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Chapter 20

Lagrange Multipliers and Variational
Inequalities

R. T Rockafellar

1. INTRODUCTION

Variational inequalities have been used to characterize the solutions to many
problems involving partial differential equations with unilateral constraints.
The complementarity problem in mathematical programming concerns a
special type of variational inequality in finite dimensions that has been the
focus of important algorithmic developments. General variational inequalities
can be reduced to this special type through discretization and the introduc-
tion of Lagrange multipliers, and this provides an approach to computation.

Other approaches are suggested by analogies with convex programming.
Many variational inequalities actually express the condition for the minimum
of a convex functional relative to a certain convex set which, in the course
of ‘discretization’, is represented by a finite system of convex (or linear)
inequalities. A broader class of variational inequalities, covering perhaps the
majority of applications, is obtained by replacing the gradient mapping as-
sociated with the convex minimand by a mapping that is ‘monotone’ in the
general sense due to Minty. To the extent that algorithms for convex pro-
gramming can be formulated entirely in terms of the gradient of the mini-
mand, rather than the minimand itself (including such numerical consider-
ations as stopping criteria), one can get computational procedures for vari-
ational inequalities that may offer advantages in some cases over comple-
mentarity.

For example, penalty methods have been used in the solution of vari-
ational inequalilies, since they reduce a constrained problem to a sequence
of ‘unconstrained’ problems to which classical numerical techniques can be
applied. Nowadays in mathematical programming, penalty methods in pure
form are in disrepute because of their inherent numerical instabilities. They
have been supplanted by methods that are based on augmented Lagrangian
functions and include varying Lagrange multiplier values (dual variables)
as well as penalty parameters.
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Some efforts have been made to apply such penalty-duality methods’
to variational inequalities, but only, it seems, in the case ol equality con-
straints, and even then in terms of what is analogous to exact minimization
in each unconstrained problem. For greater effectiveness, it is important to
have procedures that are capable of handling inequality constraints and can
be shown to converge under more practical criteria (tolerance levels for
cerlain accessible quantities).

The purpose of this chapter, besides explaining some of the background
to such matters, is to draw attention to a new penalty-duality mcthod
that has been designed with these requirements in mind. It converts a vari-
ational inequality for a monotone mapping (and a convex set defined by a
finite system of differentiable convex constraint functions) into a sequence
of unconstrained subproblems, in each of which one calculates an ‘approxi-
mate’ root of a non-linear equation for a certain strongly monotone mapping.
The overall convergence rate is generically linear, with a ratio that approaches
zero as the penalty parameter is increased and therefore yields superlinear
convergence if the penalty parameter goes to infinity. From the close parallel
with earlier methods, which are known to be highly effective in non-lincar
programming but do not carry over so easily in their formulation to general
variational inequalities, one can hope for very good results. However, the
verdict must await more testing. It is also clear that for applications to vari-
ational inequalities it would be helpful to incorporate additional features and
flexibility beyond what has seemed possible within the present theoretical
framework.

2. THE GENERAL PROBLEM

Let K be a non-empty closed convex set in a real Hilbert space V (finite
or infinite-dimensional), and let A : V - V be a mapping (single-valued)
that may be linear or non-inear. The variational inequality problem for
K A and an element ae¥ is to determine an element u satisfying the
conditions

() ue kK )
(A(u)-a,v-uy> 0 forallve K
Here ¢+, » ) denotes the inner product in V.

If K is all of V, (1) reduces to the equation A(u)=a. More generally
it expresses a normality condition very familiar to everyone who has studied
optimization theory. The normal cone to K at a point u consists by defi-
nition of all the normal vectors to half-spaces that support K at u:
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5 ;
(2) Notwy=qweovr-wa 0 forall re K|

].h_l.\i 15 4 closed convex cone conlaining the origin, and in terms of it we
write (1) in the form

(3 we Kooand a- A e N (i)
If there is a differentiable function / on ¥ whose gradient mapping satisfies
(4) A -a=VHy) VYrel

the t-_'ii.l‘llllit‘!ll:l| inequality expresses the fundamental first-order necessary
condition for 1« te be a local solution to the optimization problem

(5) minimize £y over all voe K

I'he condition is suflicient for global optimality when F is convex. Note that
when A is llmcar. the existence of I* satisfying (4) is equivalent to 4 being
symmelric, in which event one has

(6) I'(r) = : CA(v), 1 +{a v ) +constant

Ar.l impln.rtzml concept in this context is that of monotonicity in the sense
of Minty. The mapping A is tmonotone il
(7 (A -A(),v-m >0 ¥y, ¥y

and strongly monotone (with modulus a > 0) if

(8) CAW) =AY, v-vyo allv-v|® M ¥

IT A is lincar, the expression on the left reduces to
(A(r-p), v-m=L{A(r-v),v-7)

where A, = ' (4 + 4% is the symmetric part of 4. Monotonicily then means
that A is positive semidefinite, while strong monotonicity corresponds It;n
positive definiteness (these terms being employed whether or not A4 is iiself
symmetric).

