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Abstract
The theory of subgradients of convex functions is recognized for its many
applications to optimization and differential equations (for example,
Hamiltonian systems, monotone operators). F. H. Clarke has extended
the theory to non-convex functions that are merely lower semicontinuous
and used it to derive necessary conditions for non-smooth, non-convex
problems in optimal control and mathematical programming. For locally
Lipschitzian functions, he has proved a number of rules for subgradient
caleulation that generalize the ones previously known for convex functions,
This paper extends such rules to non-convex functions that are not
necessarily locally Lipschitzian. The two main operations considered are
the addition of functions and the composition of a function with a
differentiable mapping. The theorems are strong enough to cover the
main results known in the convex case.

1. Introduction

Let £ be a linear topological space (with a locally convex Hausdorff
topology), and let f be an extended-real-valued function on E. At each
point & where f is finite, there is a weak*-closed convex (possibly empty)
subset df(x) of the dual space E* whose elements are called subgradients
(or generalized gradients) of f at .

If f is convex, &f(x) consists of all 2 € E* such that
(1) f@') = fle)+ @ —n,2) foralla' € E,
or, in other words,
(1.2) of(@) = {z| f—<*,%) has z as a global minimum point}.
This is the case for which the notion of subgradient was originally
developed. Rockafellar [11] gave the definition for B = R* and proved a
number of rules for calculating éf(x) when f is expressed in terms of other
‘unctions. In particular, he showed that

1.3) A +1o)(e) = ofs(x) + ofy(x)
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if f, and f, are both finite at 2 and there exists £ such that f;(%) < co an
f, is bounded above in a neighbourhood of # He also showed for a conve:
function g and linear transformation 4 (with adjoint 4*) that

(1.4) o(god)(x) = A*[69(4(s))]

if 7 is finite at 4 (z) < oo and there exists # such that g is bounded above o
a mneighbourhood of A(%). The proofs of these results in the infinite
dimensional case, where 4 must be continuous, were given in [12] an
[18], respectively; see also [14] for a general exposition.

For saddle functions, gemeralizations of (1.3) and (1.4) have bee
obtained by McLinden [10].

The definition of &f(x) was extended by Clarke [3,4] to arbitrary lowe
semicontinuous (ls.c.) functzons on E =R" by a three-stage methoc
First Clarke defined &8f(x) when f is Lipschitzian (finite and Lipschit
continuous) in a neighbourhood of 2 and expressed it by means of certai
gencralized directional derivatives (described below). Next he used th:
to define normal vectors to closed sets. Finally he defined &f(x) in th
general case in terms of normal vectors to the epigraph of f, but withov
furnishing a directional derivative characterization. Later he used th
directional derivatives in the Lipschitzian case as the basis of the definitio
of ¢f(z) when E is any normed space [5].

We have recently [15] supplied an alternative development of Clarke
ideas that includes a direct definition of gf(z) in terms of a still mor
general directional derivative function. This definition covers all tk
cases at once and does not require £ to be normed. It can be expresse
in the following manner, which brings out the natural relationship wit
the situation for convex functions and explains why the concept
especially relevant for optimization theory.

Let x be any point where f is finite (but not necessarily lower sem
continuous). We shall denote the set of all neighbourhoods of & by A4"(a
Let us say that y € E is a vector of approximately uniform descent for f at
(at a rate p > 0) if for every ¥ e A (y) there exist X € N(x), 8§ > 0, A >
such that

(1.5) forall i e (0, A) and o’ € X with f(z') < f(x)
there exists ¥’ € ¥ with f(a' +ty') max{ f(’b f(x)—S}—tp.

(If f is Ls.c. at 2, the ‘max’ term in (1. -J) can be replaced simply by f(z
while if f is u.s.c. at » the condition f(z') < f(z)+0 s superfluous.) Call z
substationary point of f if no such ¥ and (p > 0) exists. Then

(1.6)  &f(x)a{z € B*| f—{-,z) has x as a substationary point}.
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W he= 7 s convex, any substationary point must actually be a local (and
semes ziobal) minimum point, so that (1.6) reduces to (1.2). In the
I he set ¢f(x) is non-empty if and only if ¥ = 0 is not a vector
1 :tely uniform descent for f at z.
: 7 has a local minimum at %, then certainly « is a substationary point

Zowever, other extrema also lead to this condition. For example, if f is

“rectionally Lipschitzian® at # (a property developed in [15] that will
oi=y an important role below), it is known that &f(z) = —8(—f)(z), so if f
“=s 2 local maximum at x, then again x must be a substationary point.
=zcdle points of finite saddle functions also fit this criterion. Notationally,
=< course, (1.6) says that

x is substationary < 0 € df(x).

“e would like to be able to ‘calculate’ this condition into more explicit
“orms when f has particular structure, and this is one source of motivation

Such rules have heretofore not been extended to this general framework,
out besides the convex and saddle function cases already mentioned, and
toe obvious case of differentiable functions, some results are known for
‘ocally Lipschitzian functions on normed spaces. Clarke [5, Proposition 8]
has shown for such functions that the inclusion

1.8) 6(f1+/f2) (@) < 8fi(w) +ofo(2)
holds, and moreover with equality if f; and f, are both ‘regular’ at z. A
cally Lipschitzian function f is regular at = in Clarke’s sense if for all y
the one-sided directional derivative f'(x; y) exists and

(1.9) lim sup
“% :

(In particular, a convex function which is finite at 2 and bounded above
in a neighbourhood of « is Lipschitzian and regular at z in this sense.)
As for a generalization of (1.4), Clarke has proved in [6, §13] that

(1.10) igo F)(w) = A*[0g(F(x))]

if F is a continuously Giteaux differentiable mapping from a normed
space £ to another normed space B, having derivative 4 at x, and ¢ is a
ocally Lipschitzian function on E;. Equality holds if g is ‘regular’ at A (z).

The purpose of this paper is to extend these results to functions that are
not necessarily locally Lipschitzian or even locally finite, and to spaces
that are not necessarily normed. Furthermore, this will be accomplished
in such a way that the theorems quoted earlier for convex functions will be
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corollaries. The role of Clarke’s ‘regularity’ will be taken by a notion of
‘subdifferential regularity’. The interiority conditions that appear in the
convex case will be supplanted by the ‘directionally Lipschitzian’
property.

Since extended-real-valued functions are covered, the results can be
applied to the indicator functions of subsets of £ in order to obtain formulas
Tor normal cones. The case of a set defined by a system of inequalities is
given explicit treatment.

