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ITI. CONVEX PROCESSES AMND HAMILTONIAN DYNAMICAL SYSTEMS
R.T. Rockafellar'

UNIVERSITY OF WASHINGTON, U.S.A.

Many economists have studied optimal growth models of the form

maximize fs ok Ulkit), z(t))dt

subject to k{(0) =Xk, Rit) = z{t) - vk(t),

whare k is a vector of capital goods, ¥ is the rate of depreciation, o
is the discount rate, and U is a continuous concave utility function
defined on a closed convex set D in which the pair {k,z) is constrained
to lie. The theory cf such problems is plagued by technical difficul-
ties caused by the infinite time intorval.EThe optimality conditions
are still not well understood, and there are serious guestions about
the existence of solutions and even the meaningfulness, in certain ca-

ses, £0f the expression being maximized.

Cne thing is clear, however. Any trajectory k(t} which is worthy of
consideration as eoptimal in (1) weould in particular have to have the

property that for every finite time interval [tﬁ,tz] Z [ 0,=) one has

t - E T _ & _
S TP Ui E(0) + vk()de & 1 7T URID) Kb + vR(8))de.

. ="t

0 0
{For otherwise, the portion of k over Eto,tlj could be replaced by k,
and this would constitute a definite improvement.] This condition seve-
rely limits candidates for optimal paths and allows us to study them

in terms of Hamiltonian dynamical systeme involving subgradients.

Hamiltonian dynamical systems arise in the optimality conditions for

variaticonal problems of the Zorm

# Rasearch sponscored in part by the Air Force (Qffice of Selentific Re-
search, Air Force Systems Command, USAF, under AFQSR grant number
77-0546 at the University of Washington, Seattle.
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minimize

function,

essential

o
Rockafellsar [ 1],
)

notation x(t

whaere U is interpreted as -= outside of D.

0f course something must be assumed about the way that L depends on t.

The correct condition in general is that L should be a "normal ir
[1], [4] . This technical property of measurability will not be discussed
here, but it is certainly satisfied when L is of the form (4) (under

the assumptions already stated) and alsc when L 1s independent of t.
Concerning the trajectory xi(t), one does not have to assume differentia-
bility, but merely absoclute continuity; the time derivative X(t) then

exists for almost every t.

The Hamiltonian asscociated with L is the function

(3) Hi{t,®,n) := sup{p.v=-L{t,x,v)}.

n
veR

Thus Hi{t,=x,.) is the convex function conjugate to Lit,x,.), =2 that L

turn determined unigquely by H:

Lit,x,v) = supip.v-H(t,x,p) .
n
ek

Since L(t,x,v) 1is not just convex in v but in (x,v), it turns out that
H(t,x,p) iz nct just convex in p but concave in x. The subgradient sets
BXH(t,x,p] ({concave sense) and apH(t,x,p} {convex sense) are therefore

welldefined | 3] . The relation

(6) x(t) e 3 Ht,x(t),B(8)), -pt) « d H(E,x(t) plE))
i
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If H were differentiable as in

X(t) = v H(t,x(5),plt)), -Dit) = v H(t,X(E),BlL).

2n abscolutely continuous trajectory %(t)] is

over an interval I if there is an absolutely continucus p

]

co-extremal for %J such that the Eamiltenian condition (6) holds (for
almost every t in I). On the other hand, X is said to be plecewize opti-

mal for Lover I if for every finite subinterval [t.,t.] < I one has
— % 21

t t .
(7) £ LiEX(E) K(EDGE > 1" LiE (0, X(8))at

it 0
for all {(absoclutely continucus) x(t) over [to’tl] such that x(tp): Q&U)‘
x(tl} = ;(tlj. The main result about these concepts in the present set-

ting is the following.

THEOREM 1[ 1] ,[ 2

] 31. If x is an extremal for L, then x is plecewise
optimal for L. If x is piecewise optimal for L and certain "constraint

gualifications" are fulfilled, then x is an extremal for L.

