
THE OPTTMAL RECOURSE PROBLEM TN DISCRETE TIMEI
.T-NIULTIPLIERS FoR INEQU.q.LITY CONSTRAINTS+
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Absl.a.t. Ad opiinral recourse ptublem is an optinnzltnrn pr.bl.m will bolh nlcha(rc anLj

dr. dadicaipeds. invohing lhe inle.plr!olobse^ationslnd relponses.lndiscrei. iimc isnh x frniie
horizonl. (h.r. are linitelt man! stages. at ea.h oi $hich . de.iro. ij leleded on rhe basis ol pior
obserlarions ol.a.dom e!enr\.nd subjed tocons and conrr.irnL !fie.reJ by rhes obserlations as

well is pas( decisions The goal is ro dinimrze d\pecred .osr. rlling rnto account thc kootrn
dinribution of lulu.€ ra.dom eve.ts. This paFer r.o.ce.nea \ilh lhr Jcn\alion ol n€ce$art an,l
!ufiicr€nt condrtions for oplimalil-r in lhe case olconver.osb anf .on!lr!rnls.

It is shown that il the recourse probleB h n.icdy leasibie and s.tisfres ! ne* conditio. callcd
esentialb canpl.te rctou^e, optinal solutions c.n be chnrderzea b! a _p.rnnvise Kuhn Tucke.
prope y involvin8ll nuhiplie^. Applications to dulrisrage rr..hanic pr.Erans silh specill n.u.-
tu.esare de!eloped rn thelasl iqo sectronsoilhepaper hFa j.ular,$er.lationberseenthegeneral

model n.d dis.rete tine stochastrc confol modeh is br.usht .ut by appr\i.g the baric re\ults ro a

linea! stochasric probied wjth nate conslr!ints.

1. Infoduction, Fort=1.. , Ar, letdk€Rl and"rER"'representthe
observaiion and decision (control) associated wjth stage I of a sequentialdecision
process. The sequence of observations

t = (t,,€". . . ,6!)E R{ xR",x xR"\ =R'
and the sequence of decisions

u=(ut,ut,..uN)eR
determine a"cost denoted/o(f, ll). Theobjeclive is to find a,y.orrue&n.tr.,n (or
poLicy, or decision ruLe. ot cantrcl law) 1-u(1) which minimizes the expected
value of this cost subject to certain conslraints, including a kind of nonanticipati\ -
ity, i.e. thc property that il&({) essentially depends oniy on {r, - ,4tr. This js an
aptimal rccou6e ptublem in Aiscrcte time. OL]I aim here is to derive necessarl' and
suficient conditions for the optimality of a recourse lunciion in the case of a

proDlem ."Lr'i\r rg cor\e\r\ a.5u-ption' qIh 
', 

.t. --. de '.i.a ' r'r.'e.
To give a precise formulation, let (8,9.i') denote the sample space

associated wirh rhe randon elements of the problem; E is a Borel lubset ol R ". ,
is the Borel field on 

=, 
and ' is a Borel probability measure on (E.9). Th.

corresponding expectation operatDr is denoled sinplr" b) F-.

A function &::-R' is sdid to be no anticipatire in lhe sequenlial
framework described above if h is of the form

u(1)= (u,(1,),'/:(1,, 1,). , rr(1,, . tu));

ir is essentiaUl nonanicrpad,e if it is measurable (with resPect io ,) and difiers
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on\ on a ser of measLrre zero (lvilh respect ro a) from some mcasurable
nonanticipatrve lunction.

It is useful. lor purposes of comparison wjlh orher lrork in srochaslic
op!imization, to recognize rhat rhrs conceDr ot csscnrial nonanriciparivir\ can also
be formulaled in terms ol a ncst of sigma-6etds. l.er t denote the ctass of a Eets
in t of measure zero wilh respect to a, and for L - L. . .,V ler t-r be ihe
signa-fieldgeneratedby6,. .{r completed wilh respecl ro d. i.e thectassof
all sets of, of rhe form

((A x tR"., x.. . x R'l)r- 
=)tB.

where-,1 is a Borel set in R" )( t R'i.B lsaset i. t'. and I denorer svmmetric
difierence. Then each 9k is a sigma-field.

g'' i1' - 9. = J'.

