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THE OPTIMAL RECQOURSE PROBLEM IN DISCRETE TIME:
L'-MULTIPLIERS FOR INEQUALITY CONSTRAINTS*
R. T. ROCKAFELLAR™ axp R. J-B. WETS:

Abstract. An optimal recourse problem is an optimization problem with hoth stochastic and
dynamic aspects. involving the interplay of observations and responses. In discrete time {with a finite
horizon}, there are finitely many stages. at each of which a decision is sefected on the basis of prior
observations of random events and subject to costs and constraints affected by these observations as
well as past decisions. The goal is to minimize expecied cost, taking into account the known
distribution of future random events. This paper 1s concerned with the derivation of necessary and
sufficient conditions for optimality in the case of convex costs and constraints,

It is shown that if the recourse problem is strictly feasible and satisfies a new condition called
essentially complete recourse, optimal solutions can be characterized by & “pointwise” Kuhn-Tucker
property involving L '-multipliers. Applications to multistage stochastic programs with special struc-
tures are developed in the last two sections of the paper. In particular, the relation between the general
mode] and discrete-time stochastic control models is brought out by applving the basic results to a
linear stochastic problem with state constraints.

1. Introduction. For k=1, -+ N, let §, e R"™ and u; € R™ represent the
observation and decision (control) associated with stage k of a sequential decision
process. The sequence of observations

E=ltn g5, v bn)eR SRR 2 X R™N=R"
and the sequence of decisions
uz{ul.ag,""u‘,\;)ER"!XR”zX.,Ianyan

determine a “cost” denoted f5(£, 1 ). The objective is to find a recourse function (or
policy, or decision rule, or control law) £ —u (&) which minimizes the expected
value of this cost subject to certain constraints, including a kind of nonanticipativ-
ity, 1.e, the property that u,(¢) essentially depends only on &, - - -, &. This is an
optimal recourse problem in discrete time. Qur aim here is to derive necessary and
sufficient conditions for the optimality of a recourse function in the case of a
problem satisfying convexity assumptions with respect to the decision variables.

To give a precise formulation, let (Z, %#. ¢) denote the sample space
associated with the random elements of the problem; = is a Borel subset of R”, #
is the Borel field on Z. and o is a Borel probability measure on (2. F). The
corresponding expectation operator is denoted simply by E.

A function w:Z—-R" is said to be nonanticipative in the sequential
framework described above if it is of the form

(€)= (&), u=(é:1, 62). 0 unlén. - - &N

it is essentially nonanticipative if it is measurable (with respect to #) and differs
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only on a set of measure zero (with respect to o) from some measurable
nonanticipative function.

It is useful, for purposes of comparison with other work in stochastic
optimization, to recognize that this concept of essential nonanticipativity can also
be formulated in terms of a nest of sigma-fields. Let # denote the class of all sets
in # of measure zero with respect to o, and for k=1. - N let #. be the
sigma-field generated by &, - - -, & completed with respect to o, 1.e. the class of
all sets of # of the form

((AX[R™x--x R"))NI)AB,

where 4 isa BorelsetinR" x - - - xR Bisasetin #'. and A denotes symmetric
difference. Then each F; is a sigma-field.

FeF o CF=F

and a function u: Z—R" is essentially nonanticipative if and only if for k =

1, - . Nthe function u: =— R "™ is F.-measurable.
In fact. everything that follows remains valid for an arbitrary choice of
sigma-fields #,, - - - . #x nesting as indicated. if the latter property is adopted as

the generalized definition of essential nonanticipativity, We therefore work
mainly in this notational framework.

For the conditional expectation given %, we write E*, This is taken to be a
regular conditional expection, i.e. representable as an indefinite integral with
respect to a regular conditional probability. (Such regular conditional prob-
abilities exist, even for a general choice of %, because # is the Rorel field on =
and o is a regular Borel probability measure,)

The optimal recourse problem considered here consists of minimizing the
expected cost

(1.1) Ie(u) = E{fol§, u ()}
over all essentially nonanticipative functions u: = - R" satisfying almosr surely
{a.s.)
(1.2) fE u(EN=0, g L el
and the abstract constraint u(£) U(€). It is assumed that for every € £ = the set
U(€)1s closed and convex with nonempty interior, and the functions u — £ (£, u ),
i=0,1.- . m, arc defined for all u € U(¢) (finite, i.e. real-valued), convex and
lower semicontinuous. It is assumed further that for each u = R" the set

U 'u)={£eZlue UE)
is Borel measurable (i.e. belongs to ) and the functions £ — £, (& u) are all Borel
measurable relative to U"l(u). Setting

fil&u)y=~+x if uz 7€),
we obtain from these assumptions that each £, is a normal convex integrand on
=EXR" [1, Lemma 2] and the multifunction /: Z— R" is measurable [2. Cor.

3.1
[t follows that f;(£ w(£))is Borel measurable in £ £ = when u(£) s measurable
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[1, Cor. to lemma 5], Moreover, the multifunction
(1.3) D t-DE={ucUE)fi(&,u)=0,i=1,---.m}

is measurable [2, Cors. 4,1 and 4.3]. This multifunction with closed, convex values
provides an abstract description of the constraint structure, and it is crucial in what
follows.

We assume that the sets D (¢£) are uniformly bounded (i.e. their union tor all
£ € Z is a bounded subset of R"). This enables us to restrict our attention in the
recourse problem to functions u belonging to the space L =L™(E, # 0; R").
We suppose in addition that to each bounded set K < R" there corresponds a
summable function a: Z- R and a constant 8 € R such that

(1.4) lfolé, w)|Sa(f) forallucU(E)NK,

(1.5) (e, u)=p foralucUENK, i=1,-,m.

These “growth” conditions imply that for every function u in the class
U={ueLTuE)eclU¥)as.}

the functions fi( -, u(- ). i=1,-+ -, m, are essentially bounded, while fo( - . u( "))
is summable.