In the final section, an application is made to the characterization of a
relative minimum point, and a conclusion about subgradients is drawn
from Ekeland’s variational principle.

2. Subderivatives and directionally Lipschitzian functions

The subgradient sct gf(z) (at a point « where f is finite) corresponds to a
kind of directional derivative that for general functions has a complicated
description but can be reduced to simpler formulas in many important
cases (as explained in [15]). In expressing this for general functions, it is
expedient to use the notation

(2.1) (@', o) ;2 = (@) > (v,f(x)) inepif,
where
(2.2) epif = {(@',o') e Ex R| o > f(z')}.

The (upper) subderivative of f at x with respect to y is

£ s
(2.3) fHz; y) = limsup mffx +y) =
(o'’ ) v Y=y t
mffx +ty')— o
yvel 1

1)

Note that y is a vector of approximately uniform descent at z, as defined
in §1, if and only if f1(x; %) < 0. Definition (1.6) is equivalent to

(2.4) fle) = {z € B*| ft(z; y) = <y.zy forall y € E}.

Tt has been demonstrated [15, Theorems 2 and 4] that the function
FMx; y) is lower semicontinuous and sublinear (i.e. convex and positively
homogeneous, not +o0 at the origin). One has &f(x) = @ if and only if 0
is a vector of approximately uniform descent at z, in which case
f1(x; 0) = —co. Otherwise fT(x; 0) = 0 and

(2.5) sup{{y.2) | z € of (@)} = f1(x; »).

A sup [hm Qup{
¥ e (y) Lix uil bz
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As already mentioned, the limit (2.3) defining f1(2; ) can often be
reduced to something simpler (see [15]). But the facts just cited explain
why these subderivatives, whatever their description, must naturally
enter into any general study of subgradients. They also have a certain
geometric interpretation in terms of ‘tangent vectors’, and this will be
useful in several respects below.

For any set C < E and any point x € C, the (Clarke) tangent cone to C at
z is defined by

(2.6) To(x) = liminf t1(C —2")
x’tef!!l-'x
{40

AN U N [tYC—a)+ 1]
VeJ’lIJJXeMz}z Ei%r.ht

This is always a closed convex cone containing the origin (see [16, 15]). Its
polar

(2.7) Np(z) = {z € B*| <y, 2> < 0 for all y € Tp(2)}

is called the normal cone to C at . For the indicator function
(2.8) bo@) =0 a'el, Pol@)=+o0 ifa’éC,

one has

(29) Yiiy) =0 HyeTele) Pola;y) =+ ifyéTo),
(2.10) Bo() = Ne(@).

The fact that sets in E can be identified with their indicator functions, and
results about subgradients can thereby be specialized in some respects to
assertions about normal vectors, is crucial to our approach, especially for
applications to constrained optimization.

The fundamental relationship between tangent cones and subderivatives
is the following (see [15]). The epigraph

(211) epift(e; ) = {w.B) e ExR| B > f1(z; y)
coincides with the tangent cone 7, ; (x, f(«)), and consequently one has
(2.12) of() = {2 € B*| (2, — 1) € Nopyy(a fl@))).

One of the situations where a considerable simplification is possible in
analysing subderivatives is the case where there exists at least one y € £
such that

! AL ol
(2.13) llmsupM-— < 0.
(a0 Hl!:c ¢
eS8
Then we say f is directionally Lipschitzian at . In this event, as shown in
(15, Theorem 3], the set of all y satisfying (2.13) coincides with the open
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convex cone
(2.16) int{y € B| f1(z; y) < o0},

and for each y in this cone the limit (2.13) agrees with f1(x; y). For
convenience in applying the main results below, we list some of the
criteria for this case that have been established in [15].

Tueorem 1. FEach of the following implies that f is directionally
Lipschitzian at @ (a point where f is finite):

(a) fis Lipschitzian on a neighbourhood of x;

(b) [ is convex and bounded above on a neighbourhood of some point (not
necessarily x itself);

(¢) [is concave and bounded below on a neighbourhood of some point (not
necessarily w itself);

(d) fis non-decreasing with respect to the partial ordering of E induced by
some closed convex cone K with non-empty interior;

(e) fis the indicator of a set C that is epi-Lipschitzian at x;

(f) B =R~ fis lower semicontinuous on a neighbourhood of x, and the
cone {y| fl(x;y) <oc} is not included in any subspace of lower
dimension;

(g) £ =R*, fis lower semicontinuous on a neighbourhood of 2, and &f(z)
is non-empty and does not include an enlire line.

Case (a) implies that ¢f(z) is non-empty and the cone (2.16) is all of E.
It means that f(2’) is finite for all 2’ in some neighbourhood of 2, and

(2.17) lim supf———(x +tyt)—f(x ) < 00.
Zs

140
In Case (e), C is said to be epi-Lipschitzian at x if there exist X € A/ (),
A > 0, and a non-empty open set ¥ such that
(2.18) o' +ty' e C foralla’' eCnX,y' e¥,te(0,A)

(see [15, 16]).

3. Subdifferential regularity

The function f will be called subdifferentially regular at x if f is finite
at 2 and
(3.1) Iimin_ff-w_-—ty;—);fgx—) =ft(z;y) forally.

Wy
£40

When f'is the indicator of a set C (containing «), this means C is tangentially
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reqular at x in the sense that the contingent cone

(3.2) Kq(z) = ]inﬁsup 10 —xz)
40

= N N U [EH0-2)+T7]

Fed(0) A0 (0,4)

coincides with the tangent cone T,.(x) in (2.6). More generally, f is sub-
differentially regular at x if and only if epif is tangentially regular at
(z, f(x)). Indeed, the left-hand side of (3.1) defines the function of ¥ whose
epigraph is K ,;;(x, f(x)) while, as already noted, for the right-hand side
the epigraph is T,; (2, f()).

