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[. INTRODUCTION

Ler C se a nonempty closed subset of R". For each x e (. the mngem cone T.(x)1n the sense of
Clarke consists of all y € R” such that, whenever one has sequences 1, | O and x, — x with x, e C.
there exist y, — y with x, + .y, € C for all k. This is not Clarke’s orls_mdl defmllwn n [I 2],
but it is equivalent to it bx his Proposmon 3.71in [2] (see also [3, Remark 2:1] and more recently
Hiriart-Urruty [4, Chapter VII: 5]).

It is obvious that 0 € T.(x) and that T {x) really is a cone (i.e. y e T {x) implies 2y e T (x) for all
/. > 0). Moreover T (x) is closed. What is remarkable, however. is that T (x) is always conrex (cf.
Clarke 1, 2]: a direct proof is also provided below). This property is surprising, because it 15
obtained without any convexity or smoothness assumptions on C. In the absence of such assump-
tions {and related ‘constraint qualifications’), the other local cones that have been studied in
optimization theory (ef. [6]) are typically not convex, and this has always posed difficulties. Tf C
is a “differentiable submanifold”™ of R". T.(x) is the classical tangent space (as a subspace of R"),
while if C is convex T(x) is the usual closed tangent cone of convex analysis [7].

Tangent cones in this sense have a natural role in the theory of flow-invariant sets and ordmnary
differential equations (and inclusions). see Clarke [2] and Clarke-Aubin [3]. They are funda-
mental in the study of optimization problems through duality with the normal cones

Ndx) = TAx)" = {zeR"ye Tyx). {y.2) £ 0] (1.1)
and through their consequent close connection with the generalized gradient sets Clarke has
defined for any lower semicontinuous function {:R" — (— . x| by

e_;!if[.x‘-'f[x”.: |]:|‘

(x)={zeR"(z, —=1)eN
(where epif is the (closed) epigraph set {(x,«)e R" " '|a = f(x)}:1f f(x) = . f (x) is taken to be
empty). Clarke has shown in [8-13] that these notions provide the means for extending to the

nonconvex case the kinds of necessary conditions for optimality that have been developed for
nonsmooth variational problems of convex type (cf. [7-16]).
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The main purpose of this article is to establish a strong property of interior tangent vectors
(Theorem 2) which implies that the boundary of C must be Lipschitzian around any boundary
point x where int T.(x) # (. The condition int T(x) # J is equivalent to N (x) being a pointed
cone, in the sense that 0 # ze N (x) implies —z ¢ N (x). This result is used to derive a rule for
estimating the tangent cones and normal cones to the intersection of two sets and the inverse
image of a set under a differentiable mapping (Theorem 3). A strengthened convexity property of
C is also proved (Theorem 1). It is shown that éf(x) cannot be a nonempty bounded set unless [
is actually Lispchitzian around x (Theorem 4).

2. CONVEXITY OF THE TANGENT CONE

Clarke’s original approach to the definition of T.(x) in [1, 2] is based on special properties of
Lipschitzian functions (for which he initially defined f(x) in another manner). It is of some in-
terest to know that the convexity of T.(x) can also be deduced straight from the equivalent defini-
tion adopted here. For the record we provide a proof which also shows how the convexity is
approached ‘uniformly” in the limit, a property that will be needed in deriving the fundamental
theorem in the next section.

Let B denote the closed unit ball in R”, so that x + éB is the closed ball of radius é about x.
One has ye T.(x) if and only if for every & > 0 there exist 6 > 0 and / > 0 such that

Crnl[x+ty+eB)]2g forallx’eCnr(x + éB), te[0, /] (2.1)

In what follows, the convex hull of a set D is denoted by coD.

TrEOREM 1. Let D be any nonempty compact subset of T.(x). Then for every ¢ > 0 there exist
0 >0 and A > 0 such that (2:1) is valid simultaneously for all yecoD. (Thus in particular
coDcT.(x), so T(x) is convex.)

