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DUALITY IN OPTIMAL CONTROL

R.T. Rockafellar

For many kinds of optimization problems, convexity properties are very
important, and when they are present in a thorough form they lead to an interesting
kind of duality. This duality is sometimes useful in methods of computatien, but It
also has theoretical applications, such as in the analysis of economic models whers
dual variables can be interpreted as prices. The study of duality, even though it
may pertain to a special subclass of problems often aids in the general development

of a subject by suggesting altermative ways of looking at things.

In the classical caleulus of variations, convexity and duality first enter the
picture in the correspondence between Lagrangian and Hamiltonian functions and in the
way this is connected with necessary conditions and the existence of solutiens.
Expressed in terms of the Hamiltonian, the optimality conditions for an arc z pair
it with an "adjoint" arc p . The pairing carries over to problems of optimal
control via the maximum principle. Duality theory in this context aims at uncovering
and analyzing cases where p happens to solve a dual problem for which & is in turn
the adjoint arc. But although this is the principal motivation, a number of side
issues have to be explored along the way, and these suggest new approaches even tc
problems where duality is not at stake.

1. Implicit constraints

The effects that the aim of developing duality can have on one's point of view
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are seen immediately even in the formulation of the problem. Ordinarily, an optimal
control problem for an arc I involves systems of constraints of variocus typen. If
the objective is to pazs to a duzl problem of similar type for amn arc p , a mean:
must be found for dualizing the constraint structure. The more details that are
built into the model, the more there is to dualize, and by the time every possibility
is covered in a symmetric fashion the framework may be impossibly cumberseor.. It iz
here that the idea of representing constraints abstractly by infinite penalties has

its origin.
To introduce the idea in a more elementary setting, consider first the problem
of minimizing a function Fofz) over all =z € CcC RN , where FU is a real-valued

function. The set C could be described by conditions of various kinds, for instance
as the set of points satisfying equations or inequalities, but at the moment we need
not be concermed with that. The point is that the problem can be represented

notationally in terms of minimizing a certain extended-real-valued function F over

the whole space oy . hamely
JFG{Z) if z€0C,

(1) F(z) =

lq—m i Eik g,

Indeed, if ( # € the only points of interest in minimizing F are those in C ,

where F agrees with Fy oo The case where ( = @ (that is the problem has no

“feasible solutions') corresponds to min F = 4= ,

what Functions F : R+ % (where F= R u {1%] ) are of the form (1) for some

nonempty C and real-valued Fo ? They are, of course, the ¢nes such that

F(z) > = for all =z € Eﬂ and F(z) < = for at least one =z € EA . Such a function
on H‘.F will be termed "proper".

Although topological properties of F clearly must be essential in any
discussion of minimization, continuity would generally be too much to ask for, if for
no other reason than because jumps to += are allowed at the boundary of C . A more

appropriate concept is lower semicontinuity (l.s.c.), where the level sets of the form

{z ¢ ' | P(z) = &} are a2ll required to be closed, or inf-compactness, where the
sets in question are compact. Inf-compactness implies that F attains its minimum.
Note that F 1is inf-compact in particular if it is of the form (1) with C compact
and FD continuous relative to C . But F can also be l.s.c., or even inf-compact,

without its effective domain C = {z € Rﬂ | P(2) < ®} necessarily being closed. An

example in one dimension is
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Jsec 2 if -m/7 <z < m/2 ,

l*“”‘ otherwize,
Geometrically, lower semicontinuity is equivalent to the closedness of the epigranh of
F , which iz the set
'\“
epi F={(z,0) €7 xF|az Pz}
. . . / 1 .
The projection of this set on Rﬁ is € , but of course the projection of a closes
set is not always closed, as the example shows.
These observations may be summarized by saying that the constrained minirizatio:
problems in EN which are "reasonable" can be identified abstractly with the

; 7 = : - . ; ; :
functions F f; ++ R which are proper and lower semicontinuous. The constraintc

are implicit in the condition F(z) < e

2. Representation of a control example

A typical problem in optimal control might have the form: minimize

T
1
(2) j_. fc[t. z(t), ult))dt + zc["{”{ﬁ’ x{-"';”
‘o
subject to
2(t) = (¢, =), u(£)) , w(t) € v(t) ,
(2

=(t) € X(2) , (z(g,). 2(¢))) € F

where X(2) c F? , UtYcH" and EcH x g (these sets may be given by explicit
constraints), and 2 and u range over certain function spaces X and U over the

fixed interval [to, tl] . Setting aside temporarily the issue of measurability with

respect to t , let us see how the problem could be represented using the idez of

implicit constraints as above, but in a somewhat more subtle fashion. Ter

(t, =, v, w) in [1, )] ' x B x f" , define

fO(t, #, u) if x € X(t) , w € U(t) and f(t,x, u) =v ,
(&) Kit, z, v, uw) =

+o otherwise,

and for L:D, xl] in # x F' define



222

20[:0. ::l] if (=g xl‘. €,
(5) L(zgs =) =

i otherwise.

It will be argued that the stated problem can be identified with that of minimizing
the functional

-
1
(€) Jiz, w) = f k(t, =(t), =(t), u(t))dt + L(zlzy), =(2,))
tG
over all x € X and u € U, Certain conventions must, however be adopted in the

definition of J .

Dne source of difficulty in the definition is that the expression :
k(t) = X(t, =(t), 2(z), u(t)) needs to be measurable in t , and this will be
discussed below. But even if it is measurable, it might not be summable (finitely
integrable) in the usual sense. Of course, if k(t) 2 &(t) for a summatble Function
£ the integral has & well defined classiczl value which is either finite or = .
Likewise, if k(t) = «(t) for a summable function @ the integral is either finite
or -= . The only truly ambiguous case is the one where neither of these alternatives
holds, and then we adopt in (6) the convention that the integral is += (if the need

ever arises). This convention is equivalent to saying that in the formula
j k= J o J kK~ , where k' and k™ are the positive and negative parts of k ,

the case & - = , if it occurs, should be resolved as +* . The latter rule is alsc

the one we adopt in (&) if the integral is -= but Z{x{to}, z{tl)} = 42,

Under these conventiens, it is clear that

x(z, z(t), a'c(t), u(t)] < ® almost everywhere in ¢ ,
(7 J(z, u) <= =
Lz(ty), 2(2))) <=,

and hence the constraints (3) are satisfied (for almost every t € [ty t1] , still

assuming measurability]. Horeover J(z, u) then reduces to the expression (2), so

the problem is represented as claimed.

The approach we shall follow is to treat control problems in the framework of
minimizing functionals of the form (6) for X and [ of an appropriate general
class. The interval [to. tl] will be fixed, but this is not an important

restriction, since problems with variable time intervals can usually be recast in this
form by a change of parameters. A fixed time interval is needed partly in order that the
function spaces X and U over which the minimization takes place have a linear
structure, as is prerequisite to the discussion of convexity. In fact, X will be
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taken to be the space of all absolutely continuous functions and U the space of all

Lebesgue measurable functions.

3. Measurability

One of the tasks before us is to delineate a good class of function- ¥ <tz uzc
in (€). An essential property is that the Lebesgue measurability of the integrani
should fellow from that of =z(t), 2(t) and u(t) . But to be useful, the conditionc
on K must be readily verifiable in terms of natural assumptions on the underlying

data, for instance on fb, fy ¥ and U in the case of K given by (L}, Further-

more, the conditions must be technically robust, in the sense cf being eacy to nandle

and preserved under the constructions and transformations thzt the thecry will reculrs.

Fortunately there is a simple and natural answer to the question of what
conditions to impose. It has developed in recent years in close relation to th=
theory of measurable selections and is centered on the notion of & "mormel integrani™.
An exposition in detail may be found in [23], and we shall limit ourselves hers 1z
quoting a few pertinent facts.

Te save notation, the interval [tG, ti] will be denoted by T . & normzl

\ bl )
integrand on T Hﬁ is a function F : T X R =+ R such that F(t, z) is lower

semicontinuous in 2 for fixed t and measurable in (%, 2) with respect tc the

O-algebra generated by products of Lebesgue sets in T and Borel sets in Rﬁ - The
latter property implies in particular that F{t. z(t)] is Lebesgue measurable in ¢
when 2(t) is. {This would be false for F(t, 2) merely Lebesgue measurable in
(t, 2) . It would be true of course for F(%, z) Borel measurable in (t, )} 4 but
Borel measurability turns out not to be preserved by some of the operations we will

need to perform.] In particular, if PF(%, 2) = Fo(a) , Wwhere FG iz lower semi-
continucus, then F is normal.

A normal integrand F is proper if F(t, z) is a proper functicn cf =z (in the
sense of §1) for every t € T . Such an integrand may be construed as representing
the kind 2f structure inherent in a "reasonable' constrained minimization problem, but

with "measurable" dependence on the parameter ¢ .

A Carathéodory integrand is a finite function F on [0, 7] ¥ A such that
F(t, z) is continuous in £ and Lebesgue measurable in ¢ . This is a classical
notion, of which the present one may be viewed as a natural "one-sided" extension. It
can be shown that F is aCarathéodory integrand if and only if both F and -F are
proper normal integrands. The pointwise supremum of a countable family of
Carathéodory integrands is normal, although not necessarily finite or continuous

everywhere.

The connection with measurable multifunctions is very important. A multifunction
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T .7~ Rﬁ assigns to eachi t € T a3 ser T(E)C ﬁﬁ (possibly empty), and it is

elosed-valued if T(t) is alway: closed, A closed-valued multifunction is said to be

.

measurable if for everv clesel CC F the sot

i) s e | T €% B)

=

is Lebesgue measuratle. If T i single-valued (T(t) is a singleton for every

- ]. this reduces to the usual concept for functionms.