With these assumptions the optimal recourse problem introduced above is
well-defined and can be stated as:

P Minimize the functional (1.1)over all u € ¥ M N satisfying (1.2) a.s.,
where N« represents the constraint of nonanticipativity:
Ne={u=(ur,,un)eLilu is F-measurable, k=1, , N}
=Lo (B F L, o)X Li(E, Fs o)X XL (B, Fn, o).

Clearly A« is a linear subspace of ¥, , while % is a convex set, as is the class of all
u € % satisfying (1.2)a.s. The functional (1.1)is convex and finite on %. Thus we
are dealing with a convex optimization problem. In such a settingit is typical to
find multiplier characterizations of optimality which are always sufficient but not
necessary without some “comistraint qualification.”

A natural constraint qualification to consider is that P be strictly feasible. This
is taken to mean that there exist # € /'« and £ > 0 such that

- (1.6) flE d@)=—¢ as. fori=1,--,m,
and
(1.7) a(&)+eBcD(£) as.,

where B is the closed unit ball in R”. However, strict feasibility is not enough in
itself. What we need for our characterization of optimality, as it turns out, is for P
also to have the property of essentially complete recourse. in the sense that for
k=1, -+, N the multifunction

DY D (E)={(ur. -+, u)lueDE)}

(1.8) ,
= projection of D(&)on R™ % - -XR™
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is Fr-measurable. (In this case, the constraint multifunction D2 is said to be
essentially nonanticipative.) Henceforth, we assume the problem P 10 be endowed
with both strict feasibility and essentially complete recourse. as well as all other
properties of U, f, and D already mentioned.

The optimality condition to be studied below invoives the function

hiZXR"XRIxR"=R
defined by

(19) h (§> i, v, P}: _fi'}{"fs M)‘?‘ E _‘_‘I."fl' (E n)=u: -

This acts much like the Hamiltonian in control theory.
The Lagrangian associated with the problem Pis defined to be the function

(1.10) In(u,y,p)=E{R{(E u(&), y(£), p(E)} for(w, y,p)e U XY XMy,
where
Y={y=(yy, . ym)eLlpyi(@)=0as.fori=1, -, m}
Mi={p=(p1.---,px)E L_E,E“’{pk(.g}}=[} as fork=1,--- N

(Here pi ()€ R"™.) The set ¥ is convex, while ./, is a linear subspace. In fact, as is
easy to verify from the definitions, .#(; and V' are complementary to each other
with respect to the natural pairing between L, and L.

Mi=Nx and Ne=4M7.

Our growth conditions on the functions f; imply that 7, (i, v, p) is finite throughout
U XY x My, and. of course, convex in u and affine in (y. p).

A saddle point of I, with respect to minimization in ¢ and maximization in
(v, p)is an element (iZ, ¥, p) of U X ¥ X4, satisfying

(111) Ih (L}'s }’Is p)éjh (as }_".' ﬁ)girh (H, f! !5) fora” (Ie’, ¥, p)(_: ;EZ X ?y X,ﬁ,

We shall prove in § 2 that the regularity conditions imposed on P ensure the
existence of such a saddle point (&, ¥, ), with @ an optimal solution to P and (7, 7)
an optimal solution to an associated dual problem, (See [3] for a gencral
exposition of the relation between the saddle points of a Lagrangian and the
optimal solutions of the corresponding convex program and its dual.)

As is also shown in § 2, the saddle points (@, ¥, p) of I, are characterized by
the following Kuhn-Tucker conditions, whose satisfaction for some (,7) is
therefore necessary and sufficient for the optimality of @ in P:

(a) 4 =% and

(1.12} i(&)e U(E) almosr surely

(1.13) flEaEN=0 fori=1,---.m almostsurely:
(b) =1, . Fm)ELnand

(1.14) v(&ryz=0 fori=1,---,m almost surely,

(1.15) VEVEaEN=0 fori=1.m almostsurely;
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(c) petl, and
(L16) (& (&), y(&),p(E)= lim k(€ w. 7(E).pE) almostsurely.

The Kuhn-Tucker conditions show that if y and g, the multipliers associated
with P, are known or can be generated by an algorithmic procedure, a function
@ e Ly is optimal for P if and only if it is nonanticipative and @ (¢) satisfies certain
constraints “pointwise” for each £< =, namely (1.12), (1.16). and (1.13) with
equality holding when v,(£)> 0. Moreover, if P is such that the pointwise minimum
in (1.16) is almest surely unique, as is true for example if fo(€, ) is almost surely
convex on U(&), then the function @ € L7 is optimal'if it merely satisfies (1.12) and
(1.16), without regard to noranticipativity and the other constraints. Indeed. these
other properties must then hold automatically for 7, since according to the above
there does exist at least one optimal recourse function characterized by the
Kuhn-Tucker conditions. This is discussed further in a more specialized context in
§3.

Essentially complete recourse plays a vital role in the derivation of these
results. The importance of this kind of property was first brought out in [4] in
connection with our work on a special case of P. [t was shown in [4] that if a
stochastic program with a two-stage constraint structure has relatively complete
recourse, the multipliers appearing in the Kuhn-Tucker conditions may be chosen
to be L'-functions; one has to rely on esoteric elements of (L *)* when this
condition is not satisfied. It can be shown that essentially complete recourse is
implied by relatively complete recourse in that setting (see the remarks in § 3
following Theorem 6). Essentially complete recourse is a more general and
abstract condition demanding that at each stage & the set from which the decision
u, must be chosen, namely

Di(& uy, -+ te—)={up € R™|(1y, -+ -, Ui, up)e D*(€)h

really depends only on past decisions and observations, and one therefore does
not have to restrict further to an intersection relative to all possible future
observations (an implicit constraint induced by the need to maintain availability of
recourse under all circumstances).