[f Fis a functional such that (4) holds (with A not necessarily linear), the
monotonicity condition (7) can be written as

(VE(r+2)-vH0), 2y > 0 Wz, ¥y
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It is not difficult te show that this is true if and only il £ is convex. Thus
the optimization problems (5), where a diffentiable convex function is mini
mized over a convex set, correspond to a special class of variational inequa-
lities where A is monotone. However, not every variational inequality with
A monotone can be interpreted in this way, since, for example, if Ais
linear, but not symmetric, a gradient representation (4) is impossible. 1t will
be seen below that variational inequalities, where the mapping is monotone
and not the gradient of any functional, can nevertheless give the oplimality
conditions for some minimization problems ol convex type, when Lagrange
multipliers are brought into the picture. No one knows whether by some
extension of these ideas, all ‘monotone’ variational inequalities can be inter-
preted as arising from ‘optimization’. What is clear, though, is that monotone
mappings not of gradient type do arise in a number of ways, in particular in
certain physical problems involving friction.

In applications to partial differential equations, V is usually a space of
real-valued functions, such as a Sobolev space defined on a region £ in RY.
The mapping A represents a differential operator, and K incorporates va-
rious boundary conditions. Functional analytic considerations are then
crucial, for instance in making sure that V. K, and A are well chosen for the
problem one has in mind. The theory of distributions is used in studying
the existence ol weak and strong solutions, the regularity of solitions and
other aspects. These aspects are important in the discussion of schemes of
discretization, but for someone in mathematical programming who is intere-
sted mainly in solving problems that are already discretized, they are nol
essential.

Incidentally, if variational inequalities are viewed in the form (3), there
is a very natural generalization to the -ase where K is non-convex: inter-
pret Nk (u) as the normal cone in the sense of Clarke [1] (sce also Rocka-
fellar [2, 3)). Clarke’s work with the calculus of variations (for example,
[4,5]) and mathematical programming [6] indicates that first-order necessa-
ry conditions for many non-convex problems of optimization can be written
as variational inequalities in this sense. As far as the theory of variational
inequalities is concerned, such generalizations have not yel been explored.
Most of the existing results are based on the consequences of convexily
and the monotonicity idea.

3. DISCRETIZATION

For the purpose of computation, a variational inequality (1) is often “ap-
proximated’ by one involving a finite constraint system in a finite-dimen-
sional space. Thus K is replaced by a set K, that lies in a finite-dimensional
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subspace Py of Foand has the form
q C = £
(9) Ko ={ve Vo Fiiny< 0,0 (v)< 0}

where each .!-,- is a [inite convex function on V. (Equality constraints for
affine functions are also permissible but will be kept out of the discussion

Icmpnrunly for notational simplicity.) The variational inequality is reduced
accordingly lo

(10) e N,
(A -, v-1) = 0 forall ve K,

[us condition really depends only on the orthogonal projections of A(u)
and g on ¥, . I I

(11 Ay ) = proj A(u) g = proja

We therctfore gcl_ another variational incquality which is entirely in V),
]n.m:cly the one for K, the mapping A, : ¥V, = ¥y, and the ¢element a, € V.
n terms of normal cones, we have discretized condition (3) to obtain

(12) we Ky and  ay - Ag(u) e Ny (1)

In the gradient case (4), the projection step (11) in this procedure

amollmts to restricting the functional £ to V,. Denoting the restriction
by Iy, one has ' .