The main fact is that T is a closed-valued measurable multifunction if and only
if it has a Castaing representation, thet iz the set D = {t € T | T(¢) # ¢} ic
Lebesgue measurable and there is a countable ccllection {zi}£€* of Lebesgus

-
. "." .
measurable functions w,. : D=+ F  such that
-
I'(t) = cl{a:(t) | £ e} for every t €D .
As a corollary,ocne has 2 fundamental theorem on measurable eelections: if T : 7 =+ 7
is closed-valued and measurable, then the set D above is Lebesgue measurable and

g
there is a Lebesgue measurable function 2 : D + F'  such that =z(%) € T(t) for all
t € D . (This is not the most peneral selection theorem, but it covers a vast number
of applications; for a survey of selection theory, see [32].)
It happens that a function F : T x Eﬁ + F is & normal integrand if and only if
its epigraph multifuncticn
te epi F(t, *) = {(z, 0) € B | a= K2, 2)}

is closed-valued and measurable. (This property is used as the definition of

normality in the general theory where T is replaced by an arbitrary measurabls

space.) On the other hand, a multifunction T : T EL is closed-valued and

measurable if and only if its dndiecator integrand

{a if 2 PEg
(8 F(t, z) = 1
= if z § T(t) ,

is normal.
Normzlity has been established for all integrands of the general form

Fo(t, z) if Fg(:, B) = ci(t) for all 1 €T ,
F(t, 2) =

4= otherwise,
where J is a countable (or finite or empty) index set, e, is Lebesgue measurable,

&nd Ib and each ¥, is 2 normal integrand (for example, a Carathéodory integrand).
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Taking FD =0 , one gets an indicator as in (8) and can conclude that a certair

multifunction described by explicit constraints is measurable. For further example:

and details, see [29],

4. Control model

Some basic assumptions that will remain in force may now be statecd.
ASSUMPTION 1. X 18 a proper normal integrand on T (@ <A <A .

ASSUMPTION 2. 1 1e « proper lower semicontinuous function om BV B

Assumption 1 implies in particular that K(t, =(2), v(t), u{t}] is Lebesgue
measurable in t when a(t), v(£) and wu(t) are. Let A be the space of

absolutely continuous functions =« : T =+ 4 , and lex L be the space of Lebesgue

measurable functions u : T+ H' . For =z € A the derivative 2(t) exists almest

everywhere and is Lebesgue measurable, Hence for every z € A and u € [ the

-

functional < in (&) is well-defined under the conventiens for o explained in 1.
The problem to be studied is

(Ql) minimize J{z, u) over all z €A , w €L .,
For this problem, (7) holds, and this means in terms of the sets
D(t,z,u Ao € R | K(t, 2, v, 0) <=} ,

Ut,z) b {u €8 | D(t, =, w) # 8},
(z e & | ut, 2) #¢},
{(xo. :l:l} GE’" x 7 | Z(::O,.rl) <°°}

(9)
x(t)

=3

E

Li=3

that one has the implicit constraints
2(t) € D¢, z(¢), u(t)) almost everywhere,
u(t) € Ult, =(t)) almost everywhere,

(10)
z(t) € X(t) almost everywhere,

(lty)s =(e)) € £ .

If these are not satisfied by any = € A and w € L , then the minimum in (Q) is
attained but is +® . Of course, =z is interpreted as the &tate trajectory for a
system being modelled, and u is the control.

In the example in §2, what assumptions suffice for the corresponding X and 1
to fit the conditions above for (Q)? If E is a nonempty closed set and Io is

continuous (finite) on E , then I is certainly proper and lower semicontinucus. If
the multifunctions ¢t = X(%#) and ¢t~ U(t) are nonempty-closed-valued and
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measurable, and if jb{t, T, u) and f(i, x, u) are continuous in (z, w) and

Lebesgue measurable in t , then K in (4) is a proper normal integrand. The latter
follows from the normality criteria furnished irn §3 and the elementary fact that the

sun of proper normul integrands is normel. [TL% eguaticn v - flr, x, u) = 0 can L«

4 -

expressed by a finite number of constraints f.(t, =, v, W) =2 with £ a3

E b

Carathéodory integrand.)

The optimal control problem ({) is said tc be of conver type if X(t, z, v, u)

is convex in (x, v, u) and Z(:C, xJ] is convex in (xn, xl] . fﬁ function

F: }?"r + R is conver if its epigraph is a convex set, or eguivalently, if the
2

inequality F((1-M)z+Az,) = (1-A)F(z;) + AF(z)) holds for all z, ¢ 7' , 2, ¢ 7

and A € (0, 1) under the obvious conventions for manipulating =« and, if
necessary, the special rule ® - = = = .] If (3) is of convex type, then J- ic =z
convex functional on the space A x | , as can easily be verified. Tnis case will be

especially important for the theory of duality.

A problem of convex typs that will serve nicely to illustrate the theory

i

several stages is

minimize ;r Fle, c)z(e))dt + f g(t, u(t))dt + 1(x(t], =(z,])

() :
e subject to z(t) = A(e)x(t) + B(t)ul(t) almost everywhere,
where f and g are convez, proper, normal integrands [that is the functions
flz, =) and gz, ¢) are convex - we are never interested in convexity with respect
to t ], 1 is convex, proper, lower semicontinucus, and the elements of the matrices
A(t), B(t) and ((t) depend Lebesgue measurably on t . This corresponds to
[f(:. Clt)x) + glz, ) if v = A(t)z + Blt)u ,
(11) X(t, z, v, u) =
e otherwise.
It is mot hard te show that X is a convex normal integrand; to ensure that X is
proper, we assume for simplicity that f(¢, 0) <= for all ¢ . The vector
y(t) = O(t)xz(t) might be interpreted in some cases as the "cobservation" associated
with the state =x(%) .

Cne special case we shall refer to is

0 if fu =1,
(12) ft, y)

e

0, glt, w =
e if | > 1,

where ||| denotes an arbitrary norm on F" . Then (QO] consists of minimizing
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Z[;[to}. :[tl]} subject te |u(t)] £ 1 for almost every t and Ar + Bu .

Another case is
(13) flz, y) = &S(t)y , alt, u) = &Rt ,

where S{t) and F(t) are positive semidefinite matrices depending Lebesguc
measurably on ¢t . (Then f and g are Carathéodory integrands.) Note that the
first integrand in (Q.) is then 4=(£)+@(t)z(t) where Q= (40, C* being the
transpose of C . Any positive semidefinite (symmetric) & can be written in this
form for some ( and positive definite § (which are elementary to construct with-
out resorting to eigenvectors or the like).

For the boundary function I , a simple case where it is lower semicontinuout

proper convex is

(C if Ty=dy e Ty T A
(14) L(zys ::l} =

o if z, # a, or =z, F @,
where a, and a, are two given points in A . This corresponds to the implicit
fixed endpoint constraint z[to] =ay x(_tl] =a, - A case involving endpeintis

which are not fixed, yet mutually related, is

0 if g =T,

(15) 1[:0, :l] =

@ if .a“.oi.rl

Then z(t,) can be arbitrary, but x[tl] = .1:(!:0] . A mixed example is

0

2
&|:l~al if zy €E

(16) l[xo, :l) -
= otherwise,

where Eo is a nonempty closed convex set [r-educing perhaps to a single point a, ]

and @, is a given point in ' . Then z[to] must lie in E, .

1

5. Reduced problem

For some purposes, it is useful to know that the problem (Q) can be reduced to
another form where the control u does not appear explicitly. This is a good
approach in proving the existence of solutions and in drawing parallels with the
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classical calculus of variations. Alsc, much of the general duality theory appliec

mainly tc the state trajectory z(t) and an adjoint trajectory p{t) , althour® in

special cases like [QO) it will turn out that there are natural dual controls wlt)
1o single out for association with plt)

Starting from the fact that the optimal valus in (Q) ean be expressed as

(17) inf(g) = inf {3{:[_!0], z{z. }] + inf J K(e, xlit), z(t), u(t))der ,
TEA uél ‘T /

we are led to ask whether the minimization over w € [ can be executed simply by
choosing for each ¢ a point w(t) € T(t) , where

S - 2 Hooyw Y
(18) F(t) = arg min Klz, x(t), 2(t), ] .
Of course, for this to be true the minimizing set T(f) must be nonempty for almost
every t , but there is alsc an impertant question of measurability. How do we know
we can select w(t) € I'(%) in such a way that the functicn % belongs to the space

L 7 More generally, apart from whether the minimum is attained, there iz the gquestion

of conditions under which the egquation

(19) inf J F{t, u(t))dt =
uel 41

is valid, specifically when F(t, u()) = k(t, z(2), 2(¢), u(t)) .

It is demenstrated in [29, §3] that (1¢) is true for any normal integranc
the functicn

s |

t+— inf F(t, w)

ueq
and the multifunction

t+— arg min F(&, u)

uEEm

always being measurable. To the extent that a measurable multifunction is nonempty-
valued, it has a measurable selection, as noted in §3 above. The chain of facts
needed here is completed by the result in [29] that for

Ft, =) = ¥(t, =(t), v(t), -) , the normality of F follows from that of X and the
measurability of =z(t) and wu(%) . (In the case of wv(t) = z(¢) , there is a minor
difficulty with the fact that (1) may be undefined on a certain set of measure
zero. This technicality can be handled by supplying an arbitrary definition over that
set or by passing to a subset of T of full measure. It causes no real trouble and,

for simplicity of exposition, it will be ignored wherever it crops up.]

It follows that for every =z € A the functional
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(20) #(z) = J Lit, =(2), =(£))dt + Lfx(c,), z(z.))

is well deflined, wherc

(21) Lit, £, v} £ inf Xlit, =z, p, u)

and morenver

(22) inf Jix, w) = $(x) ,

uel
where the infimum (if not -= ) is attained by w if and only if u is a measurskble
selection (almost everywhere) for the multifunction (18). The reduced probler

associated with (Q) is
(r) minimize ¢(x} over all =z ¢ A ,
and L 4is called the lLagrangian. The main conclusion is thus the following

REDUCTION THEOREM. It is always true that inf(Q) = inf(P) . A pair
{z, u) € A x L golvee (Q) if and only if =z solves (F) aid u 16 a measwrabie
selection (ulmost everywhere) for the multifimetion (18). In particular, suchk a

selection always exists if K(t, r, v, u) 18 inf-compact in u ¢ o4 for every
(t,z,v) in TxF x5 |

This result demonstrates that one can focus all attention temporarily on =z , if
this is convenient, and pull the control u out of the hat at the last moment. Note
that X is not uniquely determined by L , and indeed, the reduced problem (F) may
arise from many different contrel preblems (Q), correspeonding to different waves of
parameterizing the dynamics. In particular, any problem of the form (P) can be
regarded as a problem (Q) where u does not actually appear (the control space is
zero-dimensional). There is interest therefore in working directly with L , withou:
reference to any particular X , and the basic properties assumed for [ must be

specified directly. It is obvious that these should be as follows.

ASSUMPTION 3. I is a proper normal integrand on T x (F' x £') .