In a companion paper [3], essentially complete recourse was used exten-
sively, first in the justification of the dynamic programming technique for optimal
recourse problems, but then also to obtain a system of L'-multipliers, in fact a
summable martingale, that can be associated with the nonanticipativity restriction
on the recourse functions, However, our concern in [5] was only with such
multipliers. The model was formulated directly in terms of the nonanticipative
constraint multifunction 2: no structure of D in terms of inequality constraints
as in (1.3) was explicitly introduced. and hence there was no multiplier vector
y(£). The existence of multipliers associated with the nonanticipativity restric-
tion was first pointed out in [6].

2. Basic results. Our first theorem shows that the regularity conditions
imposed on the recourse problem P guarantee the existence of an optimal solution
i, and that such functions # correspond to saddle-points (i, v, f) of [,. We
proceed by observing that the question can be settled through reducing P to an
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equivalent problem without explicit inequality constraints, We then utilize the key
result of [5] to complete the proof. The second theorem demonstrates that the
saddle points of 7, can be characterized by the Kuhn-Tucker conditions, and these
therefore furnish necessary and sufficient conditions for optimality. The third
theorem brings in the corresponding dual problem D.

THEOREM 1. The Lagrangian I, has at least one saddle point (i, V. p) relative
t0 U XY <M. Moreover, the components i of such saddle points are preciselv the
optimal recourse functions in P,

Procf. First observe that P consists of minimizing over .\« the functional

Tr(u)=E{f(& u(€Dt=E{fol€, u(é)+ bpio(u(ED}

where dp e, is the indicator of D(£). Since D is a measurable multifunction and f
is a normal convex integrand, we know f is a normal convex integrand [2. Thm. 2
and Cor. 4.2/,

According to our assumptions, D(£) is uniformly bounded and there is a
summable function «: = - R such that

usD(E)2 flé u) =alf)

Furthermore, by strict feasibility there exist 7 2.4 and ¢ = 0 such that (1 .7yholds.

These facts put us in the framework of [5, Thm. 2] and furnish not onlv the
existence of an optimal solution # to P but also the characterization of such a
function & as the first component of a saddle point (. 7) of the reduced Lagran -
gian

(2.1) L, p)=E{f(& ul€N-u(€) pEh=T(u)—(u,p) for(u.p)eL xM:.

The existence of an optimal solution is seen as follows. The subspace V., being
representable as

Mi={ueL Nu,py=0forallpe)

is closed in the weak topology w(L,,L,). The functional Iy on L, is lower
semicontinuous in this topology, because itisrepresentable as the conjugate of the
functional 7« on L ,, where f* is the conjugate integrand ([1. Thm. 2] and [7. Thm.
2]). The sets

fueNw)Sph pekR
arc therefore closed in this topology, in fact compact by the uniform boundedness
of D{£), since
(2.2) L{u)=+oDu(E)eD(E) as.

The nonempty sets in this nest of compact sets therefore have a nonempty
intersection, and this consists obviously of optimal sclutions to P,

The existence of the multiplier g in [3, Thm. 2] is obtained by a more subtle
argument, the details of which will not be repeated here. By our hypothesis, the
convex functional [y is finite and norm-continuous at & certain peint & of A, and
this furnishes by Fenchel's duality theorem a norm-continuous linear functional ¢
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on L such that ¢ vanishes on A, and
inf I(u)= inf_{I:(u)—¢ )}
[TE=NU uel

The property of essentially complete recourse enters in showmg that ¢ can
actually be taken to be of the form ¢ (u)= (u, p) for some p in L. (and hence in
A, = %), This vields the existence of at least one saddle point (4, p)ofL in(2.1),
and it follows then by the usual reasoning in minimax theory that such saddle
points characterize the optimal solutions # to P.

To complete the proof of Theorem 1. we must show that a pair (7,7)is 2
saddle point of the reduced Lagrangian L if and only if there exists § € % such that
(@, 7, B) is a saddle point of the Lagrangian Ix. The sufficiency of this condition is
obvious from the fact that

(23) L{u,p)=sup L.(u,y,p).

v

(In view of (2.2), there is no loss of generality in replacing L ~ by 4 in discussing
saddle points of I,,).
Now consider any saddle point (7, ) of L. We have & € ¥ and

(2.4) L(g,p)=sup L(i. p)= sup %upfh(u ¥, p),

pedly peEdl veR

while on the other hand, using the fact already noted that the conjugate of [y is I
on L}, we have

(2.5) L@)—@p)=L(up)= inf L, p)= inf {;()~{u, p)}=~In(p)
where by definition

o —fHEBE)= inf {fE w)—u P&

In order to verify for some 7 € % that (&, y, p) is a saddle point of I, it suffices in
view of (2.4) to establish that

L(u,v.p)=L(a,p) foralluei,
or in other words that
(2.7) E{h(& u(€), 7€), FENZE{f& a(€)—u(§) ple) forallue.
We know from (2.5) and (2.6) that
flE ag)—a) pé)= iPn;fu {f(&, u)—u - p(€)} almost surely.
Thus #(¢) is almost surely an optimal solution to the convex programmling
problem
minimize fo(€ w)—u - p(&) overall u s U(£)

(2.8) - _
satisfving f,{&, u)=0 fori=1,- - ,m
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However, this problem is strictly feasible almost surelv, due to the assumed
existence of @ £ % and e >0 satistving (1.6). and it therefore has almost surely a
Kuhn-Tucker vector, i.e. a vector v 2 RZ such that (cf. (1.9}

inf R(E .y, (€)=infin (2.8)=F(& A(E)—T(£)- FLE).

us L&)
Let Y(€) denote the set of all vectors y £ R such that
(2.9) & u,y, PENESE a(E))—a(g)- gl&) forallu s U(€).

