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GENERALIZED DIRECTIONAL DERIVATIVES AND
SUBGRADIENTS OF NONCONVEX FUNCTIONS

R, T. ROCKAFELLAR

1, Introduction. Studies of optimization problems and certain kinds of
differential equations have led in recent years to the development of a gen-
cralized theory of differentiation quite distinct in spirit and range of application
from the onc based on L. Schwartz's “distributions.” This theory associates
with an extended-real-valued function f on a linear topological space E and a
point x £ I certain elements of the dual space F* called subgradients or
generalized gradients of f at x. These form a set df(x) that is always convex and
weak*-closed (possibly emptly). The multifunction 9f : x — df(x) is the
subdyfferential of [

Rules that relate Of to generalized directional derivatives of f, or allow df
Lo be expressed or estimated in terms of the subdifferentials of other functions
(whenf = fi + 72, f = g 0 4, etc.), comprise the subdifferential calculus. Such
rules arc used especially in analyzing the condition 0 £ df(x), which typically
means that x is some sort of “quasi-optimal’’ point for f. The extended-real-
valued nature of [ is essential in such a context as a device for representing
COMNSLraints.

Subdifferential calculus began with convex functions on R® Rockafellar
[43] defined Of for such functions, showed how to characterize df(x) in terms
of one-sided directional derivatives f'(x; »), and proved that under mild
restrictions rules such as

11 O(fi + f)(x) = Bfilx) + Ofslx)

are valid. This branch of convex analysis was developed further by Moreau,
Rockafellar and others in the 1960's and applied to many kinds of optimization
problems (cf. [42], [44], [45] for cxpositions), Besides convex functions, it
covers concave functons and saddle functions (functions of two vector vari-
ables which are convex in one argument and concave in the other): for rules
of type (1.1) for saddle functions, sec McLinden [38].

The multifunctions 9f in these cases vield, or are closely associated with,
maximal monotone “operators” in the sense of G. Minty and L. E, Browder
(cf. [41], [4], [46], [47]). The subdifferential calculus has served correspondingly
as a model for results on when a sum of maximal monotone operators is again
maximal monotone (cf. [48]).

Received March 15, 1978, This research was sponsared by the Air Force Office of Sclentific
Rescarch, Air Force Systems Command, USAF, under grant number 77-3204 ar the University
of Washingron, Seattle,

257



=0
it
fA’

R, T, ROCKAFELLAR

F. I, Clarke in his 1973 thesis [6] made a major contribution in showing
how the definition of of could be extended to arbitrary lower semicontinuous
functions 7: R* = R 'J {4 20| in such a way that of is the subdifferential
of convex analysis when [ is convex or concave or a finite saddle function, and
of reduces to the ordinary gradient mapping Vf when 7 is continuously dif-

ferentiable. e showed that
(1.2)  0(fi + fa)(x) C dfi(x) + Of=ix)

when f; and f> arc Lipschitzian (Lipschitz continuous) in a neighborhood of
and proved another rule when f is the maximum of a collection of continuously
differentiable functions. He also characterized 9f(x) by way of a gencralized
directional derivative expression 7°(x; v) when f is locally Lipschitzian, These

basic results were published in [7]. In (8], [10] Clarke broadened the definition
of the subdifferential to functions on Banach spaces and extended the subdif-
ferential calculus to continuous sums and pointwise maxima of locally Lip-
schitzian functions, as well as the composition of a locally Lipschitzian mapping
and a differentiable mapping. The naturalness of this concept of df has been
underscored by a mean value theorem (Lebourg [377) and an inverse mapping
theorem (Clarke [9]). Aubin [1] has provided an account of the Lipschitzian
case which also treats the operation of infimal convelution,

Clarke did not characterize 0f(x) in terms of any ''directional derivatives"
in the non-Lipschitzian case, but his definition is connected with a certain
tangent cone to the epigraph of fat (v, f(x)). Hirlart-Urruty [26], [27], has
observed that this cone is the epigraph of a sublinear function which must give
the desired “‘derivatives,” but until now no direct formula for this function,
involving limits of difference quotients of some kind, has been discovered.

Indeed, of itsclf has not yvet been given a direct definition in the general case:
Clarke's approach has been to define Of for locaily Lipschitzian functions in
rerms of certain limits, use this to define generalized tangent and normal cones
to closed sets, and finally apply the latter to the epigraphs of 1s.c. functions.
The lack of a more straightforward characterization of 97 is one of the chief
reasons why the subdifferential calculus for nonconvex functions has so far
been limited mainly to the Lipschitzian casc.

Clarke’s results do provide a dircet formula for tangent cones in finite-dimen-
sional spaces 7, Proposition 3.7]. Thibault 55] has adopted this formula in
separable Banach spaces in order to bypass the first of the three stages of
Clarke's definition of 0f, apparently without realizing that the formula implies
the convexity of the cones in question. IFor Banach spaces, the equivalence
with the initial form of Clarke's definition of tangent cones (and hence the
convexity of the cones described by this formula) had been demonstrated by
Hirtart-Urruty [27]. More recently, the convexity has been proved by
Rockafellar [49] by a direct argument in R* that casily carries over to any
linear topological space. This opens the way to a direct definition of 9f along
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the lines proposed by Hirlart-Urruty, because the argument can be applied to
epigraphs and translated into a statement about limits of certain difference
quoticnis,

The aim of the present paper is to carry out this project. Subderivatives
Fi{x; ) are defined in terms of a “lim sup inf”" which is a kind of minimax
version of “lim sup’ and “lim inf."" It is shown that fT(x; y) is always lower
semicontinuous and sublinear in ¥, in particular convex. If fisconvex, f7(x;e)
is just the Ls.c. hull of the dircctional derivative function f'(x;+). If f is Lip-
schitzian around x, f1(x; ») reduces to Clarke’s derivative f°(x; v). The latter
fact is generalized to a large class of functions, said to be ‘‘dircctionally
Lipschitzian" at x, through a broadened definition of f2(x; v); these functions
have the important property that o(—f)(x) = — Of(x).

The subderivatives /" (x; ¥) thus furnish, by the duality between sublinear
functions and convex sets, a new approach to Of(x) that covers the general
nonconvex case in a more analytic manner and without appealing to the exis-
tence of a norm. This approach makes possible an extension of rules like (1.2)
Lo cases where the functions are neither convex nor locally Lipschitzian,
although the details will not be given here (see [507).