If L arises from a normal integrand X as in (21), then L[ is normal if
L(t, =, v) is lower semicontinuous in (z, v) . This is shown by [29, Proposition
2R]. One criterion under which the proper normality of I is just a consequence of

the proper normality of K is a sort of wniform inf-compactness of K(t, x, v, u)
in u : foreach ¢t €T, o € R, and bounded set B C R x B, the set
{u €& | Az, v) €B with K(¢, =z, v, w) < a}

is bounded.
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The problem (P) is said to be of convex type if L(t, z, v) is convex in (z, v)

and Z(zr. :1} is convex in fr,\. :,} . Tren & 1is a convex functional on A . The
L 4 I8 4

convexity of X implies the convexity of [ in (21), so (P) is of convex type when

(Q) is of convex type.

This holds in particular for the convex control problem [QO), where

(23) L(t, z, v) = F(t, C(t)z) + inf {g(t, w) | B(t)u = v-A(t)x}
U

Tormula (23) uses the convention that the infimum of an empty set of real numbers is
4= . The lower semicontinuity of I in (z, v) (and hence normality) follows in
this case from something simpler than the "uniform inf-compactmess" condition just

mentioned., It suffices to have g(t, w) inf-compact in u for each ¢t

6. Hamiltonian Function

Associated with the Lagrangian L eon T X R' x F* is another function ¥ on
7 x §' x ' which will be called the Hamiltomian for (P). It is defined by

(24) H(t, z, p) = sup {prv-Lit, x, v)!

vEFﬁ

The Hamiltonian plays an extremely important rcle in many phases of variational
theory, and the correspondence between Hamiltonians and Lagrangians furnishes &

preliminary case of the kind of duality we aim at exploring more deeply.

Some insight into the definition of K and its classical ramifications can be
gained by seeing how the formula might be applied if L(¢, =, v) happened to be
differentiable in v . Setting the gradient of the expression to be maximized with

respect to v egual to O , one obtains the condition p = ?vL{t, r, v) as necessary

for v to give the maximum for a particular choice of ¢, 2 and p . Suppose this

can be solved for v as a function: v = V(¢, z, p) . Then
B(t, z, p) = p*V(t, =z, p) - L(¢, =, V¢, z, p)) .

This procedure for passing from a function of v to one of p is called the Legendre
transformation, and it is the one used in defining the Hamiltonian in the classical
calculus of variations. However, it is unsatisfactory in several respects even in
that framework: very strong assumptions are needed to ensure that V(¢, =, p) is
well defined even in a local sense, and there are many technical troubles caused by
the vagueness of what the true domain of X is, and the extent to which the trans-
formation is invertible. To put this approach in a truly rigorous and suitable global
form, it would be necessary to assume that L(%, z, v) was not only differentiable
everywhere in v , but strictlv convex and subject to a certain global growth

condition (coercivity). Such restrictions would be severe and, of course, would
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exclude most of the cases we are interested irn here.

Fortunately, there is a modern alternative to the Legendre transforma- =r wi!-
hec the vigor and generelity we desire, It we- introdused by Fenshe: [210
has since becoms a fundamental tool in convex arzlysziz (see [201). Far ano e =lian
2
/

F o+ Fﬂr—+ R , the Fenchel trangform ¢f F is the functic:, F* 1 F'+— E éefinz:

FA(w) = sup {w-2-F(z))
s

-

ZER
The Fenchel transform of F* is in turn

F#*(2) = sup {wrz-F*(w))
A
WEF

It turme out that F* and F**' are always convex and lower semicontinuous, ani F**
is the closed convex hull of F in the following sense: if F majorizes a7 leac:
one affine (linear-plus-a-constant) function, then the epigraph of F** iz 1=
smallest closed convex set containing the epigraph of F ; otherwise F** = = | Irn
fact if F is lower semicontinuous proper convex, then so is F* , and F#*% = T |
The functions F ané F* are then said to be eomjugate tc each other., (It is alsc
true that F** = F when F = 4= ; then F* I —= ,) One always has F#** = p* | 5o

F# and F** are always conjugate to each other.

Geometrically, the conjugate F* of a lower semicontinuous proper convesx

function F amounts to a dual description of the epigraph ¢f F as the intersection
5 i . +1
of a collection of nonvertical closed half-spaces in RH F

These facts can be applied at once to the definition of the Hamiltonian. The
formula expresses H(t, x, *) as the Fenchel transform of L(¢, z, *) . Therefore

sup {prv-H(t, z, v)} = L(t, z, v) ,
ped’

where [ is defined by taking the closed convex hull of L(t, &, v) in v (in the
special sense above) for each %, £ . The Hamiltonian associated with L is ag=in

H . The following result is then obtained from Assumption 3 and other facts of convex

analysis.

HAMILTONIAN/LAGRANGIAN THEOREM. The Hamiltonian H(t, z, p) 1is& always lLower
semicontinuous conver in p , and the inverse formula

L(t, x, v) = sup {p'w-H(t, =, p))
peE’
holds if and only if the Lagrangion L(t, z, v) <& comvex in v . In the latter
case, the stronger property that L 1is comvex in (z, v) 1s equivalent to H alec
being coneave in =« .

In particular, there is a one-to-one correspondence between Lagrangians 1 which



232

are proper normal integrands, convex in the v  argument, and certain function. K
Every property of such a funetien L is therefore dual, in principle, to sons
property of the associated K , and the theorem illustrates this in the case of the

property of joint convexity in x and v
When L arises from a contrel problem (Q) as in (21), the Hamiltonian can be
expressed directly in terms of X by

(26} A, =, p) = sup {prv-Kit, =, v, u))

veR.

m
uel
Thus for the contrel example in §2 the Hamiltonian is
[ sup {pefle, 2, w-Ffe, z, W} if z € xe) ,
uEl(t) - -

(27) H(t, =, p) =

- if x kF Xit)

{Note the coefficient -1 for fC - Im much of the literature on optimal contrcl, a

variable coefficient p, is allowed, although necessary conditions are derived
showing that P, must be constant and can be taken as either -1 or O .} For the

convex model QD] where K is given by (11), the Hamiltonian is

£

(28) B(t, =, p) = prA(t)x - ft, C(£)z) + g*(t, BA(£)p) with = - = = =
where g®*(f, «) is the convex function conjugate te g(t, *) for each ¢ . (The
fact that the convention = - ® = —» is needed in (28), rather than @ - @ = = |

should serve as a warning that such conventions must be tied to specific situations

and not taken for granted.}
Formulas (27) and (28) illustrate the general fact that
(29) B(t, z,p) = ==z X(t),

where X(%) is the implicit state constraint set in (P),

(30) Xt) = {z ¢ F' | v ¢ ' with L(t, z, v) < =}

7. Existence of Solutions

We shall come in due course to the importance of the Hamiltonian in ceonditiens
for optimality, but a few comments about its role in existence theory may now be in
order., To prove the existence of a solution to (P), one needs to establish some kind
of inf-compactness, or at least lower semicontinuity property of the functional &
on the space A . Several things are involved in this, but one minimal requirement is
that I should be coercive in v : for each (t, &) , the function L(t, x, *)
ought to be bounded below and have
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lim inf L(t, &, v)/|v] = = .
fo]=
Equivalent to such coercivity is the property Thz for eazr ¢, o, °
exist B € A such that
Lt,z, v)2pv-8 forall veF

But the latter inequality is equivalent by (2u) te H{(:, x, p) € E . Tnercic:
L(t, z, v) is coercive in v for each (t, ) if an? enly if Hlz, z, 1) = *o
all (t, =z, p)

The classical existence theorems, such as those ¢f Tenelll ang Kzgu PR
coercivity of L in v which is uniform in =z . A similar recuirersn: azpear

effect, in modern treatments of optimazl control proolems such ag in Ze_ar! [3]

v

although the results are expressed in terms of a detailed constrazint strusztur

in

than the framework of extended-real-valued Lagrangians. Matters can be vest sirsler
by passing to a formulation in terms of K , and in this way a breader cla-- of

existence theorems can be obtained. Olech [19] was one of the firs:t To agzrozi: <.

subject from this direction, although he did not define the Hamiltonian a:

The Hamiltonian upper bowndedness comdition is satisfied i:

B € R there is a summable function 6 : T+ R such tha:
H(t, =z, p) < 8(t) for all t € T when |x| =&

In particular, then A is less than += everywhere. Tc state the main consezusncs

of this property, we need to introduce the Banach space C(, consisting of &l
continuwus K '-valued functions over T, and its norm

Mxhc = max |z(¥)] .
tE€T

The space A of absoclutely continuous functiens is, of course, contained in ([ , a2

is a Banach space itself under the norm

(31) lelly = lzto)] + | [=ce)ide

INF-COMPACTNESS THEOREM. Swppose that the Hamiltonian upper bowundednese
condition is satiefied and L(t, z, v) 1ie acomvexr in v . Then for all real numbers
a and B the set

fz €A | &2 =q, |zl = 8}

ie compact, both in the weak topology of A and the norm topology of C

This is proved in [27]. It leads immediately to a result on the existence of

solutions to (P) in the case where the abstract state constraint set X(t) (se=s (30),

(9), (10)) is contained for all ¢ in a fixed bounded region of F' . How to obtain
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the existence of solutions in other cases is largely a matter of finding adéitional
growth conditions on H and I which ensure that the level setc of & are bounde?

in the norm of ( , and we shall not go inte it here (see [27]).

The convexity condition in the theorem deserves more elaboration, however, since

it is the first place in the theory that convexity appears in an essential way, and it
seems related to the Lagrangian/Hamiltonian duality. A surprising fact of functiona)l

anzlysis, stemming from Liapunov's theorem on the convexity of the range of a vector-

valued measure is that an integral functional of the forr

I(v) = J Flt, vit)lde , » ¢ Ll(:’, 7y,

m

can hardly be weakly lower semicontinucus without being convex at the same time,
Indeed, if one tries to take the weak closure of the epigraph of I one penerally
gets the epigraph of the corresponding integral functionzl for F**(t, *) , the

convexification of F(t, *) described in §& (see [29, §3] for a proct).

For functionals of the form ¢ the situation is somewhat less clear, but
convexity of L{f, x, v} in v is crucial in much the same way. For instance, it
can be shown under the Hamiltonian upper boundednesz condition that any beundsd

=
seguence {xk}k-T in A which is "asymptotically minimizing" for # (in a certair

sense that will not be described here) has a subsequence converging in both the weak
topology of A and the norm topology of ( to an arc x € A which minimizes, not
¢ , but the corresponding problem with L replaced by its convexificatien I in the
v argument (as defined in §6). This is called the relazed problem (F), and I is
the relared Lagrangian.

