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2 R.T. ROCKAFELLAR

1. INTRCDUCTION

Let X be a nonempty, closed, convex subset of & Hilbert
(or Euclideasn) space H , and lat fi : H*R be a differentiable
convex function for 1i=0,1,...,m . We shall be concerned with

the problem

(P) minimize fG(x) subject to
xeX, fi(xJ <« 0 for i=1,...,m .
The ordinary dual of (P) is
(D) maximize inf {f_(x) + P EL (=)}
w W 1., I
e . R
subject to 0 <y = (v ,...,y JeR .

1 m

It will be assumed in what follows that (P) has at least cne

optimal selution characterizad

v the Kuhn-Tucker conditions.
Then min (P) = max (2) of course, and the pairs (x,y) satis-
fying the Kuhn-Tucker conditions are precisely the ones such that
X is optimal for (P) and v is optimal for (D).

itational

In recant years there has been much intersst in

methods for (P) (and ite nonconvex version) based on the augmented

Lagrangian, wnich
T _ 1 ;
XeX, ye R ., and parameter values c>0 by

& the expression Lix,v,c) defined for zll

(x) if y, +ef (x)>0

Lix,y.,c) = fU(X) +

if v, +tef,(x) <0
; 1 =

[

This is comvex in x , concave in v , and continucusly differ-
entiable in all arguments. Its saddle points {for arbitrary fixed

2) are the Kuhn-Tucker pairs (x,y) for (P} and (D). If each

f, happens to be continuously twice differentiable, then so is
L in all arguments, excent on the hypersurfaces v, +eof.(x)=0 .

i
Anyway, thea =t derivatives of L are everywhere Lipschitz

continucus with cne-zided di ticnal derivatives.

Tor more dizcuszicn of the properties of The augmented La-
grangian, sze [1], [2]. The mest recent survey of the "multiplier

methods" based on the augmented Lagrangian is that of Bertsekas
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{3]. Many extenzions and modifications of the multiplier method
have been explored since it was originally suggested independently
by Hestenes and Powell in 1968, 1In essence, all are aimed at
replacing the constrained problem (P) by a sesquence of uncon-
strained, or more simply constrained problems that can be solved
efficiently by the very powerful algorithms now known for that
special case. They resemble penalty methoeds in this respect,
but they generally are better behaved than penalty metheds in
their rate of convergence and numerical stability (ef. [3]).

The present article, while concerned only with cemvex prob-
lems, will treat a new kind of modification which produces scme
very favorable properties and also admits a generalization from
convex programming to the solution of variational inequalities
with explicit constraints. The following scheme will be called

the proximal multiplisr method.

parameters: H>0, O <Ck Fe il

s 0
initial guess: (x ,ya)

F, (x)} Q_L(x,vk,c )+ £i-|X~Xk|2 on R"
k = + k S
k+1 . k
% ~ arg min F, (x)
ReEX
y§+L = max {O,y? + ckf{(xk+l)} for 1=1,ceeym

Note that the function Fk which must be minimized over X

at each iteration is differentiable and convex, in fact strongly

convex with modulus uz/ck: for all =, %', one has

2
o iy U 2
F, (x") > T '-x) * VE el
k(x ) > k(x) + (x'-x) ¥ k(x) + 2, |%'-x|
The sense in which xk+l iz an approximate minimizer depends

on the choice of stopping rule for the minimization step.

The usual multiplier method corresponds to B=0 (no auto-
matic strong convexity). The modified method was Intreduced in
[4] with w=1 and shown to have two theoretical advantages
besides the strong convexity. The sequence {xk} has better

properties, and global convergence can be obtained under a more
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eazily implementable stoppling rule In Terms of the magnitude

+1 . . . . .
of VF ( k } . For the usual multiplier rule, the magnitude
of Ty (x l) - inf}/_Fk must be monitored if glcbal convercgence

(i.e. from any starting peint) is to be ensured, zlthough lozal

convergence (i.s, from a starting point "sufficiently" close to
being optimzl) has been established by Pelysk and Tretvakov [5]

_ . k+l . ;
and Bertsekas [6]1, [7], in terms of VE, ( )} in the case where

¥ = H=FR and the strong second—O?éer optlmality conditions
are satlsfied.

