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PROXIMAL SUBGRADIENTS, MARGINAL VALUES,
AND AUGMENTED LAGRANGIANS IN NONCONVEX
OPTIMIZATION

R. T. ROCKAFELLAR*y
University of Washingion

The Clarke subgradients of a nonconvex function p on R" are characterized in terms of
limits of “proximal subgradients.” In the case where p is the optimal value function in a
nonlinear programming problem depending on parameters, proximal subgradients correspond
to saddlepoints of the augmented Lagrangian, When the constraint and objective functions are
sufficiently smooth, this leads to a characlerization of marginal values for a given problem in
terms of limits of Lagrange multipliers in “neighboring” problems for which the standard
second-order sufficient conditions for optimality are satisfied at a unique point.

1. Introduction. For a closed set D in R™ and point ¥ € D, a vector y E R" is
said to be a proximal normal to D at u if for ¢ > 0 sufficiently small, u is the unique
nearest point of D to # +¢y. (Here y = 0 is degenerately always a proximal normal.)
The normal cone to D at # in Clarke’s sense [1] is the set

Np(@)=clco{ j € R" |3u, € D, y, proximal normal to D at u,,
with u, > @, y, > 71, (1)

where “cl” denotes closure and “co” convex hull. This closed convex cone contains a

y == 0if and only if @ is a boundary point of D (cf. Rockafellar [2]).

Let p be any lower semicontinuous function on R™ with values in [ - o0, + c], and
let E be its epigraph,
E={(u,@) € R""|a > p(u)}.

The lower semicontinuity of p is equivalent to the closedness of E. Clarke [1] has
defined a generalized set of subgradients of p at a point & where p(%) is finite by

dp(a)= {7 € R™|(J, —1) € Ng (& p(W))}. (2)

This set is closed and convex but possibly empty. It reduces to the subgradient set of
convex analysis if p is convex and to the single gradient Vp(#) if and only if p is
strictly differentiable at u (see [1]). It is nonempty and bounded if and only if p is
Lipschitz continuous in a neighborhood of 7 (see [2]). An alternative definition of
dp (i) can be given in terms of generalized directional derivatives of a sort for p, but
this need not concern us here (cf. Rockafellar [3]-[3]).

Let us call j a proximal subgradient to p at i if (7, — 1) is actually a proximal normal
to the epigraph E at (@, p(#@)). One can easily verify that this holds if and only if there
is a function g of class C? such that Vg(&t) = 7, g(&#) = p(#1) and g(u) < p(u) in some
neighborhood of u. Our first objective is to provide a formula for dp(%) as the closed
convex hull of certain limits of proximal subgradients. This is done in Theorem 1. The

*Received July 22, 1980,
AMS 1970 subject classificarion. Primary 90C31. Secondary 90C30.
QR MS Index 197§ subject classificarion. Primary: 650 Programming/nonlinear /theory.
Kevy words. Marginal values. subgradients, augmented Lagrangians.
"Research sponsored by the Air Foree Office of Scientific Research, Air Force Systems Command, USAF,
under grant number 77-3204 at the University of Washington.
424
0364-765X /81 /0603 /0424801.25

Copyright © 1981, The Institute of Management Sciences



" PROXIMAL SUBGRADIENTS, MARGINAL VALUES & AUGMENTED LAGRANGIANS 425

result 13 obviously based on the epigraph form of (1). but the argument is nontrivial.
Trouble arises because proximal normals to E can be of the degenerate form ( 7,0) and
can occur also at points (#,a) of £ where « > p(#). Tt must be demonstrated that
limits involving such normals can be replaced by limits of normals corresponding to
proximal subgradients,

We proceed then to apply the result to the case where p is the optimal value function
for a parameterized nonlinear programming problem. Under a mild assumption
furnished in §3, the problem

mmlml?efu(x over all x € C satisfying

I8 2 ik :
(F) ) S 0 5 20T e
4 =0 fori=s+1,...,m,

will have an optimal solution whenever it has a feasible solution, and the function
p(u)=min( P ) will be lower semicontinuous on R™. Generalized derivatives of p can
be viewed in an economic framework as marginal values for the resources represented
by the quantities u,, and a description of 3p(%) takes on interest from this as well as
from the insights it can provide in the study of various computational procedures.
Outer estimates for 9p(#) in such a setting have already been obtained by Gauvin
[6] (see also [7]) in terms of first-order Lagrange multiplier vectors. These estimates
assumed that the constraint and objective functions are of class €', the abstract
constraint set C is all of R”, the set of feasible solutions to (P,) is uniformly bounded
in a neighborhood of ¥ = %, and the Mangasarian-Fromowitz constraint qualification
is satisfied at all optimal solutions to (P;). Here we dispense with such restrictions and
nevertheless derive an exact expression for dp(#) in terms of limits of certain
“augmented” multiplier vectors.
The (quadratic) augmented Lagrangian for (P,) is