As we have just seen. Y(£)# 2 almost surely. Let 4 denote a countable dense
subset of R". Since for each y € R the function A{£. -, v, g{£)) is finite, lower
semicontinuous (Ls.c.), and convex on U(£) (a convex set with nonempty interior),
it 15 continuous on the interior of U(£) and relative to all line segments in U/{&),
and hence

_m[ hié. u v.p(é)= (mt . h{&E u v, pE))
Thus L/{&)can bereplaced by U(£)M 4 in (2.9)without affecting the nature of the
condition on y. This yields the representation

(2.10) Y€)= N Y.()

as A

where Y,(£) denotes the set of all y € R satisfying

hi& a.y, pENZfE a(E)—aE) plé)
or more specifically, is given for each ¢ in the (Bore! measurable) set U7 '(a) by

va©)={yeRr? ¥ vl a)2hiE 1©)-fe @)}

while for other £ € Zsimply Y, (¢)= RT. Each of the multifunctions Y, £ = Y, (£}
is close-valued and Borel measurable [2, Cor. 4.3], and hence so is ¥ as the
intersection of a countable collection in (2.10)[2, Cor. 1.3]. It follows that ¥ hasa
Borel measurable selection where it is nonempty-valued [2, Cor. 1.1]. Since
Y(£)# Z almost surely. we therefore have the existence of a Borel measurable
function ¥: =— R 7 such that almost surely y(£) Y(€), L.e.

(2.11) R{E w, V(E), pENZFIE dE)—a(§) p(£) forallu= U(E).

We claim (2.11)implies #(£) is summable in &, so that actually ¥ € %. Indeed,
for the function @ in our strict feasibility assumption we can setu = {£)in (2.11)
to obtain {almost surely)

Lags

fol& (g —¢ E FAEY~1i (&) plEY= fl& a(&E))—ulé) p(é)+

VAEN(E a (&)

'_Ii_ 13

=fl&alEy—alé) p
r_f-[l(rf._ 12(‘{—'}}_ ,.'{I{é'} ; .Iﬁl\é: !
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and thus fori =1, - -+, m (almost surely)
(2.12) O=ef (€)= fo (6 u(€))— fol&, B (E))—(u(€)—a(€)) p(€).
The right side of (2.12) is, of course. summable in £, and hence so is ¥, (£).
We have thus established the existence of y € ¥ satisfying (2.11). But (2.11)
implies (2.7) and therefore, as already argued, that (4, 7. p) is a saddle point of ..

This ends the proof of Theorem 1.
CoroLLARY. The restricted Lagrangian

(2.13) Le(u,y)=E{(& u(€), y(©) for (u,y)e(UNN)x P,

where
(2.14) O u,y)= ol )+ T vfill u),
i=1

has at least one saddle point (4, V) relative to (U NN)X Y. Moreover, the
components i of such saddle points are precisely the optimal recourse functions in P.

Proof. Let (4, ¥, p) be a saddle point of [,, relative to % X% X, as exists by
Theorem 1. Since p € 4f; =A%, we have

Ih(uv )v‘,[j)=fr(u,}’) for{ur }')E(Jy ﬂ4'v‘m}X@$
and hence (&, ¥)is a saddle point of I, relative to (% MNA'<) X #. The existence of at

least one such saddle point, together with the fact that P is equivalent to
- minimizing the functional

I(w)=sup L;(u,y) forue@U NNx,
e

yields the characterization of solutions @ by the usual minimax considerations.

THEOREM 2. An element (4, V,p) is a saddle point of the Lagrangian I,
relative to U x Y X M, if and only if the Kuhn—Tucker conditions (a). (b). (c) are
satisfied.

Proof. In either case we have fe U, ve@ andpgedl,. If (Z.y.p)is a saddle
point, then & is optimal for P by Theorem 1, and in particular i €A%, Thus in
showing the equivalence we can limit attention to the case where also geNx
Then (i, p) =0 for all p e My, so that [, (@, y, p) = I, (4. y, p), and the saddle point
condition can just as well be expressed as

(2.15) sup[;. ayv.p)=L{a y,p)= mf Ly(u, v, 0).
The left half of (2.13) is trivially equivalent to

sup (& a(€), y. p(€)=h(£ ad(£), ¥(€).p(€)) as.,

veRT

and this is identical to {(1.13) plus (1.15).
It remains only to show that the second equality in (2.15) implies (1.16), the
opposite implication being immediate. Define the integrand j on ZX R " by

JlE u)=h(E u. y(€) p(é)),
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]
.

this value being interpreted as +x for w2 U/(£), so that

Ulgy={ueR"ji& u)y<+x.
Our hypotheses say that j(£€ 1) is Ls.c. convex in « and Borel measurable in &
hence (since int (&)= 2 is a (Borel) normal convex integrand [1, Lemma 2],
Furthermore, the “growth™ conditions on the functions f; imply for each bounded
set K © R” the existence of a summable function v: = - R such that

& u)=vy(g) forallue U(£1NK.

The right half of (2.15) thus can be regarded as the assertion that

(2.16) @)= int Iu),

where
Ij(u)=E{(€ u(€)).

On the other hand, (1.16) can be restated as

(2.17) & ag))= Jnf jléu) as.
The question is thus reduced to that of the equivalence of (2.16)and (2.17), which
is answered affirmatively by the theory of normal integrands and integral funec-
tionals. (In particular, the two properties can be expressed in terms of O<4/;(i7)
and Oe df(¢, (£)), and then [7, Cor. 1B and Thm. 2] can be invoked.) Theorem 2
is thereby established.

We have mentioned in § 1 that the multipliers 7 and j for P solve a certain
dual problem. This will now be described. Define the function gOn=ZxXR"=xR"
by

J J?f h(é.u.y,p) ifveRT
. weli{e)
(2.18) g y.p)=¢

|\ —i3 if V£ R T.
[t will be shown below that —g is a normal convex integrand. Let
(2.19) L(y,p)=Ef{g(& y(€). (6} for(v,p)eL XLy
The dual problem associated with P is taken to be:
D Maximize I (y, p)overall (y, p)e ¥ X #,.