The exact nature of the "constraint gualifications" will not be discus-—
sad here; see [ 2], [3]. Basically one needs to know that the pair
{§(tOJ, %{tl}J always belongs to the relative interior of the (convex)
set of all pairs [x(ta),x(tlj} corresponding to trajectories for which
the integral on the left of (7] is finite, and also that %xit) does not

touch the boundary of the natural "state constraint set"
e s I o |
1% e R v e B owith Litex,v) ¢ =},

(If the second condition fails, a more general theory must be invoked

in which p{t) is not absclutely continuous and may have jumps. The cor-
responding version of the Hamiltonian eguation has besen developed in

[ 3] . This is indeed the situation that must be dealt with in economic
applications where x{t) is a nonnegative vector of goods, some components

of which may well vanish from time to time.)

In economics, the wvariables p(t) usually have an interpretation as pri-
ces of some kind. It is of great interest, therefore, that they have

optimality properties relative to a function M duzl to I, namely
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Mit,p,wW) = sup paovxaw-Lit,x,v) 1,
2n
(x,v)eR
Lit,x,v] = sup ip.vhxow-Mit,p,w) 1.
2
(pw)eR™T

THEOREM 2[ 1] . If x is an extremal for L with co-extremal p, then p is

an extremal for M with co-extremal =, and hence in particular p is

piecewise optimal for M,

For the case of the economic model (4), one obtains

= W ¢t o e b
(8} Hit,x,0) =sup {e " Uule ""x,e v + p.vl
V(:Rn
= T, e )

where & is the

o

r=h
|

(&1
|

rex function defined by

fag.zt0lk,z) ).

has a rather complicated expression in

in terms of

It follows from Theorem 1 that every trajectory kit) satisfying (12) has

the piecewise cptimality property in (2) (and the converse is "almost"

true) .,

The function dual to L in this model is
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(13) Mlt,pwW) = sup (poirwre Ptue o, T )
(x,v)stn

"

—n a &
e Pty (e'tp.e“tw}

where

(14} vig,s) = =sup {g.z+s.k*Uk,z}}.
(k,z)<D

according to Theorem 2, the trajectories ¢(t) appearing in (12) have
the piscewise optimality property that for every finite subinterval
[to,tl] one has

£ I _
(15) 1Y oY) e -sgnat 3 1t e PV@Em gt -sd i) at
l.o I_O
for all trajectories g(t) over [ty,t,] with qlty) = qltyd s qle)) = alt)).

Here g can be interpreted as a vector of dated prices and r = =S as a
vector of rents: ¢ = &ég-r. Thus V(g,s) represents the maximum rate at

which "value" can be created in the economy.

A big advantage in the study of (12) (and more generally (6)) is that
this condition is an "ordinary differential ecuation with multivalued
right side". It is known, for example, that a solution (k(t) ,glt})) ex-
ists over an interval 1t0,tu+s) starting from any point (k(tgy),qlty))
(ko,qo) interior to the region where h is finite (cf. [6]1,[71}. For the
most part, the solutions turn out to be unique despite the multivalued-

ness, although branching can sometimes occur.

In the context of the infinite horizon problem (1), a critical question
is how to single out, from among the trajectories k(t) with k(0) = kO
that satisfy (12) for some g(t) (and there seems more or less to be one
such for each choice of qo}, a trajectory worthy of being deemed "opti-
mal" (or at least "extremal") over the whole interval [0,=). No limita-
tions are imposed a priori on the behavior of k({t) as t+= (free end-
point problem) . Heuristic considerations lead ons to believe that there
should "usually" be just one trajectory k(t) of the desired type for
each ko (in a reascnable region) and this seens to suggest a correspon-
dence between ko and dq whose graph forms a sort of n-dimensional mani-
fold in Rzn. The corresponding special trajectories (k(t),q(t}) would
trace out this manifold.
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If so, then in locgking at examples of dynamical systems of the form

[12) we should readily be able to detect a special n-dimensicnal mani-
fold that is the natural candidate for expressing "optimality" over
[0,«). One approach to this guestion is to try to analyze behavior about

a rest point {(constant solution) to the system.