Numerical experiments hzve discleosed, however, that the
proximal multiplier method with W=1 moves rather slowly in
initial stages ir comparison with the usuzal multiplier method,
despite its ultimate convergence properties. The reason for this

appears to be that, when ¢ is too low, the quadratic term in

k
F (X) dominates and does not allew the Lagrangian term to have
. § o k+l
a strong encugh effect in the sslection of x . On the other
hand, when ¢, is tco high, the "penalty'" aspects of the aug-

k
mented Lagrangian are too strong, and the prime advantase cver
penalty methods gets lost.

The introduction here of the factor U re:

in allewing the vole of the quadratic term to be damped while =
is still reasonably low. The same type of convergence results
as for p>0 will be demonstrated for arbitrarily small u>0 ,
although the algorithm tends to resemble the usual multiplier
method more and more as W Y0 .

The fact that the multiplier method can be approximated in
this sense by an algorithm peossessing global convergence under

k4]

a rule invelving rF (27'7) is interesting for applications to
the solution of var;atlcnal inequalities. As explained below
in §5, these can be handled in the same theoretical framework,
essentially by replacing the gradient mapping Tfo by a more
general "monotone" mapping. The minimization step squivalen

to finding an "spproximate" solution to the equation VE (x)=0 ,

becomes a matter of solving & more general (but 'nice") equation
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Ak(x) = 0 . Since there is no longer any minimization, a stopping

rule in terms of T (xk+l) - inf F., is a dead end, but one in
k Xk
Xk+l)

k+1 F : F
terms of VFk(x ) can be adapted by substituting .%k(
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2. MONOTONE OPERATORS AND VARIATIONAL INEQUALITIES

Many problems can be reduced tothe model: find 2z satisfying
0eT(z} , where T is a multifunction (set-valued mapping) from
a Hilbert space H into itself. Typically T iz some "operator"
invelving subgradients, normal vectors, etc. In the infinite-
dimensional case, differential operators and boundary conditions
may alsoc be involved.

The convex programming problem can be reducsd to this model
in three basic ways. Solutions to (P) itself are characterized

by

1) GET )y Ty = OF

where 3f is the subgradient multifunction associated with the

(closed proper convex) essential objective function in (P),

fo(x) if x is feasible,
(2) £(x) =

i otherwise.

Solutions to (D) are characterized by

(3) 0 ETD(y), To= -dg ,
where g 1is the (closed proper concave) essential objective
£ i i D
function in (D), i
inf 1£ (x) + I oy .} if yro0,
xeX =1 -t -

(4) gly) = =

\-® otherwise.

Finally, optimal pairs (x,y)} are characterized by the Kuhn-

Tucker conditicns as sclutions to

(5} (0,0) eTS(X,y) s
where
m
(6) To(%,y) = {(wv,u) e Hme|Vf0(x) + i21 yivfi(x) = %
£f.(x) +u, <0 and y,[f,.(x)+u.]l=0}
i i-— iT7i i
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if ®eX and y>0 , but TS(X,_‘,-') = ¢ otharwise.
Another class of problems is the following: given a maoping
A:H-H (single valued) and z nonempty closed convex set CclH |

ind & point =x such that

(7) -A(x) e N (x) (normal cone to C at x) ,

f{—weHJ(x'~x}-w_iG for all z'eC} if =x
X

(8l NC(X) 18 iF

1]

{-weH | min wex' 1is attained at x'=x}
% NiE€

*h

This is called a variational inequality in view of its expression

directly in terms of the inequzalities in (8) and because it pre-
duces when A Is the gradient of a convex functicn fO to the
condition for the minimum of fO relative to C . It reduces
when C dis the whole space H +to the equation A(x) = 0