The results in this paper are thus aimed ultimately at applications to diverse
problems of optimization, finite-dimensional and infinite-dimensional, fol-
lowing the now-familiar pattern for subgradients in the convex case (cf. [45],
[51], 52], (53], for example). As far as nonconvex (nonsmooth) problems are
concerncd, very important progress in this direction has been made by Clarke
in mathematical programming [10] and optimal control and the calculus of
variations |6, (8], [117, [12], [13], [14], [157, [16], [17], (18], [19] ({or a recent
survey of the subject see [20]). Hiriart-Urruty's substantial thesis [26] has
included the first applications 1o nonconvex stochastic programming problems,
as well as results in basic mathematical programming [28], [29], and the study
of marginal functions [30] {an excellent term he has coined for functions f which
express Lthe oprimal value in some optimization problem as a function of param-
eters on which the problem depends). Generalized gradients of certain noncon-
vex marginal functions have also been studied by Gauvin [23] and Aubin/
Clarke [2]. Applications of Clarke's concepts to algorithms for nonconvex
optimization have been explored by Feuer [21], [22], Goldstein [25], Chaney/
Goldstein [57 and Mifflin [39], 40]. Thesc concepts are also put to use in recent
work of Ioffe on the stability of solution sets [32], [33], and general optimality
conditions |34], [35], [36].

2. Limit coneepts. Throughout this paper, the topology of the linear space
£ is assumed to be locally convex and separated (Ilausdorff). The definition
of upper and lower subderivatives of functions on £ will depend on a new limit
notion for functions ¢(s, ¥) of s © Sandy £ E, where Sisany topological space.
As geometric motivation for this notion, we begin by recalling Hausdorff's
definition [25, p. 147] of the “lim inf” of a sequence of sets, or more generally
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of a multifunction in terms of its argument (see also Berg 3, Chapter VI ). We
denote by 4 (s),. 1 {3) the collection of all neighborhoods of «, ¥, cte.

Let T be any multifunction from S to L. {Thus for cach s £ S, T'(s) is some
subsget of E, possibly emptv.) The set

(2.1) A(@) = limini I'(s")

consists by definition of all v & £ such that

VY e V(AU c A&,V =T YN IE) =0
IZquivalently,
(2.2) A Niverm Yrewe Mer [T 4+ 17,

Note that A(s) would not be affected it I'(s”) were replaced by clT(s") for all
s’ in which event T would be closed-valued. A closed-valued mulafunction T
is said 1o be lower semicontinons if A(s) = T(s) for all s.

Recall next that the epigraph of a function g 70— R\ ) 420} iz the set

epig = {{y.8) = EX R3 = gy}l

and this is closed if and only if g is lower semicontinuous on /¢

ely) = liminf,y_, ¢ (') = supregon inf ey g¢v') forall 4.

Consider now an arbitrary extended-real-valued function g on S X £. We
shall be interested in the expression “'lim sup inf" defined as follows:
(2.8)  Kis;v) = litn supyoyinfe oy glsh 4')
A supye i ez sUpe zs inf, o £057, 3).

In terms of sequences (when the topologies on § and £ can so be described ),
this expression can also be characterized as

sUpP sy vinfiy o 800 se), 136} ), where 8({sel, {3:}) = limsup; . g(s5 32),

where the infimumt is over the collection of all sequences converging to y, and
the supremum is over the collection of all sequences converging to s,

PROPOSITION 1. For euch 5 = S, let T(x) denote the subset of I X R which is
the epigraph of the function ¥ — g(s. ¥), and fet A(s} be the lindt set in (2.1).
Then A(s) is the epigraph of ihe funcltion v — his, v} in (2.3), and hence in
particular (s, ¥) 15 lower semicontinuous in .

Proof. Tt suthees in £ X R to consider neighborhoods of product form. Thus,
o say that (v, 3) £ A(s) Is to say that
VYA (), We> 0,30 £ (s), Vs £ 1,
IO, BYE[VX (B —eaB8+ lNT(),

where the final condition means simply that there exists ' £ 1 such that
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g{s" vy < 8 4+ e Therefore (v, 3) & A(s) if and only if
VY A (y), e > 0,307 £.4(s) such that
SUPepinfrer g (33 £ 8+ -

FFrom this it is easy to see that A(s) consists of the pairs (v, 3) such that
3 = his, v), which was the fact to be proved.

Remark 1. It follows from Proposition 1 that /i would not be affected if ¢
were replaced by its lower semicontinuous hull in the v argument. (This would
be equivalent to replacing I'(s) by its closure.)

Remark 2. The reader should nort fall into the trap of thinking that when A is
defined by (2.1), then A is itself lower semicontinuous, A\ (.ouutcrcxample is
furnished below. Correspondingly in view of Proposition 1, it docs not follov
from (2.3} that & has the semiconunuity property

Fip t

(24)  lmsup, o, inf,. k(S 2 = ks v,

One's first reaction to this state of affairs might be to reject the definition
of lim inf T and to try to substitute for it another which does have the lacking
property. As a matter of fact, it can be shown there does exist a maximal
multifunction & C T that is lower semicontinuous {(given by the union of the
graphs of the Ls.c. mulitfunctions C I'), and presumably thisis what one reallv
ought to define as lim inf T. The trouble is that A is hard ta describe more con-
cretely. In particular, no formula is known which expresses the graph of A in
terms of limits (of some sort) involving clements of the graph of 1. The implica-
tion for the epigraph setring is that, while there is indeed a natural function #
which could be substituted for & and would be the least function majerizing ¢
and having property (2.4}, one does not know how to express I in some rela-
Lively simple fashion analogous to (2.3). Without such an expression, it would
be difficult to work with % in applications. We therefore turn our backs on the
templation of such an approach.

Counterexemple. Let T be the multifunction from R 1o R? defined by
il

—

([0, 0), 21]  (line segment) if s = I,
T{s) = ¢ (0,0, r1 1 ‘Y] i 1i(k4+1) = 5| w1k (R=1,2,...),
0,0), 1,00 if =0

Then T{s) is a nonempty closed convex set for each s ¢ R. One has
Ay =1(0,0) s =178 (B =1,2,...0, but Als) = I'(s) atherwise. Thus

liminf, o A(s") = [{0,0)} = A(0),
and A 1s not lower semicontinuous at s = 0.