(13) "1;){1’}'“., -t v!'.r]“f') Yoe l‘f”

winjrcl hu‘_ pradient s taken in the sense of the space Vi . The corresponding
optimization problem (5} is thereby discretized to

i mininuze Fotr) overall ve Vy

satisfying Fm<0,.. . F,(v)<0

[t s important to recall that when A s monotone, the functional /4 is
convex, and hence I, too is convex. The discretized problem then falls iuh.;
the classical pattern ol convex progranuning, ‘
_()plimizatinn problems and their extensions typically involve not onl
thlal variables, but also dual variables that lend themselves to inlen)ret:-
tion as Lagrange multipliers associated with various constraints. This is why
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a process of discretization (in the sense used in this context mulll_umat-
ical programmers are accustomed to speaking of discretization Un!y_ in the
extreme case where all ‘continuous’ structure is abandoned) must aim at a
finite system of constraint functions, as well as a primal space thal is finite-
dimensional. . ' = 5
Dual variables in the case of (12) arise in representing the 1|m||_1_‘|] cone
Ng (u). Let us assume that 7, ..., Iy, are nol only convex but differentia-
o
ble and that

(15) Jrel, with F(r)< 0, F,(») <0

Then as is well known, Ng, (1) for a point ue K, is the convex co’m: (con-
taining 0) generated by the gradients VFi(u) ol the active constraints al u
(i. e. those having Fi(1¢)=0 rather than Fi(u) < 0). In other words,
mn

) Ny = ) ViV EL) sy 0,500 =0
(16) \'rj\., (u) ‘ IZ_‘_' i i)
The variational inequality (12) then can be rewritten as a condition in both
weVgand y=0v, , ..., ym)eR™:

Fiuy< 0 v;i= 0 and pifiue)=0  for i=1,...m
(17) i _
Ag ) -ay + L Vi VE(u)=0

i=1

In the gradient case (13) these are known as the Kulm-’l'uckc.r t‘U!l(]iliOll.s
for problem (14), and they play an enormous role in compututlnnal.te‘uhnk
ques. The conclusion we wish to emphasize is that mionotone variational
inequalities, after discretization, correspond to an eﬁfiend.ed form of !hc‘
classical optimality conditions for convex programming, in the sense of
involving a monotone term A, (#)-a, that does not have to !u: the gr:fahenl
of anything. One can attempt to generalize methods for selving (17) in the
case of

Agluty-ay = VI (1)

to this broader framework. Since monotone m;lppings‘havc many pﬂ‘\»\"cfll..ll
properties that seem to place them within the realm of cf)nyex a:.mlysns,_lll is
natural therefore to regard the solution of monotone variational inequalities
as a kind of ‘extended convex programming’. o ' _
When equality constraints are of interest (the fm.mtmns in qucs::‘on I}P:lllg
affine), one can, of course, express an equation Fi{u)=0 by a pair of ine-
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qualities £ )« 0 and - ity < 0 at least for the sake of theoretical unifor
mity. A familiar refinement of assumption (15) can then be invoked in
passing to the representation (17): strict inequality can be relaxed 1o weak
inequality for each constraint function that is affinc.

4. COMPLEMENTARITY

Many situations lead to the following model. Given a mapping M : [RY - R4
and vector ¢ € RY | determine z ¢ IRY such that

(18) 220 M) +g=0  z-[Mz)1q]=0

This is the complementarity problem for M and q. The notation z » 0 means
that z belongs to the non-negative orthant IR*'}’. Thusin terms ofz = (z, vnZy )
and M(z) +q=w= (w,,...wy ), the condition says that

foreach  j=1__. N, onchas zj=20, w;j20
(19)

and either =0 or wy=0

Another version of the condition can be stated in terms of the normal
cones associated with 1RQ'_'. Observing that

;"\';H'N (2)={-w:w=x0, z-w=0) lor z= 0
we see that (18) is the same as
(20) zeRY and -¢-M(z)e Ny (2)

The complementarity problem is thus simply the variational inequality
problem for K = lR’:‘r_ Its simple form has lent itself to the development of
a number ol algorithms, mainly for linear mappings M (see other chapters
in this volume). Again in this context the monotonicity of the mapping
plays an important role.