Proof. Let & > 0. Since D is compact, it can be covered by a finite family of balls ¥, + B, where
yveTdx)fori=1,..., m. Then

m

coD cco | ) (v, + &B) = cofy,,.... ¥, + &B. (2.2)

? "l
i=1

Tt will suffice to show that (2.1) holds for all y in co{y,,....y,}, because this will imply via (2.2)
that for 2¢ in place of ¢ it holds for all y € co D (a property equivalent to the desired conclusion,
since ¢ is arbitrary anyway).

Fori=1,...,m,(2.1)holds for y, and certain §, > 0, 1, > 0.Taking é and A to be the smallest
of these values, onc has

Crlx + Uy, +eB)]#lorallxXeCn(x+6dB).te[0,A],andi=1,...,m.  (23)
Choose § (0, 5] and /(0. 7] small enough that
8 + Mp + o) < 8, where p =max{|y,|,....|y [} (2.4)

The assertion

Crlx+iy+eB)]# & forallxeCnix + 6B), te[0. i]andallyecoly,.....y | (2.5
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holds trivially for k = 1, in view of (2.3); make the induction hypothesis that it holds for & =
m— 1. Foranyx'e Cr (x + 8B),t€(0,A), yecofy,,.... ¥, Write y = 03" + (1 — )y, where
veco{yy,...,v,_,+ and ae[0,1]. Since arc[0,4], we have by induction that C meets
x' + at(y’ + eB). Let x” be any point in the intersection. Then in particular

x"e[(x + 8B) + ar(|y'|B + ¢B)] = x + [ + autl(y'| + )15,

w—11} < pin (2) and consequently

S+at(y|+e) <5+ Ap+2) <0

where |y'| < max{|y,|,....|y

Thus x“e Cri(x + 0B). and since also (1 — o)t < 4 < 7 it follows from (2.3) that C meets
x" + (1 — w)tly,, + ¢B). Hence C meets

[x" + at(y’ + eB)] + (1 — a)t(y, + ¢B) = x' + t(y + &B).
This verifies (2.5) for k = m and completes the proof.
Remark. The proof of Theorem 1 is easily extended to infinite-dimensional spaces and thereby
demonstrates that the convexity of Clarke's tangent cone (under the corresponding extension of
the present form of the definition) is a far more general phenomenon than has been realized. For

applications of this approach to the study of generalized directional derivatives of lower semi-
continuous functions on locally convex spaces, see [17].

3. INTERIORS OF TANGENT CONES
The following theorem will be fundamental to the rest of this paper. (C still denotes a closed
subset of R", and x is a point of C.)
THEOREM 2. One has y e int T(x) if any only if there exist ¢ > 0, § > 0, 4 > 0 such that
X +tvel forallx'eCn(x + 4B), te[0, 2] Vely + &B) (3.1)
Proof. Sufficiency. Suppose the condition holds, and consider arbitrary v’ e (v + &B). For any
sequences x,(€ C) = x. t, | 0, one has x, €(x + 4B) and 1, €(0, /) for all k sufficiently large. and
consequently x, + t, 3, € C for y, = y". Thus by definition y' € T (x). This proves T.(x) = (v + &B).

Necessity. Given yeint T(x), choose &> 0 small enough that y + 3eB = T.(x). Apply
Theorem 1 to D = y + 3¢B to obtain ' > 0 and A’ > 0 such that

Cnr[x + 1ty + eB)] # & whenever x'e C n (x + ¢'B). te[0, 47, ¥ ey + 3eB). (3.2)
Next choose 6 > 0 and A > 0 small enough that
2< 2 andé + 2i(y| + e <4 (3.3)

It will be demonstrated that (3.1) holds for this choice of &, 4, /.
Suppose (3.1) does not hold. Then there exist

XeCnri(x + 6B), 2 e[0, 4], vel(y + eB). (3.4)
such that ¥ + 27 ¢ C. Choose any p > 0 small enough that
CA(X+ 72§+ pB) = P (hencep < |X — (X + )| = Z[F)). (3.5)
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Define
J=max{se[0,7]|C (% + s7 + pB) # &} (3.6)

this maximum is attained, because C is closed and B is compact. Since (3.5) holds but ¥ & C, one
has
O<li<lg g, (3.7)

A
Select any e C ~ (% + A + pB), as exists by (3.6). The interior of the ball X + £ + pB cannot
meet C, in view of (3.6), so actually

£ =X+ 1y + pewith|e| = L. (3.8)
Then by (3.4), (3.5), (3.7), one has
¥ — x| X = x|+ |8 = X[ <5+ |47 + pe| < & + Z[F| + Al7| < & + 24(y| + ¢).