^"d 
a functian Jlr:+R" is essentiallj- nonanticipai* il ati on4 if lor k=

1. . N &e function uL: =eR", is .ik-m.asurabl.
ln fact. e\er\thing rhar followr remains lalid ior an arbirrruv choice of

.;rrd.heo. -, re.. ,ga.rnci.. r. rrnc., -rn p( )i,"dotr.d..
the seneralizcd dennitrL)n of essen!iil no0anticipltivilv. Wc thefefore \!ork
mainlv in this nolati.inal framework.

For lhe conditional expectarion giv€n t{, we l.ritc tr. This is rnkcn to bc a
/cglldr conditjonal expection. i.e. represenrable as an indefinite inte-qral wiih
respect to a regular conditioral probabiliry. (Such regular conditional prob-
abilities exist, e\ien lor a general choice of .9t. because t is rhe Borel field on f
and i/ is a regular Borel probability measure.)

The optimal recourse problem .onsidered here consisis ol minimjzjng the

(1.1)

over all essentially
(a.s.)

(1.2)

1.,"(& ) - Ei (f, l]({))}

nonanticlpative functions u: I+R'' salisfying dlnoJl r&rulf

i(t ?r({))= o. i = r. . n.
and the abstract constraint &(4): tr({). It is assLrmed rhat for everv 4 E 

= 
rhe ser

Lr(4) is closed and convex u,ith nonemptr interior, and thc funclions ir +/, ({, 11 ),
i =0, 1.. . . m, arc defined lor aLl ll. U(d) (finite, i.e. rcal-valued). convex and
Iower senicontinuous. It is assumcd lu.thcr that for each u € R" lhe set

u'\u)-\4e=u.uG)l
is Borel measurable (i.e. b.longs ro t) and the funcrions {8,1(6. , ) are all Borel
measurable relative to L '(u). Seftjng

l({. r{)= +a: ir ! e a,.(6).

we obtain kom lhese assumptions that ea.h I is a normal .on!ex integftnd on

=xR" [1, Lemma 2] and ihe multiluncrnn rrr: 3'R' i\ measurrble 12. Cor.
3.11.

1r follows that l, ({. l] 1{))is Borelmeasurable in { € : $ h.n,r{4)is meusurable
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[1, Cor. to lemma 5]. Moreover, ihe multifunciion

(1.3) D: t )D(t)= Iu e u(t)ll,(t.ll)=0,i =1, . ml

o.4)
(1.5)

ItG, nq\=-r a.s. lor i = 1, , m,

t(€)+EB cD(d) a.s.,

is measurable [2, Cors. ,1 . 1 an d 1.3 ]. This multifunclion wiih closed, converi values
provides an abstract description of ihe constrain! structure, and it is crucialin\r'hat
lollow:.

We assume that the sets r(4) are unifoimly bounded ii.e. their union tor all
d e E is a bounded subsei of R ^). This enables Lrs to restrict our attention in lhe
recourse problem to functioffi r belotging to the space a; = adG, e l': R').
we suppose in addition that to each trounded set K-R' there cofiesponds a
summable function a: Ej R ard a constant B e R such that

fo(€, u) =a(1) forall u € t/(d)nK

lftz,u) =E totattueU(6)nK t:1,....,1.
These "growth" corditions imply thai for every function u in lhe class

tu ={u eL: u(t )e U(t)a.s.j

thefunctio.si(, r( )), i : l, ", ft, are essentially bounded, while/o(' . 4( ))
is summable.

With these assumptions the optimal recourse problem introduced above is
well-defined and car be stated as:

P Minimize the functional (1 . 1) over all ,r € rU n ,/f- satisfying ( 1 .2.) a.s. ,

where ",f- represenrs the constraini of nonanticipativity:

,{-= lu = (u1, ., rr)elllar is 9!-measurable, k : 1... ., N}

= L:,t-, :E L t) \ L 
^'.(t", 

I 2. o\ x. . x L:"(., s s, o).