THEOREM 3. The functional I, in D) is well-defined and concave. with
(2.20) Ly, p)= in_g' Lilu.v.p) forall (v,p)e ¥ < H,.
ue

Thus optimal solutions to D exist, and they are precisely the componenis (7. j)of the
saddle points (i, 7, p) of the Lagrangian I,.. In particular,

min P=max D.
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Proof. We begin by proving that —g is a (Borel-)normal convex integrand.
There exists in % a countable subcollection %' such that U(£) is almost surely the
closure of the set {u(&)ue ¥’} (This follows from the measurability of the
multifunction U via Castaing’s theorem: cf. [2, Thm. 1].) Then by convexity

(2.21) gl&y,p)= jg‘«fu'h (& u(é),y,p) as foryeRT.

For each u ¢ %', define

h(g u€).y.p) ifyeRT,
gul&yp)={

—o0 if yeR™.

Then —g is a normal convex integrand by virtue of our regularity assumptions, and
we have from (2.21) the representation

g(g- _“"-P)= ng Su Lg' J".D) a.8.

Since the collection is countable, this implies —g is a normal convex integrand [2,
Cor. 4.1].

Normality ensures that g(& v(£€), p(£)) is measurable in £ whenever y(*)
and p(- ) are. On the other hand. fixing any u € % we have for all ye L, and
p € L, the bound

o

g€, y(&),p€)=fol& u(é)+ 2—‘1 y:i(£)fi (€, u(€)—u(é) - p(§),

where the right side is summable. Thus I (y, p) is always unambiguously a real
number or —2. The concavity of [, is obvious.
We establish (2.20) by fixing any (y,p) in ¥ x4, and considering the
integrand '
‘ hg u,y(€),p(£) itueU(E),
(2.22) Jj& u)= _
. +00 if ug U(&),
The situation is extremely close to the one at the end of the preof of Theorem 2, §

is a normal convex integrand, and we get from the theory of integral functionals
that

(2.23) sup {(g, u)=L(u)=I-(q) forallgeL,

wel
where

(& q(€)= sup {q(€)- u—j (& u

Taking g = 0, we turn the latter into
—*(& 0)=g(€ p(£). y (&)

by (2.22) and (2.18), and then (2.23) becomes the equation in (2.20).
The rest of Theorem 3 is evident from (2.20) and the existence of a saddle
point of /;, in Theorem 1.
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3. Special structures. So far, it has been convenient and useful to endow P
with as little structure as possible. This level of generality is rarely, if ever. needed
in practice. The main purpose of this section, and the next one, is to consider
recourse problems that possess some of the structural characteristics most com-
monly encountered in applications.

An initial observation may be made about the differentiable case. i.e. where
U(£)=R" and the functions u~s f,(£ u) are all differentiable with gradients
denoted by V(& u). Then (1.16) of the Kuhn-Tucker conditions becomes

(3.1) Vil a()+ 11 FEVAE aEn=p(§) as.,
and hence part {c) of the conditions asserts simply that
(2)  E*{VAle a@)+ T BOVAEaE)] =0 as fork=1:0 N,

A. The separable case. By SP we denote a version of P that satisfles all the
regularity conditions laid outin § 1 andis also separable, by which we mean that

N
(i) U€)= X U(§).
k=1

N
(i) filé,u)= Y fuléouw) fori=0,1.-- . m.

k=1

where the multifunctions Uy : £ — Uy (€)= R™ are #,-measurable, and the func-
tions £+ fi (€. 1y ) are F,-measurable relative to the set

Uit () ={€ € ZEluy € Upl§)} € Fo

The function & (as defined by (1.9)) is also separable, in the sense that

N
(3.3) R u,y.p)= 3 [€lé ue y)—ue - pil,
k=1
where
(3.4) GE oY) = for€ )+ ¥ yifuléou)

and the functions & — £, {&, uy. y) are F, -measurable relative to U/ (1 ).

Since SP possesses all the properties of P, the problem is solvable and the
Kuhn-Tucker conditions (a), (b}, (c) are necessary and sufficient for optimality.
We shall show that (¢) can be replaced by:

(s¢c)fork =1, , None has

(3.5) Cl& (6, EXS(€))= min (& u, E'FiE)  as.

=L £
where

(3.0) (EXv0E)=EMFEY  (conditional expectation given F,).
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Of course E*y is F.-measurable by definition, so the process {E*v. k =
1, -, N} is nonanricipative. Note that everything in the expression (3.5) 1s
F,-measurable, and therefore the ““almostsurely’” can be interpreted with respect
to the restriction of the probability & to .. Thus the minimization is entirelv in
terms of information pertinent to stage k and independent of the future. In
particular, for the nest of sigma-fields #, corresponding to the sequential notation
E=(£,, -+, &) at the beginning of § 1. £ can be replaced essentially by £° =
(&1, -+ - . &) throughout (3.5). The decision taken at stage k is then represented as
a solution ¥ (£°) to an optimization problem depending only on the past informa-
tion £° and a vector E*y(£*) of expected “prices.”

THEOREM 4. A function i solves the separable optimal recourse problem SP
ifand only if there is a mulniplier function y such that (&, ¥) satisfies (a) and (b)of the
general Kuhn-Tucker conditions and (sc) above.