Remark 3. 1t is uscful and natural to extend the mixed limit notation bevond
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the "“lim sup inf"" in (2.3}, Thus

{2.5)  liminfo_ o sup, , g0, 3) = infye 0 SUPG ooy Iif o g SUpyrer g8, v,

(2.6) limesupy ;supy . g(s,2") = infyepuinfre e SUpees SUPyerg05, ),

and similarly “lim inf inf." Obviously “lim sup sup" is the same as “lim sup'’
with respeet o {7, 2') — (5, 4, but sometimes, as will be seen in § 5, there s
advantage typographically in writing the limit in this way, In the context of
Propesition 1, “lim inf inf" would correspond to taking the lim sup” of the
epigraph multifunction I', i.c., to closing 'l'e graph of T. (If T{s) is taken
instead to be the hy povrq} oh of _i-’, (s,7), the "lim inf" and “lim sup™ operations
for T correspond to “lim inf sup'” and “lim sup sup” for ¢.) From this it is an
casy and unambiguous step to mixed limits involving ¢ mf and “sup” any

number of times in any order, for instance,

lim sup.e . sup. . infy Ly supy L g8, v/ v, 270,
3. Tangent cones. For any set € C E and any v ¢ C, the fangent cone
fo C ot x 18 defined to be the set
; Telx) = lminf 75C — &),
@y TN TRIRES ;

x —‘-C.}.'

r'I_-I
where the notation is used that
—ox =y =y withx £

The multifunction 7'y : ¥ — L' (x) is thus generated by the “'lim inf” opera-
ton (2.1) from the multifunction T defined on the topological space
S=CX|00) by

]'f_l-:j:(,' —x) If {0,

PEO=TE " iy

{Actually, Jf‘c is the restriction of the mrrcspcmdiuw A Lo the set of pairs (x,
withw © C,f = 0ifor t > 0, A coincides with T, i.e., T is always lower semicon-
tinuous, ) In terms of neighborhoods, (3.1) takcﬂ lhe form

N Sl .
g LeWw) = N O 0O FHC-s)+T]

in other words, y £ T4 (x) if and only if for every symmetric T % A0 there
exist X ¢ A (x) and » > 0 such that

! 2
|

2 dy + ) meets Clorall o' € Cv X5 € (0, 3.

An equivalent description in terms of convergence of (generalized) scquences
is that Te(x) consists of the vectors ¥ such that whenever x, —eoxand i [0
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there exists v, — v with 3, + &, © C. Inaidentally, it 1 casy o sce that the

right side of (3.2} is unaffected if C 1s replaced by ¢l C, and therefore

(3.3)  Toelx) = Telx)foralla £ ¢l C

p

In particular, there is no harm in speaking of £'o(x) as defined by {3.1) even
for points & © ¢! Cwith & ¢ (.

The tangent cone has not previously been recognized as coming from a
“lim inf" or defined for general spaces E. Thibault [53] in the context of separ-

scquential form of the present

able Banach spaces used as a starting point the
definition, which in the case of R* lmd been known to be equivalent to Clarke's
definition (cf. [7, Proposition 3.7]). Hirlart-Urruty has veriied in [27, Theorem 1]
that the cquivalence extends o all cases when Clarke's approach is applicable,
namely when 79 1s normable, Tu follows that in such cases o(x) 18 a closed
convex cone containing the origin, since these properties are immediate from
the original version of Clarke's definition. In [49, Theorem 1], we have demon-
strated these properties of T'p{x) by a direct argument based on (3.2} this
argument is presented in werms of £ = R” buc actually carries over a general £
with little more than a broadening of notation,

TruroreM 1. For wny sef ( C Eand anyx £ O, Toix) is o ﬂ*'o“r-’rf CONTER CONe
in E containing 0. If C s convex, To(x) cotncides with the closed fangeni cone o

Cat x in the sense of convex analysis.

Proof. The first assertion follows iy the argument of [49, Theorem 17, as ]
explairwd. For the sccond assertion, recall first that ¢77(C — &) Is neonin-
creasing in 7 > 0 when C iz convex, g0 that (3.2} reduces to

(3.4) Tolx) = Mivepm WUsso Uz Mecemy WHC —x") 4+ T

Un the other hand, the closed tangent cone in the sense of convex analvsis is

|‘35} cl \_J)\}g \_1"(, — .',".'-:] = ) s :,\—L,C — .\'-) - 17

P

To prove equality between (3.4 and (
fixed 17 2. 47(0) and » > 0 that

wd

A7), it is enough to demonstrate for

(3.0}  Usxerw Necenx NVHC =) + 17T = MHC —x) + 17
Since E is locally convex, it can be supposed that T74s convex as well as open
and svmmetric. Trivially, the inclusion C holds in (3.6},
tratc on  the opposite inequality. For arbitrary 8
Xe = (x 4+ M1} 18 a neighborhood of ¥ such that

fE Xg=aly — ) 4 (1 — )]

B0 We IMay COoHcern-
< (0, 1), the set

Then one has
Nrecnxg NHE — &) + V]
Miwrze m vg AHC — ) 4 M x — 2+ 1]
OO —x)+~ (1 =) T,
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Since thisis true forall £ (0, 1) and 17 is open, we obtain the desired conclu-
sion that O haolds in (3.6).

4. Subderivatives. Let [ be any extended-real-valued function on E, and
let  be any point where f is finite. Using the notation
£1) &, a)|x e W )= (& f(x) withe' = f(x),
we define the upper subderivaiive of  at x with respect to v by

Ja' i) ~a

(4.2) f'{x;y) = limsup inf ;
(Fhe') e paw {
tln
or in other words by the “lim sup inf" operation (2,3) in the case of the space
S = {epif) ¥ [0, %) and the function

‘A Y i P J [f'ix’ T -#:-\"’) - C“"j:"‘!f it (> 0,
4.3) elx o, £ = o S g

al the point (x, fix), 0, ¥). If f happens to be lower semicontinuous at x, the

definition can be expressed in the slightly simpler form

5 S St ; T A — Fl

i44)  f T(_:\";j-'} = lim sup inf ‘Ai'f—*\'—l i
FARA

where

(45) & —yrxex—x and flx') — f(x).

Thus in the latrer case one has the charactlerization

(VY e M), 8 >83XC Ax), 6> 0, 0 >0,
(4.6) filoy) 8 (VEE 0N, 22X with f&) = Sy + 48,
(dy" ¢ ¥ with fl'+8') = fie') —8.

Fy

Of course if {is continuans al x, it suffices 1o have © — & in (4.4, and the
conditions in (4.6] involving § can be dropped.

For the statement of the main result about #7(x; v}, we recall that an
extended-real-valued function ! on It is subfineqr i it is convex, positively
homogeneous (satisfies I{\y) = M{y) for all ¥ £ £ and » > 0), and is not
dentically 4. These properties hold if and only if epi/isa nonempty convex
conc in £ X R.