Cleariy,{; is a linearsubspace ofl9;, while z is a convex set, as isthe class ofall
& €91satisfying (1.2)a.s. Thefunctional(1.1)isconvexandfiniteonql.Thuswe
are dealing with a conlex opiinization problem. In such a settingit is typical to
find multiplier characterizations of optjmaiity which are always suflicient but not
Decessary without some' coristaint qualificalidn."

A natural constraint qualificalion toconsider is that Pbesnic y feasible.This
is taken to mean that there exist i e-l- and r >0 such that

(1.6)

and

(1.7)

where -B is the closed unit ball in R". However, strict feasibility is not enough in
itself. Whatwe ne€d forow characterization of optimality, as it turns out, is for P

also to have ihe property ol dsrerridl) cofiplete rccautte. in the sense that for
t = 1,...,N the muhifunction

Dk: t + DkG)=l@\. ..uk) eD(t)l
(1 s)

= pfuJec on ot D(1)on R' R''



is 3L-measurable. (ln this case. the constrainr mulrilLrnclior t is said to be
essentialry nananticipatite.) Henceforth. ve assume nre pT)blem P lo be endoved
*ith both stid feasibility and etsentiall,- complEtt recourse. ds het! ds t1I othet
propetties af U.f, and D ilrcadr nentioned.

The optimally condjtion to be sludied belo\r in!oi'es rhe luncrjon

,:=xR^xRIxR"+R

THI: OPTIMAL RI:COUASI PROI]I FNJ l9

hl€, u. t, pJ= f,,(t. u)+ ),f,\€. u) x p

n(t)e U(t) almost sureLt

i(1, t(1)= {) fui=1.. .n dtmostsurcL,)l

(1.9)

This acts much like rhe Hamiltonian in control theor\
Theadg/dngld, associatedwith rhe proble..r Pis defi n!d i.r be thr tun.tion

(1.r0) rr (u, \. p ) = E 1 h(a, ! (4), y(f ). pG))l fat (.u. j-, D )...1/ t s f. " 1.

,} ={r = (r,, ,}^):lLr,tt)=0a.s. lorr' 1.. .,/l},
x'-Ip=01. .p\lEr;Er{pL(4)}=0as lorr=1. .N}.

(Herepr(€)€ R"".) The set ? is con!er, while,l I is a line!r subspace. 1n lact. as is
easy to verify from rhe dennirions, .11, and J!'- are complemenrary ro each other
with respect to the natural pairing ber"een lj and a;.

.& | = -r-- and .{- = -ai .

Our gro"th condirlons on ihe functions/, imply that 4 (& t",p)isnnitethrouehout,, x,J xl j. and. ol course, conver in a and afine in (t. p).
A saddle point ol It with respecr to nininization in ll and maximizarion in

(y, p) is an elemenr (r, t, t) of Z x I x-lj satisfying

(1.11) I h@. t, p) 
= 

Ih@, j.. pJ 
= 

h(u, t, i) rot au (u. y. p) e 11 t s t.( I.

We shall prore in i 2 thai rhe regularity conditions imposed on P ensure rbe
existence ol such a saddle poin! (t. 

_r.r, i), wjth, an oprimal solution to P and (t, t)
an optjmal solution to an associated dual problem. (See [3] for a gencral
exposition of the relaiion belwe€n ihe saddle poinrs ol a Lagrangian and rhe
optimal solutions ol ihe corresponding corlvex program and its dual.)

As is also sho*n in S 2. the saddle points (t. )-, t) of 4 are characterized bv
the following Kuhn-Tucker condilions. whose saljsfaction for sornc (t,t) is
thercfore necessary and sLrlicrent for the optimality of t in Pl

lal u a.\ - and

(1

(1

t2)

13)

ibr t = {t,, ,t^)eL:,and
(1.14) t({)=0 iri=1, ,n aLnn\t s$el\.