The meaning of these facts iIs that, without the convexity of L in v , there is
little motivation for studying (P}, since it is likely to amount to a problem of
minimizing something not possessed of a reasonable continuity property. One should
look instead at (P) and its interpretation in whatever application may be at hand,
since even from a computatienal point of view the best one could usually hope for is

oo -~
to generate a seguence {zx converging to a solution to (F).
& q S £

Other facts lend their weight to this peint of view. For instance, the
Welerstrass necessary condition for optimality iﬂ classical problems comes close to
saying that a solution to (P) must be a solution to (P) aleng which the two
Lagrangians L and 7 happen to agree. Results of the latter sort have in fact
been established for problems of optimal control under certain conditions; ef. Clarke

[3], Wwarga [33].

Much can be said, therefore, in favor of compartmentalizing the theory intc the
study of (P) under the assumption of convexity in v on the one hand, and the study
of the relationship between (P) and (P) without the assumption on the other. The

second part, called relaxation theory, encompasses such important topics as



235

"bang-bang" controls, as well as facts of the sort already mentioned. Whatever the
merits of this philosophy, we shall follow it here in looking henceforth only z-

problems which are already '"relaxed'.

ASSUMPTION 4. L(t, z, v) t& conver in v for everv t, xr , or in otrer

worde, L =1 .

0f course, in the main cass we shall be concerned with, [ will actually L«
convex joinmtly im x and v ., But Assumption M4 will facilitate comparisons and

conjectures having to do with more general problems.

B. Optimality conditions

One of the classical conditions for optimality of x in (P),whose necessity
can be proved under certain assumptions when L and 1 are differentiacle, Iz the

Euler-Lagrange equation

.

T [0t a(8), 2(8))] = VL(t, =(£), 2(£))

This can also be expressed by asserting that for a certain function p(f) one ha:
(Bt), p()) = vL(e, =(¢), =(t)) ,

where VI denotes the gradient of L with respect to (x, v) . (As a gener:zl
notational rule, we ignore t in the symbolism for gradients, conjugates, and so on,

of integrands.) The corresponding condition for endpoints has the form
(z2) leg), -p(2,)) = W2(ale,), 2(e,)) -

The key to generalizing such equations to the nondifferentiable case dictated by the

present model is an appropriate substitute for the notion of 'gradient".
Such a notion is well known in the case of conmver functions. If F is convex on

Fﬁ , the subgradient set ©08F(z) is defined to consist of all w € Rﬁ with the
property that

(33) F(z') 2 F(g) + w*(z'-2) for all z' ¢ RN .

I1f F(z) is finite, this means that the graph of the affine function of z' on the
right side of (33) is a supporting hyperplane to the epigraph of F at (z, F(z))
[If F(z) = == , or if P £ += , the condition is satisfied by every w , but if

P(z) = 40 and F § +o , it is not satisfied by any w .)

The theory of subgradients is presented in [20], and only a few basic facts will
be cited here, The set 9F(z) is always closed and convex (possibly empty), and it
reduces to a #ingle element w if and only if F is differentiable at 2z (in which
event w = VF(z) ]. In the case of a lower semicontinuous proper convex function and

its conjugate, satisfying
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(3%) Flz) + Fqw) 2 2*w  for all =z, w ,

bv the definiticon of conjugacy, there is the important, symmetric equivalence

(39) W€ dF(g) = Flz) + FYw) = 2ow = z £ aF+{w)

ol

& special caze worthy of note is the closed convex set

(36) Fiz) = 4
Lr« if z¢¢
LEEy AFiz) = ﬁc(z} = normal coné to ¢ at =,
whers
N p

{weF |wiz'-z) =0 forall z'e€(C} if z€C,

(a8} N.(z) = ’
L
Ia if z¢cC.

For problems of convex type, we can work with the subgradient sets 3L{¢, ., v)

.
anéd 8i{x., x,) in R X F . Tne Euler-Lagrange condition is then
- 4L

(32) (ptt), p(e)) € aL(t, =(t), z(¢)) , almost everywhere,
and the transversality eomdition Iis

(wo) (leg). plz)) € arfale) , 2(z)

We are interested in the functions & € A which satisfy these for some p € A , which

is then said to be adjoint to =z . (The adjoint arc is not necessarily unique.)

Just what these conditions, first introduced in [21], have to do with optimality
in the problem (P) will be the subject of much discussion below. Before getting into
that, however, we would like toc mention that the definition of B8F(2) has been
extended by Clarke [10], [16], to the case of arbitrary proper lower semicontinuous
functiens F in such a way as to coincide with the set above when F  is convex and
with the singleton {VF(z)} at points where F is strongly differentiable (not
necessarily convex). Moreover dF(z) is still always a closed convex set. The
Fuler-Lagrange condizion (32) and transversality condition (40) are therefore well-
defined for (P} even without any convexity assumptions. Indeed, Clarke has shown
they are necessary for optimality in a number of cases [11], [13]. This more general
theory falls outside of our target area of duality and will therefore not be outlined

here.

Our discussion of necessity and sufficiency for optimality will be limited
mainly to the convex case, where there is a reversal of the situation often

encountered in variational theory: the sufficiency is the easy part.
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SUFFICIENCY THECREM, If (P) ie of conver type and x € A satisfies the Euler-
Lagrange condition for L and transversality eomdition for 1 with adjoint roEA,

then =z furmishee the minimen in (F)

The argument is so short and simple it will be given in full.

(L40) hold, and let z' be an arbitrary element of A (the prime ha
with derivatives). From the definition of subgradients, we have

L(t, z'(t), (1)) 2 L(t, z(8), 2(8)) + p()(x'(2)-2(t)) + p(t)(z'(¢)-z(t))
for almost every i and

2lzt(tg) = (2))) 2 tale), =(e))) + pleg) (=" (2)-=(e)) - pley) (= (2 )) = (2 )

Integrating the first inequality over [ta, tl] = T and adding the seconi, we obtain

5

$(x') = &z +J

% i t.
, a“—t [pe(z'-z)1dt - [p(z'-2)1, ",

o
0 b

where the terms in pes(z'-z) cancel each other.

The necessity of the conditions requires stronger assumptions, a5 we shall see in
§13, and certain extensions have to be made in order to handle the case whers the

state constraint x(t) € X{f) becomes effective.

For the moment we turn instead teo the questicn of what the conditions mean for
specific cases, such as the control problem ({y) in §4. One thing of great practicel
importance in this respect is that quite a "calculus" exists for determining the
subgradients of convex functions which, like [ and [ , are likely tc be given in
terms of various other functionsz, sets, constraints, operations, and so on (see [20],

[28]).
Suppose I comes via (21) from a function K(t, z, v, u) which ig convex in
{z, v, w) . It is known that then

(41) [(r, p) € 3L(t, 2, v) and u € arg min k(t, z, v, *}]
= {(r, p, 0) € 3k(2, =, v, w

(ef. 126, Theorem 24 (a)]). Now suppose further that ¥ has the form (11), so that
L is given by (23), and that g(¢, *) is inf-compact for each t , so that [ is
normal (as noted at the end of §5). The TMarg min" set is then always nonempty, So
the calculation of 3L is reduced by (41) to that of 3X . Assuming for each ¢

that f(z, +) is finite on a neighborhood of 0 [so as to handle the case where the

range space for ((¢) might not be all of g ], one can show by the subgradient
caleulus that (r, p, 0) € 3K(¢, 2, v, w) if and only if

v = A(t)z + B(t)u and B*(t)p € 3g(t, w) ,

I € 3f(t, Cl#)z) with » = -4%(t)p + C*(thw ,
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where the asterisk denotes the transpose of a matrix. Using (34), one can wpite the
condition B*(t)p € 3g(t, u) in the dual form u € 3g*(t, B*(t)p) , where g* is the
conjugate integrand.

An application of facts about measurable selections [29] thern leads to the
conclusion that x € A and p € A satisfy the Euler-lagrange condition for I ir

this case if and only if there exist functions uw € L and w € L such that (for

almost every t )

2(2) = A£)z() + B(t)ule) with u(t) ¢ agt(t, BA(£)p(2)) ,

(42)
P(t) = -a*(£)p(t) + CH(hw(t) with w(e) € af(t, C(e)z(2)) .

This is interesting because of the appearance of a dual dynamical system with explicit
controls w(t) , a property that is not readily captured for general convex X , and
because of the complete symmetry in =z and p . A dual problem of optimal control in
p Wwill be described in the next section. '

If f and g have the quadratic form in (13), the control conditions in (42)
Take the form
w(2) = S(E)0(e)z() and w(t) = R(¢) 3B4(£)p(2) .
In the case of (12), they become

w(t) = 0 and wul(t) € arg max pltlez .
llzfl<l

If 1 is differentiable, the transversality condition is just (32)., In the fized

endpoint case where 1 is given by (1k), one has

R?z x Eﬂ if [IO| .Tl] = (ﬂ0| al] y
dfzy, x,) =
? if {zgs =) # (gp0 @y) »

so the condition reduces merely to the constraints =z(t,) = a, and x{tl] =a, , with

nothing required of p(t.) and p(¢)) . For (15) it becomes

3(“'0] ==(tl} and P[tg] = P(tll ’
while for (16) one gets
p(t,) normal vo E, at =z(t)) . -p(t,) =we(z;) +e .

("Normal® means "belonging to the normal cone" ¥, defined in (38).)

Ey

These examples illustrate that a wide spectrum of conditions is covered by the
subgradient notation. A similar calculus exists for generalized gradients in the
sense of Clarke [10], [16], but it typically involves chains of inclusions rather than
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equivalences. Fortunately the inclusions are in the direction one needs for the

derivation of necessary conditions for optimality.

G, Dual problem

The equivalent ways of writing a subgradient relation in terms of a conver
function or its conjugate, as in (35), suggest a dual form for the optimality
conditions for problems of convex type:

(r, p) € 3L(t, z, v) = (z, v) € 3L*(t, r, p) ,
(u3)
[Po’ —pl] € 32(:0, :cl] = {2y z,) € 321*(pys -p,)

Here the conjugate functions [*(t, «, «} and I* , like L(#, «, ») and 1 , are
lower semicontinuous proper convex, and in fact [* is again a normal integrand [21],
[2¢] (something which might not have been true if a different measurability property
had been incorporated in the definition of "mormality').