The variational inequality (7) can be expressed in the form
2 (g Fi.de T = A+ N
() Typ(x)s Typ o
However, a structured representation involving multipiers is

alsc available when

{10} C = {xe¥

fi(x) <0 for i=1,...,m}

Suppose the extended Slater condition is fulfilled: ¥ is poly-

hedral and there is an xeC satisfying strictly all the in-
equalities for which £, is mot affine, (The polyhedral property
means that X can be e;pressed by a finite system of linear
inequalities. It could he replaced by the condition Xe int X.)
In this case it is known (from the existence of Kuhn-Tucker char-

acterizations of the minima in (8)) that

{-weH | Iy.>0 with y;£;(x) = 0 and

m
(11) N (=) = [w+ § v .VF.(x)]eN_(x)} if =xeC ,
L™ .:l 5 1 x

q;

¢ if x¢C
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Then solving (7) is equivalent to finding a pair (x,y) such that
(12) (O,O}ETVS(X,y) ;
where
= m
(13) % (X:Y) = {(VQU)‘EEXRh | V—[A{X) + E y.vf_.(X)jeN (X) 5
V3 i=1 A X

F.(x) +u, <0 and v .[£,(x)+u,.] = 0}
il 3 = 1 3 1

if xe€X and y>0 , but (x,v) = ¢ otherwise,

Vs
Variational inequalities were first studied extensively in
the mid 1960's by F. E. Browder, J. Lions and others, under the
principal interpretation that A isg some kind of integral-dif-
rerential operator. This iz why it is important to allow for
an infinite-dimensionzl space H in the theory, although compu-
tation might typically proceed by a series of reductions to fi-
nite-dimensional subspaces. The use of Lagrange multipliers in
such variational inequalities was first put forward by Rockafellar
[8].
One of the most valuable notions that emerged from the theory of
variational inequalities was that of a maximal monotone operator.

A multifunction T :H+H is said to be monotone if

wy€T(z ), w, e T(zl) = (20_21)‘(w0_w?) >0

a 1 1

b=l

t is maximal monctone if it Is monotone and its graph

{(z,w)|we T(2)} is not properly included in the graph of any

(
other monotone operator.

The subdifferentials T = 3h of the closed proper convex
functions h on H are important examples of maximal monotone
cperators [9], [10]. Another example of special interest below
is

(14) . TE(x,y) = (Bxﬁ(x,y),—ayﬁfx,y)) 5

where £ is a "closed" convex-concave function on  HxH' (pro-
duct of two Hilbert spaces) [11]. A single-valued monotone map-

ping defined on a1l of H is maximal monotone if and only if it
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If T(x) = Mx +b where ¥ is a con-
tinuous linear tTransformation, ther T is maximal monotone if

only if ¥ is positive semidefinite (not necessarily sym-

(15) w'Mw > O for all weH .

k)

More generally, 1f T is single-valued differentisble mapping,
it is maximal menotone if and only if its derivative (

Jacobian) at every point is positive semidefinite in the sense

The operators T_ and T_ above are maximal monotone be-

cause they are of the form T = 8h , while T_ Is maxlmzl monc-

Tone because it iz of the form (14) for £ <he ordinary

ol

Lzgrangian function in the convex programming problsam.

suppese A:H-+H is a single-valued(everywhere defined)

monotone opserator wnich iz continuous from the nmorm topology to

the weak topelogy. Then the operators T”P and TVS are max-
i izt By

imzl monotone.

Proof

The ogperator NC :x-+NC(x} iz maximz]l mcnotone, because
it is the subdifferential of the Indicator function of C . On
the other hand, 4 is maximal monotone (as already noted in the
remarks above. To obtain the conclusion about TVP , we need
only apply the fact that the sum of two maximal monctone operators
is maximal monotone if the effective domain of one has = point
interior to the effective domain of the other [8, Theorem 1].