It follows from (3.3) that for this £ and for ¥ = 7 — 2z¢ one has

XeCr(x+ édB)land ye(y + 3eB),

and therefore by (3.2)

Cn[x+1ty+eB]# g forallte[0, 4] (3.9)
However, consider any ¢ small enough that
0 < ¢ < min{p/2e,. — 7} (hencet < 1 < 1. (3.10)
It will be shown that
Cn[f+ty+¢eB]l= (eventhoughte[0, 1) (3.11)

The contradiction between this and (3.9) will finish the proof. Sinee t < p/2¢ in (3.10), one has
0 < p—2et < p— ct, so that

P — 7)) = pe = (p — 2er)ec(p — &l)B.
Then X + tTe(X — pe + t¥ + (p — &t)B). Using (3.8) one obtains
X+tF+eB)cx+ 1+ 07+ pB,
where 7 < 1 + 1 < J (since t < 7 — 1in (3.10)). This yields (3.11), because
Cn(X+(A+0F+pB) =0
by the definition (3.6) of /.
Counterexample 1. Theorem 2 is no longer true when R” is replaced by an infinite-dimensional

Banach space, even in the case of a convex set. Let C be the closed convex subset of the Hilbert
space [* x R which is the epigraph of the function
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It can be verified that T.(0,0) is the upper half-space {(¢, )|« = 0} and hence has nonempty
interior containing y = (0, 1). But the interior of C is empty, because [ is not bounded above on
any neighborhood of 0. Hence the property in Theorem 2 cannot hold at x = (0, 0).

Remark. Hiriart-Urruty [5, Theorem 4] has proved for Banach spaces a result somewhat akin
to Theorem 2 but involving the interior of U (x) = T(x) n (— T.(x)), where C' is the closure of
the complement of C. He assumes x is a ‘regular’ boundary point (an ‘angularity’ property) and
proves that for y eint U(x) there then exist ¢ > 0O and 2 > O with x + ry’e Cand x — 1y e C'
for all y" e (y + &B), r (0, A). His argument is based heavily on the ‘regularity’ assumption and is
very different from ours. In the finite-dimensional case, one obtains from Theorem 2 (cf. also the
remarks in the next section) that the same conclusion is valid not only for x but all neighboring
boundary points x', whether or not x is ‘regular’, and assuming merely that y e int T(x).

COROLLARY 1. One has xeint C if and only if x is a point of C such that Tx) is all of R" (ic.
Nelx) = [0}). Thus C has at least one nonzero "normal vector’ at each of its boundary points.

Proof. This is the case of Theorem 2 where y = 0.

CoOROLLARY 2. Let x be a point of C where int T(x) # ¢J (ie. N (x) is pointed). Then the multi-
function N is closed at x, in the sense that

x(€C)—>x, z,eNJx), z,-z =zeNJx) (3.12)

Proof. To prove (3:12), consider first any yeint T(x). The property in Theorem 2 implies
ye Idx)forallx'e C ~ (x + 6B),and hence y € T(x,) for all k sufficiently large. Then (y,z,> < 0
by the definition (1.1) of N, so that 0 > lim {y, z,> = <y, z). This shows that

{p,zy) =0 forallyeint T(x) (3.13)

Since T(x) is convex with nonempty interior, it is the closure of this interior, and the inequality
in (3:13) therefore carries over to all y € T(x). Thus z e N (x).