Recall that z is said to be the gradient of f at z in the Hadamard sense
if the functions

_ (x+iy)—f(x
(3.3) aly) = LEXZTE) _ ¢y

converge to 0 uniformly on all compact y-sets as £}, 0. (If E = R?, this is
plain ‘differentiability’; it differs from Fréchet differentiability when E is
infinite-dimensional in that the latter refers to bounded sets, rather than
compact sets.) Let us say that z is a lower semigradient of f at  (Hadamard
sense) if merely the functions min{g,, 0} converge in the manner prescribed.
When such a 2 exists, f may be said to be lower semidifferentiable at x
(Hadamard sense). This condition can be written

(3.4) F@') > (@) + <&’ — 2,25 +0(a’ —2)

The ‘Hadamard sense’ specifies for the infinite-dimensional case which of
several possible interpretations is to be given to (3.4). We shall also be
interested in lower semidifferentiability and lower semigradients z at «
in the full limit sense, by which we mean that the following condition is
satisfied

(3.5) lim rnﬁfw {y,zy forallye K.
=y
1o

Prorosition 1. If z is a lower semigradient of f at x in the full limit sense,
then the same holds in the Hadamard sense. Moreover, the converse is true if
E is normable (and hence in particular when E = R»).

At all events, if z is a lower semigradient of f ai « in the full limit sense, then
[ 18 lower semicontinuous at x and z € of ()

Proof. Suppose (3.5) holds. Then for every ¥ € F and & > 0 there exist
Y e & (y) and A > 0 such that

(3.6) [fle+ty)—flx)]/t 2 {y,2p—e forally' e Y, i e (0,A).
5388 3,30 X
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Applying this to y = 0, we see that fis Ls.c. at #. Since for all y € E,

(3.7) fHz; y) = limsup inf fe+ty) 1)

o yey ¢

= limi 1:r1ff—3M 2 {y,2,

Y=y ¢
{40

we conclude from (2.4) that z € df (z)
Given any compact set D < E and ¢ > 0, there is for each y € D an open
neighbourhood ¥ & A7(y) satisfying not only (3.6) but
o) < (y,zp+e foraly e Y.

This collection of neighbourhoods is an open covering of D from which a
finite subcover can be extracted. Thus there exist points y, € D, where
t=1,...,m, and corresponding neighbourhoods ¥; € 4 (y;) covering D,
along with numbers A; > 0 such that

(3.8) €Y, and fe(0,)) =

@D < @orp+e and LEXDZIO) 5 oy,

Taking A to be the least of the numbers };, we see that for any ¢’ € D and
t € (0,A) there exists an index ¢ such that (3.8) is applicable; then

[fle+ty') —f@)/i— <y 2y > —2e.
Thus for any e > 0 there exists A > 0 such that
min{g,(y’),0} = —2¢ forall y’ € D, i € (0,A).

Since D was any compact subset of E, this establishes that z is a lower
semigradient in the Hadamard sense.

For the converse part under the assumption that E is normable,
suppose z is a lower semigradient in the Hadamard sense, but (3.5) is false
for a certain y. Then there exist sequences y, — y and {0 such that
(for some «)

[f@+tye) —f(@))/t < « < {y,z) forall k.
Let D be the compact set consisting of y and the points y,. By assumption
the functions min{g, 0} converge to 0 uniformly on D, so for any A > 0
there exists ¢ > 0 such that

[f(x+ty,) —F @)/t 2 <yp,zy—e for all k when ¢ € (0,A).
This implies for arbitrary ¢ > 0 that
(@ +ty) —f@)l/t, > y,2)—2¢ for k sufficiently large,
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and (3.9) is thereby contradicted. Hence (3.5) cannot fail for any y, and
Proposition 1 is proved.

CoroLLaRY 1. Suppose that E is normable and df(x) = @. Then f is
subdifferentially regular at « if and only if every subgradient z € f(x) is
actually a lower semigradient (Hadamard sense).

CoroLrarRY 2. Suppose E is normable. Then f is differentiable at @ with
gradient z (Hadamard sense) if and only if f(z) is finite and
flx+ty')—f(z)

lim
t
v

={y,zy  for all y.

ProrposiTion 2. Suppose f is subdifferentially reqular at x and also
lirectionally Lipschilzian at @, Then fo-r all y belonging to

int{y| f1(z; y) < oo},

e one-sided directional derivative f'(x; y) exists and

3.11) Flesy) =Frie y)_llmw.
=y i

t40
Proof. As mentioned at the beginning of §2, since f is directionally
Lipschitzian we know from [15, Theorem 3] that for y of this type the
imit in (2.13) agrees with f1(x; y). Therefore

fle+ty')—f(z)
t

lim sup < fi(z; y).

¥y
140
Sy assumption, however, (3.1) also holds, so we may conclude (3.11).

Cororrary. Suppose fis Lipschitzian in a neighbourhood of . Then f is
ubdifferentially regular at x if and only if f is regular in Clarke’s sense (that
=, (1.9) kolds).

Progf. The left-hand side of (1.9) is known to coincide with f1(x; ) in
o= Lipschitzian case [15, Theorem 3]. On the other hand, when s
_ipschitzian on a neighbourhood of z and f ’(:1:' y) exists, one has

Hvl]
fetty) ~fl)
14

= lim
¥y
[£41]

“=us (1.9) and (8.1) are equivalent in this case.
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Tinally, we give two examples (besides the indicator function case
mentioned at the start of this section) where f is subdifferentially regular.
Other examples will be generated from these by the theorems in §§4 and 5.

ProrosITION 3. If f is convex and finite at x, then f is subdifferentially
regular at x.

Proof. According to [15, Theorem 1], one has Ti(z) = Kq(x) when C is
convex. Thus convex sets are everywhere tangentially regular. Applying
this to epif, we deduce that f is subdifferentially regular when epif is
convex.

Generalizing the terminology of Bourbaki [1], we say that f is sirictly
differentiable at x in the Hadamard sense (with gradient z) if it is finite on a
neighbourhood of @ and the funections

f@ +ty) —f(=")

(8.12) puily) =TTy

converge to 0 uniformly on all compact y-sets as ¢} 0 and @’ — . (The
Bourbaki definition corresponds to the Fréchet sense: bounded sets
instead of compact sets.) On the other hand, we say f is stricily differenti-
able at @ in the full limit sense if it is finite on a neighbourhood of & and
1@ ) =)

L F7 I = (y,zy forall y.

(3.13) :

' =y
tho

If f is known to be Lipschitzian in a neighbourhood of , the limit ' - y in
(3.13) is superfluous, because

@'+t ) —fle +ty) _

Iim
t

Fe R TS

PROPOSITION 4, If f is strictly differentiable at x in the full limit sense,
then the same holds in the Hadamard sense. Moreover, the converse is true
if E is normable (and hence in particular for E = R™).