We recall also that the one-sided directional derivative

@T)  Fley) = limg (Fle 4 ty) — F0))/t

exists for all 9 when f is convex (although it may be infinite). Convexity implies
that the difference quotient in ({4.7) is nondecreasing in ¢ > 0, and that
F(x; o) is sublincar with respect to 4.
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TuroreEM 2. The function y — [1(x; y) is sublinear and lower semicontinuous,
and tts epigraph is the lungent cone Ty (x, f{x)). If 1 is convex, then

(4.8)  fl(w;p) = liminf, ,f'(x;9) forall v ¢ E,

und an fact f1(v; ) = f'(x;y) for any y such that f is bounded above in o neigh-
borhood of x + Ny for some N > 0.
LProof. For cach (x, o', t) the epigraph of the function g{x’, &, £, ) in (4.3)
is the set
} ”oplﬂ — (&) i t>0,
lEXR ift=0.
Since f s obtained from g by “lim sup inf,” we have from Proposition 1 that
!
J1 (o ) 1 a lower semicontinuous function whose epigraph is

1-/ f .l' \.'.)

!

lim inf T'{(x', o
(e a'il e
oo

B = Ty (2, F(x)).

The latter is a convex cone by Theorem 1, g0 [T(x;+) is sublinecar. In the case of
feonvex, Ty 4w, Flx)) is by Theorem 1 the same as the closed tangent cone

to epi f at (x, f{x)) in the sense of convex analysis, i.e., the set
el U o i3 (epi /) — (0, 7(&))] = clepi f(x;],

and this cquality is expressed by (4.8). If for some v there exist ¥ £.47(y),
A> Oand e € Rsuch that f{x + M) £ a for all ¥ £ ¥, then

Flery) £ [fx + 2 — FEOIN £ [a— fa)]/n forally’ ¢ V.

Thus the convex function §'(x;+) is bounded above in a neighborhood of
hence continuous at v, and the "lim inf” in {4.8) is superfluous. This finishe
the proof of Theorem 2.

1
€S

Theorem 1 can be recovered fram Theorem 2 as the case where [1s the indica-
tor funection

49)  Yolx) =

because then

. ; J 0ify & Tolx),
1.10)  Yolxiy) = BT oo g
(4.10)  olx;y) leo ify 7 Ta(x)

Another observation of some interest concerns the lower semicontinuous hull

@I1) el* flx] = Yiminfs 0y
Namely,
(412) (P N ) = Filxy) if fis Ls.c. at x.

This is the version of (3.3) that holds for tangent cones to epigraphs.



266 R. T. ROCKAFELLAR

Of course, the geometric proof of sublinearity in Theorem 2, hased on
Theorem 1, could be translated into a direct argument,

Parallel to the above, we define the lower subderivative of [ at x with respect
oy by

A . 3 fla' +67) — &
4.13) Fflx;v) = lfm in[ sup ——— :—) i
(atilrr won 3

oy ¥

using the notation
i e )Ty & (&) = (o fix) with & = f(x").
If iz upper semicontinuous at x, this reduces to

Tl —z}') — fx")

(4.14) __f”l(x;y) = 11 inf sup

I

ooy

The obrvious analog of Theorem 1 holds for 7~ (x; 3) and concave funcuons.

The relationship between #+and [T is noutrivial and will be addressed in the
16Xt section.

5. Lipschitzian and directionally Lipschitzian functions. 1t will now
be shown that in many of the most important cases both upper and lower
subderivatives can be reduced essentially to the simpler expressi

- 5 (R
)= lim sup:
rtat)lsy

ln

RV CY

p]

which will be called the generalized C-'-".:f,"k" derivative of faf x with respect o v,

(It iz still assumed, of course, that f is an extended-real-valued function on t
which is finite at x.) If s Ls.c. at x, the formula becomes
£ . Fior
S Flx" + i) — fia")
5.2y fPlery) =lims 11 3)_, !
s &

and if { is actually continuous at x the convergence &' —; x can be simplitied
to " — x. The latter version of the formula is the one introduced by Clarke
[6], [7]. [8]. who employved it only for locally Lipschitzian funclions on normed
spaces.

In the gencral case, § is said to be Lipschiizinn arouwnd x if there 1s a neigh-
borhood of x on which f is finite and satisfies, for some continuous seminorm p
on 2 and constant g = 0, the inequality
(5.3)  |fla") — fla')] £ wple” — ) forall »f, «”

(If /2 is a normed space, p can always be taken to be the norm In question. )
If f is Lipschitzian around each point of a set C, it is said o be locally Lipschil-
zian on C. Obviously f is continuous on a neighborhood of x if it is Lipschitzian
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around x, so that formula (5.2) is applicable (with &’ — «} and vields via (3.3
the inequality

FPleyy) < pp(y) forall vy € E

Locally Lipschitzian functions an general spaces have been wreated in these
terms by Lebourg |3n"
We shall sav t that F s directionally Lipschilzian ol x wilh respect fo o vector v
if (/s inite at & and)
- ! r
(3.4) lim sup ‘~11p Sl L et

L.* a')ly
Lo

/
&

a condition which can be simphiied when fis Ls.c. at x 10

flx' 4+ ') — fix')

(3.5)  limsup %L*p : - Sl a7
T v '

An easy fact to verify, and whiclh gives rise to this terminology, is that f is
Lipschitzian around x if and only if it is dircctionally Llpqr‘u‘rmfm at x with
respect Lo ¥ = 0. Accordingly, we shall say [ is directionndiy Lipschitzinn at x
if there is at least one v, not necessarily 0, such that [ 1s d]l‘CCE.lOI]dH ; T.ipsch-EL-
zian at x with respect to .

The geometric approach to this concept and 1ts implications for the deriva-
tives °(x; v) lies wich the hyperfangent cone He(x) toaset € ata pointx £ .
This consists of the vectors 3 such that there exist X £ A47(x) and X > 0 with

(3.7) 2+ s forall &€ CMX and 0 {0, M)

Expanding somewhat on the termunology in [49], we shall say that ¢
is epi-Lipschitzivn ai x with respect to v if property (3.7) holds simultaneously
1. When C s closed and + = 0, this

as the epigraph of a I,lp:(‘.h:l.z‘.laﬂ

for all 4" in some neighborhood 1 £.47(
means that C can be represented local
function (cf. 149, § 4]).

b

¥
lv

THEOREM 3. For uny exlended-real-v
s

ted funciton T oon E and any ponl x
where [ s _.*m'e_. the funciion v — f ) Ay sublinear, IT f is divectionally
Lipschiizian at x, then so 15 —F, and one has

(5.8) floiy) = — i =) = liminf,., ;") for every v £ E.

In this cuse the veciors v with vespect lo which [ is divectionally Lipschilzinn at x
are those belonging fo

3.9 dnt{ylf e ) < ol

ind et eacl such v the funciion 7°(x;-) is coniinnons wilh

(3.10) FTlesy) = —f' s —y) =
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Before proving Theorem 3, we state two cONSCUEnces.