L,(x,y,r) = fo(x) + z @3 ) ) forx e Cor 0, (3)

where for equality constraints (i = s+ 1,..., m)

qu'(y.fa f;(X) + H{-,-") = },[ﬁ(x) + u}'] + (’x/zj[ﬁ(x) + u.f]z
and for mequality constraints (i=1,...,5)

1,'_f_.(x) + u_,.]+ (f/Q)[ﬁ(x) + 1;',-12
if y, + r[ f{x) + 4] >0,

-_1:|,-2/2r if y; + r[ﬁ(x) + uf} < 0.

e (v filx) + u,, r) =1

e i g

We have shown in [8, Theorem 5] that if the quadratic growth condition

Iiminf P

b JuP

>~ (4)

is satisfied (and this is equivalent to L (x,0,7) having a finite infimum in x for some u
when r is sufficiently large [8]), then the proximal normals to p at any # are exactly the
vectors i such that for 7 sufficiently large, (X, 7,7) is a global saddle point of L, with
respect to minimization in x and maximization in (v,r); here ¥ denotes any optimal
solution to (Py).

Clearly then, our general characterization of dp(#) in terms of limits of proximal
subgradients can be made to yield in this context a characterization of dp(#) in terms
of limits of multiplier vectors y* corresponding to saddle points of the augmented
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Lagrangian in “nearby”™ problems (£,:) (Theorem 2). We go beyond this immediate
consequence by demonstrating in Theorem 3 that one can get away with a more
special case of multiplier vectors y* corresponding to the standard second-order
sufficient conditions for optimality, provided the notion of a “nearby”™ problem iy
enlarged. This result ties in with work of Spingarn and Rockafellar [9] on the gencric
nature of the second-order conditions in problems with sufficiently smooth data
(Theorem 4).

Incidentally. there is no real loss of generality in having the parameters on which
(P,) depends appear only as additive constants in the constraint equations and
inequalities as above. Other parameterizations can readily be placed in this mold, as
will be explained and uulized in §§3.4.

Our results lead in particular to estimates for dp(#) in terms of multiplier vectors ¥
that merely satisfy gencralized first-order optimality conditions at the optimal solutions
% to (P,). This application, which directly extends Gauvin’s work [6], [7]. has been
written up separately [10].

2. Subgradient formula. One of the difficulties in characterizing dp(u) in terms of
limits of proximal subgradients is that such limits may fail o exist in the ordinary
sense due to unboundedness. They have to be viewed in an extended (compactified)
space consisting not only of the points in R™ but also the direcrions in R™. which
represent “points at infinity.” These directions correspond one-to-one with the rays in
R™ (half-lines emanating from the ongin). It is possible to speak formally of convex
hulls of mixed sets consisting of points and directions (cf. [8, §8 and §17]), and this
idea underlies the theorem in this section, but we shall express such convex hulls here
in a conventional manner.

For any nonempty sct ¥, the set

07 Y =limsupAY={ y € R™|3y* € Y,A L0 with A p*—p! (
A0 i :

Lhn

1s the recession cone of Y. It contains a nonzero vector if and only if ¥ is bounded.
Then it is a union of rays which can be regarded as representing the “boundary points
of ¥ at infinity.”

TuroreM 1. Ler p: R™ > [ = o, 2] be lower semicontinuous, and let U be any point
with p(@) finite. Define

Yo |r ¥ ER" 3_1-"‘- proximal subgradient of p at e
u' =, p(u*)—>p(d) and p* > 7,
Y(IJ = { FER™|AN|0and y Sprosmalsbgtedien ol pialn
with u*— @, p(u k Y= p(H) and Ay “> 5 If

Then Y and Y, are closed sets satisfying 0 € Y, 2 0" Y, and it is impossible to have both
Y=0and Y,= {0}. The formula

dp(#) =cleo[ ¥V + V] (6)
holds, where :
Y+ Yi= {7477 € V. 7€ Vo)
(a set which includes Y and is empry if and only if Y- is empty).

COROLLARY. For dp(H) to be nonempry and bounded (p Lipschitz continuous on a
néighborhood of ). it is necessary and sufficient that Y, = [0}, Then

dp(#)y=co?Y.
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ProoF oF THEOREM . The initial assertions in Theorem 1 about V¥ and Y, follow
at once from the definitions and the fact, to be established below, that there do exist
sequences u* — i such that p has a proximal subgradient at u® andp(_sz"}—w{ i). (Any
element of 0* Y can be represented as an element of Y, by a process of diagonalizing
sequences.) To get this fact and the formula for 9p(@). we begin with an observation
about the nature of proximal normals to the epigraph E of p.