CoroLLARrY 3. Let f:R" —» R U {40} be lower semicontinuous, and let x be a point where f
is finite, df(x) is nonempty, and &f(x) does not contain any entire line (i.e. is a convex set of
linearity zero [7, p. 65]). Then the multifunction &f is closed at x, in the relative sense that

X, 2% zedflx), z,—z f(x)=fx) =zedf(x). (3.14)

Proof. In view of Corollary 2 and the definition (1.2) of &f, it is enough to show that the cone
N Ax.f(x)) is pointed under these assumptions. Since this cone is by nature always contained
in the lower hall-space {(x, )|« < 0}, it fails to be pointed if and only if for some u # 0 it contains
both (u, 0) and (—w,0). For an arbitrary element of N(x) of the form (z, —1) (or any other form,
for that matter) this property of u is equivalent to having

(z, =1) + t(u.0)e N{x) forallzeR.
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Thus if ¢f (x) contains an element z, the property of u is equivalent to the line {z + tu|t € R} being
contained in Jf(x).

Counterexample 2. The fact that (3.12) and (3.14) can fail without the assumptions in Corollaries
2 and 3 is illustrated by the set

3
C = {(x,x,, %) eR?[x;, = x,;x, 0r x, = —x,x,}.

For all t # 0 the cone N {1, 0, 0) is the x,x,-plane, and similarly N0, 1, 0) is the x, x,-plane, yet
NA0,0,0)1s just the x,-axis. This is a counterexample to (3.12), and by taking f to be the indicator
of C, so that ¢f (x) = N (x). one obtains a counterexample to (3,14).

Of course (3:12) and (3.14) do always hold in the convex case [7. Section 24]. Furthermore,
(3.14) always holds when f is Lipschitzian, cf. [2] (this also follows from Corollary 3 and Theorem
4 below).

4. LIPSCHITZIAN PROPERTIES

A set C = R" is epi-Lipschitzian at a point xeC if it can be represented near x as the
epigraph of a Lipschitzian (Lipschitz continuous) function. This means that for some neighbor-
hood U of x there is a nonsingular linear transformation 4:R* - R"™! x Rsuchthat C~n U =
C n A™' (epi ¢), where ¢ is a function on R"~! that is finite and Lipschitzian around the point ¢
which is the R"~!-component of A(x). The part of the boundary of C in U is represented corre-
spondingly by the graph of ¢ and is a ‘Lipschitzian surface,’

THEOREM 3. A closed set C = R"is epi-Lipschitzian at a point x € C if and only if int T(x) # &
(ie. N {(x)is pointed).

The fact that a closed set C is epi-Lipschitzian at x if and only if (3.1) holds, is of course all
that is needed in deriving Theorem 3 from Theorem 2. This fact is ‘well known’, but an explicit
statement is hard to find. Recently Caffarelli [20, proof of Theorem 2] used it without supplying
an argument. A proof for a similar situation, involving boundaries of ‘star-shaped’ regions, has
been given by Friedman and Kinderlehrer [ 21, Lemma 4.1]. While the fact certainly is elementary
it 1s trickier to establish than might be supposed, since the boundary is not already given as a
‘surface’ but must be shown to be such (locally) under (3.1). This is the crux of the proof of
Theorem 3 that is furnished below.

THEORIM 4. A lower semicontinuous function [:R" — (— o0, + o] is (finite and) Lipschitzian in
a neighborhood of a point x € R" if and only if f(x) is nonempty and bounded.

These results, which are closely related, will be derived as consequences of Theorem 2, and it
1s convenient to deal with Theorem 4 first. The necessity of Theorem 4 has already been estab-
lished by Clarke [1, 2] (in proving that his general definition for df(x) reduces to his first-stage
definition in terms of limits in the case where f is Lipschitz continuous).
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Proof of Theorem 4. Lipschitz continuity of f around x means the cxistence of u > 0 and a
neighborhood U of x such that f is finite on U and

[f(x7) = f)] €plx’ — x| forallx',x"eU.