(1.l5) t.(g)/,({. t(f)=0 lori=1. ..m atmost surety,
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lc) i e "ft 1and

(1. 16),1 (1, t(d), t({), n(1)) =,,Ii.q],, (1,',.,-(1). i t€)) atmost s ure tt.

The Kuhn Tucker condirions sho* Ihat rl l- and p. the multipliers assocrired
with P. are known or can be generated by an algorilhmic procedure. a funcrion
[ € Z; is optima] for P if and only if it is nonanticipati!e and rr (f) satisfies certain
constrainrs pointEbe for cach 4.=. nameh (1.1:). (1.16). and (l.l-r) with
equality holding when tt le )>0. MorcoLet. if P ts such IhaI the poinrlise mintmutn
in (1.16) is aLmost sut.lt unitve, as is true lot exampLe if h\t. ) is alnat! swelt
conue\ on {J \t ), Aen the t'un,:tion n eL: is optimal if i merch satisfes ll.11) atld
(1.16').without rcgad ro nonanticipali"^itt- and the othet construints. lndeed. these
other properties must lhen hold automatically for t, since according to the above
there does exist a! Ieast one oplimal recourse function characteiized bl the
Kuhn Tucker condi!ions. Th is is discussed further in a more sp€cialized context in
s3.

Essentially complete recourse plays a vital role in the derivation oI (hesc

resuLts. The importance of this kind of property was first brought out in J.ll in
connection with our work on a special case of P. It lvas shown in l,tl thai if !
srochastic program with a t{.o-stage constraint sttrcl(]le has relatiuel," coDelet.
re.orrie. the multipliers appearing in the Kuhn-Tucker condidons maybe.hosen
$ be l'-funcrions; one has to rely on esoteric elements of (Z*)* when this
condition h not satisfied. It can be shown tha! essentially complete recourse is

implied by relatirely complete recourse in that setting (s€e the remarks rn l3
following Theorem 6). Esseniialh complele recourse is a mi)re general afld
abstract condition demanding that at each stage & rhc set i.om lvhich the d€cision
l,lr musi be chosen, namel!.'

DkG, u r..., u.,)= {r.€R"l(!r1..., tlk -t. ukj. Dt G )1.

reali), depends only on past decisions and obse aiions, and one therefore does
not have ta restict further to an intersection reiative to all possjble future
observetions (an implicit constra i t induced b) the nedd to maintai n a! aila bilit!, of
rccourse under all circumstances),

In a companion pape. [5], essentiall! complete recourse was used e\ten'
sivcly, first in the jusljfication of the dynamic programming technique for optimal
recourse problemr. but then also to obiain a system of ll-multipliers. in iact a

summable martingale. that can be associated with the nonanticipalivit)_ !estriction
on the recourse funciions. Howeler, our concern in l5l was only with such

multiplien. Thc model was lormulated direct)y in terms ol the nonanticipatjve
constraint muhifunction r: no slructuic of D in terms of inequality conslraints
as in (l.lr nas explicitlt introduccd. and henc. Ihere was no mulliplier \cck)r
!{{). Thc i:xistencc of mullipliers associaled wilh th€ noraniicipativhr r.stric_
tion \\.a\ lirst poified (rut in 16l.

2. B.sic resulls, Our urst rheorem \ho!\s that lhe r.gularitl condrlions
imposed on rhe recourse probien Pguaran!ce the tristencc of an optimalntution
17, and !hat such lunctions t correspond to saddle.points {rr,}',i) ol /r. We
p.oceed b\ obser!ing that the !luestion cin be seltlcd through rcducing P lo an



eqLri\ alL'nt problem lvlthour cxplicil inequaljty constraints. We rhen utitize ihe kev'..- ur . lo .o?p er. 'n. pr , t fhr .e.o-o -.r-J,., lhlr .rc
saddle poinls of1,, can be cha'acierjzed by ihe Kuhn-Tuckcr conditions. and rhese
therefore furnish necessirv and sultrcient conditions ldr oplimalir\. The third
lheorem brings in the corresp rding dual problern D.