Symmetry is not quite present in (%3), so let us introduce the functions

Mt, p, r) = L*(t, r, p) = sup {meztp.v-L{t, z, v)} ,
2,
(44)

m(pgs py) = [Py ~py) = sup {Porzg=pyrxi=t(zgs =)} »
xonxl
so that reciprocally
L(t, =, v) = M*(t, v, z) = sup {rzsp-v-M, p, 7)} ,

psr
(u5)

L(zys 2,) =mt(zy, -z,) = sup {pg-xﬁ—pl'xl-mfpo, Pl s
PgsFy

and the equivalences (43) become
(r, p) € 3L(t, =, v) == (v, z) € aM(z¢, p, 7) ,
(pgs -py) € 32z z,) = (24 -=;) € Om{pys py)
For arcs x € A and p € A , one therefore has
(), p(#)) € aL(t, =(t), z(t)) = (x(t), =(#)) € a(s, p(2), p(t)) ,
(p(2g)» -p(£)) € az(=(ty), =(2,)) = (=(2,)» ~=(t,)) € am(p(2,), p(2,))

It is appropriate to call M the dual Lagrmangian and m the dual bowndary
function. They satisfy the same conditions as de¢ [ and [ for problems of convex
type. Thus the functional

.

¥p) = JT M(t, p(2), p(ed)dr + m(p(t,)» p(t,))
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is likewise well defined for all p € A and convex, The problem
(p*) minimize Y(p) over all p € A

is the dugl of (F) and is again of convex type. The thecrem in §& is therefeors
applicable and says that p solves (P%) if p satisfies the Euler-lagrange condition
for M and transversality condition for m in terms of some x € A , An interesting

connection between (P} and (P*) is then apparent from (uE).

DUALITY THEOREM 1. When (F) ie of comvez type, the following are equivalent
for z €A and p €A

(a) =z satiefies the Euler-lagrange comdition for L and transversality
eomdition for 1 with adjoint p ;

(b) p eatisfies the Euler-lLagrange condition for M and transversality
eondition for m with adjoint =z .

Thus the sufficient eonditiome for (P) also furmish a solution to (P%} and

conversely.

Because of the equivalence of (g) and (b) we shall simply say in the convex case
that x and p satisfy the (sufficient) optimality conditione when these properties

are present.

In the case where (F) is the reduced problem for the convex control problem (Gl

minimize J e, cte)z(t))de + Jr

_ g, u(e))de + tlz(ty), =(¢,))

1

o

T
(46) 2
subject to =zft) = A(E)=(tf) + B(tlult) ,

the dual has a similar structure, Assume, as was done in §7 in specializing the
optimality conditions to this setting, that for each ¢ ,

fl#£, ) is finite on a neighborhood of 0 ,
(17}

g(t, =) is inf-compact.
These two properties happen to be dual to each other with respect to conjugate convex
functions [20, §§8, 131, sc (47) is equivalent to:

f*(t, ») is inf-compact,

(u8)
g*(t, «) is finite on & neighborhood of 0

When the expression

I(t, z, v) = f(t, C(t)z) +min {g(¢, w) | B(Iu = v-A(t)z}
u

is inserted in (u44), one obtains with the help of one of the standard formulas for

conjugates (ef. [20, p. 142]1) that
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(42) M(t, p, r) = g*(z, B*(t)p) + min {f*(t, w) | C*(t)w = red*(t)p)
w

Thus (P*) is the reduced problem for a certain control preblem like (Lg):

f

minimize J

144
4

g*(t, B2(t)p(e))dt + J e, wnd)de + mlp(z), ple,))
T

r

(50) )
subject to p(t) = -A4*(t)p(2) + CA(twlt) .

Note that the dual dynamical system is the same one seen earlier in the optimality

conditions (42).

Conjugate functions are not always easy to express in a more direct form, ever,
with the machinery in [20] and (26, §9], but this is possible in many important cases.
For example, if f and g have the quadratic form in (13) with S(t) an2 R(z)

positive definite, one has

FAE w) = keS8, g (¢, @) = dgeR(1) X .

If they have the form (12), then

i, w) = g*te, ¢) = llal, »

e iF w# 0,

where |[*]l, is the norm dual to ||*| . Then w(%) is implicitiy constrainec tc
vanish in (50), and everything about it drops out of the problem. The same would be
true in other problems with f(2¢, y) £ 0 . Thus for a problem of the form

minimize ! g[t. u(t)]dt + l[z(tu). :[tl}]
T

subject to () = A(t)z(t) + B(t)ult) ,

the dual is

minimize j g*(t, BA(t)p(t))dt + m{_p(toj. p(z,)) o

-
subject to p(t) = =A*(£)p(¢)
What is particularly interesting about this case is that the dual problem turns out to

be essentially fimite-dimensional, since p is uniquely determined by p[tﬁ]

Another good illustration is the case where

w

aly|-a if |yl z 1,
(51)  f(t, y) = glt, u) = max[al'u, — aﬁ-u} .
0 if |yl =1,

1A

where |+| denotes the Euclidean norm and @)y ++es @ are vectors in ¥,
a >0 . Then
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if

o

o] if |w| =a,
(52) Az, w) = g*(t, q) =

& i ful>a, w otherwise,

q €coflay, ..y qy)

where "co' denotes convex hull. Thi:z is instructive because the primal problen (41)
has no implicit state constraints or ceontrol constraints, but the dual problem (50)

does, namcl:
(53) B*(t)p(z) ¢ co{al, e aﬁ} and |w(t)| =1 , almost everywhere.
These constraints are determined simply by inspecting where the functions in the duzl

problem are finite, which underscores the economy and effectiveness of the +

notation.

Wher it comes to the possibilities for I and m , the first example to loch at
is the one for fixed endpoints =z(t,) =a, ., =z(t;) =4, , where 1 is given by (1%).
Trivially, m 4is then linear:

m{p(te)s p(z))) = pleg) a; - pl2)ea) .

Since m 4is finite everywhere, no implicit constraints are imposed on the endpoints
of p ; they are free in the dual problem. If instead [ has the form (15),
corresponding to the censtraint :[tC] e x{tlJ , it turns outr that m =1 , so that

the dual problem likewise has the constraint p(tG] = plt,] . The example of [ ir

(16) yields

(s mlp(tg)» p(2,)) = olp(g)) + &lp(e)-ayl” + #layl?

where © Is the support functiom of the convex set [, :

o(p,) = suplpgea, | =, € £,

If EO is a cone, © is just the indicator of the polar cone Ea , and the firs:

term in (54) represents the constnaint p[tG] € E} . For instance, if E, = g
(z(2,) free) ome gers Ej = {0} and the implicit comstraint p(t,) =0 . 1f
E, = .?i‘: (:(tn] > 0) , then Kl R? [p[to] =0) . If E, equals a subspace X ,

then EE =N (orthogonal complement). If EO is the unit ball for a norm |-| .,

then o = ||, {(dual norm).

Incidentally, the kind of duality seen in (4€) and (50), where explicit controls
appear in both problems, can be captured in a slightly broader setting with the
expression f[t, C(t):(t)) + g(t, u(t)} replaced by h[t, c(t)x(t), u(t)] . This
replaces f*(z, w(2)) + g*(t, BA(¢)p(£)) in (50) by h*(t, w(2), B*(t)p(2)) .
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The dual problem (P*) was introduced in [21].

10. Hamiltonian equations
The classical reason for introducing the Hamiltonian functien is that the Euler-
Lagrange condition for [ can, under certain assumptionz, be written instezs I tne

form
(55) (-p(e), 2(8)) = WA (e, 2(2), p(t))

The same thing can be accomplished in the convex case in terms of subgracdients insteac

of gradients,

Since for problems of convex type H(t, z, p) 1is concave in r (as well e-
convex in p ), we can speak of the subgradient set BpH(t, z, p) and, with a change
of sign, the "supergradient" set BIH(t, oy pj'. The subgradient set of the function
B(t, =, *) at (z, p) is

(56) W(t, 2, p) = 3 H(E, x, p) x 3 HE, z, )
p) =8, p) x 2 4

The generalized Hamiltonmian equatiom (really: Hamiltonian "eontingent equation" or

"differential inclusion') is
(57) (-pCt), 2(#)) € 3m(¢, z(£), p(¢)) , almost everywhere.

The product form in (56) may give a misleading impression, in that it is =
special feature which does not carry over to other classes of functiens F when the
definition of the Hamiltonian equation is extended. An extension is indeed possible,
for example to all problems satisfying the Hamiltonian upper boundedness conditien in

§7. Then for each t the function
F:(z, p}+— -H(t, z, p)

is lower semicontinuous proper [27, Proposition 4], so that &F is well defined in

the sense of Clarke [10]: take
(2, z, p) = -3[-B1(t, =, p)

This definition turns out to give the same result as the one above if H is concave-

convex, so (56} is natural for that case. But (56) is often false, although

a#(t, z, p) is always a closed convex subset of X&' x F° . (Incidentally, there are
problems of convex type for which neither H(¢, =, p) mnor -H(t, z, p) is a lower
semicontinuous proper function of (z, p) ; ef. [20, §33]). No general definition of
87 is presently known which covers this case in convex analysis, having significant

consequences below, and all the cases amenable to Clarke's definition.)

THEOREM. In the comvez oase, the Bamiltonian equation is equivalent to the
Buler-Lagrange comdition for L (and also the ome for M ) and therefore can be
substituted for it in the optimality conditions.
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This follows from a rule relating subgradients and the Fenchel transform [20,

Theorem 37.5] which in the present notation takes the form

&9) (r, p) € 3L(t, z, ¥) "= (-r, v) € (L, z, p)

Thus
(59)  (p(e), pte)) € aL(e, =(t), 2(&)) = (-p(), z(¢)) € (s, (¢}, p(¢))

The equivalence also hclds in the classical, continuously differentiable case,
if [ is actually strictly convex and coercive in v (not necessarily convex in
{(z, v) ), or if K is convex in (z, p) (not necessarily differentiable), in which
event [ 1is concave in x - 2 reversal of the properties in the theorem in §2. Eur
it can fail for some of the peneral cases covered in terms of (larke's definition.
{Then the two conditions in (59) seem to say different things, yet Clarke has
established that they are both sometimes necessary for optimality.l See [12], [14] fc
Clarke's necessary conditions in Hamiltonian form and [15] for their application:z to

get an extremely general "maximum principle".)