If (7.7%) is a proximal normal to £ at (#,«), then 7 < 0 and (7.7) is also a proximal
normal to £ at (i, p(#)). Indeed, (7, 7) is a proximal normal at (%, o) if and only if for
some 7 > 0, there is a Euclidean ball B in R™'"' centered at (¥ + 7.« + #77) which
contains (#, «) but no other point of £. Since £, being an cpigraph, includes with cach
of its points the half-line extending upward from that point, the half-line extending
upward from (#, p(#)) meets B only at (#, «). Thus ( ¥,%) cannot make an acule angle
with the vertical vector (0, 1): one must have 7 < 0, in fact =0 1f « > p(#). In the
latter case, if B is shifted downward to have center at (& + ¥, p(u)) instead of
(7 + v, ). 1t will still meet £ in only one point, namely (7, p(#)) instead of (7, «a).
Hence (3,0) will be a proximal normal to E at (@, p(id)) as well as at (@1, ),

We turn now to the construction of the normal cone N (i, p(#)) that appears in the
definition (2) of dp(ir). This cone is by direct extension of (1) the closed convex hull of
all limits ( 7,7) of sequences of elements ( y*,1,), where (%, 7,) is a proximal normal
to E at (u*. ). e 2 p(u*) and (u*, &)= (8, p(@)). Since (#, p(#@)) is a boundary point
of £, N(u. p(u)) cannot consist of just (0,0) [2]: hence at least one of the limits ( 7.7)
is not (0, 0).

From the observation above, therefore, it suffices in determining N (@, p(#)) to take
a, = p(u") and restrict attention to limits of sequences of proximal normals that are all
of one of the following three types:

(a) Ao (» k. —1), where Ay = A =0,

(B) A (%, —1), where A, 10,

(c) (),x\= 0) where y k£,

In (a) and (b), _)'-‘*' is by definition a proximal subgradient at #*. The limits in these
cases are respectively of the forms A(p, —1) with § € ¥ and (y.0) with y € ¥,,. The
crux of the matter is to show that any limit of type (c) is obtainable also as one of type
(b). This will prove that N, (&, p(#)) is the closed convex hull of the nonempty cone

(A =1)[FE Y.A> 0} U {(7.0)| F E ¥y, (7)

from which fact the desired formula for 9p (&) follows via (2). It will demonstrate at the
same time that v can be approached by at least one sequence of points u* such that
p(u*)— p(#) and a proximal subgradient exists at each u*.

To verify that sequences of type (¢) are superfluous, we demonstrate that a nonzero
proximal normal (*,0) to E at point (¢*, p(u*)) can be approximated by a proximal
normal A, (7%, — 1) at an arbitrarily close point (4%, p(#*)). Notation is simplified by
supposing (as is possible without loss of generality) that (u*, p(u*)) = (0,0) and
denoting the given proximal normal at this point by (. 0), with |y| =1, We shall
construct a sequence of vectors i, and corresponding proximal normals y, such that
(u,, p(1.))—>(0,0) and (y,, — 1)/|(y,, — )] = (»,0). This will complete the proof.

Fix 1 > 0 such that the ball of radius r around (fy, 0) meets E only in the point (0,0)
(which can be done since (y,0) is a nonzero proximal normal to E at (0,0)), and let g
be the function whose graph is the upper surface of this ball:

g(u)y=(r"—|u— {_1.-|2)”.2.

Clearly g(u) < p(u) for all u satisfying |u — ry| < r except v = 0, where g(0) = 0 = p(0)
(because | y| = 1). For
h(u)=1—|u— 1y}
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and s = 1, one has
sh(u) 2 g(u) when [u—1p| < 1(s? = 1) /(s + L)
sh(u) < g(u) wheni(s’ = 1)/(s*+ 1) < |u— 1| < 1,
so that by defining

[.g(u) when [u — ty| < 1(s? - /(s + 1),
,f?(u} 3o

i\.w’a(\u) when [u — 1y| 2 1(s* = 1) /(s + 1),

we gel a continuous function on all of R” which is of class @2 where |u — 1y =+
(s> = 1)/(s* + 1) and has L) < glu) for all u satisfying |u — v < 1. Also, f(0)=0.
It follows that f(u) < p(u) for all u satisfying |u — iy < 1, except u=0: f(0)=0
= p(0).

Recalling that p is lower semicontinuous, and that a lower semicontinuous function
attains a minimum over any compact sct, we define

« = min p, Bo—mig a3 fors's 1
2 s i j

where U is the set of all u satisfying |u — ty| < 1+ 1. For each 5 we denote by u, one of
the points where the minimum defining B3, attained. From what we have noted about
the relationship between f, and p, it is clear that

02 B =p(u)—fi(u) > p(u) and |u,—1y| > ¢ (8)
Then f.(u) = sh(u) on a neighborhood of u,, and in particular
Bo = p(u) < fi(u) = sh(u)=s(1~ |u,— 1p]).
so that
lu, =ty <= (By/s)<t+1 whens> —B,. (9)
Two conclusions may be drawn from (8) and (9):

fors > — B,, one has p(u) > B, + sh(u) for all u in some

: z 5 . 10
neighborhood of u,, with equality when u = u,; e
the sequence { | is bounded, and any cluster point s (11

satisfies |u,, — 1p| = r and p(u,.) < 0.