At all events, if f is strictly differentiable at x in the full limit sense, then f
is Lipschitzian on a neighbourhood of @ and subdifferentially regular at x,
and 8f(x) reduces to the single element z = Vf(x), which is in particular the
gradient of f at x n the Hadamard sense.

Proof. The argument for the first part is closely parallel to the one for
Proposition 1 and therefore need not be repeated. Suppose now that (3.13)
holds. Then (2.17) certainly holds, so f is Lipschitzian in a neighbourhood
of x. Also, (3.13) implies Clarke’s regularity property (1.9) and hence
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subdifferential regularity (Corollary to Proposition 2), in fact with

o =f'lesy) =125 ) —hmnﬁw

i
Thus z is the unique subgradient and the unique lower semigradient in the
full limit sense (hence also in the Hadamard sense, in view of Proposition
1). The same holds for —z and —f, so z is actually the gradient of f at »

in the Hadamard sense. This finishes the proof.

for all y.

Proposition 4 yields the following generalization of Clarke's result
'5, Proposition 4] that &f(z) = {Vf(x)} when F is a Banach space and f is
continuously Gateaux differentiable around x. (See Lebourg [8, Theorem
2.1] for another generalization.)

CoroLLARY 1. Suppose that for all ' in some mag&bomi’aood of =, f(z') is

inite, f'(z"; y) exists for all y € E and is continuous in &', y. Then f is sub-
ffe rentmll‘; regular at x, strictly differentiable at x in the Hadamard sense,

and cf(x) = {Vf(z)}.
Proof. Under this hypothesis (3.13) holds, as proved in [15, Proposi-
tion 5].

In the finite-dimensional case, we can speak simply of ‘strict differ-
entiability’, since the ‘full limit sense’ coincides then with the ‘Hadamard
sense’ (and the ‘Fréchet sense’ used by Bourbaki). The next corollary
extends a result of Clarke [3,4], for locally Lipschitzian functions.

CororLLARY 2, Suppose that E = R™ and f is lower semicontinuous on @
neighbourhood of z. Then the following conditions are equivalent and imply in
part-i-c-ula?' that f is subdifferentially regular at x:

a) f s strictly differentiable at z;

(b of () consists of @ single vector;

(¢) fi(e;y)=—fT(x; —y) for all y;

(d) fis Lipschitzian in a neighbourhood of x, difjerentiable at x, and the

gradient mapping Vf(x) s continuous at & relative to the set of points
where f is differentiable.

Proof. Clarke [4] has shown the equivalence of (a), (b), and (d) (in the
finite-dimensional case) under the assumption that f is Lipschitzian in a
neighbourhood of 2. We have cstablished in [16, Theorem 4] that the
latter property is a consequence of (b) when fis L.s.c. in a neighbourhood of
z. The equivalence of (b) and (c¢) follows from (2.4) and (2.5). (In par-
ticular (¢) implies f1(z; 0) = —f1(2; 0), 80 f1(2; 0) cannot be — oo, and gf (z)
must therefore be non-empty.)
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REmarxk. Clarke has demonstrated in [4, 6] that certain functions o:
the form

(3.14) flz) = maxg(t, )
teT

are locally Lipschitzian and ‘regular’ in his sense when the functions g(t, -
have these properties. These too are important examples of functions that
are subdifferentially regular.

4. The sum of two functions

We are ready to prove the first of our main theorems, which concerns
the subgradients of f,+f,. For a number of reasons connected with the
applications that are intended, it is important to allow the functions to
have —co as well as +co as values, and this could cause ambiguity in
interpreting the sum. We therefore adopt in this connection the con-
vention that oy +a, = +0c0 if either o, or oy is +00 (even if the other is
—00). This corresponds to our emphasis on epigraphs and gives universal
validity to the relation

(4.1) o +ag = Inflo] +og| of > oy, g > ap).

THEOREM 2. Let f; and f, be extended-real-valued functions on E that are
Jinite at . Suppose that f, is directionally Lipschitzian at x and

(4.2) | fi(@; y) < oopnint{y| fi(z; y) < o} # 0.
Then

(4.3) (fitfa) (@5 ) < fis y)+fi(ws y) forall y,
(4.4) e(fy+1o)(@) < ofy(x) +0fs(2),

where the set on the right in (4.4) is also weak*-closed.

Equality holds in (4.4) if f, and f, are also subdifferentially regular. It
also holds in (4.3) if in addition f](x; 0) and f§(x; 0) are not —oo (that is,
afy(x) and &fy(x) are non-empty), and in that event f,+f, is likewise sub-
differentially reqular.

Proof. Let f, = fi+f. and l,(y) = fi(z; ), for i = 0,1,2. As explained
at the beginning of §2, 7, is lower semicontinuous and sublinear. If
1,(0) = —co, we have &f;(z) # @, but otherwise 7,(0) = 0 and &fy(x) # 0.
In the latter case &l,(0) = &fi(x) by (2.4), since I; is convex and con-
sequently has its subgradients describable by formula (1.2).

We argue first that (4.4) and the weak*-compactness assertion follow
from I, < I, +1, (that is (4.3)), while equality in (4.4) can be obtained from
Iy = I, +1,. (In thesc sums, the convention 0o — oo = coisin force.) Suppose
indeed that Iy < Iy +1,. If either 1,(0) = —oo or ,(0) = — o0, this inequality
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mplies 1,(0) = —o0. Then (4.4) is trivial, because both sides are empty.
Ve can assume therefore that /,(0) = I,(0) = 0. Then

dfo(x) = {z] loly) > <y, 2> for all y}
4.5) < {z| (L +1)(y) = <y,2) for all y} = a(l; +1,)(0),

vhere the final equality iz valid because [;+[, is a convex function
atisfying (1, +1,)(0) = 0. We can calculate &(I, +7,)(0) by means of the
heorem for convex functions guoted in § 1. The directionally Lipschitzian
roperty of f, implies that £} (z; ) iz continuous in ¥ on the interior of the
et {y|fd(x; y) < oo} [15, Theorem 3]. Our assumption (4.2) thus pro-
Ades the existence of a point § such that L{§) < o0 and [, is bounded
:bove on a neighbourhood of 7. Hence

4.6) 0y +15)(0) = 81,(0) +8ly(0) = afy () + of ()

Che combination of (4.5) and (4.6) ylelds (4.4). Note that (4.6) also
stablishes the weak*-closedness of &fj(x)+dfs(x). If also I, = I, +1,, the
nclusion in (4.5) can be reversed to obtain equality in (4.4).