CoroLLARY L. If f 1s Lipschilz

Gndie, sublinenr and confinuons wilh

-

fan cronnd k. then the funclion v — Pl a0 i

(xi3) = —f s —y) = [Pl y) forally £ E,

CorROLLARY 2. For any sef C C I and any s = C, ihe hyperlungeni cone
Helx) to Cat xis a convex cone contuining O, 17 C s epi-Lipschitzic
vespect to some v, then (he vectors & wiih this prope frrecisely these belonging
foint Halx), () = el ITpo(x). If an wddilion x is a boundary
point of C, then the seif O = (ENC) W dwt as flkewise epi-Lapschiizian af x, and

o) = =10 (),

HaL X Wil

dnd one i

Corollary 1 is the case where [ 1s dirccuonally Lipschitzian at s with respect
toevery v = E, The assertion in Corollary 1 about (7(x;-) Leing finite, sublinear
and continuous when [ iz Lipschitzian is not new; cf. [6], 7], (8] and [37.
Corallary 2 iz obtained by taking /1o be the indicator ~ in (4.9,

Proof of Theorewr 3. We begin by demonstrating that the theorem can be
derived in turn by applving Corollary 2 1o € = epi f at {x, f{x)), so that a
direct proof of Corollary 2 will suffice.

The hvpertangent cone H., {x, [(x]) consists of the vectors (v, 3) in
£ % R such that there exist X 2.7, 8 > Qand » > 0 with

(5,12} (&fe') £ (v, 8) Coepi ) forall (&, a") £ epif, £ (0, 0),
with x" 0 X, o —Jx) =34,
From this and the definition (5.1) of [ 1t 1s readily scen that
(3.13)  Playa) =infig © Ry, 8) & Has olx, Flx)01,
He Lo, i) D 4y, 8) ¢ B X RUP ey v) < gl

According to Corollary 2, Hep v [(x)) is a nonempty convex cone, hence
sois epi f{x;-) by (2.13), and this means that ®{x;+) iz a sublincar function.
In similar fashion, one sees that the vectors (v, #) with respect to which

epi f s epi-Lipschitzian are those satisfying

5! (% "‘J " e‘:‘
(5.14)  lim sup &11}1 ——--!-j ——————— < 8.
|\."' a’ P i b
L)

Corollarv 2 tells us that when the ser of such vectors {v, 8) 1s nonempty, it
coincides with the interior of 7Ty (v, flx)). Thisis by (5.13) the same as the
interior of epi /%(x;-]1, e, the set of (v, 8) ¢ £ X R such that %(x;) is
bounded above by 3 on a neighborhood of v, Since (2] 1s a convex function,
it is continuous atr every point of the set

(3.15) int{y’ fP(xa") < oo,
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if it s bounded above in a neighborhood of one point. Of course, y satisfies

{(5.14} for some 3 if and only if § is directionally Lipschitzian at x with respect
to 4. Therefore, such vectors m any exist) are the ones belonging to (5.13),
and at each such v one has

We turn now 1o (3.8), which must be derived from Corollary 2 under the
assumption that epi [ is epi-Lipschitzian at (x, fix)). The epigraph of the
function

y— lim inf,. .,

1 We alua.r] lknow from Theorem
j '1“)J. and by the same token the

Eaie fhus the epigraph of the
where F = (£ X Ri%{epi i)

is by the above the closure of Hoy Ax,

1 that epi {T{x; ) coincides with Loy of

hypograph hvp ~{x; ) comeaides with Ty
—v) iy —Trix,

function v — —
{recall (3.3)), and (5.8) is the equation

ek,

I.vm 74X _‘il () 1= = & ¥ '::.\'. __." [T-"‘-‘-:‘J ] = cl Hem . ':.'_-‘\‘-: _-’I‘ ':I_:\T\J ),

which follows from Corollary 2. Obviously (3.8) and the continuity of °0x; -}
on the set (3.13) imply that the latier set is the same as the one in (3.9}, and

with this observation we have covercd all the assertions of Theorem 3.

We are left now with (the task of proving Corollary 2 directly. Clearly 77 (x)
contains () and is closed under multiplication by posiuve scalars. Tf v, and 3.
belong to He(x) there exist X, ¢ 47w} and A, > 0 such that
(5.18) x4+ 4y 0 € forall 2 COY X, (0 (0,8) 4=1,2).
Choose X 2.47(x) and & > 0 small enongh that X C X, & < »; and
(3.17) X + v CX. forall £ (0, %),

Then for " ¢ CM XN and i £ (0, &) one hasx" + v £ O Xs by (3.16) and
(3.17], so that {x" — fw) + fve = C by (5.16). Thus

C forall a € M, 2 (0,0,

(3.18) & = v, + 22)

and it follows that H.(x) 1s a convex cone.

Lot K denote the set of all ¥ with respect to which € is epi-Lipschitzian at «,
and assume K # @. It is trivial that &K s an open set Ct‘)ﬂraiﬂing all positive
multiples of its elements, and that & C He(x) C Telx). To prove that

K =int Helx) and Tole) = cl MTalx),

it will be cnough to prove int I'o(x) C K (because Teo(x) 1s convex
by Theorem 1),
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The inclusion int I';(x) C K can be established bv verifying
(5.19) K 4+ T'.{x) C K,

for if the latter holds and v £ int I'¢{x), then for arbitrary ys £ K there exisls

A> Owithy — Ay £ int Tela); since also My € Kand My + (v — M) = v,

it follows from (3.19) that y & K.

Lety, € Kandas € Telx). Inorder Lo verify (5.19), we must demonstrate
that v + y: ¢ K, ie., that there exist 7. 47(0), X £.4(x) and x > 0
such that

(5.20) (CMX)+Hy+ v+ T CC forall 0 (0,7

Since v, £ K, we know there exist 17 £.47(0), X £.4{x) and A, > 0 such
that

(5.21) (CM Xy +in+ 1) CC forall ¢ £ (0, M)
Select 17 < . A47(0) small enough that
(5.22) T+TVCV, and x4+ V4 iy — V) C Xy foral £¢ [0, 1]
Since 45 £ Lo (x), we have from (3,2) the existence of X, 2.4 (x) and X > 0
such that
(0.23) e EHC =2y 4+ 1] forall '€ CMVA, tE (0, ).
Now let
(5,24 X =X, (2 4+ 17, A = min {Ag, A, 11,
We claim that (5,20} holds, as desired.

