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IINTRODUCTION

Lrr C RF a nonempty clos€d srbsei of R". For each x e (:. the tangent cone 7c(rl in tie sense ol'

ClarkeconsistsofaLlfER'suchihat.wheneveronehassequ€nccs.kl0andrr-rwirhrieC.
there exisi l,r r l with xi + r!_lr € C lor al1 t. This is not Clarke's original defirition ir 11. 21.

bui it is equivalent io ii b,v his Proposltion 3.7 in [2] (see also [3, Rc[rark 2.1] .nd mo.e recenll\
HiriarFurruiy [4, Chapter VIIi 5]).

It is oblious tirar 0 E I.(r)and that I.(x) realil is a 
'oru 

(i.e. _rE l.(rltuplies 2_r E 4(rl lor a1l

; > 0). Mor.o!cr 4(rl is closcd. w}al is remarkable. however. is ihar I.(-r) is always corrd)r 1cl.

Clarkc [1, 2]r a dircct prool is also p.orided belo\\,). Thls property is surprising, because n r.
oblained without any convexily or smoolhness assumptions on C. In the absence ofsuch assump
rions (and related constraint qualifications'). the oiher local cones that harc bccn studjcd in
optimlzailon iheorl (ct [6]) are i]pically not convex. and ihis has alwa]s posed dilficul!ie\. Il C
is a 'difierentiable submanifold" ofR'. 4(r) is the classicaL langcnl spacc (es a subspace olR"l.
while if C is conver +(x) rs the usual closed targent conL ofconvex analysis [7].

Tangent cones in this sense have a natural role in thc theorf olflow-invariant seis and ordinarl'
difierential equaiions (and inclusion$. see Clarke [2] and Clarke Aubin lll. The) are fxnda-
mental in the study oiopiinizarion problems through duallt-v with the nrrrndl .Dr.j

N.(r) : Tc(rl' : l: e R' 1 e 4l\1. (r'. :) < 0l (itl

and through their consequent close connection with the generalized gradi€n! ser\ Clarke has

defined for an] lower semicontinuous tunction /r R" - I r,. 7:l bl

(lvhereepi/isihe(closed)epigraphsel{(.r.d)ER"-'a>l(r)}iil/1-r) :7-,i/{\risiakentobe
enpt]). Clarke has shown in [8 13] thal thesc notions provide the means for eriiending io the
nonconlex case the kinds ol necessary conditions for optimalit-! ihat hare been deleloped for
nonsmooih \,xrialjonal problens of convex lype (cl. [7 l6]).

i/(rl : 1: € R" t;, l)ex"o,r(r./1\r)l t1.:l
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The main purpose ol rhis ariicle is to establish a strong property of inteior tangent vectors

{Theorem 2) $,hich implies llra1 the borndary ol C must be Lipschitzian aro nd any boundarJ
poini r where int I"(r) I U. The condition int ryx) + O is equivalent io N/x) beinc a rrinted
cone. in the sense that 0 +:e N.(r) implies :dN.(r). This result is used to derive a rule for
estinaling the langcDl cones and normal con€s to ihe inlerseciion ol two sets and the inverse
image of I sei under a diflerentiable mapping (Theorem 5). A strengtlen€d converity property ol
C is aiso proved (Theorem l).It is shown that al (x) cannot be a nonempiy bounded set unless /
is actually Lispchitzian around x {Theorem 4).

2 CONVEXITY OF THE T,{NCENT CONE

Clarkes originai approach to the definition of 4(r)in [i,2] is based on special properlies ol
Lipschitzian luncllons (for which he initially defined A/(r) in another manner). It is ol some in'
terest to kno\\, ihat the converity of Q(I) can also be deduced straight from the equlvalent defini'
tion adopted here. For ihe record we provjde a proof which also shows how th€ convexir) is

approachcd'unilbnnly in thc ljmj!. a properi] tbal will be needed jn dcriving lbe lundamental
theorcm in the next section.

T.et B {lcnote the closed unit ball in R". so that -! + 68 is the ciosed ball ofradius 6 abour i.
One has r € 4(r) if and only if lor every r > 0 there exist d > 0 and 2 > 0 such that

C. [r' + (_r + eB)l + O for al] r' € C . (x + 6-8), tefo,r.l. (2.t)

U 0, + 
'Bl 

: co{y,...., },,} - ,8. (2.2)

d + ,1(p + 
') 

< t, where p : max'l I, ,.. .. 1,). ].