Since p(u) > g(u) > 0 for all ¥ =0 satisfying lu — ty| < ¢, (11) says that (1, p(u.))
—(0,0). On the other hand, (10) tells us, since B, + sk is a function of class & on a
neighborhood of u, that the vector

Yo =sVh(u)= —s(u, — ) /lu, — ty|

is a proximal subgradient of p at u,. Moreover |( y,, — )| = (1 + s3)!/2, so that
e =D/l =Dl = (:.0)/|ty] = (,0).

The sequences {u.} and { y;} thus meet all requirements.

Jowd

REMARK. Parallel 1o (2), let us define
(@)= {F € R™|(7.0) € N (1, p(@)}.

Since above proof shows that Ng(u, p(#) 1s the closed convex hull of the cone (7), we
may conclude that -
3% (uy mcleo ¥,
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3. Saddle points and marginal values. Next we investigate the parameterized
problem (P,) in §1 under the assumption that C is a topoelogical space and

for each compact set U/’ C R™ and number a £ R, the set

| . : : L _ 12
{(u,x) € UX (| x feasible for (P, ), fy(¥) < a} is compact. e
This is true, for instance, if j; is lower semicontinuous for i = 0.1, ..., s, continuous
fori=s+1,...,m, and all level sets of the form {x € C|f,(x) < a} are compact.

The assumption guarantees that (P,) has an optimal solution for each u such that it
has a feasible solution, and that the optimal value function p(u) = inf(P,) is lower
semicontinuous.

By an augmenied multiplier vector for (P;), we shall mean a y € R™ such that, for
some X € C and 7 > 0, (X, 7,7) is a (global) saddle point of the augmented Lagrangian
L(#, x, y,r)in (3) with respect to minimization over all x € C and maximization over
all y € R™ and r > 0. As explained in [9, §4], when such a ¥ cxists at all, then for any 7
sufficiently large one has (X, 7, 7) a saddlepoint if and only if ¥ is an optimal solution
to (P;). If the functions f; are all of class @ and X is an interior point of C, the saddle
point condition on X and ¥ implies the standard second-order necessary conditions for
optimality, and it is implied in turn by the corresponding sufficient conditions [9, §5].
Thus it is a sufficient condition for optimality that 1s close to the classical one but
applicable in a much wider setting.

TireOREM 2. Lefring p(u) = inf(P,), suppose the quadratic growth condition (4) and
compactness condition (12} are satisfied. Then for any u such thar (P;) has a feasible
solution, the conclusions of Theorem 1 and its corollary hold with

i { 7| 3y* augmented multiplier for (P, ) with

u*—>u, p(u*)—>p(#)yand y* >3,

Yo= {/1? | 3NL0 and y* augmented multiplier for (P, ) with

uk >, p(u*) = p(u) and A" —>)?}.

Proor. This is immediate from the fact cited in §1 from [9, Theorem 5], thaty* is
a proximal subgradient of p at u* if and only if it is, in the terminology above, an
augmented multiplier vector for (P:).

Although Theorem 2 ostensibly deals only with a rather special type of parameteri-

zation, it actually covers much more. To illustrate this, consider

minimize Fy(w, x) over all x € C such that Fi(w,x) <0 for

(_Qw)[

kx'=l_....,5 and F(w,x)=0 fori=s+1,...,m

Here « is a parameter vector ranging over a set € in R, say, and we want to study
subdifferential properties of ¢(w) = inf( Q,,). The same situation can be represented in
the earlier format as

0 minimize Fy(«’, x) over all (¢, x) € D satisfying

(C. —w+w=0 forl=1,...,4d,

where D is the set of («',x) & @ X C sausfying F(a' ., x)<0 for i=1,...,s5 and
Fw' x)=0fori=s+1,..., m The augmented Lagrangian is then

2

Aw, o', x,7,#) = F{w', x) + - (0 — ') + %|Cy -

for(’,x) € D,n & R%r > 0.
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An augmented multiplier vector corresponding to @ is a vector 7 which with any
(globally) optimal solution (&', X) to ( Q2) and 7 sufficiently large forms a saddle point
of A with respect to minimization in (&, x) € D and maximization in 5. Since the
optimal solutions to ( QZ) are of the form (@', ¥) where ¥ is optimal for (Q_) and
W' =, the condition reduces to the following: 7 is an augmented multiplier vector
corresponding to the parameter vector @ if and only if for some (every) optimal
solution ¥ to ( @), the minimum of

e o o Bion w2
Fﬂ((.\,‘._)} + (e — @) + 3 " — w|
over all @ € & and x € C satisfying

R S0 fori=l s
L= ori=s+1,...,m.
1s attained at (@, X).
Obviously then, as a corollary to Theorem 2 one gets a parallel result for g(w)
=inf( Q) in terms of augmented multiplier vectors of the latter type.