Indeed, suppose ' £ CM X, ¢t £ (0, &), Then (5.23) is applicable, so there
exists ¢ |7 such that vo — ¢ £ i=1{C — x'), ar in other words

o + tys —w) & C

FLII'E]'IEI'H'J.OI‘E‘,

ity =) O (e ) il = 1) C X

by (5.24) and (5.22). Then (3.21) and the first condivon in (5.22} imply
CO¥ +ty—e) +tlyn+ 1) D& + iy + 3+ 1),
and this verifies (3.20),
The only thing remaining is the assertion of Corollary 2 about  when x is a

boundary point of €. Suppose v is a vector with respect to which C is epi-Lip-
schitzian at x: there exist ¥ £ .4 (y), X 2. 4(x), » > 0 such that

(5.25) & +t¥ CC forall xC CNX, t€ (0,1\).
Choose open ¥’/ £ A (y), X' £ A (x) and M ¢ (0, A) such that
(5.26) V' C VY and X —tV’ CX forall & (0,V).
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Then
(5.27) & — V' C ' forall &2 C"MVE, 12 (0, M),

for if not there would exist " £ "MV X" and ¢ £ (0, ¥') such that &' — ¥’
contains a point " 2 C'. In this event we would have » £ X by (5.26) and
5" £ C; furthermore ' £ (x" 4 t¥') M ', The latter implies " +{Y' 7 C,
because the set x" 4+ ¢V is open and the only point of (' notin Cis x, which is
a boundary point of €. This contradicts (5.23), since ' ¢ CNX, V C ¥V
and £ C (0, \) C (0, A). Thus (5.27) is true, and since — ¥’ £ 47 (—y) we
conclude that €' is epi-Lipschitzian at x with respect to —y.

This argument can be reversed to show that in fact ' is epi-Lipschitzian at
% with respect to —y if and only if C is epi-Lipschitzian at x with respect to .
Applying to (7 the part of Corollary 2 alrcady proved for ¢, we obtain
int Helw) = —int Ho{x) # 0 and T (x) = ¢l Hoo(x). Moreover Hoe(x) is
convex, like H.(x), so

cl He(x) = cllint He(2)) = —cl{int He(x)) = —cl Hpo(x).
Therefore —T ¢ (x) = cl Ho(x) = Tylx), and the proof of Theorem 3 is

finished.

6. Criteria for directionally Lipschitzian behavior., As a complement
to Theorem 3, we now furnish several conditions guaranteeing that f is Lip-
schitzian or directionally Lipschitzian at x.

Prorvositiox 2. Suppose that E is finile-dimensional, and ihat T is lower
semicontinuons in u neighborhood of x and finite ai x. Then f is directionally
Lipschitzion ai x 1 und only if the set

6.1) D) =lycE

fMxia) <o

is mot included in some hyperplane of I, Furlhermore, f is Lipschitzian around x
if and only if D(x) = E.

Proof. Since the conclusion involves only local propertics of f at x, we can
replace f by its Ls.c, hull ¢l *f if necessary and thereby reduce to the case where
fis Ls.c. on all of E. Then cpi f is a closed set in £ X R, We have shown in
|49, Theorems 2, 3] that a closed set € in a finite-dimensional space is epi-Lip-
schitzian with respect (o ¥ at a point x if and only if 3 € int T (x). According
to the proof of Theerem 3, f is directionally Lipschitzian at x with respect to v
if and only if epi f is epi-Lipschitzian at (x, f(x)) with respect to (v, 8) for some
& = R, and the latter condition is therefore equivalent to

(6.2) (v, 8) £ intepi [T (x; ),

because epi fT(x;-) is the cone Ty (x, f(x)) (Theorem 2). Since fMx:)isa
sublincar function (Theorem 2), the set Dix) is a convex cone. Since £ is
finite-dimensional, (6.2) is equivalent to y £ int D(x) and ey <3
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44, § 6]. A convex set in a fnite-dimensional gpace has nonempty interior if
and only if it is not included in some hyperplane.

Of course, f is actually Lipschitzian around x if and only if § is directionally
Lipschitzian with respect to ¥ = 0. Since D(x) iz a cone, the condition
0 € int D(x) is equivalent to D(x) = L,

Prorosttiox 3. Suppose [ 1s convex on E and finile at x. Then | s divectionally

Lipschitzian af x if and only if there is an open su F\f of Fon which 115 bounded
uhove.

More specifically, | is divecHonally Lipschitsiun ut x with vespect lo v if and onlv

if {15 bounded above on « neighborhood of x + Ny for some N > O In purticular,
f1s Lipschitzion wround x of and only if f ts bounded whove on a neight

L

horliood of x.

g

Proof. This 1s just the epigraph version of the assertion that a convex set ¢
is epi-L lp"—“Chlflid.Il at a point x £ C relative to ¢ if and only if x — d ¢ int
for some » > 0. In this guomelrJL assertion, the necessity of Lhe condition is
trivial. For the sufficiency, suppose x + MMy + 17 C €, where A > 0 and
1" ¢.A4(0). Choose U ¢.4(0) such that A1 - U C 17 Thenx' € (x + U7
implies

Ay - U) Cod My 20U+ U Ca+ay+ 10 CC
Since C is convex, it follows that

¥ty + U CC forall & CMy e+ U), £ (0,0
Therefore ¢ 1s epi-Lipschitzian at x with respect to 4.

CoroLLARY. The assertions in Proposition 3 hold for | concuve, instend. of
convex, 1f “bounded wbove” is repluced by Vbownded below," and y isveplaced
by —an

Proof. Apply Proposition 3 to —f and invoke Theorem 3.

Prorosttiox 4. Suppoese [ 1s nondecreasing wiih vespect fo the purlial ordering
induced on E by a nonempiy closed convex cone K : f(x') =
Ifint K = @and fis fin

Fla™) when x' S5 "

te at x, then [ is directionally Lipschitzian at x with

(6.3)  Flilxiy) 20 forall v €0,

LProof. Suppose —y £ int K. Then there exists ¥V ¢ A4 () such that
— Y C K. Forally £ Vandt = 0, one has —iv' ¢ K, so thatx’ + 3 =5 «'
for all ¥, Therefore

(fla" 4+ 0" = fl&'N 20 forall v &V, & CE wz(,

and consequently

it ! ’
i flx' +iy) —w
lim sup sup- el
(2 a'lef e ywlay {
Lo

B

=0.
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In pdltl( ular, f is directionally Lipschitzian at x wirh respect to v,
and fT(x; v) £ 0. Since this holds for arbitrary « belong"m' to —int K, and
since the functlon FT{x;-) is Le.c. (Theorem 2), we conclude that [T{x;v) = 0

for every v belonging to the closure of —int K, which is just — K hecause K
1z convex and closed.

ProrosirioN 5. Suppese there
X and ¥ £ E, f(x') 15 finile and the one-sided deri
Sitppose c'.-'Fao thit the Tunction (87, v) — | s ) 15 bounded on a neighborhiood

i J \ . . A

of (x, 0). Then f is Lipschitzian around x. If in addition lhe Function

e f{xty ) exists

!