& rest point (k ,q ) of (12) is characterized by the relations

0 cthU{,qJ—?k;

K e B

— st ]
hik,q) =nik,q)=-vk .g-dk.q ,

e & —
and (17) means that (k ,g ) is 2 minimax saddle point of the function h

{which, like h, is concave-convex). What might this imply for the beha-

vicr of Hamiltonian svstem (12) around {k",q"]?

If h were actually twice differentiable, it would be possible to write
the system in the form (R,é) = Fik,q) and analyze the behavior in terms
of the matrix of derivatives of F at {k*,qx) in the classical manner of
the theory of ordinary differential equations. If h were in fact strong-
ly concave in k and strongly convex in g, the Jacobian of F with respect
to k would be negative definite at k*, while the Jacobian with respect
to g would be positive definite. Thus the matrix in guestion would have
n negative and n positive eigenvalues, so that system would have a dyna-

mic saddle point at (k“,q"}. This means that there would exist (locally)

an n-dimensional manifold traced by the soluticns (ki{t),glt)) that co-

= L = Ein § o
verage to {k ,g ) as te=, az well as another n-dimensional manifold tra-
ced by the scluticns that diverge form (k“,q") at t = -=, the two mani-

folds intersecting only in the point (k“,q“) itself.

Karl Shell focused on this idea in his study of economic growth models
and was led to conjecture that the picture of dynamie saddle peoint be-

havior should generalize somehow to the case where h is not differentia-
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ble. Morecver, the trajectories that are "optimal" over [0,=) should

- ) e . ) N
be the cnesconverging to (k ,g ) as t+=. For the economic background,

see the articles [8] and [ 9] of Cass and Shell.

This conjecture was verifiad by Rockafellar in [10] for the case p = o]
{4 = v) with h strictly concave-convex and in [11] for ¢ = 0 (& = 7!
with h strongly concave-convex. (There is a mistake in the oroof of
Proposition 2' of [11] which invalidates the assertions made in the
article about the complementary manifold of Hamiltonian trajectories
diverging from (k*,q") at £t = -= when p > 0, but this does not affect
the main results, which concern the trajectories converging to (k”,q“).]
In the case of p = 0, "optimality" must be interpreted in a certain
ralative sense. For ¢ > 0, it is necessary to limit attention in {1} ke
trajectories k({t) which do not grow at a rate faster than p. It must

also be supposed that g is not tec large.

The complications involved in establishing "true" cptimality of some
gort, and the serious restrictions on the nature of h and p that are
entailed, bring one to the view that "optimality" over [0,=) may not

be the natural concept to be aiming at in models like (1) . The justifi-
cation usually given for the infinite horizon is that it enables cne

to avoid the selaction of a particular terminal time © and the awkward
decision about what the levels of goods or prices should be at that

time. However, there are othsr ways of avoiding this dilemma.

For example, one could consider for each time t the trajectories k(t)
that would solve (1) with = replaced by 1 {(no constraint being imposed

orn k(1)) and then see what trajectories these converge to as t+=. Such
limit trajectories would be z natural object of study. They would again
be "piecewise optimal", but not necessarily optimal in any sense with
respect to the integral (1) over [0,=) (which anyway might not be wall
defined) . There is reason to helieve that this is the desired class of
trajectories that exhibits the dynamic saddle point behavior (appreaching
a rest point as t-=) in the many cases where the Hamiltonian system has

such behavior and vet "cptimality over [0,=)" cannot be established.