4. Extended parameterization and the classical optimality conditions. Our results
about limits of augmented multipher vectors take on special significance when trans-
lated by the device just desernibed into the context of the problem

{minimize fo(v.x)+ w- x overall x € R”,

( Qn'.:;.r: ) \.{Satisf}’ingﬂ-(c, ,\') ST ", 1|I s 8‘ :OI’ F = ]., Sl umpny
L= ori =

I
s
3

where ¢ and w are parameter vectors in RY and R", respectively, and the functions f;
are all of class €% on RY x R". Here we are interested in g(w,u,v) = inf( Q, , ), but
propertics of this obviously have bearing on more restricted parameterizations corre-
sponding to ¢(0,u.v).4(0,0,v), g(0, 1. 0), and so forth.

In (Q, ) there is no provision for a nontrivial abstract constraint x € C, so there is
actually somewhat less generality than in (P,). despite appearances. The inclusion of
the “tilt” term w - x, however, will allow us to characterize the subgradients of ¢ in
terms of more classical kinds of Lagrange multiplier vectors.

We shall need to assume for ( Q, ,.) the analog of the boundedness condition (12)
for (P,). Since the functions f; are continuous and

min{w- x||wlp} = —p|x]|
for any p = 0, all that we need is the following:

for every bounded set U C R"™ and ¥ C R and every real number
p = 0and a, thesetof all (u, 0. x) € U X VX R" satisfying

i s =0 fore= Ly v, s 13)
HEEp B ol u g, =)

o) = plx| <

is bounded.This ensures that ( Q,,, ) has an optimal solution when it has a feasible
solution, and that the function ¢ is lower semicontinuous. (Actually, we are mainly
interested in w in a ncighborhood of 0. and for this purpose it would be enough to
consider in (13) a fixed, small p > 0.)

Our analysis will center on the standard second-order sufficient conditions [12,
Chapter 1] for ¥ to be a locally optimal solution to ( O ;). These involve the function

"

A(ox, p) = fo(o.x) + > vifi(e.x),
i=1
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its gradient V, ./ and Hessian matrix V3/. They call for the existence of 7 € R™ such
that
L0, p[f(e. )+ w]=0"fori=1...,5,

for every nonzero i € R" satisfying
) [ <0 fori€ Iy(&,t,X,7),

h-V (T, %) ' :

[ =0 fori=1/(i¢t.X, J),

where 7,(%. ©. X, ¥) consists of the indices i € {1, .. ., s} such that f(£.X) + & = 0 and

¥,=0, and [,(#.7.X. ) consists of the indices /1 £ {1, ..., s} such that f(£.X)+ &,

=0 and 7, > 0, together with all the indicesi e {s+1,..., m}.

In the case where X and y satisfy these conditions and X is not only a locally optimal
solution but the unigue globally optimal solution to ( O ;). we shall write

(X, 7) € S*(W,%,%).

Two sets of limits will concern us:

S(w,a,t)= ]' (%. 7] A(wk, u*, 0%y > (W, u.¢) and
(x*, y*) € S¥(w*,uf,0*) withx*—=X% andyp*->yl,
_ : ' (14)
So(W, %, 8) = {(%, )| I(w*,u*,0) > (®,%,5),Al0, and
k

(x5 p*) € S*(wh, ut,0*) withx®*>x andiy*>yl.

Note that for (X, ¥) in S(¥.%.T), conditions (a) and (b) still hold by continuity. The

same is true for (X, ¥) in Sy(#.7, i), except that / is replaced in (b) by the degenerate
Lagrangian

!{_}[j[;_\.,\.‘, );\J = 2 /Vr;jr;-(t,_‘(), (15j
i=1
50 as to get
(bo) V(5.5 7) + 5 =0,

Tarorem 3. Let g(w,u.v)=1nf( Q, ) with every f. of class &°. and suppose the
boundedness condition (13) holds. For any (W,i1,T) such thar ( O ;) has a feasible
solution, let

mag )

M = (X, 7,2)| X is ( globally) optimal for ( Q
(%, y) € S(w,0,#) andZ =V I(5,X, y)}
My = {(0. 7,2)|3X ( globally) optimal for ( Q. .) with

(X.7) € Sy(W.B.7) andZ =75 I(T.%, 7).