& = J1{a' ¥) 1 continnous at x for each v € E {and fintic ol &), then the function

v — {8 ) s Hnear and contiinious and

fe ) - fe)

forall v £ FE.

Fixe: g e v) forally ¢ E.

g ¢

I this event f'{x;0) = fPlagy

~
I
I

Proof. By hypothesis there exist convex X' £.4(x), V - A4() and g > 0

such that [ is finite on X7 and

(6.3)  JMa'ey 2 p forall & £X, ye T

Choose X, €.47(x), ¥y A4{y), such that X, C X, ¥, CV and

_’.-. + ¥y C X' Then for " £ Xy, v £ ¥, we have o L for all

£ 10, 1] (by the convexity of X)), so that the function ¢(f) fla' + iv) is

1 t differentiable on [0, 1] with right derivative ' (x' - fvia) = p, Since a

] t differentiable function is the integral of its r1glu derivative (cf. |54, p.
LI

it follows that ¢(¢) — ¢{0) = ¢t forall ¢ £ (0, 1). Thus

|fle' +ty) —fle)]/t = p forall © € Xy, v 2 ¥, ic¢ (0, 1).
Therelore f iz Lipschitzian around z.
If in addition ['{; ¥) is continuous at ¥, there exists for any e > 0 a neigh-
borhood X (y, €) of x on which § is finite and satisfies
Sley) —e 2 S/w) 2 i)+ ¢ forall &' 2 X(y, e

By an integration argument like the one just given, we obtain that for x'

sutheiently near x and for { > 0 sufficiently small,

f s y) — el SFO7+1y) — ) S/ (x5 9) + €.

This being true for arbitrary e > 0, we have (6.4), at least in terms of the limit
in " —x and {]0, with 3" = y. The limit in »" — ¥ can be added harmlessly,
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because f1s Lipschitzian around x. In particular, {(6.4) implies

Fla’ 4 iy — 7))

Flx;a) = limsup* : 3 = [Plx;w),

J'.f Far b
i ) — Flx Y . )
Fixyy) = lim ,nf - "‘.‘ ¥) = —f°(x; —3)
4-{\-\{{{ 3

But f°{x;+) is a continuous sublinear function by Corellary 1 of Theorem 3, o
these two equations imply f'(x;+) is continuous and linear. Thev also vield the
last cquation in Proposition 3 by way of the same corollary.

7. Normal vectors and subgradients. Since the tangent cone 1'¢(x) to a
seL C C Eatapointx £ Cizanonempty closed convex cone (Theorem 17, itis

polar to a certain nonempty weak®-closed convex cone Ne(x) in the dual
space E*:

=g £ EF Oy,
P e

=0 forall ¥ £ Telx)
J

v,z =0 forall z 2 Npolx)

[
e
pees

Ii

The set N (x) is defined 10 be the normal cone {o C uf x.

If € is convex. this definition of normal cone agrees with the one in convex
analysis, hecause Te(x) 15 the same as the tangent cone in convex analysis
{(Theorem 1) then

(7.2)  Ne(w) = {z € E¥{

¥ —xr 20 forall xf 2 Cf.

If Eisa normed space, N (x) is identical to Clarke's normal cone, even though
he defined it quite differently, because 7'+ (x) is identical to the tangent cone
he introduced o such spaces {as cited in § 3), and his normal and tangent cones
were polar to each other.

The duality between tangents and normals can be extended by Theorem 2
into a duality between subderivatives and subgradients. There are only two
possibilitics for a sublinear function 7 on 2 which is lower semicontinuous:

(1) (proper case}: {{y) > — = forall v, {0} = 0;
(11} {improper case): {{v) = £ forall v, {{0) = —=.

In the improper case there is little 10 be said, except that the set
fv| {(y) = — o0 is a closed convex cone. The proper case, however, charac-
terizes the support functions of the nonempty weak*-closed conwvex scts in
E* (cf. [31]): ! is of this type if and only if there is a nonempty weak*-closed
convex set ¢ C FE* such that

(7.3)  Ly) =sup {{y,2)

This set is unique and is determined from / by

(74) G =52 E* {yv,zy £ I{y) forall 3 El
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Obviously G consists of a single element 5 if and only if I is lincar, i.e., has the
additional property that {{v) = —I{—y) for all ¥; then I(y) = {y, z). Further-
more, (7 is a bounded nenempty sct if and only if [ is finite on all of E; then G
is wealk*-compact and the “sup' in (7.3) can be strengthened to "'max.”

Bearing this in mind, we define the set of subgradients of a function f at a
point & {where f is finite) by

(7.5) Of(x) = {2 ¢ I* (v, 2) £ Ffilx;y) forall £ L}
Theorem 2 then gives the following result.

THROREM 4. Let | be any exiended-real-valued function on E, and let x be any
point where f 15 fintte. Then Of (x) is o weak*-closed convex subset of E* and
(7.6)  df(x) = {s C £¥|(e, —=1) € Ney sl SN},

If f1(x;0) = —oo, then Of(x) is empty, bul otherwise Of (x) 15 nonempty and

s £ df(x)} forall v E E,

(1.7)  fHxiy) = sup {(, 2]

Praoof. Since the funciion I{y) = fT(x;+) is Lc.s. and sublinear by Theorem
2, all these facts except (7.6) arc immediate from the cited properties of such
functions. As for (7.6), we recall from Theorem 2 that the epigraph of fT(x; ) is
Lept oz, £(x)), and hence the normal cone Ny (%, /{x)) consists of the pairs
(z, v) £ E* ¥ R such that

(9,2 +F 8y <0 forall (v 8) £ epi [Tix;-)
[n particular, (z, —1) belongs to Ny (x, f{x}) if and only if
{(y,z0 28 forall (y,8) < EXR with 82 f{xi9),
and this means by definition (7.53) that = € 0f(x).

Cororrary 1. The subgradient set Of(x) consisis of ¢ single element z if and
ondy if — Fl(x; —y) = Mxa) for all v; then f1(x;v) = {v, 53 (This is true
in paritcular if § sulisfies the assumptions in Proposition 5.)

CoroLLARY 2. The subgradient set Of (x) 15 nonempty weak®-compact if and
only if f1{x; v) 4s findle for all v, in which event “sup’’ can be replaced by “max”
in (7.7). (Lhis is irue in particular if [ is Lipschitzian around x.)