(2.3)

(2.41

The assertion

c.ft'+(I+eBll+A for all x € a . (r + dB). te[0.1]andall.],Ecoi],,...,r,,] (2.s1

In what follows. the converi hull of a set D is denoted by coD.

THEoREM 1. Let D be ant nonempty compact subset of lr(jr). Then for every s > 0 there exist
.t > 0 and ,l > 0 such that (2.i) 1s valld simultaneously for all ,r,€cor. (Thus in panicular
co, - ryr). so 4(_r) is conver.)

P/ooll Lei E > 0. Sjnce D is compact. ii can be covered by a finile family olballs ] + €8. where

],e?(rllori- 1..... 
'n. 

Then

It iili sulfice to thow that (2.1) hoLds ior all ) in co{-l,1, . . . , }.}, because this \1i11 imply via (2.2)

that lor 2lj in place of s it holds for all Ie coD (a property equjvalenl to the desired conclusion,
sirce r is arbitrary anyway).

Forl: i.....,r,,{2.1)holdslor-v.andceriaindr > 0, ,lr > 0-Takingrand,ltobethesmalles!
oftnese values. onc ha\

c. [-r'+ r0, + e,B)] +'4 fot all x eC.\(\ + tB), r€ [0,1], and i: i,...,,'
Choose d e (0. r1 and i,€(0. il small enough thal
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holds trivially lor I - f. in vjew ol (2.3); mate the induclior hypothesis lhat il holds lor L :
l.Foranyx'eC/11(r + d-B),re(0,,1),r€co[.]"r ...1-].Write-v: al'' + (1 - a)r where

1'eco{1,,...,-r,, rl and ae[0,1]. Sinc€ dr e [0,,1], we hare by inducilon thar C meers

r' + dt(r' + sB). Lei x" be any point in t}le intersection. Then in partjcular

r" E [(r + d-B) + d( ]' B + eB)l : i,. - [6 + a( r' + €)]8.

where v'] < maxl y,l,..., l-1,.- r ) < p in (2) and consequently

J )r, l' -.r'J- rtp ' J

Thus r"€C.(r+tB), and since also (1 a)r<2<r, it follows &on (2.3) lhat C meets

x" + (1 - r)t(I, + i,B). Hence C meets

[r' + d(]'+,:B)l + (1 - d),(]. +,-B): r' + t()r + EB).

Thls verifies (2.5) for i. : ln and completes the prool

Re,nnll. The proof ol Theorcm t h easily exiended to infinite-dimensional spaces and ih€reby
demonsiraies that the convexity ofClarke\ rangent cone (undff the corresponding extension of
the present form of the definition) is a far more general phenomenon than has been realized. For
applications of this approach to the srudy of generalized direcrioml derivatives ol lower selll-
continuous functions on locally convex spaces, see [17].

3. INTERIORS OF T,\NGENT CONES

The following theorem will be fundamental to the .est ol thjs paper. (C still dcnoles a .lorpd
subset olR', and i is a point of C.)

THloRrir 2. One has y€int 4(r) ilany only il lhere exist r > 0. d > 0. -i > 0 such thar

r'+tl,'€C forall-r'e Cn(n + r-B), te[0,2], ]'e(],+€rl. (3.1)

P,od SdJi.i!,,rI. Suppose the condition holds, and consider arbitrary r'€ (r + .:Bl. For any
seqlLences rr(e C) + {, iu J 0. one has r* e(x + ,B) and rr € (0.,1) ior all f sulfrclentl} large, and
consequendy xr + tr.]; E C for.1n = y'. Thus by definition / e 4{rl. This proves 4J(r) - (r + rB).

N.ces.!it),. Given l,€int 
"c(i), 

choose x > 0 small enough that ) + 3e,B - I.(x). Appl)
Theorem I to D : _r + 3€B to obtain 6' > 0 aad,l' > 0 such thal

C . [r' + (]' + eB)l + U lr'henever / € C ^ 
(i( + ,'B), t e 10, ).'1, ]' e (J + 3€B). (3.2)

Neri choose 6 > 0 and ,l > 0 small enougil that

2 < ,l' and d + 2,i( ,r, + €) < ,'.

It will be demonstrated that (3.1) holds for this choice of€- 6. ir.