Then M and M are closed sets satisfring (0,0,0) € My D07 M, and it is impossible that
both M =@ and M, = {(0,0.0)}. Moreover

dq(w.u,7) = clco[ M + M, ].
CoRrOLLARY. For dq(W.1,T) to be nonempty and bounded (q Lipschitz continuous on
a neighborhood of (W, u.tv)), it is necessary and sufficient thar M, = [(0,0,0)}. Then

EJq(ﬁ. u,t)=coM.
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This holds in particular if no optimal solution X to ( Q. ;) has a § = 0 satisfying (a) and
(bg)-

Notice that Theorem 3 does not require (Q,,, ) to satisfy the quadratic growth
condition corresponding to the one in Theorem 2, namely that

W, U, U)
lim inf L—-—) > — 6. (16)
[(wa,e)| >3"‘|“u1)_ 1

This condition nevertheless plays a role temporarily in the proof.
PrOOF OF THEOREM 3. Assume for the time being that (16) does hold. We begin by
expressing ( 0, .) equivalently in the form

Xminimize fo(v',x) + W'+ x over all (w',¢", x) satisfying

f(v,x) + u_{ <0 fori=1,.

( Q) =0 fori=s+ 1. ) .'.,m,
] —v/+v0,=0 fort=1...,4d,
' —1y£+w3=0 forj=1,....n,

which we identify as a specially structured case of the parameterization model (P,)
treated earlier. In this framework our boundedness condition (13) corresponds to (12)
and the quadratic growth condition (16) corresponds to (4). Theorem 2 is therefore
applicable and gives a characterization of d¢(W,#,¥) in terms of limits of augmented
multiplier vectors (£, v*,z%) for problems ( Q.+ .+). Our result will be obtained by a
closer analysis of such vectors.

To simplify notation, we focus on (#,%,%) instead of (w*,u*,¢*) as the parameter
vector and look at the augmented Lagrangian for ( Oy ;7). The latter turns out to be

Wl

Crpw(Wiv, %€ y,2,r) = Ly(v', x, y, 1) + w o x
+z-(0—0v)+ % |5—o'P+&(W—w)+ % |w —w'|%,

where L, (¢, x, y,r) is the same as the function in (2), except that f,(v/, x) appears in
place of the earlier f;(x). We claim that (W'.¢", X, £ 7,%,7) is a (global) saddle point in
(17) with respect to minimization in (w’,¢’,x) and maximization in (§, y,z,7),r > 0, if
and only if 7 is sufficiently large and

(%, §) € S¥(#,8,8), 2=V (5% )), =% =0 andw=w. (18)

In proving this, we investigate the optimality conditions for ( Q7 ; ;) that correspond
to (a), (b), (¢) for ( Oy ). In these the role of / is taken by

WL
:

I'(w',o',x,§ y,2) = I(v',x, y} + wex—§w —z-0

and its gradient and Hessian with respect to (w',¢.x). For the local Optlmdllt\ of
(W', T, %), the conditions ask for the existence of (5 V.ZI)E R"X R" X R? such that

(&) 5,20, f(F.%) + 1 < 0. 5 f(T.5) + £] =0
forT =il s

fi(t, Xy + i, =0 fori=s+1,...,m,
-4, +17,=0 fort=1 i

]
—
P

—W}T+\Fv"_f-=0 forj
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(b V ("X, 7)=0,V K7, x._f]—f:O,E—-é:U, :
(e h - T_,_.f{t, X, ¥}h = 0 for every nonzero (A", 1’ h) € R" X R X R" satisfying
) [ <0 fori€ Iyu,F.X, j),
h-V f(E, %) R
il | =0 fori€ I (&7, %, 7)

Al=0 fort=1,...,4d,
h'=0 forj=1,...,n.

Clearly then, (18) is equivalent to these conditions along with the stipulation that
(W, 7", X) be the unigue globally optimal solution to ( Qs ) (cf. the definition of S*
abme) Accmdino to a result we obtained in [8, Theorem 6], these properticq imply
that ( ,X,& 4,2, F) is a saddle point of the augmented Lagrangian for ( 2 _ o) when
Fois sufﬂuentl} large. The cited result speaks of the globally optimal soiullon being
unique in the stronger sense that also every asymptotically minimizing sequence
converges to it, but there is no difference here between this and simple uniqueness, by
virtue of assumption (13) and the continuity of the functions f;.)

We have just verified the sufficiency of (18) for a saddle point of the augmented
Laoruwidn (1?) As for the necessity, we already know from general theory [8, §5] that
if (w,0,x.¢ 7,2,7) is a saddle point, then (W', 7, X) is globally optimal and the first
and se:.ond order necessary conditions for local optlmaht) in(Qs 5) Must hold. These
conditions coincide with (a"), (b'), (¢'), except that only h- V2/(¥,X, Fh =0 is
asserted. In particular they require (#',%,%) = (#.%.£) in (a') and (b"). The saddle
point property therefore precludes the e‘(istence of any globally optimal solution
(W', &, %) different from (W',T",X) (since (W, &, %,& 7,%,7) would have to be another
mddle point in that case and again satisfy the necessary conditions in question). This
saddle point property certainly implies all of (18) except conceivably for the strict
inequality in (c). The latter can be deduced, however, from the special form of the
augmented Lagrangian. If (w7, %, & ¥,Z,F) is a saddle point of £ in (17) with £ = &,
w' = w and ¢’ = ©, then in particular (X, y) is a saddle point of the function