Not so obvious is the fact (hal every monotone variational inequality in
the discretized form above can be reformulated as a monotone complemenla-
rity problem. Thus the special case is not so special after all,

To demonstrate the truth of this assertion, let us first look at a some-
what simpler, but very common case where Ko c IRj (the space V', being
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identitfied now notationally with IR" ). Specifically, let us suppose that in
the constraints in (9) one hasm=n+p and for v=(¥, ,..,Vn)

) Py =- i=1,..,n1
}PH(:) v; for j

Then in terms of

(21) GoY= (F ) o, Fp ()

and P=(y s Yp b V=00 s Ym ), one can write (17) as
7>0 G@<0 y-Gu)=0

(22) u>0 v>0 y-u=0
F
Ag(u)-2o0 * Z PiVF{u)=-y
i=1

Setting g=(-a,.0) and ;

(23) M(u, ) =(Aﬂ(u}+ Zl P VFiu), - G{u}}

we get (22) into the complementarity form
(24) (,9)> 0 Mup)tg>0 (t,7) (Mu,7)+ql =0

For the general case of (17) the reformulation a;acomplcmenlarilly
problem is similar but requires some elemt?nmry lnckz.; Wl.ﬂ! know‘n‘jn
optimization theory. The equation must be written as a pair of ',II'IEi.]llullllt:S,
and the vector « must be expressed as the difference of vectors u" and &~ that
are constrained to be non-negative. Thus one sets g ={-do. do, 0) and

(25) M(u*,u, y) = (HW -u", y), SHu -u7, ), -G -u))

where

(26) Glu) = (Fy (@) ..., B ()

27 Hu,y)=Aa(u) + Z vi V()
i=1

and this puts (17) in the form

(28) 720 M@y+q>0 z-[M@z)+tql=0 for z=(u' u,y)
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‘Pmpt:vsifi(m !

If the mapping A, in the expanded variational inequality (17) is monotone
and continuous (and each F; is convex), then the mapping M in the cor-
responding complementarity problem (28) (or (24)) is monotone and
conlinuous relative to the non-negative orthant. However, M cannot be
strongly monotone (even if 4, is strongly monotone), when the constraint
system (9) is non-vacuous.

To prove the first assertion, with M given by (25), we observe that the
form

[M(z ) ‘51(7)] ] {Z -7) for z =(u’.u_,y), =i, )
reduces to
(29) 1HGe,p)-H(, 7)) - [u-u] - [Gu) - G@@)] [y- v =

= | Ag(u)- Ag ()] - [u-u] +
lﬂ\
+ Z [ VEW ) - ; VE(@)) (u - ) + (- ViU () - Fiia)) ]
=
whercu=u' -1 and u=u'-f . If 4, is monotone, we have

(Ao () -Ag@)] - [u-u] > 0
On the other hand, the convexity of each / yields
O VE(u) - 7 VEOD Y- i)+ (- i Fi(u) - Fi(i) > 0
through combination of the two inequalities
ViFiuys ylia) + y; Vi) (u-1)
yiFiity> yiFi(u) + y; VF{(u)-(a-u)

(Non-negativity ol y; and y; is needed here.) The expression in (29) is then
non-negative (when y > 0, ¥ > 0), and the monotonicity of M with respect
to the non-negative orthant, when A, is monotone, is established. The con-
tinuity of M follows from the continuity of A, and the fact that a differen-
tiable convex function I is always continuously differentiable. Strong
monolonicity is impossible because (19) vanishes when #=u but y+y.

Incidentally, it can also be proved that a mapping M of form (25) (or
(23)) cannot be the gradient of any function, even if A, is of gradient type.
Thus, through the process of reformulation using Lagrange multipliers, we
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see that monotone mappings that are not strongly {1101101011@ nor of grfuiieu‘t
type have an essential role to play in the theory. Even when we start ”}:m a
problem of optimization, we may be led‘to a cpmplcmen‘tanty‘[}ro em,
and hence a particular kind of variational inequality, involving such a map-

ping.

5. LINEARITY VERSUS NON-LINEARITY

At the present stage of development, most of the tcu]miquus for so]vfng
the complementarity problem, at least the ones that IIllg]l(. take. ad\:tln—
tage of monotonicity or other such structure rather than just :ecl‘uujng
everything to the location of a general fixed point, f:om:crn only.lht. .T-se
of a linear mapping. The following clemen.ta.ry fact is therefore L‘I:I]l‘l'c'l lm
any discussion of solving variational inequalities by way of such techniques.

Proposition 2 . ‘ " ‘
If 50 in the expanded ‘discretized’ variational inequality (17) is linear d.nd
each F; is affine, then M is linear in the corresponding complementarity
problem (28) (or 24)). The converse is also true.

