL solution to {P) in the sense of

haring F(1) I inf{!) + . Since F is conves, the dif-

felence quotienl tF(!+tz) -F(x)l/t is monotone in t, so

any 2 rhi.h satisfies (4.1) in particula! has Fr(x;z) < 0 ,

i.e., qives a dilection of descent as defined in 92.

we noQ ask whethe! il niqht be conputationallv possible'

by a nodltication of the basic alqorithm 92' to genelate

dixections of .-descent for flcEllllgl E , pelhaps even

elenentary directions of such type. This could piovlde a

means of cilcunventinq some of the convelgence difficutlies

that night be encountered in naive descen!, such as lhe pro-

d..-io o_o eqL_ 6o !F-srb e solurio s rxi srh

rin F(:i) > inf(P) .
i

A useful concept in the studv of this matte! is that of

the .-subqladient se! of the conve! function F at x:

This may be compaled with the ordinatv subgradient se! !F(x)

i! (2.6), whele E is replaced by 0 ExPressed in !e!ns

of the conjugate function G (think of (3.1) with x' in

place of .) {e have
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a.!(:) = {v.n"] r1x) +c1"1 -x.v<.}, (4,3)

since the inequaliry in this characterizarion is symetric
x and v , we deduce that

v. ter(x) €x. a.c(v) , (4.4)

cf. (3.1?). If x is any point where r is finite, for
instance any feasible solurion to {p), then for aLr e > O

the sel aet{t) is nonenpty, cLosed and convex wlrh

sup v.z= inrF(x+tz) _F(!)+. ror alr 2.Rn. (4.s)v.a.F(:) t>o

(cf . I3, !231).

Proposition 6: rd x

if and only if F(.) <

.-optimal sorution to

-c (v)
9!4 v t, one has v.

Fhich event : is :n

(D).

Pf,oof: The first assertion is based on (4.3) and the comple-

nentarily of C and t , Fhile the second is a consequence

of the fundanenlal inequality {3.13), which inplies
inf (?) > sup (D) .

Proposition 7: A vector z

(P) from a feasible solution
separates !.r (x) fi t

iffi e-oplinal sorution to

gives an.-descent direci:ion in
: if and only if z sllongty

in the sense that z 1 , .ni
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Proof: This is apparent from (4.5) and lhe relation C = tl
Bertsekas and Mitler ltl discovered the fact in ?roposi-

lion t in the case of a qeneral convex tun.rion F and were

the firsr to propose its use in d€scent alqorithms. Tn p!in-

cipLe, the procedure would be to take any feasible solution
x to (P) and test for the existence of v . a.F{r) i ,. If
such a v is found/ lhe conctusion is thal I and v are

e-oprimat solurions to (P) and {D) (lroposilion 6). rf nor/

rhen since a^r(x) is nay hope to derermine ia-
sread a vector z providinq stronq seFaration of 3er(x)

from t as in Proposilion 7. In lhar event z gives a

direclion of.-descent and one can pass bt line search to a

ner feasible soLutior r' to {P) lrith F(x') < r(x) - e.
There are scrlous difficuLlies in implenertinq such a

procedure direclry. Even with I a separable convex func-

tion as here, !.I(x) is typi.ally not a product of inter-
rrals (in contrast to llF(x)) but some nonporyhcdraL convex set.

The description of A.F(x) by (4.2) or (4.:) nat nor Lend ir-
self !o computaiion. Testing for lhe existence of
v. a_F(xl n t may bc as hard a problen as (!) itself. Iur

thernore, white the none.istence of such a v inpLies that

lcF(x) n tl can be separated, i! does not necessariLy {in
cases where aEF{:) is unbounded, as is rrtre ktien , is not

an interior point of cLx...:c4) ensure the possibitiry of
slrong separation.