THEoREM 1. The Ldgrangian Ihhas dt led\t one sdddle paint t[].\,. i)rctatirc
to I xg t<,U t. ivlorcooet. rhe compan€nts fr of such saddle paints drc prcci\elt the
opnnnl rercu e lLnctions in P.

Pror'l. First obscrve lhat P consists ol ninrnizjng over .\'. rhe funclio.al

4(u) = E IlG. u (1ll = E {/o({, , ({))- 'rDr.,(& 
({))i.

*h€re iy'D(.) is the indicrti,r of D(f ). Since D is a measurible ]rlulrifunction and 6
is a normal convex rntegrand, rrc knowl is a norrnal r(r \cr inlesrand f2. lhnr. 2
r d,"r -21

Acco.ding nr our assumprion5, D(41 is uniformh, bounded and ther. i! a
summable function a i =jR such lhat

/] €D(€)) /({, !) =a(€).
Furthermore,b!srrictfeasibilitylhereexistrT:-\'.and.>0suchrhar(1.7)holds.

These facis put us in thc framelvork of [5, Thm. ]l and furnish not onl], rhe
existence of an oprimal solution t to P but also rhe characterizarion of such a
function t as the first componenr of a saddle poit\t 1fr. i) at the rcduced Lalran-
Bian

(2 r) L(.u,p)= Etf(t, u({))- a1E). p1611= 41,r -\u, pj tot(u.p)eL:\lt,
The exlstence of an optjmal solution is seen as follows. Thc subspace.{'-, bejng

"( ' =lu e L::Q, pt=A tat all p e.,l,t j,

is closed in the weak ropology w(t;,rL). The fundional 1, on ri is ldwer
semicontinuous in this topolosy. because ir is represenrable as the conjusare oi ihe
run rio dr /'n / ".sh<re/'..rhr.,,- uL-i ! irr.sr'-, 1. rh-.'t inJt-. rh?.
2l). The sets

{& €"\.- 4{r/)-<p}. r1 eR.

arc therefore closed in thjs topology in fact compact bl the unilorm boundedness
ot D(f ), since

]T]F OPTII'TL R!(:oTIRSI PROBLE\1

(:.2) /,(u)<+.c)L(4)€D({) a s

lt

The nonempt) se!1 in this nest ol cornpact sct\ rh...forc have a nonempt_v-
inlersection. and this consists Dbviousl! ol optinlal nturio.s to P

l he existencc of rhe multiplier t in Ia. Thm. ]l i\ oblaincd bv a more subtle
argument, thc detaiis of which will not bc repcaled here. B! our h!porhesis. rhe
conve)i lunctionalf isfinrteandnonn conrinuousaracerrainpoinliol.\'-.and
thlslurnishesbrFenchelsdualirytheorcmrnolmcontirluouslinearluncrlonalp



), P r Ro.(^FF.r r-AR aND R rts r\ETs

on Z; such that (, vanishes on ,4 - and

inf (rr)= ii!f- ll,(,r) r(&)1.

The property of ess€ntially complete recourse ent,rs in showing that P can

""tu"ily 
L. ,ut"n to u" of the forrn e(! ) = (&, t) for some t in Z I (and hence in

l, =,{':). This yields rhe existence oI at leasi one saddle point (t, t) of I in (2 1),

and it follows then by the usual .easoning in minimax theory that such saddle

points characterize the optimal solutions t to P

To complete the proof of Theorem 1, we must sho{ that a pair (t. i) is a

saddle pointofthe reduced Lagrangian l- if and only if there exists i € ? such that
(t, y,t) is a saddle point of the Lagrangian 1r. The sumciency of thls condirion is

obvious from the fact that

(2.3\ L(u, p): s'rp Ih@, v, p)

1ln r reu ot r ).2 r, rhere rs no ro" ol gereralil) rn replacrng L bi J/ iroi\-u\ring
saddle points ol /r )-

Now consider any saddle point (t, t) ol I. We have n €iU and

(2.4) L(n,p)= s.!ip L@,p): sup sup,.(t,),p),

whileon the other hand, usingthe fact alleady noted that the conjugate of4 islr
on Ll, we have

t2.5) I,lu) \n.Dt-L\u,p)' itl-L\t.i)) nl. ltt t r.p\ '1.1b

where by dennition

(2.0) -/'{{.i't,'-"inl,1rr}. ut d pQ,.