(The effective domain of a multifunction is the set of points

where it is nonemptv-valued.) The conclusion sbout TVP follows
in the same way from the representation TVP = TO + Tl where
T, 1is the special case of Ty with £,50 and T, s (R,y) >

(a(x),0) .
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The extended Slater condition 1g therefore not needed for
TvQ to be maximal monotone, but merely as a sufficient condi-
tien for the original variational inequality to be equivalent

to finding a pair (x,y) that satisfies
(16) =xeX and £ (x)<0, v, 20, yifi(x)= 0 for i=l,...,m ,
- — _.
[A(x)-r]l7fl(x)+...+1m fm(x)] eNX(x)
The latter could just as well be adopted as the real problem

of interest when € is given by explicit constraints.
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3. PROXIMAL POINT ALGORITHM FOR MONOTONE OPERATQRS
We have reduced a number of prcblems to the model

(17) find z satisfying 0e€T(z) ,

where T :H*H 1is a given maximal monotone opeator.

4 fundamentzl algorithm for this problem has been developed in

[13] using the fact that for arbitrary c>0 <the operator

(I+eT) ~ is a single-valued and nonexpansive. It is called
the proximal point zlgorithm.

[e=]
parameters: QO<g #c < ®, € >0, } g <o

=
& e E ‘ k=0
initlal point: ZO

k+1 -1, 1
2T (I+ckT) (z°)
stopping criterion:
k =1
|z e (I+ckT) (zk}! < g max {l,|zk+l—zk|}

It may seem that the stopping criterion requires explicit knowl-
edge of the mapping {I+ckT)_l , but this iz not the case in a
number of applications where convenient estimates are availahle,

The main result about the proximal point algorithm is the
following. Buppose at least ons solution to (17) exists (as can
be guaranteed by conditions discussed in [13], for instance).

s X B o _ P
Then = converges (in the weak topclogy of H) to a particular

oo
solution =z (even though there may be more than one solutiom!).
Moreover
|7k+1 c£>| (afe )
(18) lim sup = i i < 7 =1
ko [z -z | (1+(a/e )"

where a¢[0,#] is a certzin number associated with the problem,

namely
> . z ) il
(19) a2 = Lipschitz constant for T = at @
< z-Z
= 1lim sUp |;w[| <
8y0 -1 P
zeT “(w)
zeT ~(0)
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—
H

n (18), the convention is adopted that the right hand side is

1 if a=° , but 0 if 2<% znd c¢_=% . The ratio on thes

oft =zide 1z @ 1f Jjust the denominator vanishes, but

]

[

i
both the numerator and dencminator vanish. The latter rule is
involved alsc in (19).)

Observe in particular that if a<® the convergence is

inear with a modulus that can be forced asz close To zZerc as

Ay
D

sired by choosing «_ high enough; for c_ =« , the conver-
gence is superlinear. It is of interest therefore to have some
feseling for whether the constant a can be expected to be finite.
This can be provided in some applications in terms of the xind

of optimzlity conditions satisfied by the sclutien, but the fol-

eneral result mey be cited.

-
i
(Y
+
o
-
il

and at which the Lipschitz constant for T iz in

Mignot [14] has shown that in the finite-dimensional case

a maximal monotons coerator ig actually single-valusd and d4if-

mzin. At such peints it has In particular a finite

; : B .
constant., Applying this fact to T .

ferentiable at almost every interiocr point of its effective do-
L

m

follows trivially from that of T , we see that

t svery intericr point of the sst

tz constant at almos 5

Lipach
(20). But thiz sot is alzo known to be virtually convex,

in the finite dimensional cass means that it differs from

convex set only in the possible omission of certain relat
bouncary points Elé, 171. The noninteriorp points therefore form

a set of measure 0, and the result follows.
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To interpret Proposition 2, think of the basic problem in
parametric form: find z such that weT(z) , where W is a
given vector. This amounts to considering simultaneously all
the maximal monotone operators of the form T-w . The choices
of w for which the problem has a solution are those in (20).