Convex Processes. The subject of discussion is related more closely

than might be supposed to the theory of economic models in which the
evolution of the state X(t) (a vector of goods, resources, labor, etc.)
is governed by (X(t),%(t)) ¢ T, where T is a ncnempty closed convex set

in RN % RN. In such a setting there is no real loss of generality (and
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considerable advantage) in taking T to be a cone and writing the dyna-

mics in the form

(18) X(g) e A(X(R)

Since the graph of the multifunetion A is a closed convex cone contai-

ning the called a closed convex process. The gesneral theory

of cons $39] ; for the special "mo-

notona” 13] , respectively. Convex

£ Makarov and Rubkinov on

economic dynamics 7 SBpringer-Verlag [ 14]] .

If we associate with A the convex function

01f Ve (X,
(19) L{X,V) :=[

te= 1E V4 R(X),
the problem (3) appears rather degenerate. Indeed, one has
0 if ¥ satisfiss (18}

L{X(t) ,X(t))dt ={ A
+= otherwise

|ﬂ :_-'l
0

(20)

Nevertheless, the corresponding Hamiltonian system is very interesting.

The Hamiltonian function is

(217 E(X,P} := sup P.V .
Vel (X)

=

his is not only concave in X and convex in P but positively homogensous

. : ~ j iz . 5 P
in each of these variables separately. For each P € R, let

[
(g%

= {W|W.X » P.V,¥X, Ve 2 1.

2
(The multifunction A iz the closed convex process adjoint to A.) The

n condition

Hamiltoni
(23) X(t) ¢ aPH(?{(t},:S{tn, “P(t) ¢ 3,H(X(E),P(E)),

is then eguivalent to
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D(£).V|V ¢ A(X(£))! attained at X(t),

sup
(24)

inf {W.X(t)|W ¢ 2 (P(t))} attained at -Plt).
It can also e written simply as
(25) R(t) « (X)), -B(r) « & (B(t)),

Observe that the last relation is equivalent to

(26} X({t).P(t) = const.

Trajectoriss ¥ (&) which satisfy (25) for some P(t) # 0 are said to be

price-supported or competitive.

It is remarkable that such trajectories

and their "supports" can be generated by solving the ordinary differen-

tial "eguation" (23) from &

LL

region where H is

sed sarlier [&8],[7].

(c,0}

ig always a rest point of
on the boundary of

The origin

of points for study

(27) Rie) :=e "%(t), ft) =" B,
for arbitrary real numbers y and ¢, ong can exdpress

in the form

diticon

is obtained through change of variables.

e inside the

0’70’

finite, just as with the Hamiltonian systems discus-

(23), but it usually lies

the region where #H is finite., A more promising class

Setting

the Hamiltonian con-=



vK < AK ), 60 €A (@),
. L E & b
0= ({é=y)K .0 =K .0

{where (9) is used now as the definition of o).

& ~ % i B £ o : = .
The study of the vectors K and Q satisfying (3] for varlous cholces
of v and § amounts to the gencralized eigenvalue theory for the process

2

& and its adjeint. In the case of A "monotone", it is close

v related

to the theory of growth and interest rates Ior the Ga Neumann
model (ef. [ 121, [13], [14]}. Presumably the dynamic system (28) should
exhibit a kind of "turnpike" behavior arcund rest points (K*,Qﬁ] in (30)
for which K*.Q* # 0 (implying &4 = y¥), or in other words, such that

& ]
(K", ) is a "nondegenerate" minimax saddle peint for the concave-convex

funection

é}_(K,Q}:= HIE,Q) — XE.Q (L =48 = v).
It would be interesting to gee this worked out in detall, which has not
vet been done. The "turnpike" bhshavior should correspond to the gsome-

tric picture of a dynamic saddle point.