We proceed now to prove (4.3), that is,

4.7) Io(y) < Liy)+(y).

o start with, we consider y in the set (4.2). Let B8 > ly(y) = fi(z; y).
Since f, is directionally Lipschitzian at z, and y belongs to ( -1.9), the limit
2.13) for f, is f§(x; y) [15, Theorem 3], so it is less than 5. Hence there
=xigt ¥y € A (y), X, € AN (), 8, > 0, and Ay > 0, such that

vhenever
¥y E YD: te (03 ’)‘U)! a' € XOJ O“'é ?fz(ff?’J» |fxé —f(i'«")| S

On the other hand, we have by definition

-9

: @ +£ —o
Ily) = sup [ lim sup []JJ.‘E Jol' ty
Y et (y) 0 yel
(2,0 (e, fol))
with o’>/o(@)

Here the difference quotient can be expressed as

(4.9) fl(‘q’ +tJ _a1+fzx+fy)_°‘2
t 11 ’

where o;+a) = o, and the ‘limsup’ can then be taken equivalently
subject to £)0, @' - &, of = fi(z), and o — fo(z) with o« = fi(z’) and
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ap 2 fy(2’). Invoking (4.8) in (4.9), we obtain

l(y) < sup [lim sup[ inf (M+ﬁ)]]

¥ e ) veY ¢

=f1(; y)+B =Ly)+B,
where the ‘lim sup’ is as just described. Since this is true for all 8 > Iy(;
we conclude (4.7).
Having established (4.7) for y in the set (4.2), we now consider general
If either I, (y) = 400 or Iy(y) = +oo, the right-hand side of (4.7) is +c0 a1
the inequality is trivial. Suppose therefore that y belongs to D, n D,, whe

D; = {y| l(y) < o0} (convex).
By hypothesis there exists § € D,nint D, (this is the assertion of (4.2
Then by convexity we have
(1—z)y+ej € Dynint D, for e € (0, 1).
Points of this kind therefore fall within the case already treated, so th
(4.10) (1 =€)y +27) < L((1—e)y+ef) +L((1—e)y +£).
The functions /; are convex and lower semicontinuous, so

Lm (1 —e)y +ef) = l,(y)
e+0

(cf. [17, Corollary 7.5.1]). Taking the limit as & | 0 on both sides of (4.1(
we obtain (4.7) as desired.

Last on the agenda are the assertions of Theorem 2 about subdifferenti
regularity. We have already seen that if either [,(0) = —o0 or [,(0) = —¢
the inequality I, < I;+1, already established implies equality in (4.4) -
the trivial sense that both sides represent the empty set. Suppose ther
fore that /;(0) = 0 and I,(0) = 0 (i.e. that &f,(») and dfy(x) are non-empt;
so in fact Li(y) > —c0 and l(y) > —oo for all y). If £, and f, are su
differentially regular, then

(4.11) L= 1immfii(iﬂ"t3“_f@ fori = 1,2.
y'=y
[£1]

Since [(y) > —o0, we do not have to worry about the conventic
00—00 = ¢0 in the expression

fi(x‘*‘fy')—f1(x)+fz(x+ty’}—fz(-’ﬂ) . Jole +ty') —fol)
¢ t ¢

(at least in the limit), and the inequality

(4.12) Ly)+1,(y) < liﬂainfw < b(y)
=¥

tio
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s therefore valid. In conjunction with I, < l;+1,, we conclude that
equality holds in (4.12). Thus equality holds in (4.3) and (4.4), and f, is
subdifferentially regular at .

The consequences of Theorem 2 are many and diverse, because of all the
criteria furnished in Theorem 1 and the special formulas for f(z; y)
provided in [15] for various cases. In fact, the remainder of this paper is
essentially an exploration of corollaries of Theorem 2. The ones we now
list demonstrate how Theorem 2 covers the main previous results of
similar nature.

Cororrary 1 [12]. Let fi and f, be convex functions that are finite at .
Suppose there exists & such that fi(£) < co and f, is bounded above on @
neighbourhood of . Then 6(fy +fo)(x) = 8fi(x) + &f5(x).

Proof. Convexity implies that f!(2; y) < fi(z; y) < o for every y such
that fi(x+2y) < oo for some A > 0 [15, Theorem 2]. Hence the vector
7 = Z—x belongs to the sct (4.2). Theorem 1(b) asserts that f, is direction-
ly Lipschitzian at z, and Proposition 3 confirms that f; and f, are sub-
differentially regular.

COROLLARY 2. Suppose that f, is finite at x and f, is Lipschitzian on a
neighbourhood of x. Then o(f+fp)(x) < of1(w) +&fs(2), and there is equality
7 [ and [, are also subdifferentially regular at .

Proof. Apply Theorem 1(a). The zero vector belongs to (4.2).

Note that Clarke’s theorem [5, Proposition 8] required both £, and £, to
be Lipschitzian around x (and F to be normed). We have seen in the
Corollary of Proposition 1 that ‘subdifferential regularity’ reduces to
Clarke’s ‘regularity’ for Lipschitzian functions.

Cororrary 3. Let G, and C, be subsets of B, and let x € C;0C,. Suppose
hat

4.12) Tey(x)nint Ty (z) # O,
and that Cy is epi-Lipschitzian at x. Then

4.13) Toynoy(®) = To,(2) 0 T (),
(4.14) Newne, @) = Ney(2) + Mg, (@),

vhere the set on the right in (4.14) is weak*-closed. Equality holds in (4.13)
ind (4.14) if Oy and Gy are tangentiaily regular at z, and then CinC, is
ikewise tangentially regular.
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Proof. Apply Theorem 2 to the indicators f; =g, fo = g, usi
condition (¢) of Theorem 1.

The finite-dimensional case of Corollary 3 was proved by the author
[16, Theorem 5] in connection with the following simplification.

CoroLLARY 4. Suppose B = R®. Then the hypothesis in Theorem 2 i}
f, is dirvectionally Lipschitzian can be replaced by the assumption that f,
lower semicontinuous in @ neighbourhood of x. Likewise, the hypothesis
Corollary 3 that Cy is epi-Lipschitzian at x can be replaced by the assumpti
that C, is closed relative to a neighbourhood of w.

Proof. Invoke case (f) of Theorem 1.

5. Composition of a function and a differentiable mapping

Theorem 2 and its Corollary 3 can be used to derive formulas for
number of other situations where it may not seem, at first sight, that
sum of functions is involved. We demonstrate this first for the operati
of composition.