It may be wondered why in the convex case, as in the theorem above, eguzl
attention is not paid to the dual Hamiltonian K' corresponding to the dual
Lagrangian & , "

(60) HE'(t, py x) = sup {pez-M(t, p, r)}

rer”

The reason is that

L

BE'(t, p, z) = -B(t, x, p) "almost".

Indeed, if the formula for F in terms of I is used to rewrite the formula for M

in terms of L , one obtains

(&1) M(t, p, ) = sup {rex+i(s, z, p)} ,

zeF

which says that the Fenchel transform of P(z) = -B(t, z, p) is P*(r) = Mz, p, 1)
Then from (60) one has F*#*(z) = H'(¢, =, p) , so the study of the relationship
between H' and # boils down to the question of the extent to which FA# must
agree with F . Since P** = F when F is lower semicontinuous and nowhere -= ,
we may conclude that #'(¢, p. x) = -H(t, =, p) for all (¢, z, p) when K is uppe
semicontinuous in =z and nowhere += ., Actually, for K arising from L which is
lower semicontinuous proper convex in (z, v) as here, it can be shown that F is
upper semicontinuous in (z, p) if it is nowhere += . In general, however, there
could be slight discrepancies between F' and F , and what one really has is two
concave-convex functions equivalent to each other in a sense known in convex analysis

{ef. [20, §34]). The Hamiltonian equations for H' and H are equivalent.

The Hamiltonian for the control problem (Qg), expressed in (28), yields (under
(47) or equivalently (48)) the equations
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z(t) € [A()z(£)+B(t)3g* (¢, B*(t)p(t))], almost everywhere,
p(t) € [-4*(£)p(e)+c*(2)af(t, C(t)z(2))] , almost everywhere,

which can be expanded to (42) through an application of the theory of measuralle

selections.

The Hamiltonian for the nonlinear control problem in §2, given in (27), may well

fail to be concave-convex, yet this is a case where under natural assumptionc the

Hamiltonian equation is well defined in Clarke's sense. It is interesting to see how
the eguation relates to the maximum principle, For simplicity and in order to ensure
that the reduced Lagrangian L(t, z, v) 1is a proper normal integrand which is convex

in v , as we have been assuming, suppose that
(a) U(t) is compact, convex, nonempty,
(b) f(t, z, u) and f(t, =, u) are defined on a1l of T x =,
measurable in t and differentiable in =z ,
- 4 y
{(c) f, fb. ?rf and v:JD are continuous in (z, u) .
(d) f is affine in u (that is, f(¢, z, w) = P(t, x2) + G(z, z)u )
and j‘o is convex in wu ,
(e) =z € int X(2)
These conditions can be shown to imply

3u € arg max {f(¢, =, -)'p-fa(t. z, )]
Uie)

(s, v) € 0H(t, x, p) ™ {such that v = f(¢, =, u) ,
8 = V’aj‘(t, x, u)p - V’:j‘u(t, T, u)

With the help of measurable selections, this yields the result that, for z € A and
p € A with =z(t) € int X(¢) for all ¢t , the Hamiltonian equation is satisfied if
and only if there is a measurable function wu such that for almost every ¢ ,

u(t) € arg max {f(t, 2(2), +)op(t)-f (¢, 2(8), +)}
U(t) .

fle, =), w(e)) ,
-v:f[t, z(t), u(t)}p(t) + v__tfo(t, (), u(t)) .

2(t)

"

p(t)
This amounts to the "maximum principle” in reduced form. (T’he case where x(t) might
be on the boundary of X(#) is more complicated, see the remarks at the end of §1u.)
Note that the coefficient of fo is <1 in the "arg max" , in contrast to most
treatments of optimal control, which allow a variable coefficient po(t) and show

that it must be constant and can be taken as either -1 or 0 . Since the "0"
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possibility is excluded, the conditions are slightly stronger than usuzl and require
for their necessity slightly stronger assumptions (Clarke's cencept of 'calmness”, ef

[13], [1s1).

11. Hamiltonian trajectories

The advantage of the Hamiltonian equation over the Euler-Lagrange condition ic

that it has the form of a generalized ordinary differential equation
{ED) 20t) € Cfe, 2(¢))  almost everywhere, z(t) = (=(t), p(t)} "

where C(t, 2) is a closed convex set that depends on ¢t and 2 in a nice way.

[The graph T(t) of the multifunction 2+ ((f, 2) 1is closed, and the multifuncric.
T+~ T(t) is measurable.} Local existence theorems are available for such
generalized differential eguations, at least under certain conditions of nonemptiness
and boundedness cf C(t, &) (ef. [7]). They can be applied to get trajectories

{z(2), p(£)] for the Hamilton equations that emanate from any initisl point (z., p, )

in a neighborhood of which F is Lipschitz continuous with respect t¢ x,p , a:d

satisfies a sumability condition in t (ef., [22] for the convex case),

When F is concave-convex, K 1is not only Lipschitz continuous on any open seT
where it is finite, but actually differentiable there almost everywhers [20, §35], so
that ©9H(t, r, p) reduces to & single element (the gradient) except on a special set
of measure zerc. Then the general Hamiltonian eguation (57) is not so far from the
classical version (55) as might have been thought from its "contingent” form. As a
matter of fact, nonuniqueness of solutions from a given starting point appears, fror
examples, to be a rather rare phenomenon, although it definitely can occur (see
below).

Another property known in the convex case is that if F is finite and
independent of t , them H(z(t), p(t})] is constant along all selutions to the
generalized Hamiltonian equation. (This extends a classical result in the
differentiable case whose proof is trivial, but the multivalued form of the eguation
requires a somewhat tricky argument, ¢f. [22].) A nice way of generating simple non-
classical examples is thereby provided: take any finite concave-convex function #
on R xR and look at its level curves, The trajectories of the Hamiltonian
equation (which exist at least locally for this case, as just remarked) must follow
these curves. A rather interesting example to look at in such a light is

H(z, p) = max{0, |p]-1} - max{o, |z|-1} ,
which corresponds to

|v] if vl =1,
Lz, v) = max{0, |z|-1} +
o if |u| »1
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The trajectories have corners, and they car branch at certain peintc.

The assertions about 3K(t, x, p) being a singleton almost everywherc, an: F

being constant along Hamiltonian trajectories when K is independert of ¢ | carrs
over to other cases, for instance the Hamiltonian at the end of the preceding svetics,
and all Hamiltonians which are convex in (z, p) . But they are not true in 211 case-

where # is merely Lipschitz continuous in zx .

Local solutions to the Hamiltonian equation have a certain optimality property
when H is concave-convex. Suppose for instance that z and p are absolutely
continuous functions which satisfy (57) over the whole interval T = [t,, L.] (almost

L) -

everywhere). Defining a, = :[tG) ané a, = x{tl] and taking I to be the

18
indicator of this endpoint pair as in (1l4), we see that =~ and p satisfy the
transversality condition for I , as well as (by virtue of the theorem of £13) the

Euler-Lagrange condition for L . Hence by the sufficiency theorem in §&, =

minimizes J L(t, z(¢), z(t))dt over the class of all arcs having the same endpoints
T

ay and @, . Now the same argument can also be applied relative to any subinterval
of T . Thus zx is Lagrange optimal for L over T , in the sense tha: on every
subinterval I it minimizes the Lagrangian integral on I with respect to the class
of all arcs that coincide with =z at the beginning and end of I . The same can be

argued in terms of p via the duality theorem in §9, and one obtains the following.

THEQREM. In the eonvex case, if z and p are absolutely comtinuous funetiome
satisfying the generalized Hamiltonian equation for t in an interval I , then =«
18 Lagrange optimal for L over I , and p tis Lagrange optimal for M over I

Another special property in the convex case is that if (x, p) and (2', p")
are two Hamiltonian trajectories over I , then the quantity
fot)—:'(t))-[p(t)—p’(t)} is nondecreasing over I [22].

12. Optimal values and perturbations

The close relationship between a problem (P) of convex type and its dual (P#)
extends beyond the sharing of sufficient conditions for optimality. There is alsc 2
tie between the two optimal values
(62) inf(P) = inf &(x) , inf(P*) = inf ¥(p)

x€A pEA
The study of these values and how they behave under certain "perturbations” of (P) is
the route to determining the necessity of the optimality conditions that have been
introduced.

A basic inequality can be derived easily from the definition (43) of M and m
and the relations (34), (35), that hold for any conjugate pair of convex fumctions.
For arbitrary £ € A and p € A one has
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(64) L(t, =(t), =(2)) + M(t, p(2), p(£)) 2 p(eIz() + pre)r(z)
for almost every t € T , where egquality holds if and only if
(Bley, p(t)) € 3L{t, z(2), 2(t)) . At the same tire
. 4 ry e A 2 TR T T e T i e
(65 Le(eg)s wle))) + mle(eg)s p(2))) 2 pl2)ale,) - ple )2lal)
where equality helds if and onlv if [;{tC}, —p[t:}) £ al{r[ti}, x[tﬁ}x «  FAvefTaiin:

(BY4) over the interval T and adding (63), we get

(86) @(x) + ¥(p) 20 forall z ¢A, pedhA, with

equaiity *= r and p satiefy the optimality conditione.

Or do we? There is a slight flaw in the argument, connected with the exTeniod
definition ef the integrals of L and M as *= . The inequality (88) is quite

valid if the convention @ - = = = iz used on the left side, but the case &« -«

satisfied.

To get arcund this, &

the spaces of Eﬂ-valueé functicns on I which are essentially bounded, or
respectively, summable, and definc
: 1 3 - 1
(87) I (x>, v) = [ Lilts mbEy v[t})az for (x,v) el = [
P

ASSUMPTION 5. The funetional I. t& proper on ¥ x 1* and bowided below o

L
bounded sets.

This is satisfied in particular if &(x) <= for some =2 € A and the Hamilzon-
ian upper boundedness condition holds. Assumption 5 is eguivalent in the convew case
to the same condition on Ly (hence it is peally symmeiric in character between (T}
and (P*)], and it is also equivalent tc:

= X e
iz, v) € L =7 with IL(x, v) <®
and

Ap, ¢ LT x LY wimn LMp, ) <=

It implies that ®(x) and Y(p) are never -« , so the question of = - ® never
arises in (66). An important conclusion can then be drawn by rewriting (66) in the

form &(zx) = -¥(p) .