Our aln is to denonstrate hoF to capitalize on the sep-

arabilitt of I in fronotropic programinq by rorking instead

kith lhe product of the sets
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a€tj{:j) = ivjl rj("j)tfj('j) +vj(xj xj)-., vxll
(1.6)

- {vj fj(:j) +,rj("j) .jvj !e}

Note as a one-dimensional speciatization of r]he Properties of

.-subgradients cited above that for any :j . c and E > 0 ,

iefj (:j) is a nonempty closed interv.l:

":

posc b ,. nI 6 va-uc 9i - b,

{4.8)

f {.i+t) -fj(xj) +€
(4.9)

In terms of practicaLily, much will depend on lhe ease with

.r'i.r. Lj ."a r: can be delermined, siven !. and . . r're

sha11 return to ihis natler after a loot al what it is te can

acconpiish if such values are available,

ProFosition 8: (I9I 3!I . satisfyinq
j = 1,...,n (is F(x) firite) and any

l

lt-

a.f(x) c n-ft{:r):...'}.fn(xn) . rn.F(x) (4.10)

rf !. ".9ix) , !e h.re

I - . , -. I _
i:rll-ll

by (4.3), and this isplies via (:-9) and (4.5) that
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v . aEfj (xj) for all j . rhe larter, on the olher hand,

inplies itself via (4.6) that

I--, Is...,- I*"._. : r I i"t I

and therefore by (4.3) lha! v . aner(x)

A variant of the Berlsekas-Mitter apploach that we shatl
calL the fortified descent aiqorithm for {!) can now be

stated. Given any feasible solulion x to (P) (whlch does

not have to be regularly feasible, as was required by the

descenl algorithm in 52), lest fo! l:he existence of

v=(v1,...,vn).t with v..aef (:j), i=1,...,n. (4.11)

{This test lras the same characte! as the one in 52, since

each aef. (x.) is a closed interval; ir could be imFtemented

in terms of the sinple. nethod, if nothing e1se.) rf such a

t is found, lhen in particular v . areF(x) by viltue of
Proposition 8, and re nay conclude from Propositlon 6 lhat r
is an ne-optinat soLution to (P) and v is an n.-oprihal so-

Iution ro (D) , kith

F(x) < -c(v) + n. , (4.12)

If not, there will be a vecto! z that strongty separates

l.fl(x1) !. . . !3efn (:n) fron t , indeed such a z whi.h

_ happens also to be an elenenrary vector of C (cf. the con-

binalorial separatiob Theoren 92). This z will be particu-

lar separate I,F{x) strohslt from , bt the filsr inctusion
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in Proposition 8, and hence it will provi{le a direction of

Before discussing lhe implementation of thls nethod in

finer delait, we draw some theoretical conclusions.

onLy the lnequality inf(P) < sup(D) is stilL needed in order

!o establish the validity of both theorems, and this only

under the assunFtion that either inf(P) <- or sup(D) >--.

If lnf(P) < o, the fortified descent algorithm is appli-
cable slalting from any feasible solution and for any . > 0

If it continues for jnfinitely nany iterations, lhen since

the objective function decreases each time by nore lhan . ,

we know inl{P) = -o < sup(D) If it lerninates after

finltely manf iterations, it does so with feasible solutions

a and v that satisfy (4.12). This inequalitt tells us that
inf(P) < sup(D) + ne . since e can be chosen arbitrarilt,

we can be sure theiefore that inf(P) < sup(D) in all cases

shere inf(!) < @ . ro see lhat inf(P) 1 sup{D) also in

all cases where sup(D) > -o, ve need orly invoke the slm-

netry of the reLationship between (!) and (D).

P oo o -l -o e.s 2 dnd ): As 6\' lo iad 6),

ro! any E > 0 and any feasibLe solution x to
(?) !lll!!__t!_I9! n€-optimal, thele is an elementary djrec-

tlon of C {hich is an e-descent direction from : .

This says louqhly tha! a nonotropic ploqramins p.oblem

can be solved to any degree of accuracy, slallinq flom any

feasible solution (which does not have to be reqularry fea-

sible) add perfolning a serie6 of line searches in elementaiy
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directions of C alone. The alqorilhn actualLy enabLes us

ro qive in advance an upper bound on the nufrber of ilerations

lhat will be needed.