In order to verify for some t €4A t.at lu, t. F) is a saddle point of,., it sufilces in

view of (2.,11 to establish thar

Ih@,t.i)=L(r,P) rot au u eqt,

or in other words that

(2.7 ) E\h(t, u(t\, i G), p(t \\ =EVG' 
i:(t\- t (6) t(1)l forallu€2

we know fron (2.5) and (2.6) that

t\L nt<,t ,\t) p\1)- rnl /r{. , r L i{€ rr dlm "I 'Lrrel\

Thu. a(l . "lm,rr 
.urel\ an 'n rmal 'o'urion lo Ih- con e\ progron-'line

minjmizei({.ll) u p(d) over al1 u . U(4)
a2 hl

sar.r\rne/r{,r) 0 f^rr
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Howcvcr. this problenr is crricrl) feasible almost surel,!". duc to the assumcd
existence oi , ='1 and . > 0 sarisfying (1.6). .Ind it thcr.lorc has alnlost surel! a

Kuhn Tucker vector, i.c. a !ector l €Rl such that (cf. (1.9))

inl n ({.,, ),, i({)) = inr in (2.8) =/(4, rt(€) - r1!) i(e).

Let Y(41 denolc the sei of aLl vectors r € RT such that

(2.e) i({, l], }, t(6))=/({, t(f) t({).t(€) forall!E..'14).

As we have just seen, l'(4)+ Z alnost surely. Let I denote a countable dense

subset ofR" Since ior each r €Rl the function l(1, ,t,t({))isfinitc. Iower
senlicontinuous(l.s.c.),andconvexoni/(1)(aconvexsetwithnoncmpryinteiot.
it is continuous on the inrerior of U({) and relative to all iinc segnent! in U({),

rnt a((. ,,..p(()) ,n' l({,:,r.p(1))

Thus L,'(f) can be replaced by U(1) n A in (2.9)without afiecting the nirure of the
condition on r. This yields the representation

(2.10) r,({)= a v"(1),

where y"(t) denotes the set of ail y €RT satisfying

h(t. d, t, p {1\= f G. nll)-r(1) tG),

or mo.e specifically, is given lor each 4 in the (Borel measurable) ser U '(d) by

I
Y (sr lr . R : r/.11.a)- i.\1..iGt / (..r)1.

while for other 1e E simply v" (4) - R 11. Each of the muliilunctions v": 4 ' r/. (4)
is close-\,alued and Borel measurable [2, Cor. 4.3], and hence so is v as the
intersection ol acountable collection in (2.10) 12, Cor. l.3l.Ii follo\!s that y has a

Borel measurable seiection where it is nonempty-valued 12. Cor. 1.11 Since

f(6)- Z alnost surely. we thercforc have the e:isrence ol a Borel mtasurable
function trS+RT such that almosr lurelt t(6)€ v(t). i.e.

(2. I I ) l({, u, }'(4), i(f ))= l({. t(f ))-t(f ) t(o forall 
'l 

€ L (El

We claim (2.11) jmplies r-({) is sumnable in 4, so that acrually }r e ? lndeed,

for the lunction , ni our strjct feasibilily assumption we can set & - i({) in (1. i 1)

to obtain (almost surely)

f,,G.iG)) t I f,(€)- r(f) r({) = /, {1. /i (1)) ,ii{) t14)* : t'(11.f(d.,i(1))

= fil, t(t)) u(1) i(1)
=i,(1. r({)) ,(1) tial
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and thus for i = 1, . . , r, (almost surely)

(2.12) 0=rtr(d)=lo(f, t(4))- /i({,'i(4)-(t(4)- t(1)) p({).