Of course, in discretizing a general variational ipc(]ugl.ily .(]), we obtain
A, as a restriction and projection of 4, so A, is.lmcarhlf A is. On the othﬁ‘r
hand, the closed convex set K is the intersection of all tI]e clos;(:q halt-
spaces containing it, so in principle we may .regarfj K as (}etlned h{y‘ a f)cts;
sibly infinite system of linear inequalities. Discretization could be achievec
by passing to a finite-dimensional subsy.isten.a. . o -

Thus in a certain sense, the infinite-dimensional vanat.lonal inequality
problems that can be approximated by linear cmnplfanwnt'anFy problems can
be identified simply as the ones in which the mapping A. is lu.war._ln lhf: op-
timization context, they are the ones that correspond to infinite-dimensional

: ic/linear programming.
qufl"‘:lr:tllifliar corinplimcntari%y approach to computatio'n could .bc .pusht::d a
bit further in considering a scheme in which a nor?—]m'eur A is |I.2T|Bur!;{,cd
iteratively to get subproblems that fall within the gmdellmes just faid down.
However, no such scheme has been shown to be attractive for cgnvex pro-
gramming, until recently, and then in forms that may not readily extend
to general variational inequalities. N ‘ . ‘

Many important variational inequalities do u?volvg Imu?ar I’ll(}n()l('JT%L
mappings and constraints which in passing t{}‘a ﬁmtc—dmw:.]snmal subsﬁptu,e
V, (based on a triangularization of the doma.m £l over wh_scb the .fllnt.tltﬂp
space V is defined) do reduce neatly to finite systems of linear inequali-
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" ties. Lest one take this sort of behaviour for granted, though, it is well to
look at a classical case where the constraints cannot be handled in such a
simple fashion. This will also illustrate how there may be an advantage in
using convex (non-linear) inequalities in the discretization process, although
the original variational inequality appears to be just ‘linear’.

A good example is the potential problem studied by Stampacchia in the
early days of the theory of variational inequalities. In this problem there is
a bounded open domain §2 in IRY and a nonempty closed set EC §2. The
Sobolev space H; () serves as V, while K consists of the closure of the set
of “test functions’ ( C ™ functions) v in H} (2) that satisfy

v{x) = 0 forall xeQ\E
vix) > 1 forall xe K

(30)

Note that (30) has the appearance of an infinite system of linear inequal-
ities indexed by £ and Q\ E:

50 <0 forall xe E

(31)

f7r) < 0 forall xeQ\E
where
(32) i =1-vx) [H¥=-vx)

The trouble is that the functionals ff and f; are not continuous or even
defined everywhere on V = H; ($2) . Indeed, the elements v of this space are
really just equivalence classes of functions that differ only on a set of measure
zero. Evaluation at a point x therefore does not make sense unless an equiv-
alence class can be identified with a distinguished member that is continuous,
say (or in the case of the ‘test functions’, infinitely differentiable).

An idea that might at first look tempting in this situation would be to
represent the constraint by an abstract inequality in a partially ordered space.
Thus if f} (9) is given the natural ordering induced by the cone of func-

tions that are non-negative almost everywhere, one could hope to write (30)
as

(33) T

where Xgp is the characteristic function of £. But Xg does not belong to the
space /i (1), so this formulation falls short. In any event, like the preceding
formulation, it fails to take into account the fact that X is merely the closure
of the set of rest functions satisfying the constraints.

The lack of continuity of the functionals (32) also bodes ill for schemes
of discretization where the infinite system (31) is replaced by a finite sub-
system. Although the finite-dimensional subspace ¥, that is chosen may be
such that these functionals are well defined, there is little to guarantee that
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the discretized problem really ‘approximates’ the given one.
One way around the impasse is to forgo the linearity of the constraint
representation. For ‘test functions’ v in H’", (£2), define

Fo(v)=max {1-v(x):xekE}

(34)
F(v) = max {-»(x):xec®[Q\E])

(see equations (32)). Then define G : Hy (2)> IR U { + « } by

G()= limint [max {F,(¢"), F,(v")}]
e 4
where the limit is taken over all ‘test function’ sequences converging to v in
the norm topology of H; (£2). The set we are interested in is, by definition,

K= {(veH(R):G(»)< 0}

Note that G is a lower semi-continuous convex functional. On certain sub-
spaces V,, in particular those whose elements are all test functions, it will
be true that

(35) G(v) = max (F, (v), F,(v)}
with F, and F, still well defined by (34). Then
(36) KnV,={velVo :F,(»)<0,F(»)< 0}