The parenthetical commentin Corollary 2 is based on Corollary 1 of Theorem
3. More will be said about the Lipschitzian case in the next section,

THEOREM 5. If [ 45 a convex funciion on I, and x is a point where f 15 finite,
then OF (x) agrees with the subgradieni set in the sense of convex analysis:
(7.8) Of{x) = {2z & E* {y, 20 £ ["(x;v) forall y £ E}

=4z £ E¥flx'") = flx) + (& — x, 2} forall s’ € E}.
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Proof. The first equality is immediate from defimtion {7.5) and the assertion
in Theorem 2 that {4.8) holds in the convex case. The second equality 13 well
known in convex c'],ﬂd]_\_"." .d.ﬂ('l corresponds to the fact that the difference

uotient in (4.8) Is nondecreasing in ¢ > 0.

While Theorem 5 shows that the definiton of 8f{x) by (7.3} is in harmony
with the well established definition in the case where [ is convex, Theorem 4
has the same effect relative o Clarke's definition in the case where I 15 a
normed space (cf. |6, [7]. [8]). Clarke’s approach involves first defining sub-
gradients in a speclal way for locally Lipschntzian functions, applying this to
the distance funcrion assoclated with a set € to get a concept of the normal
cone Ne{x}, and finally using (7.6) as the definition of Of{x}; the tangent cone
Teolx)is rlcim:“d by Clarke as the polar of T.{x) (so that {7.1) holds), The net
result for Of(x) must be the same, thanks 1o ITirtart-Urruty's proof [33] that
Clarke's cone 1'p(x) can be described directly {when £ is normed) by the
sequential form of the present definition,

Of course, in the case of an indicator function ¢~ one has

(7.9} Melx) = Nelx) forall x £ C

8. Lower versus upper subgradients. The set d/{x) has been defined in
terms of fT{x; ), but the subderivatives [*{x: 4} are capable of an equal role,

When f is finite, we define

(81)  Off(x) = iz < E* {(y,2) = f-(x;y) forall v £ E}

Parallel to Theorem 4 we then have the fact that 9f(x) is a weak®-closed
convex subset of E* If 7 (x;2) = 20, then Of(x) Is empty; otherwise D* ()
is nonempty and

(8.2)  fHaxra) =infl v, 2z ¢ )l forall y £ F
The clements of 0/ (x) could be called "upper' subgradients, to distinguish
them from the “lower” subgradienis in Of{x). Burt it is clear that

(8.3)  Of(x) = —d(—F)(x),

g0 no really new concept s involved and a systematic insistence on “lower’”

and “upper" would be tedious. Comparing the sets in geometric terms by way
of (7.6) with

(84) F=cpif and F' = (F X R)\(epif)] WV {(x, f(x))i,
one has
(RA) Of(x) zi(z, —1) ¢ Ng(x, flx))

Af(x) = {7z, —1) £ —Np{x, fN}.

Tt is not necessarily true that O0{—f)(x) = — Of{x), and therefore Of(x)
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and Of(x) can sometimes be different sets, neither included in the other. This
somewhat unsatisfactory state of affairs has led Tliriart-Urruty ([26], [27]) to
introduce the symmetrized subgradient set Df(x) corresponding to the lower
semicontinuous sublinear function { on E for which

8.6)  epifl = Telx, fla)) M —=1p i flx))

(with F, /" as in (%.53)). This means that
(8.7)  Df(x) = {5
| ¢

Hy) = max{ fT{x;y), —f*(x; =¥}

o

Loy = Hy)y forall ¢ Ef, where

While 7 {and by implication Df(x)) does have a description of sorts in terms of
limits of “difference quotients” ofj_. it is a rather complicated one and hard to
work with, and this disadvantage must be weighed against the good effects
wrought by the property D{(—=/)(x) = —Df{x). Note from (8.5), (8.0), (8.7)
that if both df(x) and Of(x) are nonempty, then

Df(x) = cleo [df(x) \J f(x)].

It will now be demonstrated that the cascs where Of(x) and Of (x) arc hoth
nonempty, but different, must be regarded as somewhat pathological. For
most purposes, thercfore, a single concept of the subgradient set will suffice,

To state the result, we say that a nonempty weak*-closed convex set
Z C E* is nenusympiotic velative fo « veclor v = £ if for some 3 £ R the set
Y5 £ Z {y, 5y = 8} is nonempty and weak®-compact,

THEOREM 6, Lef & be a point where [ is not only findte but directionully Lipschit-
stan, Then

(8.8)  of(x) =

£ My ) forally & Ej,
(8.9)  sup iy )z ¢ )} = liminf,, P,

If f(x) # 0, then the “rﬂf-’ars‘ v with vespect to which Of (x) is nonasymptotic are
those with vespect to which fis direciionally Lipschiteiun ui x, and for each such y

(8.13) lx;v) = max { (v, 23 2 € Of(x)].

a

Proof, Formulas (%.8) and (2.9) are immediate from Theorem 3 and defi-
nitions (8.1} and (b" 71, For a nonempty weak®-closed convex set Z C E* and
its support function
(8.11) I{y) = sup | AR
it is known that Z 1s nonasymplot{c with respect to & (and hence “sup™ can
be replaced by “max’ in (8.11)) if and enly if ! is finite and continuous at v,
In the present case of Z = Of(x) and I(y) = fT(x; v}, these vectors ¥ are by
Theorem 3 the ones with respect to which [ is directionally Lipschitzian at «,
and for cach such one has fT{x;3) = P{x; 3).
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COROLLARY 1. If E is finite-dimensionul and Of(x) is nonempty and non-
asymptotic with respect to some vector v, then f is direciionally Lipschitzion al x
and the properties in the theorem hold,

Proof. This follows via Proposition 2 and the fact about the “nonasymptotic”
property that is cited in the preceding proof.

CoroLLARY 2. Suppose f is a concave function on E, and lel x be a point where |
i3 finite. In general one hus

Of(x) = jz &€ L% f(x') £ flx) + (&' — x,2) for wllx’ £ E},

but 1f f s bounded Dbelow on some nonempty open sef, i s also trie hat
Of (x) = df(x) and

FE

fi(x;y) = liminfs, —"(¢; —3) forall y £ E.
(If f i5 nol bounded below on any monempty open set, then of(x) =

end fT{x;y) = —o0 Jor all v.)

Proof. Apply Proposition 3 and Theorem 3 to —/. The validity of the final
assertion is seen from the fact that cliepi f) = % X R under this assumption,
50 that

epi fT(x;) = T #lx, f(x)) = EXR
by (3.3).
CORDLLARY 3. Suppose f is nondecreasing with respeci lo the pariial ordering
on E induced by a closed convex cone K with nonempty inlerior. Let

Vit =

CE* {y5y 2 0forally ¢ K| (dual nonnegutive cone),

Then at each point x wheve f is finite, one hus
Of(x) = Of(x) C K*.

Proof, This follows from Proposition 4.
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