Thus the problems for which a sclution exists, but the correspond-

ing constant a is not finite, form a negligible set.
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4., AFPLICATION TO CONVEX PROGRAMMING

When the proximal point algorithm is applied to the maximal
menotone cparator TP one obtains a method of the form
k+l .
b4 ~arg min {£ (=) +
0
xeX
This has its interesting aspects, discussed in [4], but more

" |x-xk{2‘f.(x) <0, i=1,...,m}
QCk ! i =

important ars the cases of TD and TS , which reduce respec-
Tively to the usual multiplier methoé and the proximal multiplier
method with p = 1

The main results obtainsd in this way for the usual multi-
plier method (the algorithm in 81 for | = 0 ) are the following

(see [Y4, Theorems 4 and 5]). Suppose the stopping rule is

s ) < k2

(21) P (x7) - inf F (%) < el o

k k =

xeX k
k+1

where yi+_ is the multiplisr vector defined in the zlgorithm

F k K+1 £ 2 i 3
as a function of v and X , and Gk >0, Lk=0 ok< w . Thnen
(under the assumptions about the problem stated in §1) the se-

-k - o MR .
quence {x } is asymptotically minimizing for (P) iIn the sense

that

xks:X, fo(xk)->min (P), max {G,Ei(xi)}-+0 for i=l,...,m ,

i o g T o
wnile {y I converges to soms optimal sclution ¥ to (D).

Furthermore

s (s 4
) Fk+¢_”m‘ \aofcm)
(223 lim sup . < T 3
| e / 2.5
koo |_'\,a' =i | [;+(ao..- Cm) 1
where =z, 1s the Lipschitz constant for T~ at 0 . (This
W LV

expression uses the conventions explained after (18), (19).)
A aztricrer stopping rule i1s nseded to obtain hetter conver-

i - k
gence properties of {x } . Let

(23) proij ??k(x) = projection of ?;k(X) en the closed

tangent cone to X at

(If X 4is the whole space H , this is just ka(X) itself.)
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If one invokes (21) simultaneously with

(2u) | proj VFk(xk+l}| f_ék-max {l,|yk+l-yk|} ;
where 0« ek—>0 , and if the Lipzchitz constant a; 1associated
with T;l at (0,0) happens to be finite, then {x } converges
(in the norm topology of H) to a sclution v to (?) and
k+1
(25) lim =up Xk+l_xk f_al/cm 3
ko |y oy

(In (25), the conventions explained for (18) are likewise in ef-
fect.)
The corresponding results for the proximal multiplisr method

will depend on the operator Tu : HxR" + HxR"  defined by
- , -1
(28) Tu(c_,y) = {(n,u) | (un,u) e T (0 "E,y)}

for W>0 , as well as on the associated value

(27) a, = Lipschitz constant for T;‘ at (0,0)

Note that for p = 1 these reduce to T, and a, (as already

dafined above).

Proposition 3

For every u>0, TU iz a maximal monotone operator and

e il -1
au > a, (the Lipschitz constant for Ty at ¢). Moreover EILI

is nondecreasing as a function of u , and if it iz finite for

one p>0 it is finite for all wu>0 . If the space H is

finite-dimensional, then aux a, as u 50 .

Proof
If (n,u)ETu(i,y) and (ﬁ,-ﬁ)e'ru(i,-}} , then (un,u)e
Ts(u_li,y) and  (un,u) eTé(u_lE,§) by definition, and the mono-

tonicity of Tq implies

(28) 0 < [Qun,a)-Cun,w) I L E, ), 3)]

| ~

WA E-E) + (Gew) Goy)

[(n,u)-(n,u)][(E,y)-(E,7)]
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Thus T, is monotone. Now suppese (N,u)e T(Z,y) , where T

is a monotone operator whose graph includes the graph of TLI 5
Then in particular (28) holds whenever (n,u)e Tu(E,ﬂ) ; hence

0 < [(,m)- (v, T L E, )= (x,3)]