A mapping F: E - E,, where E; is another linear topological spa
(locally convex, Hausdorff), will be called strictly differentiable at x in 1
full limit sense if there is a continuous linear mapping 4 : E — I, such th
(5.1) lim —*F(x’”y;)‘ﬂ“”)

oy i
Just as in the case of E; = R considered in § 3, this property implies str
differentiability in the Hadamard sense (defined in the obvious way), a
the two are equivalent when & and E, are normable. For finite-dime
sional spaces, they are equivalent also to strict differentiability in t
Fréchet sense.

= A(y) forallyeE.

TrrOREM 8. Let f = goF, where g is an extended-real-valued funciion
E, and F is @ mapping from E to E,. Suppose that F is stricily differentia
at @ (in the full limit sense) with derivative A: E — Ey, and that g is finite a
directionally Lipschitzian at F(x) with

(5.2) (range 4) nintfe| g1 (F(x); v) < oo} # O.
Then

(5.3) ;s y) < g1 (F); Aly)) forall y,
(5.4) of(x) = A*[0g(F(x))].

Equality holds in (5.4) if g is subdifferentially regular at x. It also holds
(5.3) if, in addition, gt (F(zx); 0) % —co (that is, og(F(x)) # 9).
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Proof. Let w = F(x), and define % on K x E, by
fo) i =F@),
5.5) hiz',w') =
+c0 otherwise.
Note that b =f,+7f,, where f; is the indicator of the graph of ¥ and
' u') = glw'). We claim
[ y) ifv=Ay),
+c0 ifo# A(y).
ndeed, from the definitions we have

5.6) R (e, u; y,0) =

57)  Ai(z,u;y,v)= limsup inf e +ty' o' +0')—a

)
(:c'.u’.a;'fé wlou) (W)= (yw) i

vhere the condition «" 2 A(x’, ') implicit in the first limit is equivalent to
L = f(z') and ' = F(2'), and where
fle'+ty") v =[F'+iy)—F))/,
bz’ +ty', w' +tv') =
+co otherwise.

"ince (5.1) holds, the mixed limit (5.7) is +o0 if v # A(z), while otherwise

T

R (e, u; y,) = Iimsupinfw = F1{x; y).
(2, ey’ ¢
(221]
Thus (5.6) is valid, and it follows that
Chiz,u) = {(z,w)| Bl (w,u; y,0) 2 {y,2)+{v,w) for all y,v}
= {(z,w)| f1(z; ¥) = <y, 2> +<{4(y), w) for all y}
= (W) F1(@5 ) > g+ A*w)) for all g}
= {(z,w)| 2+ 4A*(w) € &f(w)},
nd consequently
5.8) of(x) = {z| (z,0) € oh(x, u)}.

The next step is to apply Theorem 2 to the representation & = f; +f,
woted above. The strict differentiability property (5.1) implies for the set
s = graph F that
3.9) Tolx,u) = Ky(w,u) = graph 4.

"hus f) is subdifferentially regular at (x,u) with

0 if v = A(y),

5.10) IHz,u; y,0) = )
+oo if v # A(y),

511)  ifylw) = Nplw,u) = (graph AP = {(z,w)| z = — A*(w)}.
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On the other hand, f, obviously inherits the directionally Lipschit
property from g and has
(5.12) i@, u; g,0) =gt (u; v),
(5.13) ofola, u) = {(0,) | w € Sg(u)}.
In particular,

(v, )] FHz,us v, v) < o}nint{(y, v)| fi(z,u; y,v) < o0}

= {(y, 4(y))| A(y) € int{r| g*(u; v) < o}},

and this set is non-empty by assumption (5.2). Therefore the hypotkh
of Theorem 2 is satisfied, and we have

(5.14) A (@, u; y,v) < fL(xu; 9,0) + (@, y,0),
(5.15) dh(z, u) < dfy(x, u)+ fy(a, u).

Combining (5.14) with (5.6), (5.10), and (5.12) we get (5.3). Simila
(5.4) follows from (5.15), (5.8), (5.11), and (5.13).

For equality in these relations we need only have equality in (5
and (5.15). Since f; is already subdifferentially regular at (z,u) +
dfi(x, 1) s @, we can conclude the equality from Theorem 2 when |
subdifferentially regular with &f,(x,u) 2 ©. The latter propertics
equivalent to the corresponding ones for g.

CoROLLARY 1 [13]. Let f =god, where A is a continuous linear tr
formation from E to E; and g is a convex funclion on E,. Suppose
finite at A(z) and, for some &, bounded above in a neighbourkood of 4
Then 8f(x) = A*[eg(A(x))].

Proof. Convexity implies that gf(u; #) < g'(u; v) < o0 for any % a
such that g(u) is finite and g(u+Av) < oo for some A > 0 [15, Theoren
Hence the vector & = A(&) — 4(x) belongs to the set in (5.2). By Theo
1(b), g is directionally Lipschitzian at A(z), and by Proposition 3
subdifferentially regular there.

CoroLLARY 2 (Clarke [6, §13]). Let f=golF, where F is a map;
from E (normed) to B, (normed) and g is Lipschitzian on a neighbourhoc
F(x). Suppose F is conttnuously Gdteaux differentiable in the sense tha
limit
F(a' +ty)—F(z'

th0 4
exists for all &', y, and the operators F'(x; +) are linear and continuous
depend continuously on ' (in the norm topology for linear operators).
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Then ¢f(x) = A*[0g(F(x))] (where 4 = F'(x; ), and equality holds if g is
Sdifferentially regular at F(x).

[

Progf. The continuous Géteaux differentiability of F implies by the
=neralized mean value theorem (cf. McLeod [9]) that F is strictly
iTerentiable in the full limit sense. As noted in Theorem 1(a), g is
irectionally Lipschitzian at F(x) if it is Lipschitzian in a neighbourhood
I x; then dg(x) # O.

Comrorrary 3. Let xe (U =FYD), where F: E—+E, and D < E,.
uppose F is strictly differentiable af x (in the full limit sense) wilth deriva-
ve A, and D is epi-Lipschitzian at F(x) with

(range 4) nint Tp(F(z)) # 9.

Ren

5.16) Tolx) = A7 TH(F ()],

5.17) Ne(w) © A*Np(F (@)

quality holds in (5.16) and (5.17) if D is also tangentially regular at F(z).

et
e |

Proof. Apply Theorem 3 to g = .