DUALITY THEOREM 2. The inequality iInf(P) z -inf(P*) holds for problems of
conver type. For min(P) = -min(P*) to hold with attainmemt at z ¢ A and p € A
respectively, it is necegsary and sufficient that x and p satisfy the optimality



249

eonditions.

The dual of a minimization problem is customarily expressed as a maximization
problem, and of course
-inf(P#*) = sup {-¥(p)} .
pEA
Rather than speaking of the maximization of -¥ in the present case, we prefer to

keep the exact symmetry reflected in the optimality conditions.

The theorem yields an important clue about the circumstances in which the

optimality conditions, as stated, are neceseary.

COROLLARY. Swppose inf(F) = -min(P*) , Then =z € A fumishes the minime in
(P) 1f and only if it satisfies the optimality econditions in association with some
pEA.

The challenge laid down by this result is to find conditions guaranteeing that
inf(P) = -min(P%*) . An approach can be made through the analysis of the functional
ely, a) = inf ” L(t, z(t)ylt), éct)]a‘m(x[to}m. z{tl]] for (y,a) e 5 x 7).

x€A T /
This gives the optimal value in a problem which is like (F) but depends on vy anZ =
as parameters (perturbations); clearly of(0, 0) = inf(P) . It is readily seen that
¢ is convex when (P) is of convex type. Every continuous linear functional on A

can be represented in the form p+{(p, (v, a)) with

(68) (p, (y, a)) = j é(t)*y(t)dt + p(C)ra ,
T

so the space L™ x ' can be identified with A* . Each p € A also defines &

continuous linear functional (y, a)+— {(p, (y, @)? on 1" x &, and it turns out
that to have inf(F) = -min(P*) with attainment at p , it is necessary anc
sufficient that p € 3p(0, 0) , or in other words,

oly, @) = 9(0, 0) +(p, (y, @)} for all (y,a) €L xE .

This result provides, on the one hand, an interpretation of what the adjoint arc
means for (P) itself: it gives coefficients measuring the differential effects of
certain perturbations of (P). In particular, if ¢ happens to be differentiable at
(0, 0) , one has p = Vp(0, 0) in the sense of the pairing (68).

On the other hand, this result reduces the question of whether inf(P) = -min(P#)
to the question of the existence of p € A such that p € 3(0, 0) . Such a sub-
gradient p corresponds to a kind of supporting hyperplane to the convex set in

(5 x Hﬂ} X R which is the epigraph of ¢ , and so the existence can presumably be

obtained from some separation theorem of convex analysis under conditions on I and



250

1 +that imply the epigraph has a nonempty interior whose projection on " x g

contains (0, O) .
But there is a catch. With some effort the interiority can be achieved in term:
" ES 4 2 & "
of the topology of L x 7 corresponding to the L -norm, but the space of

continuous linear functionals in this topology is (L2 x 7 = A*% | not just A,
Thus there is a danger that the supporting hyperplane obtained through separation
theory might not be of the form (£7), and then it would do no good.

13. MNecessity and duality

A crucial restriction must be made to get around the obstacle just explained, and
it is dual to the kind of pestriction mentioned in &7 in connection with the existence

of solutions z € A for (F).

The Homiltonian lower boundedness comdition is satisfied if for each =z € A ana
B € B there iz a summable function 6 : T+~ R such that

H(t, z, p) » 8(¢) for all ¢ € I when lp| = 8

Tor problems of convex type, this is just the Hamiltonian upper boundedness condition on
the dusl Lagrangian A’ discussed in §10, so it is clearly related to the existence

of sclutions p € A for (P*)., In particular it requires K > -= everywhere,
A concave-convex Hamiltonian satisfies the lower boundedness condition if and

enly if for every zx € [F e exist poe M wits Ir(:, v) finite [where I is

the fumctional in (6?)]. It satisfies both the lower and upper boundedness conditions
if and only if H(t, x, p) is a finite, summable function of © € T for each

(z, p) € Hﬁ X Eﬂ . (see [23, §2] for these and other equivalences.)

The Hamiltonian lower boundedness condition implies for problems of conver type
that the epigraph of the functional ¢ in €12 is of finite codimension and has a non-
empty interior relative to its affine hull; furthermore, all subgradients of ¢ must
belong to A , not just A** . This was proved in [27]. The only thing left to be
desired is a condition implying that (0, 0) is in the projection on L® x B of the
epigraph of ¢ . This amounts toan attainability condition on the implicit

constraints imposed by L and 1

The sets CL and CI defined by

L, = {[xo, ;] | 3z € A with L L(t, =(t), z(£))dt < = ,
:[to\ = z, and z[tl) = :l} ,
Cz = {on, zl) | I{xo, zl} < w}
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obviously have the property that

C‘anziﬂ"'irék with &(x) <= .,

The attainability eondition for (F) is the slightly stronger property that

ri C‘L 2 B o Cz # P , where "ri" denctes the relative interier of a convex set (itc
interior with respect to its affine hull, see [20, §6]). It is certainly satisfied if
C‘z is all of F'x F' and CL # @, orif -‘:‘z consists of a single point lying in

the relative interior of CL 3 [In [23] the definition of CL is a bit different but

shown to be equivalent to the one here.) The attainability condition for (P*) is the

same thing in terms of M and m .
DUALITY THEOREM 3. For problems of convexr type, the following hoil.

(a) If the attaimability eondition forl'(P) i8 satisfied and E hae the lower
boundedness property, then inf(P) = -min(P*) <o , gnd for =z € A to furmieh the
mintmen in (F) it 18 neceseary (as well as sufficient) that =z eatiefy the cptimality
eonditions (in association with some p € A ).

(b} If the attainability eondition for (P*) is satiefied and FH hae the upper
bowundedness property, then min(P) = -inf(P%) > «= |, agnd for p € A to furnish the
minimem in (P*) 1t 18 necessary (as well as sufficient) that p satisfy the
optimality eomditions (in association with some &z € A ).

This is the main theorem of [23]). Note that (b) is an existence theorem for (F),
just as (a) is an existence theorem for (P*),

The attainability condition for (P*) can be translated into a growth condition on
the convex functional ¢ in (P) (see [23]). A condition on L[ implying in the

autonomous case that the sets CI. and E‘M in the attainability conditions are non-

empty and project onto all of F? in either argument, regardless of the choice of the
interval T , may be found in [28, p. 151].

The most interesting feature is the duality between the existence of solutions to
one preblem and the necessity of the optimality conditions in the other. The two are
closely connected, for better or for worse. The "worse' aspect is that, while the
Hamiltonian lower boundedness condition is welcome emough as a burden en route to the
existence of solutions to (P%*), it has the unwanted effect of eliminating the
possibility of real state constraints in (P). Indeed, such constraints appear in the
implicit form =(z) € X(¢) almost everywhere, where

x(t) = {z €F' | € B with L(t, 2, v) <=},

and the lower boundedness condition implies via (29) that X(t) = B’ for all ¢ €7 .

However, the fact that state constraints become involved in this way is quite
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natural, when one thinks about it. The optimality conditions that have been derived
for standard kinds of control problems with state constraints typically include
multipliers (duzl variables) that can jump at times ¢ when x(t) touches the
boundary of the state constraint region. This suggests that an adequate treatment of
such problems would invelve adjcint arcs p that might not be continuous. 5Since p
is required to be absolutely centinucus in problem (P*} and the cptimality conditiens,
it is no wonder that in order to get the necessity of the optimality conditions we

have had to impose a restriction that eliminates state censtraints.

Where does this leave us in our desire to have a theory applicable also to
problems with state constraints? A fundamental extension of the framework is needed.
The optimality conditions must be generalized to admit arcs p in a larger space than
A , and the natural cheice turns out to be the space of arcs of bounded variation. If
duality is still to play & role, the formulation of (P*) must also be extended to this
space. Thus we must decide what Y(p) should mean for an arc of bounded variation.
But symmetry demands that whatever is done for p should be done for =z . Both (F)
and (P*) should therefore be in terms of arcs of bounded variation. The hope is that
the extended problems will be just "closures" of the original problems in some sense,
and it can be left to the optimality conditions themselves to tell us whether a

particular scolution arc or adjoint arc must actually be absolutely continuous.

14. Arcs of bounded variation

The treatment of state constraints has led us to the question of how to

generalize the Hamiltonian equations and the functional & from A to the space B

of R'-valued functions of bounded variation on the interval T . An answer that
takes care of both of these needs is found in making the right generalization of

ordinary differential (contingent) equations of the form
(69) 2(t) € c(¢t, 2(t)) almost everywhere, z € A ,
to the case of z € B . The Hamiltonian equation is of such type, and the study of

the functional J L(t, =(2), 2(t))dt can be reduced if necessary to the study of
i
(89) for =(t) = (z(2), :o(t)) and

(70) c(t, #(t)) = epigraph of L(t, z(2), *)

Certain simplifications are possible for problems of convex type, but even in the

general case it is reasonable to assume at the very least that ((z, 3) is a closed

convex set for each t € T and z € §' (possibly empty for =z belonging to some
"forbidden region"), and furthermore that the graph TI(¢) = {(z, w) | w € C(%, 28)} is
cloged and depends measurably on t , that is, T is a measurable multifunction.
(For (70), the convexity of C(%, 3) corresponds to Assumption 4 in §7.)
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For a nonempty closed convex set ( , the recession cone of s denoted Ly
+ . oo
€, is the "limit" of A = {lw | w €C) as A » 0" (see (20, §81). 1t reduces 1o

{0} if and only if C is bounded. The basic idea for extending (E9) jc t+

following. Each z € B corresponds tc an & -valued Borel measure dz on T |, an-

T opeant
there always exists a nonnegative Borel measure on T with respect to which botdh da
and the Lebesgue measure dt are absolutely continucus. The latter car be expressed
as dt for a real valued function T on T which is increasing (hence alsc of

bounded variation). If dt is absolutely continuous with respect to 4t , we can use

Radon-Nikodym derivatives to write (69) equivalently as

£71) g?—[t) € g? (£) » C(¢, 2(¢)) almost everywhere (dz) ,

where (dt/d1)(t) > 0 almost everywnere (dr) . If &t is not absclutelv continuouc
with respect to dt , this is reflected by having merely (dt/dt}(f) = ¢ almost
everywhere (dt) . The generalization consists essentially of adopting (71) as the
replacement for (69) in this case with the right side interpreted as O+Cit, z(z)]

when (dt/dt)(¢) = ¢

What one gets is actually independent of the particular choice of dg » AT 3=
eguivalent to augmenting the earlier equation (69) (which still makes sense - the
derivative z = dz/dt does exist, but unless 2z is absolutely continuous it will not

be the integral of 2dt ) by a special condition on the singular part of dz
dz dz dt oo :
(72) = (8 - 3 (B 37 (8) €0 c(t, 2(¢)) almost everywhere (dr)

For the generalized "eguation" (639) plus (72), the notation
dz(t) € (¢, z(¢))ds
seems appropriate.