In fact, the theory of the inhomogeneous Hamiltonian system (12) can be

recast to fit the mold of ahcomogeneocus system associated with a closed
convex process A. Consider a decomposition B = R x R x R with corres-

ponding notation
(31} X = (x;,x,xc], P = [pi,p,pc}.
Let the graph of & be the closure of the set of all pairs

(XN} = I:XE’X’XC’VP_'-.JJ‘;C)

such that

{32) X, ® 0, L XRU[xjxl,v/xl) + éxC, v, =X,

The graph of the adjoint 4" is then the closure of the set of all pairs
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{P,8) = (p;,p,pc,si,s,sc}
such that
{33) o, >0, 8 > = V(pfpc,—sfpc} TP S, = 5By

where V is the convex function in (14). The corresponding Hamil-onian

is
(34) H{X,P) = xﬁpch{xfxi,p/pc) +yap, + chpc
for x, = 0, p, = 0,
where h is given by (10}. (For X, =0 or p, =0, the values of H are
2 L
obtained from (34) by a limit process; for X, = 0 orp, = 0, the values
o A

of H are infinite.)
The dynamical relation ¥ = A(X) reduces under (32) to

% (8 =cal™  (a>0)

vE Ule "o xit) fa,e "hit) fa) + 86

% (E) < ae
The interpretation is that X, reprssents a basic factor that grows at a
constant rate y (pesitive, negative or zero!); the parameter z merely
sets the scale and can just as well be chosen as 1. The variable %
measures "utility satisfaction” and is typically necative; it would grow
{more negative) at the rate ¢ if this tendency were not counteracted by
continual inputs of utility dependent on ths vectors Xfxf and
tities of goods per unit of the basic factor). Similarly, tI

mical relation -P e A“(P) reduces under (33) to

B lt) = (6 = 0)

e
(o6 . -5t it St

=p, () = pe BT W(eTTEI/g,eT DlEV ) £ TP, (E) .
Again 2 is just a scale parameter that can he taken as ).

The Hamiltonian system (23) for the function (34) takss on a particularly

simple form when expressed equivalently as in (28) in terms of
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(k, (6) K () k() = e T5(x, (60) k(1) ,x_ (t]),

(T, (£} ,@(t),q_(t)) = e"5(B, (£),Ble),B_(t))

q;; 2 S J"c _;| P & et !_C / r
namealiy

k}(t) = i, qc(t) = Qr

kit) « aaqh(E(t)Eu,q(t)/e} - ykit)
(37) -q(t) = 3:.<h(i(t)/a,q(t),f31 - SsalE)

k (v) = aulk(t)/a, Lk(t) + vk(x)1/a) + ok (t)

g, (£) = @V(q(t) /8, [q() - sq(t)]/8) - oq, ().
Taking = = 1 = 2, one can write this as the previous system (12) for h,
augmented by the aguations (for all 1 = 0):

ko(n) = Tk (0) + s] 7% u(kR(t), k(t) + vk(t))az],
(38)

S g oy sffes | P T o i S e

qf( ) = e [Q;(Of - g Viglit] , glt) - égit))dx].

This demonstrates that the inhomogeneous system (12) can indesd be
treated in terms of a specizl case of the homogeneous system (28). The
analysis of rest points carries over at the same time. As a matter of
fact, for the convex process 2 in guestion, a vector pair

i

(39) K = (1L,k k), 0= (9,9 ,1),

is a rest point for (28) (i.e. satisfies (30)) if and only if (k ,q )
3730

is a rest point for (12) and (from |

i3

(40) bk, = ~U(k ,¥k ), oqy = Vg ,=8q ) .

0f course, due to the special way the numbers v and ¢ enter the defini-
tion of &, they are then unigue values for which (30) has a solution

] st
K #£0, 0 #0.

It is interesting to note that the rest points {R",Q“) just described

necessarily have K .Q = 0, however. Despite this, the analysis of the
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. )
kS b

homogeneous system around (K ,0 ) is important, because it corresponds
0 the inhomogeneocus system. Thus one apparently should not, in the ge-
neral study of (28), limit attention to rest points (30) such that
R0 o
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