The finite-dimensional case of Corollary 3 was established by the author
2 16, Theorem 5].

CorOLLARY 4. Suppose B = B*. Then the hypothesis that g is direction-
Ty Lipschitzian in Theorem 3 can be replaced by the condition that g is
wcer semicontinuous on a meighbourhood of F(x). The assumption in
orollary 3 that D is epi-Lipschitzian can be replaced by the condition that D
= closed in a neighbourhood of F(x).

Proof. This follows from criterion (f) of Theorem 1.

Theorem 3 can also be applied to the calculation of ‘partial subgradients’.
‘or a function ¢ on a product space Elx E? one may consider besides
2y, Uy) in E1¥ x B2 the sets

dhg(1q, 4p) = set of subgradients of g(,u,) at u,,

Oog(uy, uy) = set of subgradients of g(u,, +) at u,.
n ceneral

8y (uy, wy) F 69 (uy, ty) X Eog (g, ) F (g, uy).
urthermore, there is no universal relationship between ¢;g(uy, 4,) and
projy 8g(uy, ) = {w; € EV*| there exists w,y: (wy, wy) € 89y, up)}

v between 0g,(uy,%,) and proj,dgluy, u,)). However, the following
orollary shows that when g is Lipschitzian around (u,,u,) one does have

019 (uy, ug) X Gp(ty, ug) < Projy 6g(uy, ug) X Projs 8g(uy, u,),
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and that equality holds if g is subdifferentially regular at (uy,u,).
sharpens slightly an observation of Clarke [6, §1].

CorOLLARY 5. Let g be extended-real-valued on E'x E? and finite
directionally Lipschilzian at (1, uy). Suppose
[EY x {0}] nint{(vy, vs)| g7 (g, a3 ¥1,05) < 00} #£ O
(as is true when g is Lipschitzian around (u,,u,)). Then

019(q, Ug) < PTOJy €Uy, Us),

and equality holds if g is also subdifferentially regular at (uy,u,).

Proof. Take E = B, B, = E'x B2, F(uy) = (1, %s)-

6. Other formulas

We turn now to coneclusions that can be drawn from Theorem 2
more precisely from its Corollary 3 in §4, when one or both of the
0), C, is an epigraph. The key to these is a sharper formula than (2
relating the normal cone of epif at (z, f(x)) to df(x) in the case wi
of(x) # 0.

Since éf(x) is a non-empty weak*-closed convex set in E¥, it has
associated recession cone (asymptotic cone):
(6.1)  0+&f(x) = {w] for all z € &f(x), for all ¢ > 0: z+tw € Jf(x)}.
Formula (2.12) and the fundamental properties of recession cones
[17, 18]) imply (because éf(z) % ) that
(6.2) (w,0) € Ny s, flo)) <= we 0F5f(x).

Since N,p;(x, f(x)) is a weak*-closed convex cone contained in the h
space {(z,p)| ¢ < 0} (because it is polar to Ty, (e, f(x)), which cont:
(0,1)), we have

(6.3) Nopifer £2)) = U M@fla), =1)
(when &f(x) # @), where the notation A 2 0F refers to all the cases wl
A > 0 and also the case A = 0F. Of course
(6.4) 0t &f(x) = {0} if gf(x) is bounded,
which is true when f is Lipschitzian in a neighbourhood of . In this ev
one could just as well write A > 0 in (6.3).

THEOREM 4. Let f = max{f,, f,}, and let @ be a point where f,(x) = f
and this value (which is f(x)) is finite. Suppose that
(8.5) {yl Fil@; y) < opointly| fi(@; y) < oo} # 0
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wmd 7, iz directionally Lipschitzian at x. Then

@ y) < max{fi(x; y), fi(x;y)} forally.

7 ofz) and ify(x) are non-empty, then also
5.7 of(x) < U [Af() + Asgfal@)],
;\1??"—:{225310"'

7z st on the right-hand side of (6.7) coincides with the weak*-closed
Lull of of,(x) and &fy(x). Equality holds in (6.6) and (6.7) if fy and f,
: 2lz0 subdifferentially regular at x.

o7 All the conclusions are obtained by applying Corollary 3 of
~=orem 2 to the epigraphs C; =epif; at the point (z,w«), where
=7, 7)) = fo(x) = f(z), using (2.12) and (6.3). To see that the required
ssumptions are satisfied, note first that

58 Tp (@, o) nint T (, ) = epif(x; *)nintepi fi(z; -).

=t D, ={y| f}(x; y) < oo} for ¢ = 1,2. The convex function Fix; -) is
muous on intD,, because f, iz directionally Lipschitzian at x [15,
“~=crem 3], Therefore

intepi f](e; ) = {(#,B) € ExR| y e int Dy, B > (@3 1)}
== condition that (6.8) be non-empty is thus equivalent to
D nint D, # @,

=t s, to assumption (6.5).

ions f; are Lipschitzian on a neighbourhood of . Let

I(@) = {i| fulx) = f()}:

fHes y) < max fl(z;y) for all y,
tellx)

5.10 @)= U{ S Adf@)| 420, T A=1}

el iellx)
77 iz subdifferentially regular at @ for each i € I(z), then equality holds in
5.2) and (6.10),

Proof. Apply Theorem 4 inductively, using (6.4). For ¢ ¢ I(x) we have

< f(z)—¢ for all 2’ in some neighbourhood of z (for some & > 0) by
cotinuity (as implied by the Lipschitzian property), so (¢, f(z)) € intepi f;,
=d f'(z; ) and &f(x) are independent of f.
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REmarg. The cited result of Clarke is slightly more restrictive than t.
corollary, in that it assumes the space is normed. However, it is mo
gencral in an important respect: it covers certain kinds of infinite ind
sets besides {1,...,m}.

THEOREM 5. Let C = {2'| f(z') < 0}, and let = be a point satisfyi
flz) = 0. Suppose that f is directionally Lipschitzian at x with 0 ¢ of (x) #
and let D = {y| fi(x; y) < 0}, Then C is epi-Lipschilzian at x with

(6.11) To(x) = {y| f1(@; y) < 0,
(6.12) intTolx) > {y| y e int D, fi(z;y) > 0} # 9,
(6.13) Nole) < U Af (),

where the set on the right of (6.13) is weak*-closed. If fis also subdifferential
regular at x, then equality holds in (6.11), (6.12), and (6.13), and C s ta
genlially regular at .