But there are some wrinkles to be ironed out. In (72) the left side is
measurable with respect to drt , not just d¢ , so something other than Lebesgue
measurability should apparently be demanded of the multifunction % —+ 0+C[t, z(t)}
as well. The possible jumps in s also cause a problem. Besides =z(t) , one has the
limits =(%+) and =z(¢-) , and there can be a countable infinity of points + az

which these might not all agree. At such a point, (72) gives the jump condition
2(t+) - 5(3-) € o'Cfe, 2(v)) ,

but there is some doubt about whether =2(t) is really the correct thing to have on
the right side or =2(t+) or =2(¢-) (or both), particularly since we may just want to
forget about &(%) itself and identify Ffunctions of bounded variation which have the
same one-sided limits at each point. Another question concerns what 0 C(%, 2)

should be when ((%f, 8) = @ but C[t. zk] #¢@ and D+C(t, zk] # {0} for a sequence

of points sk converging to % .
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More work is needed in the general case, but these riddles can be answered in a
satisfying manner in the context of the application to the theory of state constraints
in problems cof convex tvpe, ef. [2u], [32]. The conditions on the Hamiltonian that
replace upper and lower boundedness concern the state constraint set X(t) andé the

corresponding sct
P(t) = {p € & | 3r € B" witn Mz, p, v}
for the dual problem. These are always convex and have the property that
[finite value if x € X(¢) , p € P(2) ,

H(it, z, p) = {-ra if =€ X(t), p¢ el Pt) ,

{== if and only if « § X(2) .

The case treated in [30] is the one where X(t) and P(t) have nonempty interiors
which depend "continuously" on t , and HF(t, r, p) is summable in ¢ over finite
intervals during which z and p are in the interiors of X(¢) and P(¢) . In the

frameworkx of the development outlined for the proof of theorem in the preceding

- 1 - - » . - Lok .
section, the functional ¢y, @) is restricted 1o ( x F* instead of | x F* , so

the dual space can be identified witn B
The extended Hamiltonian equation is in terms of
c(t, z. p) = {(v, ») | (-r, v) € 3H(Z, z, p)} ,

and if X(¢) and P(t) are closed the singular part (72) reduces to a conditien irn

terms of
+ - T
oc(t, =, p) = LP(t)(p) ® ”x(t)(“) »
where ﬁX(t} and ﬁp(‘) are the normal cones defined in (38). Results on duality,

existence, and necessary and sufficient conditions are obtained, much like those
above. Furthermore, solutions tc the extended problems in B can be characterized as
limits of mwinimizing sequences for the original problems in A . See [24], [30], for
details.

15. Problems pver an infinite horizon
There is considerable interest among mathematical economists in problems of
convex type with the interval T unbounded, for example, 7 = [0, =) . Typically the
Lagrangian is of the form
L(t, z, v) = -eptb’(:, v) ,
where U is a concave Mutility™ function and p is the "discount rate'.

When p = 0 , the Hamiltonian is independent of ¢ and expressed by
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B(z, p) = sup {pv+(z, v)}

r

vER”

Since H is concave in z and convex ir p , it may well have a saddle pcint

(z, ;_J) in the minimax sense:
H(z, p) = H(z, p) < H(z, p) forall =z, p .

It has been demonstrated in [25] that if F happens to be strictly concave in z and
strictly concave in p in a neighborhood of (x, p) , then (Z, p) is also a saddle
point for the Hamiltonian equation in the sense that the term "saddle point" is used
for dynamical systems. More specifically, in a neighborhoed of (Z, p) the
Hamiltonian trajectories (z(t), p(t)) that tend to (z, p) as t + += make up a

i , while those that tend tc (T, p) as t =+ —=

n-dimensional manifold X in R
form a similar manifold X_ with X _nKX_={(z,p)) . The trajectories ir Xk _ have

a certain natural optimality property over intervals [to, ©) , while those in K_

have such a property for [—m, tl] 5

These results have been obtained through application of the duality theory
described here (without getting involved with state constraints). A kind of extension

to the case where p > 0 is carried out in [31].

OTHER EXTENSIONS OF THE THEORY. The duality between (P) and (P%) has been
generalized by Barbu [1], [2], [3], [4], [5], to problems where the states z(t) are

not in R’ but an infinite-dimensicnal Hilbert space. Some applications to systems
governed by partial differential equations are thereby covered. For another case
corresponding to partial differential equations, namely where the interval T is

replaced by a region { in Rk and =z by Dr for some operator D , see the book
of Ekeland and Temam [17]. Bismut [6] has applied the duality theory to problems in

stochastic optimal control.

References

[1] vViorel Barbu, "Convex control problems of Bolza in Hilbert spaces', SIAM J.
Control 13 (1975), 754-771.

[2] vViorel Barbu, "On the control problem of Bolza in Hilbert spaces”™, SIAM J.
Control 13 (1975), 1062-1076.

[3] V. Barbu, "Convex control problems for linear differential systems of retarded
type", Ricerche Mat. 26 (1977), 3-26.

[4] Viorel Barbu, "Constrained control problems with convex cost in Hilbert space",
J. Math. Anal. Appl. 56 (1976), 502-528,



[5]
[6l

[7]

[8]

[s]

[10]

[11]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

256

V. Barbu, "On convex control problems on infinite intervals', submitted.

Jean-Michel Bismut, "Conjugate convex functions in optimal stochastic control",
J. Math, Anal. Appl. 44 (1973), 38L-404,

Charles Castaing, "Sur les équations différentielles multivoques", C.R. Acad.
Sei. Parie Sér. A-B 263 (1966), A63-AGC.

Lamberto Cesari, "Existence theorems for weak and usual optimal solutions in
Lagrange problems with unilateral constraints. I", Trans. Amer. Math. Soc.
124 (1966), 369-412.

Frank H. Clarke, "Admissible relaxation in variational and control problems", J.
Math. Anal. Appl. 51 (1975), 557-576.

Frank H. Clarke, "Generalized gradients and applications", Trans. Amer. Math.
Soc. 205 (1975), 247-262. ’

Frank H. Clarke, "The Euler-Lagrange differential inclusioen", J. Differential
Equatione 19 (1975), 80-90.

Frank H. Clarke, "La condition hamiltonienne d'optimalité", C.R. dead. Sci.
Paris Sér. A-B 280 (1975), A1205-A1207.

Frank H. Clarke, "The generalized problem of Bolza", SIAM J. Control Optimization
14 (1976), 682-695.

Frank H. Clarke, "Necessary conditions for a general control problem", Caleulus
of Variations and Control Theory (Symposium, University Wisconsin, Madison,
Wisconsin, 1975, 257-278. Academic Press, New York, San Francisco, Lendon,
1978). .

Frank H. Clarke, "The maximum principle under minimal hypothesis", SIAM /.
Control Optimization 14 (1s876), 1078-1091.

F.H. Clarke, "Generalized gradients of Lipschitz functionals", submitted.

Ivar Ekeland and Roger Temam, Convexr Analysis and Variational Problems (Studies
in Mathematics and its Applications, 1. North-Holland, Amsterdam, Oxford,
Mew York, 1876).

W. Fenchel, "On conjugate convex functions", Canad. J. Math., 1 (19u9), 73-77.

Czeslaw Olech, "Existence theorems for optimal problems with vector-valued cost
functien", Trans. Amer. Mzth. Soc. 136 (1969), 159-180.

R. Tyrrell Rockafellar, Conver Analyeis (Princeton Mathematical Series, 28.
Princeton University Press, Princeton, New Jersey, 1970).

R.T. Rockafellar, "Conjugate convex functions in optimal control and the
caleulus of variations", J. Math. Anal. Appl. 32 (1870), 174-222.



[24]

[25]

[2e]

[28]

[25]

[30]

[31]

[32]

[33]

257

R. Tyrrell Rockafellar, "Generalized Hamiltonian equations for convex problems
of Lagrange", Pacific J. Math. 33 (1970), 411-427,

R.T. Rockafellar, "Existence and duality theorems for convex problerz of
Bolza", Trans. Amer. Math. Soc. 159 (1571), 1-40.

R. Tyrrell Rockafellar, "State constraints in convex contrcl problems cf
Bolza", SIAM J. Comtrol 10 (1972), 691-715.

R.T. Rockafellar, "Saddle points of Hamiltonian systems in convex problems of
Lagrange", J. Optimisation Theory Appl. 12 (1973), 367-320.

R. Tyrrell Rockafellar, Conjugate Duality and Optimisation (Conference Board of
the Mathematical Sciences, Regional Conference Series in Applied Math., 16.
Society for Industrial and Applied Mathematics, Philadelphia, 1974).

R. Tyrrell Rockafellar, "Existence theorems for general control problems of
Bolza and Lagrange", Advanoces in Math. 15 (1975), 312-333,

R. Tyrrell Rockafellar, "Semigroups of convex bifunctions generated by Lagrange
problems in the calculus of variations", Math. Seand. 36 (1975), 137-158.

R. Tyrrell Rockafellar, "Integral functionals, normal integrands and measurable
selections", Nonlinear Operators and the Caloulus of Variations (Lecture
Notes in Mathematics, 543, 157-207. Springer-Verlag, Berlin, Heidelberg,
New York. JQ76)

R. Tyrrell Rockafellar, 'Dual prdblems of Lagrange for arcs of bounded
variation", Caleulus of Variatiome and Control Theory (Symposium,
University Wisconsin, Madison, 1975, 155-192. Academic Press, New York,
San Francisco, London, 1976).

R. Tyrrell Rockafellar, "Saddle points of Hamiltonian systems in convex
lagrange problems having a nonzero discount rate. Hamiltonian Dynamics in
economics", J. Eeomom. Theory 12 (1976), 71-113.

D.H, Wagner, "Survey of measurable selection theorems'", SIAM J. Comtrol
Optimization 15 (1977), 859-303,

J. Warga, "Relaxed variational problems", J. Math. Anal. Appl. 4 (1962),
111-128.