This property can be expressed equivalently, although somewhat oddly, as follows: there exist
&> 0,ze(0,1)and A > 0 such that

fx + 1)< f(x)+ e — 1) forallre[0, 4] when

xXexe/x+ 6B, fl(x)< f(x)+46, yeeB. 4.1)

(Here & corresponds to (1 + )~ ': note that the condition applies m particular when x’ = x, so
f must be finite on a neighborhood of x.) The virtue of (4:1) is that it can be restated in epigraph
terms as (/ finite at x and)

(x,2) + 10y, Bleepi f forallte[0, 1] when
(x, ) e (epi £) A [(x% F(x) + (B x [=1,1])]. 4.2)

. P el0.1) + B x [-1,1])].

But this is just the condition in Theorem 2 in the case of the set C = epi f; the point (x, f(x)) in
C, and the vector (0, 1). (If course C is closed. since [ is Ls.c.).

Tt follows that f'is (finite and) Lipschitzian in a neighborhood of x if and only if f is finite at
x and (0, 1) e int T(x. f(x)). When this is true T(x, f(x)) cannot be the whole of R""* (for then
Corollary 1 of Theorem 2 would yield the impossible conclusion that (x, f(x)) € int C). Now for
aconvex cone K inR”, 0 e K # R™ the condition a € int K is dual to a property of the polar cone
K*, namely that the cross-section M = {ue K°|{u,ay = —1} is nonempty and compact [18,
Corollary 7F]. Applying this to a = (0, 1) and the cone T(x, f(x)). whose polar 1s the normal cone
N(x. f(x)), one sees that f is (finite and) Lipschitzian in a neighborhood of x if and only if f
is finite at x and the set {ze R"|(z, —1) € N {x, f(x))} is nonempty and bounded. But this is just
&f(x) by Definition (1.1) when f(x) < oc. (When f(x) = 00, &f (x) = )

Proof of Theorem 3. Necessity. The proof of Theorem 4 shows that the epigraph ofa Lipschitzian
function has tangent cones with nonempty interior. Hence if C can be represented in a neigh-
borhood of x as the epigraph of such a function, in the sense defined, it must be true that

int T(x) = L.

Sufficiency. If x e int C, the conclusion that C is epi-Lipschitzian near x is trivial. Suppose there-
fore that x is a boundary point of C. Then T(x) is not all of R" (cf. Corollary 1 to Theorem 2). Let
yeint T(x), y# 0, and let H be the hyperplane through the origin orthogonal to y. Each
x' eR" can be expressed uniquely in the form &' + o'y, where &'e H, o €R; the mapping
A:x' = (&,0) is a nonsingular linear transformation from R"” onto H x R. Let (£, o) = A(x).
Since y € int T(x), the property in Theorem 2 holds, and in this the ball B can be replaced equally
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well by the product of its intersection B’ with H and the interval {tv/—1 <t < 1}. In terms of
A(C), the property is that forsome e > 0, § > 0, /. > 0.one has

(&) + tln, pre A(C) forallte[0, 2] when
(. 2)e AO) N [(E.2) + 8B x [-1,1]], (43)

(n. A e (0, 1) + (B x [- 1 1])].
For all ¢' € H define
G(&) = inffe |’ = o — 8,(¢,2) e AC)} = w — 4. (4.4

(where the convention infl &f = + oc is implicit). Since C is closed, ¢ is a lower semicontinuous
function with values in (— oo, +oc]. Taking (&' ') = (¢. %) in (4.3), one sees that

ME+m <o+ 1l —g) whenneeB, te[0,4].
Hence there exists 6 < ¢ such that for all £ e ($ + ¢'B) one has ¢(£) < o + J and (consequently)
(€. 9(E)NeAC) N [(E.a) + &(B + [—1,1]]
Then (4.3) implies (with f = 1)
(¢ + m o(&) + )e A(C) whente[0.1], neeB. (4.5)
Therefore, for all &' (& + §'B) one has
A& + ) < P(&)+t whenre[0,4], neeB,
so that ¢ i1s Lipschitzian on a neighborhood of ¢, Furthermore
(&, &) + t)e AC) forallze[0, 4]

by (4.3). For t < 0, of course, one has (&', ¢p(E") + 1) & A(C) by the definition of ¢. Thus therc is a
neighborhood of (&, o) = (¢, ¢(&)) in which A(C) coincides with the epigraph of ¢. This proves
that C is epi-Lipschitzian at x.