Proof. The conclusions are obtained by applying Corollary 3 of Theore
2toC) = {(z,u) € ExR| p =0} and 0, = epi f at the point (2;,0). Oneh
(6.14) Toy(@,0) = {(z,p) | p = 0}, To{x,0) = epifi(z; +),
and by polarity
(8.15)  Ng(w,0) = {(z, )| 2 = 0}, Ng,(,0) = the cone in (6.3).

Since the convex function fi(z; +) is continuous on intD due to f bei
direetionally Lipschitzian at @ [15, Theorem 3], one also has

(6.16) intepi fl(z; *) ={(#,8) e ExR|yemtD, fi(zx;y) < B},

and this set is non-empty. Therefore by (6.14),

(6.17) T (, 0)nint Ty (2, 0) = {{y,0)| y € int D, f1(x; y) < O}

The latter is also non-empty, for otherwise the set (6.16) would be co
tained in the half-space {(y,8)| B = 0}, and the same would then be tr
of its closure, which includes epiff(z; +). That would imply f1(z; y) =
for all ¥ in contradiction with the hypothesis that 0 ¢ ¢f(x). The assum
tions of Corollary 3 of Theorem 2 are therefore satisfied. The asserts
relations follow at once from the ones in this result and (6.14), (6.15), (6.1

CoroLLary 1. Let C = {a'| f(x') < 0}, and let x be a point satisfys
fla) = 0. Suppose that f is Lipschitzian in a neighbourhood of z, a
0 ¢ &f(x). Then C is epi-Lipschitzian at © with
(6.18) To(z) = {y| <y,2) < 0 for all z € ¢f(x)},

(6.19) int Te(z) @ {y| <y.2> < 0 for all 2 € &f(z)},
(6.20) No(w) = {| A 2 0, 2 € of ()},
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where fhe <t on the right in (6.20) s weak*-closed. If fis also subdifferenti-
sy regular af z, then equality holds in (6.18), (6.19), and (6.20), and C is
smgeniially reqular af .

s 0% cf = {0} and
s y) = max{y,2)| z € f(x)} (finite)

2. Let O={z'|fie")<0,i=1,...m} For weC, le
0}. Suppose the functwns fi are L@pschzfzmn wm a neigh-

631 0 ¢ cofdf,(x)] 7 € I(x)}.

" em O iz epi-Lipschitzian af « with

22 Teo(@) = {y| <y,2;) < 0 for all z; € 8fy(x), i € I(x)},
523 int To(x) < {y| {y,2;) < 0 for all z; € ofy(x), i € I(x)},
s Ne@) = { 2 Azl & 2 0, 2, € Ofy)},
iellx)
“here fhe set on the right in (6.24) is weak*-closed. If each f; is also sub-

o Teremtially regular at x, then equality holds in (6.22), (6.23), and (6.24),
wms O is tangentially regular at .

Froof. Apply Corollary 1 with f as in the corollary of the preceding

% course, Corollary 2 in turn implies Corollary 1.

". Application to minimization
Jnly a very general sort of application can be discussed here, but it
—=strates one of the fundamental possibilities of the theory.

T==zorEM 6. Suppose f has a finite local minimum at x relative to @ set C
shere fis an extended real-valued function on E and C < E). Assume that
“her of the foliowing two conditions is satisfied:

a0 Tolz)nintfy| f1(x; y) < oo} # O and f is directionally Lipschitzian at
z (3 f E = R*, the latter can be replaced by: f is 1.s.c. on a neighbourhood
of z), or

Byl i@ y) < opnintTp(e) # & and O is epi-Lipschitzian at x (if

E = R™, the latter can be replaced by: C is closed relative to a neigh-
bourhood of x).

- tem of (x) meets — Ny(x).

385339 Y
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Proof. The function f+yi; has a local minimum at «, and hence 2 is
substationary point. Either (a) or (b) is sufficient for Theorem 2 to 1
applicable and yield the inclusion

0 € (f+o)(x) = of () +2o(x) = Of () + No(2).
This says there exists z € 3f(z) with —z € Ny(z).

ReEMARK. The set ¢ in Theorem 6 can in particular have the form i
Corollary 2 of Theorem 5, and a Lagrange multiplier rule then follows b
way of condition (b). At the same time, f can be of the form f, + 5, whes
D is a set defined by constraints of some other type perhaps, and &f ca
then be analysed by another application of Theorem 2. In this way on
recovers by ‘calculation’ the Lagrange multiplier rule proved by Clark
[3, Theorem 1] (except to the extent that the latter applies also to equalif
constraints expressed by locally Lipschitzian, non-smooth functions; suc
constraints involve additional considerations that go beyond the presen
framework).

Finally, we describe an application to Ekeland’s variational prineipl
[7, Theorem 1.1].

TaEoREM 7. Let f be an extended-real-valued lower semicontinuou
Junction on a Banach space E, and let x be a point where f is finitz and has.
p-local e-minimum, in the sense that

(7.1) f(@) < inf{f(z")] | 2" ~z]| < p}+¢

(where 0 < p < 00, 0 < & < o0). Choose any A € (0,p). Then there exist a
and z, € ¢f (x,) such that

(1.2) fe) <f@), lz—zl < Jzl <e/a

Proof. Let B and B* denote the unit balls of E and E*, and le
g =f+y¢, where C = z+ pB. The function g is lower semicontinuous an
has a global e-minimum at 2.

Ekeland’s variational principle [7] asserts for any A > 0 the existence ¢
) such that g(x,) < g(z) (hence f(z,) < f(x)), |2,—=| € A, and

(7.3) g(z') 2 g(zy) —(e/A) | &' —x,| forallz’e E.

Let h(z') = (¢/A)||2’ —2;|l. We can interpret (7.8) as saying that g+ % he
its global minimum at «,. Assume that A < p so that , € intC. Then
coincides with f around «;, and f+ % therefore has a local minimum at «
Hence 0 € &(f+%)(z;). Theorem 2 is applicable, because % is Lipschitzia

A(f+1)(x)) < Bf (x) +0h(x,) = &f () + (e/A) B*.
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Thus we may conclude that 0 € gf(x,) + (¢/A)B*, or, in other words, that
there exists z, € df(z,) with ||z,[| < ¢/A. This completes the proof of
Theorem 7.

REMARE. When fis convex and p = o0, Theorem 7 reduces to a result of
Brendsted and the author [2, Lemma] that has been used in the global
study of the multifunctions gf in convex analysis.
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