Taking the latter to be K,, we have a discretization where the constrainl
system is expressed by a pair of finite convex functions. As a means of ap-
proximate the original problem, this approach is much more stable,

Obviously the convex functions F; and F, will not usually be differen-
tiable on V, , but this need not be a serious obstacle. In the theory of convex
programming, much attention has recently been given to non-differentiable
functions. In part, this is due precisely to their role in reformulating problems
that might otherwise involve more constraints than may be handled con-
veniently at one time. A kind of ‘aggregation of dual variables’ is involved.
If the infinite system (31) were approximated by a large finite subsystem,
there would be a correspondingly large number of Lagrange multipliers that
would havg to be kept track of. In the representation (36) there are only two
multipliers. In evaluating I, or F, or one of their subgradients at a point v,
as may be required by an algorithm, we need only invoke a subroutine for
solving the maximization problems in x that are embedded in the formulas
(34). Thus, in effect, we can generate, as we go along, the affine functions
fi¥ or f¥ that turn out to be important, rather than having to treat all of
them individually.
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6. GENERALIZATION TO MULTIFU NCTIONS

If non-differentiable functions are to be treated, the gradient mappings
that appear in (l?)I(and (13)) must be replaced by something more general.
For a convex functional ¥ : ¥ + Ru { + =} it will be recalled that the set
of subgradients of F at v is

(37) W) = {weV:F(r')s F(v) + (w,p'- n, ¥r'ely

The multifunction 3 & associates, in other words, with each v e V g certain
clqscd convex (possibly empty) set in V. (For the appropriate definition of
a/" when F is not convex, sce [1,3].)

The cgnncclion_ between convexity and monotonicily remains strong
!.mds.:r this generalization. A multifunction (set-valued mapping) T : V3 ¥V
is said to be monorone if

(38) (W-w,v-v)>0 forall v,v in ¥V and

all weT(v),we T'(¥)
It is maximal monotone if, in addition, there does not exist any monotone
multifunction 7' : ¥V 3 V with T'(v) > T(») for all v and T'(v)# T(v) for
at least one p.
’ Moreau [ 7] proved in the Hilbert space case that 3 is maximal monotone
if Fis a convex function on ¥ that is lower semicontinuous and not ident-
ically + oo, (For the generalization to Banach spaces and the precise char-
ac‘teﬁzalion of the class of maximal monotone multifunctions that are ob-
tained in this fashion, see Rockafellar [8]).

The general variational inequality (1) in the case of a mudtifunction A
takes the form

(39) we K we A(u)
W-a, v-ud< 0 forall vek

or in other words
4m ueK and aed(u)+ Nx (1)

The complementarity problem for a multifunction M has (18) replaced by

41) z2>0 w0 z.w=0 weM(z) + ¢

so that the condition is

(42) ~qeM(z) + NN (2)
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In the reformulations discussed earlier, (17) becomes

Fi)< 0 pi>0 and y;Fitu)=0 for i=1,...,m

(43) o
ay € Ag (1) +Z i aF(u)
=1

while in the definition (25) of M one takes

L2
(44) H(u,y)= A {1t yioF(w)
=1

instead of (27).

Proposition 3

Suppose A, is maximal in (43) (and each I is convex), and that (15) holds
for an element v such that 4,(v) # @ . Then the multifunction M in the
corresponding complementarity problem (defined by (25)and (44)) is maxi-
mal monotone.

Proof- This follows from results in [9] when the sum of two maximal
monotone mappings is again maximal monotone — for the argument, see
[10, proposition 5].

The assumption about (15) holding with A, (v) # @ can be replaced by the
following. There exists ve K, N int D(4,) such that F;(»v) < 0 for all non-
affine functions F;, where D(A4,) is the set of points where 4, is non-
empty-valued. This modification is needed in treating the case of equality
constraints.

The connection between Proposition 3 and Proposition 2 is this: a mono-
tone mapping 4 : V- V that is weakly continuous relative to each line
segment in V¥ is maxiii.| monotone when viewed as a multifunction. Fur-
thermore, if A: V3 V is a maximal monotone multifunction and V, N int
D (A)# @, then the projection A, : ¥y = V, is maximal monotone. This is
a consequence of [9, theorem 1].)

Whether the exiended problems in terms of multifunctions can be solved
effectively, remains a largely unexplored question. But in view of the trend
in convex programming, there is certainly hope in this direction.