Suppose (1.1) does not hold. Then there exisi

tec.(n+,tB), ).elj,1l. te(r,+€.8),
such that t + ,.t + C. Choose any p > 0 small enough that

(3.3)

(3.4)

c ^l- + lt + pB): @ (hence p < - - (t + -)l : r"l.t|). (3.5)
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Definc

i: maxls€t0.! c.(i + s, + pB) + 6]; (3.6)

ihis maximum is altained- because C is closed and B is cornpact. Since (3.5)holds but r€ C, one
has

o<.2<r.<,i<,t. (3.7)

Select any;e C. (r +,i.]= + pB). as exists by(3.6). Th€ interior ofthe ball- + b + pa cannot
meer C. in vie$, ol(3.6). so actually

i:-+,lt+pewith e:1. (1.8)

rhen by (3.4), (3.5). (3.?), one has

;-x < r r +;-r < 6+ it+ pel<6+1.1t +rlt <6+r(], +e).

It follows from (3.3) lhat for this i and for )r: t - 2Es one has

i E C . (r + d'B) and t€ lr + 3€B).

and therefore bl (3.2)

C^[i+r(j.i+€B] +A rot alt t e 10. ).'1. (3.9)

Horveler. consider any I small enough that

0<r<minlp/2€,r. ;j (hencer< i<a). (3.10)

It lill be shown that

cnF+r(i+€-Bl-Z (even though, e [0..i']). (3.r1)

The contradiclion b€tween this and (3.9)will finish the prooi Siice r < p/2r in (3.10). one has
0<p-2€t<p rr.sothat

t(.i )-): pe : \p - 2E)ee(p et)B.

Then i + riE (i pe + tt + (.p - Et)B). Using (3.8) one obrains

i + rO + €B) - - + (,1 + rt + pB.

whcle i < i + r < l. (since i < t -,1 in (3.10)). This yields (3.11), because

C..lI-+(tr+rr+pB):A

b) rbe definirion (3.6) of,l.

Cauntercximple l.Theorem 2 is no longer true wh€n Rl is replaced by an inlinire-dimensional
Banach space. even in the case ofa convex set. Lei C be rhe closed convex subset ol the Hilbert
space lr x R which is the epigraph of the functjon

f\O: r, ii:. where(: ((1,{?, . 1.
j=1



It can be verjlied that 4(O0) is the upper half-space i(i.a)ia > O] and hence has nonenpty
lnterior coniaining ] : (0. l). But rhe interior of C is empry. because / is nor bounded above on
any neighborhood ofo. Hen€ the propeny in Theoren 2 cannot hold at r. : (0.0).

Rsrnrk. Hiriart-Urruty [5- Theorem 4] has proved for Banach spaces a result somewhat akin
io Theorem 2 but invoiving ihe interior of U.(x) : 4(x) . (- 4..(:()). where C, is ihe closure of
rhe complemenr of C. He assumes r is a regular' boundary poinr (an 'angulariry' propertyl and
proves ttar for t€in! Uc()i) there ihen exisr e > 0 and 2 > 0 witl r + rI eC and x - rI,€C
for all.l'€ 0, + 68). t e (0,,,i). His argument is based heavily on the-regularily' assumption and is
ve.] differcnt from ours. In the finite-dimensionai case, one obtajns ftom Theorcm 2 (cl also the
.emarks in the nent seclion) that rhe same conclusion js \,alid not only for r. bur all nejghboring
boundary poinls r', wheihff or nol r is'reguiar', and assuding merely rhat I€int t(x).

CoRoLr.ARy 1. One has r E int C if and only if _r is a poinr of C such thar 4.(r) is a of R, (j.e.
N.(-n : l0l). Thus C has at least one noDz€ro rrormal lecror'ar each ofjrs boundr[y poinrs.

P/r.t: This is the case olTheorem 2 where } : 0

CoRoLLARy 2. Let I be a point of C where inr 4(x) + A (i.e. N.(r) is pointed). Th€n the mulrj-
function N; is closed ai I. in the sense thar

. te.ia,e.i .or.. , o.ed.a., R

ri(Ec) + r, :L F N.(x,), :r ' z + 
' E N({x). (3.12)

Proot To prove (3,12), consjder fi.st any .),€ int ?r). The propeny in Theoren 2 implies
_r, e l.i-r')forall x'e C. (r + ,liB). and hencer€ T(r.k) for a1i I su{ficienrly targe. Then (1. 'i) < 0
by the definjtion (1.1) of N., so rhat 0 > lim (), :-L) : (_1r, 

'). This sbows that

(r,,,-) < 0 forall)€int ?.(r). (3.13)

Since 4(x) is convex with nonempty jnterior, it is the closu.e of this inreflor, and rhe inequaliry
in (3.13) therefore carries over to all )€ 4(i.). Thus z€ N.(jl.