A(x, y) = min E‘{w’,«?.x,&, Dz F)
= L(T,x, y,F) + W x — (1/27)|x — X[~

We showed in [8, §5] that if (¥, 7) is a saddle point of L_(%,x, y.7), then, among other
things, condition (c) must hold at least with weak inequality. Now the same argument
can be transferred to the case of A(x, y) simply by regarding the initial term JolT. x) in
L.(T,x, y,F) as having been replaced by

fo(Tx) + W -x — (1/27)|x — .
Then in the Hessian condition, & - V2/(%, %, 7)h turns into
h-Vi(T.%, y)h — (1/2F)| k]

The argument tells us that this expression is nonnegative for all vectors 4 = 0 satisfying
the constraints in (c). But then indeed A - VZ/(5,%, y)h > 0 for all such 4. Therefore
the full condition (18) is also necessary for the saddle point property of £ in (17), as
claimed. It follows that (18) characterizes the augmented multiplier vectors which
appear when Theorem 2 as applied to (0, )

Summarizing what has been accomplished so f'ir in the proof of Theorem 3, we have
shown that under the additional assumption of the quadratic growth condition (16), we
have via Theorem 2 that the assertions in Theorem 3 would at least be valid if M and
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M, were teplaced by

(7]

M= {(_E.j.f)|3(1¢=5",Lﬁ',c“"}—>{ﬁ.ﬁﬁ) and (5",'1."‘_‘5-*}—)(3___']}‘ )

such that g(w", u*. v*y— ¢(w,4.t) and for some x ,

one has (x*, y¥) € S*(wh,uf %), 2" = v (0%, x%, ) and £ = x*)

and M, which is the same except that A (£%, y*,2*)—> (&, 7,2) with A, 0. Tt takes little
effort to recognize that M and M, are in fact identical to M and M,,.

The remainder of the proof consists simply of the verification that the added
hypothesis (16) is superfluous to the result that has been obtained. Fixing (w.¢.#) and
any 8 < ¢(i, %, 1), choose a neighborhood N of (w, &, &) such that

(w,v,u) €N implies g(w,u.v) > 5. (19)

Such a neighborhood exists, because g is lower semicontinuous from condition (13).
Let 4 be a function of class ©? on R such that # is bounded below, and #(r) = 7 when
t > B. Taking fy(v.x) = 8(f,(v,x)) in place of fy(v.x) n (Q,,,). We get a para-
meterized family of problems ( ,.,,) whose optimal value function § is given by

GOwu.v) = 0(q(w, 1,0))

Since # is bounded below, so is g, and the quadratic growth condition is therefore
satisfied trivially by §. The assertions of Theorem 3 are valid then for ¢ and f,. But
from (19) and the specification about # we know that § agrees with g on N, and indeed
for every (w.v.u) € N and every feasible solution x to (_Q",.‘_.L_\N)._ the function _fc,(t._ )
agrees with fy(v, -) in some neighborhood of x. Inasmuch as N is a neighborhood of

(w,5, %), the formula obtained for d§(w.u#.t) reduces then to the one claimed for
dg(w, i, ).

5. A generic differentiability result. It will now be shown that the full force of the
formula in Theorem 3 actually is needed only for relatively few choices of (W,u.7),
provided the constraint functions in the problem are smooth enough. In this we shall
be dealing with the strong form of the optimality conditions for ( Qy ; .), which consist
of (a), (b), (c) together with

(d) I(%.4,0,%) =0, and the gradients V. fi(B,%) for

i€ l(w,u,o,X) are linearly independent.
It is well known (and follows readily from the implicit function theorem) that when
(a), (b), (c) and (d) hold for some (¥, %, 7) and (X, y), then for every (W, #',T') in some
neighborhood of (w,#,T) there is a unigue pair (¥, ¥) satisfying (a), (b). (c), (d).
Moreover the dependence of (X', ) on (W',u@',¢") is of class @', while that of the
objective value f,(¥',X') is of class €. See Robinson [13].

TuroREM 4. Again let g(w.u,v) = inf( Q, ) and suppose the boundedness condition

(13) holds and f, is of class %, but for i=1,....m require f, to be of class C" on
R X R" where r = max{d + n.2}. Let Q be the set of all (W, #,T) such that ( Qr 5 ;) has

a unique globally optimal solution X, and there is a unique y satisfring the strong
optimality conditions (a), (b), (¢), (d) along with X. Ler §, be the set of all (w.4,7) such
that ( O ;) fails to have this property, although it does have at least one feasible solution.