»Henever Cvi i) eTS(x,y) . In other words, one could add

(u £.¥,uN,u) to the graph of Tq without destroying its mono-
tORlC}ty. But Tq is maximal monotone, so this implies (un,u)e
TS(U_;§,§) . Thus (&,u) sTp(E,?) . This shows that TLl is

maximal too. By definition

3

a = lim sup &%ﬁ___%‘__)_l_
830 (£,y) € TiE(n,u) [(n

g 51
(E,y) ¢ T (o,0)

J(n,u)|ié
= lim sup I(Lx,y) )]
Ox0  (x,v¥) € T_l(v u) |(U i u}|

(x,y)e T= l(o )
| (u v,qugé

The ratio can also be expressed as

1[5 24 -5 | 21
“lol? + lul®7®

which clearly is nondecreasing as a function of W . Hence

a,, is nondecreasing in Y. A change in V¥ merely amounts to a

change to equivalent norms and thus cannot affect the finiteness

of au )

In the case where a, is finite for U> 0, TéL has a fi-
nite Lipschitz constant at (0,0) . Then 'S (O 0} consists of
a single element (x,y) . Furthermore, (0,0) is an interior
point of the rnage of Tq (12, Theorem 1] and
(29) Tgl(u) = {y | 3x with (x,y) e T Lo ¥}

(4, Propeosition 1]. Thus
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)-(0,7)]
0,u)

| (o

g, = lim sup R

S80  (x,y) € TEL1(0,u) | ¢
< a1
(X,}")ETQ (O,C)

| (0,v)

<8

and in particular 3 f_au for all u=0

On the other hand, suppose & 1s a number such that
a‘iaL‘im for all p>0 . Assuming finite-dimensicnality, we
shall show that

a. = inf a = lim a

<0
p0 F oo M

Pix any &>0 small enough that the set
(30) {(x,y) | Ilv,u) with |(v,u)| < & and (x,y)« T;l(v,u)}

is bounded (zs is possible because T;L
constant a, at (0,0) by assumption). Feor p = 1/9, j=1,2,...,

there are elements (xj,yj)e T;*{vi,uj) such that

has a finite Lipschitz

(jv.,u,}| <8
s Ll e

and
(31) |(3:—-'Xj,yj)—(j_‘§<,§}| 3a|(jvj,ﬂj)] :
Then in particular i(v4,uﬁ)| < 4§ , so the sequence {(xj,yj)}

belongs to the bounded set (30). Extracting subseguences if
necessary, we can suppose that (vj,u.)-+(§,ﬁ) and
(xj,yj)'+(§,§) . Actually v=0 , since j[vj| < ¢ for all

i . Then (%,7)¢ T;l(O,ﬁ) because the graph of T, (and hence

S
of T;l) is closed by maximality. Teking the limit in (31),

we see that

(32) | (0,5)-(0,7)] > al(o,d)]

Thus for each 6>0 sufficiently small there exist ¥ and u
. P RN " ;

such that (x,y)e’TS (0,u) for some % , and (32) holds. This

shows that a>a_, and completes the proof.

0
Theorem 1

Suppose the proximal multiplier method for arbitrary p>0

is executed with the stopping rule
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£
. k+1 E+1 k k+1 k
(33) |proj 7r, (x1)| < = max {1,| "y ey Lt
] N
~ n 2 o~ 3
where Lk >0, zk=0 qu « ., and
s Z 2 Dl
(31) l(x,y)l1J = [ufx|* + |y|°1"

, k < g - o
Then =x converges (in the weak topology of H) to a solution

co k 3 =]
®x to (P), y converges te¢ a solution y to (D), and

E(Xk+l,yx+1)_(xm,ym)| (au/cm)
(358) lim sup TR o B < - 5k
ko | (x",y )-(x ,y J|Ll [l+(au/cm) 1%

Proof
For u=1, this was established in [4%, §5] by applying the

theory of the proximal point algoritim to The general case

T
s
iz obtained in the same way from Tu . As a matter of fact, this
simply amounts to a change of varizbles &£=-uUx in the convex
programming problem: at each step one minimizes the function