CoRoLLARy 3. Letl:R" - R u l+..1 be lower semiconrinuous, and ler x be a point where l'
is finite ,/(r) is nonempty, and il (rl does nor contain any entjre iine (i.e. is a convex set of
linearity zero [7, p. 65]). Then the muhjfuncrion a/ is closed ar I. in the relative sense rhat

xk+x, zkeat\xk). zk-2, f(x]) + tlx) +ze4@. (3.14)

P/orJ: In view of Corollary 2 and rhe definirion (i.2) of rl, it is enough to show that the cone
,ry"!, /(\J {r l) rs poiDted tlnder rbese assumptions. Since this cone is by narure always containcd
ri the lo$ er hrll-space {(1. d)ld < OJ.,t fxrts ro be pointed if and onty iffor some u + 0 it conrains
both (r. 0) and ( - u.0). For an arbitrary element oI N.(r) of the folm (2. 1)lor any other form.
lor rh.r m"ller'.ni. p-open1 oir r. eqr ,r, ,enl lo haiing

(:. - 1) + t(,.0)€r.(ir) lor all r e R
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Thus ifi/(f,) contains an element z- the property of!] is equivalent ro the line 1: + tu I € Rl being
contained in ;l (rl.

Countatexample2.The tact thar (3.12) and (1.14) can fail without the assumptions jn Corollaries
2 and I is illustrared bv rhe ser

c : {(r1.x,, 13) € R3lrr : x,x, or 13 : -r1x,}.

For all t + 0 the cone ,\'.(r.0,0) is the ):,\.-plane, and similarly N.(0, r.0) is the xrr. plane, yei
Nc(0,0,0)isjust the r3-axis. This is a counlerexample to (3.12), and by takingl ro be the indicaror
of C, so that al (x) : N.(x). one obtains a counterexample to (1.14).

Ol course (3.12) and (3.14) do always hold in t.he correi case [7. Section 24]. Furthermore.
(3.i4)alwals holds when I is Lipschirzian. cL [2] (ihis also follows lrom Corolary 3 and Theorem

.1. LIPSCIITTZIAN PROPERTIF,S

epigraph of a Lipschitzian (Lipschitz continuout function. This means rhar for some reighbor,
hood U ol r there is a nonsingular linear rransfomatlon ,4 r R, + R' 1 x R such that C . U:
C ^ I 

1 (epi d). where d is a hrnction on R" I that is finite and Lipschitzian around the point <
\rhichistheR'l-componentof,4(r).ThepartofrheboundaryofCinUisrepresenredcorre-
spondingly by the graph of d and js a'Lipschitzian surface.'

TirloRrM 3. A closed set C - R' is epi-Lipschitzian at a point x e C if and only if int lc(r) + O
(i.e. N.lr) is pointedl.

The fact ttrat a closed set C is epi-Lipschitzian at jr if and only iI (3.11 holds, is of course al1
that is needed in deriving Theorem 3 ftom Theorem 2. This fact is 'wel1kno$'n'. but an explicit
stalemeni is hard to find. Recently CalTarelli [20. proololTheorem 2] used ii without suppuing
an argumert. A proof lor a similar situaiion, invohing boundaries of'star-shaped' regions, bas
been given by Friedman and Kinderlehrer [21. Lemma 4.1]. Whjle rhe fact certainly is elemenrary
it is trickier to esiablish than might be supposed- sinc€ the boundary is not already giren as a
'surface' but musl be shown to be such (1oca11y) under (3,1). This is the crux of the proof of
Theorem 3 that is furnished below.

THEoRLM 4. A iower semicontinuous function /:R' + (-.o. + cc] is (finite and) Lipschitzian rr
a neighborhood of a point r e R'iiand only if 6/(x) is nonernpty and bounded.

These results. rvhich are closely related. wiil be derived as consequences ofTheorem 2. and it
is convenient io deal with Theorem 4 first. The necessity of Theorem 4 bas already been estab-
lished by Clarke 11, 2] (in proving that his general definition for a/ir) reduces ro his firsr-srage
definition in tems ollimits in the case where / is Ljpschirz conrinuous).



Proot of Theorcn 4. Llpscbirz conrinuity ol I around r means the cxistence of p > 0 and a

neiqhborhood U ofr such that / is finite on Lr and

l/('") - /G'l <p i" r'l for all '', 
r" e u

Thjs propert] can be expressed €quivaienlly- although somewhat oddly, as follows: there exist

J > 0, r E (0. 1) and ,l > 0 such that

/(r' + r) ) < l(x') + (E-' - 1) lor all.e [0'.1] when

x €(r'e,ir + 68), /(r') < l(r) + r, .]J€,:8.