Remark. Hiriart-Urruty [4, Chapter VII] has introduced the symmetrized tangent cone to C at
a boundary point x as the intersection of T(x) and — T(x), where C’ is the complement of
int C. Substituting this for T(x) in the definitions of N x) and &f(x). he has defined the sym-
merrized normal cone and symmetrized generalized gradient sets. He has noted that the sym-
metrized tangent and normal cones reduce to T(x)and N .(x)if C is either convex or epi-Lipschit-
zian at x. It follows now from Theorem 3 that the symmetrized cones can differ from Clarke's cones
only in rather “degenerate” cases, where in particular int 7(x) = & and N (x) is not pointed (and
hence contains some entire line through the origin). As for the symmetrized generalized gradient
set. this likewise has to reduce to ¢f(x) except perhaps in certain cases where &f(x) is empty or
is unbounded and contains some entire line. (As seen in the proof of Corollary 3 in Section 3, this
. condition is implied by the ‘nonpointedness’ of N i A% f(x).)
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5. AN INCLUSION FOR TANGENT AND NORMAL CONES

A rule for estimating tangent and normal cones will now be derived from Theorem 2. This rule
can be used in the computation of necessary conditions lor optimality in problems where the
feasible set 1s the intersection of other sets corresponding to various constraints,

THEOREM 5. Letue E = D~ F~HC), where C = R and D = R” are closed sets and F:R! — R*®
is continuously differentiable. Let J be the Jacobian ol F at u, and suppose that

Tylu) ~ J ' int T{F(w) # &. (5.1)

Then
Te(w) > Tyu) N J ™' T(F(u), (5.2)
N(u) = N ,(u) + J*N (F(u)) (closed). (5.3)

Two cases of Theorem 5 are of particular note. The first is where E = D ~ C (thus R* = R". F
is the identity transformation, I = J = J~' = J*). The second is where E = F~Y(C) (thus
D = R? = T,(u), N (u) = {0}).

Proof. Since the tangent cones are closed convex scts, condition (5.1) implies that
[ Ty(u) m J™hint TFw))] = Ty(u) nJ~* T{F(u)

(cf. [7, Theorems 6.3, 6.3, 6.7]). To establish (5.2), therefore, it will be enough to show that T,(u)
includes the set in (5.1). Then (5.3) will follow immediately by passing to the polar cones (cf. [7,
Corollaries 16.3.2, 16.4.2]).

Let v be an element of the intersection in (5.1), and let v = Ju, x = F(u); then ve Tfu).
yeint Tx). Suppose 1, | 0, u, € E, u, — u. In particular u, € D, and since ve T,(u) there must
exist v, — v with u, + f,v, € D. Also u, e F~'(C), so that points x, = F(i,) belong to C and

x, = x. For

k

Ve = [Fluw, + t,v) — Flu)]/1,
one also has y, — Jv = y, because F is continuously differentiable. Note that Flu, + t,0,) =
X, + L)y the property in Theorem 2 implics therefore that F(u, + r,v,) e C for all k sufficiently
large, ie. u, + 1,0, F~'(C). Thus u, + t,v, € £ for all k sufficiently large, and it follows that
ve Tu).
Remark. The dual form of condition (5.1) is that, for some v € R”, one has

{v.wy = Qforallwe N ylu),

{Jv, 2> < Ofor all nonzero z € N (F(u)).

The proof of the theorem does not really require F to be continuously differentiable on R™,
Just strongly (strictly) differentiable at u in the sense that

[F(u' + tv') — F(u)]/t - Jwp whenu' — u, v’ - v, | 0.

For applications of Theorem 5 to the computation of generalized gradients, see [19].
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