Proof. From the Corollary to Theorem 1, we know that # is optimal if and
only if 7 € % NN« and there exists § € ¥ such that
(3.7) sup (i, y)=L(d,y)= “F_Lrlg' - Le(u, V).

vedy NN e

The left half of (3.7) is equivalent to

sup £( a(£).y)=¢€(£ (&), y(€)),

pm
yeRT

which means that (1.13) and (1.15) hold (and hence all of (a) and (b)). It remains
only to show that the right half of (3.7) is equivalent to (sc). But separability
implies

N
(3.8) Ie(u, )= Y Ir(t, ) forallue ¥ M,
k=1

where
(3.9) L, (tx, §)= E{6u (€, ux(€), 7€)y = E{li (&, uin(€), EXF(E),

the last equality being true because the function iy is F-measurable and ¢ is

affine in the multipliery. Fork =1, - - -, N, define the integrand r, on ZX R " by
£k (€, Ek_‘/_‘ (€) if ux € Ui(§),
10 s ={ T .
(3.10) el u) =1 if e Ui (£).

Then for functions u, € L 1.(Z, %, o) we have from (3.9)

Li(ue, §) ifue(€)eUn(€) as.

+20 otherwise,

Elrel& m €)=

Theright halfof (3.7)is therefore identical to the assertion thatfork =1, - - - . N

1 the minimum of I, (. )= E{ri. (&, wi (€))} over all

ug € L2, ., o) is attained at 4,
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while condition (3.5) is the same as

5 i the minimum of r, (&, uy) over all
( ) u, € R™ is attained at 4, (£) almost surely,
The equivalence of (3.11) and (3.12) follows from our regularity assumptions
exactly as did the equivalence of (2.16)and (2.17) in the proof of Theorem 2: each
re is an F-normal convex integrand. This completes the proof of Theorem 4.
The Kuhn-Tucker conditions in this “decomposed” form have a number of
significant features that render them attractive from a computational viewpoint,
Notably, if at stage & the multiplier function 7* is known and the minimum in (3.5)
is uniquely attained almost surely, then the minimizing points must be the values
g (£) of the unique optimal decision function #, associated with this stage. In
other words, the requirement of F,-measurability is automatically taken care of,
and there is no need to worry about the ultimate satisfaction of the constraints
fié a(€))=0.
We remark also that in the differentiable case, with U (¢)=R"™ for all k,
condition (3.5) takes on the form

BGA3)  Vfoelf Gl@)+ S EXAEVFule 2(E)=0 as.(Fo).
i=1

I

The structure of separability also leads to a special dual problem associated
with SP. For k =1, - - -, N, define the function g, on ZxXR™ by

(3.14) gel6,y)= inf ‘(€ uey) ifyeRT

Then —g, is an F,-normal convex integrand, and the functional

(3.15) L. (y)=E{g(& y(&)} foryeLn

is well-defined, concave (with —o0 as a possible value) and satisfies

(3.16) L (y)= iI:lcg I (u, y) forall #,-measurable y € %,
where
(3.17) Ui = {ur € L7 (2, Fe, o) (£) € Ui(€) as. (F)}

These facts are established almost exactly as they were for g and I, in the proof of

Theorem 3,
As the special dual problem for SP, we introduce:

N
SD Maximize ¥ I, (Ey)overally e @.
=1
The following result is then immediate from the decomposition
e
(3.18) Lu, y)= ¥ IAuy, ETy) for(u, y)eU x¥
k=1

and the fact that the Kuhn-Tucker conditions (a), (b}, (sc) in Theorem 4 charac-
terize the saddle points of this expression.
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THEOREM 5. The dual problem SD has optimal soluiions. and they are
preciselv the components v of the pairs (i1, V) satisfving the Kuhn-Tucker condin
(a). (b), (sc). In particular,

min SP = max SD.

B. Linear recourse models, By LP we denote a version of SP that can be
formulated as follows:

| X 2]
Minimize E{ ¥ cc ' (")
k=1
LP _
subject to E Ay & )=b as. forj=1,---.N,
where ¢ eR™, b;eR™, ApeR™™™ and EX=(£, . &) with &=
(C, Arg, * ** , Ang, bi ). Thus the vectors ¢, and b, and matrices A, are random
variables whose values become known in stage k. and we are in the sequential
notational setting at the beginning of § L with & = (&, - - -, €v). [tisrequired that
(3.19) wpd LSS & ™),

where (=%, F*, &%) is the marginal probability space of the random variable e
of the random elements observed in the first k stages.

This formulation differs slightly from the previous pattern in having (3.19)in
place of the %, -measurability of ux as a function of = (with #, the “cylindrical
extension” of F* relative to =. as introduced in §1 for the setting where
E=(£1, 0, &) In simpler terms, the recourse function is taken to be nonan-
ticipative, rather than just essentially nonanticipative. However. the two formula-
tions are equivalent as long as we are not concerned with the multipliers p(¢ ), and
this is justified in the present context by Theorem 3. (In introducing p € L Lowe
need to regard the recourse function u as an element of L and therefore must
admit, as negligible, alterations of (£5) on a set of £-values of probability zero,
even if these involve &, - -+ . &) Incidentally, in contrast to this equivalence.
one cannot change the “almost surely™ in the constraints of LP without risking a
disastrous effect on the problem. This is shown by counterexamplesin [8], where a
condition on the probability measure o is also developed which ensures against
the discrepancy.

As with SP. we assume that LP satisfies all the regularity conditions we have
imposed on P. Actually, the convexity, lower semicontinuity and measurability
conditions are trivially satisfied; note that U, (£)= R "™, while each f; is an affine
function of w, with random variahles as coefficients. The uniform boundedness
assumption requires that for all realizations of £ the polyhedron generated by the
constraints of LP lies within a fixed ball. For the case where the matrices 4 are
nonrandom—or equivalently, have a degenerate distribution—a sufficient condi-
tion for uniform boundedness is given by Olsen [9, Lemma 2.4]; cf. also [10].
Various sufficient conditions for strict feasibility can easily be found. For example,
one such criterion can be derived from the results of Tsofescu and Theodorescu
[11] for systems of stochastic linear inequalitics.
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Problem LP has a block-triangular structure which makes it easy Lo see more
specifically when the property of essentially complete recourse is present.
Con51der the iollowmg decision procedure. In the first stage (having observed

=(c1, A1y, by)) we choose u, satisfving A, 4, 2 b, In the second stage (having
observed &:) we choose u; satisfving ~1~~ua—bw, \\hc';e bﬂ =hs=~ A, And so
forth: in the kth stage (having observed &) we choose u; satisfving

k-1

(3.20) A =by, wherebi=bi— 5 Auu;

One says that relatively complete recourse is present if this procedure can almost
surely be continued to the end (i.¢. to the choice of 1~ ), or in other words, if with
probability one we will not encounter a stage where we are stymied by the
emptiness of the u,-polyhedron defined by the constraint system (3.20).