(Here E corresponds ro (1 + /r) 'i nole rhat the condition applies in particuld|rhen r' : r' so

/ must be finite on a neighborhood of -!.) The vi(ue ol (1.1) is that it ca]l be restated in epigraph

terms as ( / finite at x and)

(r', d) + () , f) € epi I lor ail t e [0, .1] when

(-r', e) e (epi /) n [(x.l(x) + ,(B x [- 1. l])1, (4.2)

' I'r.( . ee' .o e ,r 'o bor'd e. ro d e ilR' l5l

(4.1)

(r'. p)€ l(0.1) + (B ' i r. tl)].

Bui this isjusi the condition in Theorem 2 in the case ofihe set C = epil the point (r' /(r))in
C. and lhe vecior (0. 1). (Il course C is closcd. sinc€ / is I s.cl.

It foilows lhal I is (finiie.Lnd) Lipschilzia in a neighborhood of -! ifand onlviflisfinitc at

r and (0, 1) € int 4(x,l(r)). when ihis js lrue 4(r,l(j!)) cannot be the whole of R'+1 (for then

Corollary I of Thaorem 2 would yield the impossible conclusion thai (r,/(r))e int C). Now lor
a convex coDe K jn R'. 0 € -K + R'. the condition 1:l € int I< is dual to a propefiy of the polar cone

K", namel), that the cross-sectjon M : lue K l<u.a> : 1] is nonempty and compact [18,
Corollary 7Fl. Applying this 10 d : (0, 1)and lhe cone 4(r I (r)). whose polar is the normal cone

N"(r, I (r)). one sees that I is (finite andl Lipschiizian in a neislborhood of r if and odv if I
is inite al r and ihe set 1: e R' (2. l)EN.(x.l(r))l is nonempiv and bounded Butthisisiust
a/(x) by Definirion (1.1) when /(x) < 'i. 

(wiren / (x) : .D, ?f\x) : b )

ProafolThearcmS. Necerrill. The proofofTheorem4shows thal lhe epigraph ola Lipschitzian

lunction has langent cones with nonempty interior' Hence if C can be represented in a ncigh'

borhood of ir as the epigraph of such a frrnction, m thc sense defined, it must be true thal

Srticien.I.lfr € int C,ihe conclusionthat C is epi-Lipschitzian nearr istrivial Supposethere-

fore that r is a boundary point of C. Then 4(r) is not all olR'(ct Corollar) 1 1(r Theorem 2) Let
j€inlTc(r), ,rr+0,andlel It be the hlperplane through the origin orthogonal tol Fach
jr'€R" can be expressed uniqueiy in the lorm i'+ d') where ('€H, d'€R; the mapping

A.x -(t',a') is a nonsingular linear transformation from R'onto iJ x R. Let li.d): '1(r).
Since ) E inr ry:r). the property in Theorem 2 holds, and in this th€ ball Bcan be replaced equallv
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well by the product of its intersection 8'\rith Il and the interval {r*"1 I < r < 1].In terms of
,1(C), the property is that lor some e > 0. i > 0. ; > 0, one has

For ail i'€ H define

l<',d') + t(4. fl e A(C) forallrE [0,2] when

(<'. x')e.4{C). fta. x) + ,(8' x t- 1, ll)1.

(4, B)€ [{0. r) + c(B' x t- 1, 1])1.

OG): intld. c' > x. 6,tt'.t'\e A(CJI > a - d.

(4.3)

(4.4)

(4.5)

(where thc convention inlo : +,x. is impticit). Since C is closed. d is a lower semicontinuous
function wirh valuesin(-or, +.rI. Takine ({'d') = (a. r) in (4.3). one sees rhar

d{,: f t4) <, + (l c) \rhena€cB'. t€[0,iJ.

Hence there exists J' < d such that lor ali (' E (i + d'A)onehas0(g') < d + d and (consequently)

({'. C(il)€ ,1(c) ^ [(f, d) + l'(B' + [- l, 1])1.

Then (a.3) jmplies (with B = 1)

G' + t1,0\ + t)e AlC) when t€ [0.r"], 4esB'.