) -1, a4 ol <1
@k(a) = Fk(u £) , whose grazdient is V@k(i) =y VFk(u EY ,

on the set EZ=uX . The stopping rule in terms of Ek+l is
el :
. k+1 k k+1 k+1 k k
|pI‘O] ‘G‘@]{(E }| i_c_'max {l:|(‘i ¥ )'(E 2 Y )|} 3
k
for wvalues E& >0 with Z:_O €ﬁ<:w . In terms of xk+l =
-1, k+1 ; : N
u £ , This translates into
_ 5 £'
-1 E o K+l k L k+1 k+1 k k
u "~ | proj VE (x| < —=omax {1, [(ux L,y )-(ux L,y )|

and becomes the rule (32) upon setting €, = uei :

Remark 1

As U &0 , this stopping rule is transformed into the rule
(24) used (in part) in the usual multiplier metheod, while in the
finite-dimensicnal case at least, the result (35%5) is transformed

inte (22) (since a, %8, by Proposition 3).

Remark 2
Proposition 2 shows that 4, can be expected to be finite.

Actually a; and hence au for all u>0 , is finite in
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particular if the strong second-order optimality conditions hold
for the problem [u4, Proposition 2], the sclution X being in-
terior to X . Spingarn, in his thesis [15], has extended the
statement of the sscond-order optimality conditicns to allow
"active" sets X of a certain class and has proved in a well
developed sense that these conditions are satisfied by almost
all problems with sufficiently differentiable functions fi

Thus the modulus cn the right side of (35) iz less than 1 except

for a "negligible set of problems".
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5, APPLICATICON TO VARIATIONAL INEQUALITIES

The proximal multiplier method may now be extended easily

to the problem of determining a palr (x,y) which satizfies a

the norm topolegy to the weak topoclogy of H

from the fact that the algorithm can be describad
terms of the gradient mapping V£, vather than the valuss of the

objective function £, .

Minimizing F] over X 'approximately'" is the same as find-
: i E K

ing an approximate solution to the varlationzl inequality

—?Fk(x) € NX(X) ;

It is easy to see that actually

' R = dig vE S
| proj "Fk(X)| dist(0,V K(x) ; NX(X)}.

But
m K 2
VP (%) = VF () + ) max {0,y.+c F.(x)} TE. (%) + 2 (x-x")
k 0 i i kK71 i c
i=1
The procedure makes sense, therefore, if one simply replaces
?fo(x} by the mcre general expression A(x) . This yields the
proximal multiplier method for variationzsl inequalitiss:
parameters: upu>0, O<e, ¢ <@ |
O i ~ r
S ; g <o,
k7”7 lk=0 Tk
o0 0
initial guess: (x .,y ) .
m . 2
A A I K v u k
Ak{X)égn(x) + ) max 10,y, +ckf.(x}; ff{(X) = (x-x")
i=l - - "
k+1 .
% ~ sclution to -4 (x)e ¥ (x)

whare iz the norm definsd in (34). The solution of the

[

simpler variational inequality at each iteration is assisted by



MONOTONE OPERATORS 21

the following fact.

ProEosition 4

The mapping A is maximal monotOne (single-valued), in

fact strongly monotone with modulus U /ck, in the sense that for

all =.,x' ,
UQ 2
[x'—x]‘f%}x‘}%ﬁ(x)] > — |x'-x]|
X -

Proof

It has been observed that the function Pk is strongly con-
vex with modulus I.!2/ck (and hence VPk is strongly monotone
with the same modulus), even if fo is the constant 0 . Taking
fOE 0 , we can write Ak = A+ VPk . Thus Ak is the sum of

two maximal monotone operators and therefore is maximal monotons
by [8, Theorem 1]. The strong monotonicity of VFk is inherited
by Ak

The definitions of TN and au for p»>0 are extended
to the present case simply by substitution Tvs for T, in

S
(26) and (27).