Then Q is an open sel on which q is of class C* with
Vg(w,ii,t) = (X, J.Z) for 2=V _I(5,X, F),

while Q is a negligible set (i.e., of Lebesgue measure zero).
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Proor. The assertions about & follow from a shight extension of the fact cited just
prior to the statement of the theorem, namely that if X also happens to be the unigue
globally optimal solution to ( @5 ;). then for (W, &', €") near enough to (w, 4. 7), the
Lcnrespondmc X' is likewise the wnigue globally optimal \,olumm o (Qp 7y (and
hence in particular ¢(W'. %', t") equals f,(T'.X') and exhibits ¢* dependence on (W, 7
£')). The validity of this stems from our boundedness assumption (13), as we now
demonstrate.

Conditions (a). (b). (¢). (d) are known to guarantec an isolared local mimmum, but
what is more, the standard argument [12, Chapter 1] shows that this neighborhood can
be taken uniformly in the parameters. In other words, there is an € = 0 such that for all
(W', u',t) sufficiently near (W,#,€), the corresponding ¥ 1s 1solated by at least a
distance of € from any other locally optimal solution to ( QO ). Consider in light of
this what \\nuld be the situation if (W, &,T) (.Ould be approached by a sequence of

vectors (w” ;*‘._t"") with u)rrmp(mdnw (x*, y"} satisfying (a). (b). (¢). (d) (and
therefore dpp]‘{)aching (X, 7)), but x* not gir_}bai{} optimal. For each & there would
exist an X" globally optimal in ( Q.+« .+). X # x*, with

fo(r*, X5 < fo(v*. x*) = fo(B, %) = q(W.4.T). (20

P

The boundedness condition (13) implies then that the sequence { X"} is bounded; we
can assume by passing lo subsequences if necessary that ¥* converges to some ¥*
Then from (20) and the continuity of every f; we may conclude that X* is a feasible
solution to ( Ogpp) with fy(£,5%) < g(W,#,0). Thus ¥ is a globally optimal solution
to (O, .-). If mow it is true that ¥ is the only globally optimal solution, we have
X* = X, so that the sequences (¥*} and {x") converge to the same point. In this case
7% would eventually be within distance € of x* in contradiction to there being no other
locally optimal solution to ( @, ) within that distance. This verifies what we
claimed at the start of the proof. The formula for V¢ on { can be viewed. of course, as
a specialization of Theorem 3 to this case, as well as simply a consequence of the
implicit function theorem being applied to the optimality conditions.

The proof of the assertions about £, is two-pronged. First we apply a result of
Spingarn and Rockafellar [9] to conclude that under our differentiability assumptions,
the set of (W, &, ) for which { Q- --) has a locally optimal solution X nor satisfying (a),
(b}, (c), (d) for some j is a sct of Lebesgue measure zero. (The result in [9] is stated for
inequality constrained problems only. but the generalization to equality constraints is
obvious. It is also stated without a parameter vector &, but this can be handled by
introducing a decision vector ©* constrained by ¢’ = 7, much as in the representation
(0. ) of ( Qs -) utilized in the preceding section. Alternatively, one can invoke more
powerful theorems of Spingarn [14].)

The second part of the argument concerning 2, consists in showing that the set of
(w1, 7) for which ( Qr;;) has a feasible solution (and hence a globally optimal
solution}), but not a wnigue globally optimal solution. is a set of Lebesgue measure zero.
With the fact just cited. this will prove @, is itself of measure zero.

We shall use convex analysis based on the observation that g(w.u.v) is concave in
W

g(w.u0) = min [w-x = g, (x)} = gh(w) (21)
xeER" i ]

(concave conjugate function [11]). where
g, (X)) = fL — fo(v.x) if x is feasible for ( Q, . ),

- otherwise.

The boundedness condition (13) ensures that g{w,u,v) is never —oo, and that the
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minimum in (21) is indeed attained. Notice then from concavity that for each (#,7),
either g(w, 7€) is finite for all w or 4o for all w [11, Theorem 7.2]. If we can show
that for each fixed (#,€) with g(-,%, ) finite, the set of all w for which ( Q.. .) has
more than one globally optimal solution is a set of measure zero, the desired
conclusion can be obtained by integration with respect to (#.©). (A set in a product
space is of measure zero if and only if all its sections with respect to one of the spaces
are of measure zero; Fubini’s theéorem.)

Consider then the case where there are two distinct globally optimal solutions ¥ and
X' 10 ( Oz ;). Then for (W, #, ) the minimum in (21) is attained by both ¥ and X*. This
tells us that ;

g(w,i,T) < w- X +g, (X) forallw, with equality for #,
or equivalently
qg(w, i, %) < q(»T, i,0)+ (w— W)X forallw,

and the same for X'. Therefore both X and X’ are subgradients of ¢(-,%,T) at #. It
follows that ¢(-, #,t) is not differentiable at W [11, Theorem 25.1]. But a finite concave
function is differentiable except on a set of measure zero [11, Theorem 25.5]. Hence
the multiplicity of globally optimal solutions can occur only for # in a set of measure
ZEero.
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