Lei us state our conputalional 9oa1 as iollows: qiven

some {>0 and c.R, as HeLl as an initial feasible so-

lution xO to (P) , we wan! to determine a ieasibLe solution

x which is either 6-oplinal or salisfles F(x) < o . (In

practical terfrs, o niqht, for instance, be a very large

neqative nunber lhal furnishes a stopping crilerion for de

cidinq "appro:imately" wherher inf(P) = -.) The algorithm

lets us acconplish this in no nore than n ilerations vith
. = 6,h , as tonS as

m > ntf{:o) -na:{q, inr(r)}l/6.

If the alqorithn terninales sith a .-optinal solulion to (P) ,

it provides also a e-oFtifral sotution to (D). If ir rermin

ates wilh F(.) < o, lhc practical conclusion to be made

about (D) (assuning a is a large neqalire number) is that
(D) is "approximately" infeasibLe (sup{D) t--) . Note that

i! a feasible soLution v0 to (D) rs known at the starl, one

has -c1v0) < inf(p) r and it suffices to take

m > nlr (xo) +c(vo)l/6

Further discussion is nor in order about hoF the inter-

ral bounds {4.t) can be calcuLated, since alL these are needed

in a cruciat way in every iteration. There are 2n of the

-1.-, tt
quire a Line search to deternine each one. Thinqs are nor so
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bad as this, however. EveD if true rire searches were re

quired, they \rould al Least be sinpLified by the fact that

the diffelence quotients are convex as functions of 1/t (see

iJ, ;, \ o, inc o 's .... eeo ro t,_ o -u-_d i

an1 iteration are ihe ones which have chanqed from the pre-

ceding iteratior, nanely in ]:he case of having arrived via

a descent vector z , the ones for indices j such that

z. I 0 Interestinsly enough, the effect of resrricting

altention to elenealary descent vectors is to insist on

having onlr a minimar set of indices that require updarrinq

in any irreration.

Nevelrheless, the prine tarqets for success in inple-

mentinq lhe fortified descent algorilhn musl be mo.otropic

proqraming lroblens in \ihich the fornulas for ).1 and r. cantl
be leplaced by elpressions in closed forn such as one might

hope to have for the true derivatlons fl+(xj) and (fj_(x ),

or if not ihat, at least by very simple subroutines lequiring

a lelativeLy sma1l, nunber of steps. liecewise linear or

quadratic problems fit this prescription, for exampte, r,rhen

f. is a piece{ise linear convex funclion (Ni!h finileiy nanyl'
piec€s) , the nininization in {4.8) and aa.inizalion in (4.9)

can be cariled out Ciscretely: onLy vatles of ! shich are

b.-"iporn-s o. _ po_n-s){ aF L-sop-_-os,

'I \ -: oe , sPFc Eo n' P Fc_ :ce q a.-'t- I l+ l
ratic case can be worked out sinilarly. In that case, besides

the breakpoints rhere the quadralic pieces are linked to-

gether, one nust check for each lnter!'aI whether the mlnimum

(o! sa:imun) of the difference e:pression in question is

atlained at an inlelior point of the intervaL. This is easy
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lo do, because the ninimizing poin! is qlven by a simple

folmuta in lhe quadratic case.

365

Quire a few possibililies can be expLored here, not onLy

in terns of special classes of functions f , but also var-

ious ways that the values ot t which yietd Ll and rl-t:l
in (4.8) ahd (4.9) can be used in deternininq an approPriate

step size for descent later in the direclion of the vector z

I,ie conclude by underlining the fact that the fortified

descent alqorithm can be aFplied to (D) as Helt as to (P)r

and that this lurnishes a second method of qenelaling, in

finiteLy nany iterations, approximately optimaL sotutions to

both (P) and (D) .
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