Proposition 5

Under these extended definitions, it remains true that

Tu is a maximal monotone operator, and au is a nondecreasing

funetion of u>0 which is finite for all yu if finite for

one W .

Proof
The corresponding arguments for Proposition 3 depended only

on the maximal monotonicity of T_ &nd hence carry over to T

S Vs

by virtue of Proposition 2,

Theorem 2

In the proximal multiplier methed for variational inequal-

ities, under the assumption that (16) has at least one solution,

k
one always has =x >x% (weak topology of H) and yk-*ym , where
w o
(x ,y ) is a particular soluticn to (16). Moreover
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|(Xk+l

lim sup

k+1 o w
¥ J-(x 2 ¥ )|L1

<

R.T. ROCKAFELLAR

(a,/cg)

Y=

Proof

This is obtained by applying

to the maximal monotone operator T,

1
variables &=zux . It =zuffices to demo

xk+l and ' = fl
u nd el =u g,

k+1 k+l

(36) |Gl =TT )

E! max {l,

k

We have by definition

m
ey 1

1=

(37) TU(E,;\T):*':(T“;,u)!l-lﬂ—[f‘l(';i

!(xk,yk)—{xm,ym) |-,4

I,
._]_’
fi(u £)+ uif_O,

[l-u.\-(au/cm

z2trzte

.y J|
k+l k+1

k+1

)+

the proximzl point
and making the chan

that for

On the ot

k+1 k+1
Y-y

u,J
i

]
L

)]

algorithm

=
ng
E e

the present stopping condition implies

l k

)(E ,y)|}.

.7 -1 i =1
yivfi(l.l EXeN, (W78,

i ' Hl.r 1 = 1
v\‘i[fi(u __)+Li] O_

her

ve, (x°T1y |
1

- J'Ek+l )

]

= 0

Y -1 " ]
if u "EeX, y»0 , and T“(g,y): 0 otherwize.
hand, we have by definition yk+l:>0 and
2 y
N T SR e T
; k =i
or equivalently
-1, k+1 [ k k
(38) G TR g e g
k a
K m
-1, k+1 vk
A(WTES Eyl
=
y
Let u = (y X Jk+_)fck . so that
-1, k+1 o1 -k
fi(u ETT) o+ 4y T o [yi .ckfi(x
®
Then
-1 k+1 k+1 -1_k+1
(39) £ E ) vy, <0, IR, GE
Referring from (38) and (3%) back to (37), we see that for ar-
bitrary
k+l k41
(40) we la (x7 ) +N, (x N
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it is true that

<+_) gy I K+,))

<+| k+l
k(y )

(urlw+c (E = T (g

The latter is the same as
k+l k+1
¥ )

L]

1 kK k s
(u oy wtE Ly ) E(I+ck;u)(@

so that

k41  k+l -1, -1 k k
(41) (" ,yﬁT 3y = (I+ck1u) (u ckw+5 .V )
-1
But the operator (I+CkTuj is nonexpansive since Tu is mono-

tone (ef. [13, Prop. 1]1). Therefore (41} implies

|(7k+1’ k+l) (T+c k_ l(ck P)
;] |(u_lc]w+ek,3k) €,y = P_lck|W|
This heolds for all w satisfying (40), so
[(Ek+l,yk+l)-(I+ckTu)_l(€k,yk)|jiu—lck\ﬂistfo,ﬁk( Ky, (1)}

-1

=y 'ckgproj Hk(xx+*)|

It follows that the stopping criterion in the present algorithm,

namaly
k+1 ek K+l k+l ¥ k
iﬁrcj A (= )| ¢ < max {1,y )—{X',y‘)| 1
k —-ck H
ex kil K
+l %1
== max {1, | (& -85,
k

U)
|__.
A
[y
=)
]
51

does imply (38) a

Remark
Propositicn 2 has the interpre:ation in this context that
for "almost all" wvariationzl ineguality problems the constants

au will be finite.
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