THEOREM 6. Relatively complete recourse implies essentially complere
recourse.

Proof. Let us denote by Ak(fk') the sct of all (uy. ) which can be
generated by the first & >taaax of this procedure. Refame]3 complete recourse
means that each element of A* (& )15 contained almost surely {with respect to the
conditional distribution of (&.,, **+, &) given (£, -+, &)) in the set D* (£)in
(1.8), which consists of all (z,, - - -, a,-() such that the procedure can be continued
to the end when the total outcome of the random variable is ¢=
(g”l,'- €k ka1t L Env). Representing _\k( Jas the closure of a countable set,
to tach elcment of which this fact can be applied. we see from the closedness of

D*(£) that
A9y =D )

almost surely (conditionally, given £). But trivially, the opposite inclusion is
universally valid by the definition of D*(€). Therefore, relatively complete
recourse is equivalent to the property that

(3.21) ' D (g)=A%¢") as.

(in the sense of the overall distribution of &). Of course, (3. 21) implies that D* (&)
essentially depends only on £, which is the property of essentially complete
Tecourse.

Remark. The concept of relatively complete recourse, and with it Theorem 6,
can easily be extended to SP and even to the general context of P, thereby also
covering our use of the term in [4]. The multifunction U is itself assumed
nonanticipative (as is true for instance in SP): the projection U*(¢) consisting of
all components (u, - ,u;t) of elements u of L/(£) is thus assumed -
measurable, The index set {1, - -+ m} is partitioned into subsets J, such that. for
1y, filé,u) is j;-meammbie in & and depends only on *hh components
(1, L up)ofw Let A" (&)consistofallelements {u .+ -+, g yof U (€)satist ing
the constraints fi(& u)}=0 for all indices ieJ,'U -« UJi. Then A*(€) is #.-
measurable iné Re atively complete recourse is the propertv that each element of

“{£) belongs to D* (£) almost surely (conditional probability given %, ). This can
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also be expressed as above in terms of the almost sure feasibility of a “block-
triangular” procedure for generating u,,---.ux sequentially. The proof of
Theorem 6 remains valid in this case.

Our assumption of strict feasibility appears needed for the validity of the
Kuhn-Tucker conditions (a), (b), (sc) of Theorem 4 in the case of LP, despite the
linearities. This may be attributed to the (infinite-dimensional) constraint of
nonanticipativity, even though the corresponding multipliers are suppressed in
(sc).

The optimal recourse functions for LP, which exist according to Theorem 1
under the regularity conditions which have been imposed, are characterized as
follows.

THEOREM 7. In order that the function G =(d. -, dy) with ;e
L(Z* F*, ") be an optimal solution to LP, it is necessary and sufficient thar the
following conditions be satisfied for some function ¥V =(vi, - -.¥n) With Vi€
Ly G5 F 05, k=1, ,N:

(3.22) A (E5)Zbi") as.,
(3.23) P20 as,
(3.24) Fe(E) [b(ES )~ Autix (€] =0 as.,
(3.25) PeE VA = cil€") as,
where
_ k=1 o
(3.26) bil€)=bi— T Aul (€,
=
- -\- L k
(3:27) el )=c— T (EF)E)AR
j=k+1

Proof. When conditions (a), (b) and (s¢) of Theorem 4 are specialized to the
present context, we get something slightly different. Namely, each yi would
appear in (3.23) and (3.24) as a function of all of £, while the expression in (3.253)
would instead be (E*; )(¢*). However, these conditions on i really involve only
the latter expressions (and their expectations in earlier stages). Therefore, we can
justas well apply E* to(3.23)and (3.24), so that only E*§, is relevant throughout;
it is a mere change of notation to then call this function ¥, instead of the original
function.

The dual problem in this context may be stated as:

Ir
i

;T_ b v (f*]]> over all summable

Maximize E 1
k=1 J
LD ; -
vie(€5)=0, k=1, -, N, satisfying
N . . .
(3.28) Y (EV )€ )Ag=¢ as. forj=1,--- . V.
Note that the function y = (¥, * - *, y~) may be called a nonanticipative clement

of L), However, LD does not fit the same mold as LP, since in determining the
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component v, for stage & we need consider the conditional expectations of the
furure components y;, k <j=N. Looked at another way, LD involves certain
special chance constraints, in contrast to LP, because if the expected values of the
multipliers y; associated with future stages are treated as variables to be deter-
mined at stage k. then the decision which is taken poses a subsequent constraint on
expectations that y;, must live up to.

THEOREM 8. The dual problem: LD has optimal solutions, and they are
precisely the components § = (¥1, " - -, ¥n) of the pairs (a4, ¥) satisfying the Kuhn—
Tucker condirions in Theorem 7. In particular,

min LP=max LD,

Proof. This follows as a specialization of Theorem 3 via a slight change in
notation as in the proof of Theorem 7.

Problem LD resembles the dual obtained by Eisner and Olsen [12] for linear
recourse models formulated in L?-spaces, 1 <p <. The approach developed
here, however, yields a min = max duality theorem with corresponding Kuhn-
Tucker conditions, whereas [12] only allows for min = sup duality results.