7. PENALTY-DUALITY METHODS

Variational inequality problems that occur in applications are very often

Lagrange Multiplicrs and Vartational Inequalities 317

generalizations of classical boundary-value problems for partial differential

equations. Therefore, it is very natural to look for ways of solving them in
terms of reducing them lo a succession of classical problems for which
numerical tchniques are already highly developed. Sometimes this can be
accomplished by the introduction of penalties to force the satisfaction of
constraints. However, there now appears to be a possibility of using more
sophisticated methods based on ideas of recent years in non-linear pro-
gramming.

To see these ideas in their original and simplest form, let us consider
first the case of a non-linear programming problem with equality constraints:

(45) minimize Fy(v) subjectto F,(v}=0,.., F,(¥)=0

The augmented Lagrangian funclion for this problem is

m

@0)  Lvy.r)= Lo+ ) [y Fim+ 5 FB)?]
i=1

where r is a non-negative variable that serves as a penalty parameter.
A fundamental class of penalty-duality algorithms can be described as
follows. At iteration k we have a vector p* = (3% .. _]an) in IR and a value

re » 0. We determine u**! as an ‘approximate’ solution to the (uncon-
strained!) problem
47) minimize L(v‘yk,rk) over all v

Then, by means of some rule thal may involve information gleaned during
this process, we generate y* ! and r, ., and repeat the step. The aim is
to pet a sequence {u*} that in some sense yields in the limit an optimal
solution to the constrained problem (15).

Taking y*= 0 and r, 7 e, we oblain the classical quadratic penalty
method. Pure duality methods have non-trivial sequences {y* }but r, = 0.
In 1968, Hestenes [11]and Powell [12] independently proposed the very
casy rule

(48) yErl = yk g Frtt )

The sequence {r; } was non-decreasing but did rot have to tend to infinity
in order to ensure that {u* } approached a solution e the constrained
problem. (Powell actually allowed a different value of ry for each £;.) This
was an important breakthrough, since faster convergence was demonstrated
than with pure penalty methods,and some of the intrinsic numerical instabi-
lity in the latter was sidestepped.

In the case of an inequality constraint F;(v)< 0 in (45), the expression
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yiFi)+ 5 Fy?

in the augmented Lagrangian should be replaced by
e - 2 r \ . Vi
yili) + :’2’ Fo v i Fiw)e -3
(49) 2 ‘ %
= _J' II !‘I'-(I})".‘.' - rl

2r

The corresponding form of rule (48) is
{50) yk+1 = max (0, 95+ )

For the theory of this case and a discussion of the criteria that can be used
in solving (47) ‘approximately’, see [13, 14, 15, l(’)].l'l'he theory makes
heavy use of properties of maximal monotone mulfifunctions. ‘

The Hestenes-Powell method has already been applied to certain var-
iational inequalities that correspond to boundary-value plff)blufns qf (convex)
oplimization type with equality constraints }?n]y; see (_-lowmskl,l’Mur_rocm
{171 and Mercier [18]. This work supposes u* * I to be an exact solutmn. Lo
(47) at each iteration. Of course, solving (47) exactly is equivalent to solving
a cerlain equation in ¥, namely

0=v, f,(v,_],"“,rkJ

(5 I ) "
= V00t L yilv, i ) V)
i=1
where
yitriiv) for equalitics
(52) Y;{l’.lj.",'f} :’ ) . .
max [0, y; + rF; ()} for inequalities

This could easily be generalized to variational inequalities nol of optimization
type by replacing the term TE, (v) by Ay (v) -dp-

Unfortunately, exact solution at each iteration cannot be obtained except
in very special cases. Yet the kind of criterion for ‘approxinm’tc' mini-
mization in (47) that has been used in proofs of global convergence is

LEtT, _rk, ry) < inf Lv,y*, b to,
1

and this has no analogue for variational inequalities not of optimization type.
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3. PROXIMAL METHOD OF MULTIPLIERS

We have proposed [10] a modified version of the Hestenes-Powell al-
gorithm that does carry over to generalized variational inequalities as repre-
sented in the form (17). There is no space here to explain the natural motiv-
ation; suffice it to say that the theory of maximal monolone multifunctions
15 deeply involved.

To apply the method one needs to specity a parameter value s > 0, and
positive sequences {r, Jand {g, }satistfying
(53) retr, < and L Fg oo oo

i
One also makes an ‘initial guess” (u®, ¥*) of the solution to (17). (In fact 1*
and »" can be chosen arbitrarily, for instance both zero). In iteration &, one
forms the mapping
m.