Therefore, lor aI i'e {t + ij'B) one has

d(i' + h, < (t((') + r when r € [0, .l], 4 € .B',

so that d js Lipschitzian on a rcighborhood of a. Furihermorc

(i',41i') + ,)E.'1(C) lor all I E [0. r.]

by (4.3). For t < 0, ofcours€, one has ((',.y'(f') + l)+,1(Ci by the definitioD ofqt. Thus therc rs .r

neighborhood of ((- a) = (i, d(t)) in which ,1(C) coincides wjth the epigraph of d. This proves
that C is epi-Lipschitzian at x-

Renl,rl. Hiriarturruty [4. Chapier VII] has introduced the s),rlr4eiized ta gekt co e to C ar
a boudary point -\ as rhe intersecrion of Ar) and A-rI where C' is thc complement of
int C. Substituting this for ?:(x) in lhe defidtions of NJx) and e/(-y), he has defined the s_r,tl

ntni.ed nan al .ane antl slmmetritrd generalized grodient serr. He has noted that the sym-
metized hngentandnormal cones reduce to 4:(j()and N.(x) if Cis either convex orepi-Lipschit-
zian at r.lt follows now from Theorem 3 that € s),rtfielrizel lones can dilfet./ron Clarke's co es

onl, in rathet " ilegenetuts" caser, where in particular int Tlx\ : A aDd N {x) is Dot poinlcd (and
hence contains some entire line through the originl. As for the symmetrized generalized gradient
set. this likewise has lo reduce to Al(x) excepl perhaps in cefiain cases where 6/(r) is cmpty or
is unbounded aDd contains som€ entire line. (As s€en in the proofofCorollary 3 in Section 3, fiis

, condiiion is implied by the 'nonpoinledness' of N*,/r,,/ (*)))
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J AN INCLUS]ON tOR TA\GENT AND NORMAL CONES

A rule for estimating tangent and normal cones will now be derived fton1 Theorem 2 This rule
can bc used in the compxtation ol necessary condilions lor optjmalitl, in problems where the
leasible sel is the intersection ofother sets corresponding lo various constrainls.

THroRlNr 5. Lct l. E t : D la F 1(C), where C - R' and D - R! are closed sets and F:R, + Ri
is conljnuously dillerentiable. Lel J bc thc Jacobian ol j? ar !. and suppose thar

rDlu)., J-littrclFtui + A. (5.1)

Thcn

rE\u) = rD@)^ r lrc?tu))' (5.2)

N!(,) - x'D(") + J*Nc(,rld) (closed). (5.3)

TwocasesolTheorem5areofpaflicularnote.Thefirstiswh€ret-D.C(rhusR,:R,.F
is the identity lransformaiion. I : J - J 1: J*). The second is where ,: F 1(C) (thus
D: R': L(,).,\D(,1) : l0l),

Prool Sinc€ the tangent cones are closed conlex scts, condition (5.1)implies ihat

c][L(,) . r ' int 4J(f(1,D : 4'(d n r 14(F(r)

(ci [7, Theorems 6.3, 6.3. 6.7]1. To establish (5.2). therefore, jr will be enoush ro show thar q(,)
includes the ser in (s.l). Then (5.1) $'il1 fol1o$r immediately bt passing to the polar cones (cr [7.
Corollaries 16.3.2, i6.4.2]1.

Lei I be an elemert of the inlersection in (5.1), and let \, : J1). x - F(u); then r€ 4,(r).
r€int 4.(x). Suppose .k 10, ,r € t. !i r ,, In pariicularur € D. and since u e ?;(r) there must
exist,i+, !vi1h uk+ tLrij,eD. Alsol'.LeI 1(C), so thar points xi: /'("i) belong ro Cand

)o: LF(,. + ru,.u) i'(llu)l/r*

one also has ,},! + Jr : .]., because F is continuously difierenliabte. Note rhat F(rk + .irr) :
\ + tilLi the property in Theorem 2 implics therefore that F(rtr + rrur)€ C for all i sumcienrly
large. i.e. llL + irrr e I- r(C). Thus ,r + rLrL e f for ali I sufficienrly large, and ir follows rbar
L e TE(u).

Rp'rdrk. The dual form ofcondition (5.i)is that. ior some , e Rp, one has

(',.,) < 0for aI1,, € N,(r).

(J,.:) < 0 for all nonzero, e N.(r(ll).
The prool of the theoiem does nol reaUy require F ro be conrinuously differenriabte on R.,

jusr srrongly (srrictly) diferentiable at r in rhe sense that

l/.t.u' + tt) F(u)lit - 4r)D when 1l' + 1J, ,' + r. r.L 0.

For applications ofTheorem 5 to the computarion olgeneralized gradients. see [19].
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