4. A discrete time stochastic control problem. The purpose of this section is
to illustrate, by an example. the relations between the recourse model and certain
types of stochastic control problems in discrete time. The optimality conditions
developed here can then be used to characterize optimal solutions to these
stochastic control problems. The goal is not to give a description of the most
general stochastic control problem that can be handled in the framework of the
recourse model; it is easy to see how the problem described below can be
generalized in many directions and still fit our pattern.

While there are a number of substantial contributions to the theory of
necessary and sufficient conditions for stochastic control problems in discrete
time, e.g. [13] and [14], there does not seem 1o be a treatment that allows for the
inclusion of state-space constraints when seeking pointwise optimality conditions.
Several papers do deal with state-space constraints in the continuous case; see
[15],[16],[17] and [18]. The difference between the present approach and the one
taken by Kushner [15], Haussmann [16] and Ichikawa [17] is that they seek an
“expected maximum principle," in which case the multipliers associated with the
state-space constraints (at a finite number of time periods) turn out to be elements
of R. It is when seeking pointwise optimality conditions that the difficulties do
arise, as illustrated in [18] where Bismut must rely on an (L ™)*-multiplier rather
than L '-multiplier. Even for continuous-time deterministic problems with state-
space constraints these exotic multipliers cannot always be avoided [19].

Let (. k=1, --+,N) denote a vector-valued (discrete time) stochastic
process; fork =1, - - -, N, the realizations of £ are elementsof R* denoted by &.
The state of the system at time k is denoted by x,, also an element of R*. The
dynamics are given by the relations

(4.1) =€
andfork=1,--- ,N-1,

(42] X1 =Ax,-‘< “-‘Bﬂk +§kl_]_.
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where A isa (¢' < v')-matrix, B is a (¢' X n'}-matrix, and u, = R" is the recourse
(or control) selected at time k. To be consistent with our earlier notation. we set
v =Nv'andn = Nn'. The recourse is selected on the basis of complete information
and toral recall, by which we mean that the recourse decision u, is selected in
complete knowledge of the past history of the system, i.e. up to and including x4,
the state of the systemn at time k. (Note that a number of problems with incomplete
observation and partial recall can actually be cast as problems with complete
information and total recall, see for example [20], [21].) In this set-up. it is
equivalent to assert that the decision maker observes £, and recalls past observa-
tions and past decisions. since clearly from (4.2) it follows that knowledge of
earlier states and decisions, and observation of x, -, uniquely determines & _,. the
“noise” of the system.

Moreover, the particular form of the dynamics of this system (4.2) allows us
to short-circuit the state component in the description of the model. Indeed.
combining (4.1) and (4.2) we obtain

k o
(43) L1 = E A qék._l i + E_ Bﬂk_q.
= =0

i.e. the state of the system is a linear function of the past recourse decisions and
realizations.

For performance criterion we take a real-valued functional ¢, defined on
R”"XR" X R" such that for all £ € = the function (1, x )= ¢o(&, u. x ) is convex, and
for all (u.x)e R xR" the function £—¢y(£ u, x) is (Borel) measurable. The
problem in rough form is to minimize E{¢g(&, u(£), x (€))} subject to (4.3) and the
further constraints that

(4.4) u()eU(¢) as.

andfori=1,--.m

(4.5) @il u(€),x(£)=0 as.

The multifunction U is assumed to have closed, convex values with nonempty
interior. For i=1,---,m, the functions ¢, on R¥xR" X R", are required to

satisfy the same assumptions as ¢;.
Relation (4.3) allows us to formulate this stochastic control problem as a
problem of the type P. Let us write (4.3) (regarded as including (4,1)) in the form

x=58+Tu
and define
fl& u)=@i(é u SE+Tu) foralueU(¢) i=0,1, -, m.

Suppose in fact that ¢; (&, 4, S + Tu ) is (for each fixed u }summable in £ when i =0
and essentially bounded in £ wheni =1, - - m. It can be verified that f,, - - - | fu
and U satisfy all the conditions imposed on them in § 1, and the corresponding
optimal recourse problem P represents the present situation, If in addition P is
strictly feasible and the abstract constraint multifunction D corresponding to
fi. . fm and U is uniformly bounded and nonanticipative, all our general
assumptions are satisfied and the above results can be applied. In this way we
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obtain necessary and sufficient conditions for optimality from the basic Kuhn-
Tucker conditions (a), (b), {c).

Many of the regularity conditions in question are “standard” for control
problems. For example, it is common to assume uniform boundedness of the set
{U(£), ¢ € =}, and this ensures the uniform boundedness of the multifunction D.
As far as nonanticipative feasibility is concerned, we have already explained its
relation to the notion of relatively complete recourse that has plaved an important
role in the literature devoted to stochastic programming [4]. This concept has also
recently surfaced in stochastic control theory [22]. [23]. For a system without state
constraints, Striebel [22] introduced the concept of oprimality from time r onward,
requiring essentially that for each control satisfving (4.4) and each time r—
whatever be the resulting state—there is a contro! which is optimal from time ¢
onward. Striebel and Rishel [23] use this condition in their study of optimality
criteria for continuous time stochastic control problems. Their motivation for
introducing “‘optimality from time ¢ onward” is quite different from ours but
seems to be required by technical considerations that are akin to those that lead us
to essentially complete recourse. In particular, Rishel shows that this condition
allows him to obtain an explicit form for the genecrator applied to the value
function. ey N |

Finally, we note that certain classes of sta}chastic?\problerns vield separable
recourse problems. This is certainly the case if '

N
(i) U(g)= X U, (&) where Uy is %, -measurable,
k=1
N

(ii) fori=0,1,---,m, @ ux)= Y eualé u)+x-r,
k=1

where the functions &+ ¢ (&, uy ) are F,-measurable and r, e R, In this case we
can rely on the sharper results of § 3A, if not in fact 3B, in deriving optimality
conditions.
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