(54) T = sl_ (-tfy+ A, (0)-a, + L Y,'(_l-‘,_L".k, rOVE(r)

i=1
and looks for an approximate solution u** ! to the equation T.(v) =0

Specifically, 21 | js taken to be any vector satisfying

(55) | Tt P i< ﬁf max (1, 1@ Rt D@k yhy )
where
(50) I ey) i, =182 Nl + 1y 2 172

Then y*t 1 is defined by
(57) yk[_ 4 T Y, (f 1! ‘y:‘- ,rk) for i=1,....m

(Here Y, is given by (52); this formulation covers any mixture of equality
and inequality constraints. In the case of an equality constraint, the corre-
sponding conditions in the first line of (17) are replaced simply by Fi(u)=0.)

In problems of optimization type, the task of solving Tx () = 0 approx-
imately reduces to that of minimizing Liv. vk, r) 28 0w k2 ap-
proximately.

Theorem

{see [10]) If A, is a continuous monotone mapping and cach Fjis convex

and differentiable (or in the case of an equality constraint, afline), then the

mapping T, in each iteration is strongly monotone with modulus (1/s).
Assuming also that the expanded variational inequality {(17) has at least

one solution (u, 1), it will be true that
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(58) (TR RV
where (¢~ v™) is some particular solution (even though there may be more

than one solution!)
Moreover there is a constant g« [0, = | such that

(59) 1i1£1_3§::p ka 11—;1—1—‘ -I-.) M% > e < 9(% )
™y -G N
where
(gflf[l+(?ill]'h < | if gy oo ras e
a(%i)= S 0 il gy« oo p, =o
’_ 1 it gg=oo

If g, is finite, and more will be said about this in a moment, the last part
of the theorem guarantees linear convergence at a rate that can be con-
trolled by how high the penalty parameter values r, are allowed to go. The
case where r; / = yields superlinear convergence. This is much superior
to what would happen with a pure penaity method. In practice, the impro-
ved rate of convergence means that a satisfactory termination can be reached
before r, gets so high as to cause numerical instabilities. As s 7 o0, g, decrea-
ses to the constant that would appear in the corresponding convergence
rate formula for the Hestenes-Powell algorithm, in the case of convex pro-
gramming in RY. . _

If g, =<0, one still has global convergence (58) from any slarting pom_t
(u®, ¥°), but it is no longer possible to establish a linear rate. However, it
can be shown that this case is generically rare.

Proposition 4 ‘
Suppose Fi(y) = Gi(v) - b; for i = 1,...m. Then for almost every choice of
a4y € ¥V, (finite-dimensional) and b=(b,,....b;m ) € IR™ such that the yariational
inequality (17) has a solution,the corresponding constant g is finite.

This follows from a theorem of Mignot on the almost-everywhere differen-
tiability of a maximal monotone multifunction on the interior of ils effec-
tive domain in IR" . For the argument, see [10].

The choice of 5 in the proximal point algorithm is somewhat problemati-
cal. It 5 is too low, g, may be high, and the convergence ratio 8(ggfr.) will
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suffer. While this could be compensated for by choosing r, high, there might
be a price paid in numerical stability, After all, the whole point of the
augmented Lagrangian approach is to succeed without r; getting too high.
It would be an improvement if instead of a fixed value for 5 the argo-
rithm could be expressed in terms of a non-decreasing sequence §; 7 5., < =,
This would allow some control over the phenomenon, just as in the case
of the penalty parameter. Better still, in order to take account of second-
order information, the factor 1/s in the definition (54) of Ty might be generali-
zed to Sg' where S, is a positive definite matrix. The use of separate values
of ri in (57) for each constraint function, as proposed by Powell, could
also be restored. Undoubtedly such developments are possible and desirable,
but a significant enlargement of the theoretical apparatus (in terms of maxi-
mal monotone muliifunctions) would be required.

Another direction of generalization, as mentioned ecarlier, would be to
allow 4, to be a multifunction and F; to be non-differentiable. For this,
the existing theory carries over with w8 *1 = T, (u* * 1) replaced by an ele-
ment w8t 1 e T, (" 1) in (55) at each interation. But effective numerical

techniques would need to be developed for determining such w1 and
k+1
w .
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