The right side of (2.12) is. of course. summable in a and hence so is r'i(6).
We have thus established the existeoce oi i € I satisfyins (2.I l). Bur (:.I I )

implies (2.7) and therefore. as alreadt argued, that (t. -rr. i)is a saddle poin. of Ir.
Tlis ends the proof of Theorem L

CoRor LARY. The resti.ted Lag.angian

(2.13) I,(u,y)=E{(l€,u(4),yG))} ro. (Il, y)€ (z n.1i)x 
",

has at lea one saddle poinr (a,:") relatixe to (tI ^l-\'.)xqy Moreouer, the

components,ofs ch saddle points ale prccisel'" the optimal rccou\e t'unctions in P.

Proof. Let (n, t, F)be a saddle point oi 4, relative ro Z x I x.1r, as exisls by
Theorem 1. Since, elr =.r"j", we have

Ih(u, y, F\= I?(u, y) for(r,l)e(Zn,l-)x?,
andhence (t, i)is a saddle pointof I. relative to (? n.{:)x 9. Tbe existence of at
leas! one such saddle point. togeiher with the fact ihat P is equivalenl to
minimizing the functional

1'(a ) = sup 1.(a, y) loru<AIl,f*,

yields the characterization of solutions i by the usual minimax considerations.
THEoREM 2- Ah element (r,r,i) is a saddle point ol the Ldgrangien Ih

rclarine o ql xg xll t if and only if the Kuhn-Tucket conditions (a), (b). G) are

Prool In either case we ha'!e i ezt. i eq and F e.1,. If (t. -lr, t) is a saddle
point, then i is optirnal for P by Tbeorem 1. and in particular , =-'!'.. Thus in
showing the equivalence we can limil attention to the case where also t €"f-.
Then (t, p) = 0 for all p. lhso that Ih@, t, p)= I\ (t. ), t), and the saddle Doint
conditior can just as well be e4ressed as

(2.14) t(1, u. r)= fo(t. )+ I r,l(1. 'r).

(2. r 5) s,up IhQ, y, p)= Ir@, i, F ) = inl le (',, i, i)

The lefr half of (2.13) is trivially equivalent to

sup l(f. t(1), -v. t(f))= /t ({. t7(6). r:(€).i(f)) as.
!:F]

and this is identical to (1.13) pius (1.l-5).
Ir remains only to show that the second equality in (:.15) implies ll .16 ), lhe

opposite implicarbn being imnediate. Define thc integrand i on 3 x R' hr"

ic. u)= h(t. u. t(.t). ile)\



lhis value being interprered as -r 1or l E ar(6j, so rhar

LI(6)=itl.R"/(€ Jl)<-rl
Our hlpotheses say thar /(d. ]l) i\ I s c. coivcr jn l] and Boret meastrrabte in f\F.l.e^.n.( r.a'8.,,.t II. n r I c , . \ r \ r I I < q . . I d i.|..r1n. lF-rrt.-nure.r-e cr.J h ., r.l .,..n .e .n.t.o ./,-prr Ie,m- . Je,:
set ](. R" the existence ,rf a sun1mrble lunclron 7: fjR ch rhar

j(€.ut =rG) ror rll r . L'(al' 1!.

The right hall of (l lj) thus can b. icsarded a\ the a\scrriLrn rhrr

I TIE oPTI\IAJ RECT)I,'RSL PR')ELE\J ti

\2.16)

On the other hand, (1.16) can

12.11) i (t r(d)):,,rnl"i (4 ll) a.\.

The question is thus reduced to rhat of the cqujvalence of (2.l6) and c.l7). which
i. a r."erea rfrr.lr r,.(l\ b\ rh( rt-e -, I or-. ir .er nJ. Jnd ll --r" .,nc_
I urcl.. l- paflrculdr. lLe tqu pro-. i...a. hc <\D.(..cd ir re-'ll. o1,,. i a,
and 0€ r/(d r({)). and then J7, Co.. IBandrh,n.2lcanbeirvokcdl.|hcorem:,
. ll-L -ebl <.r.bl.neo

We have mentioned jn i I thal the nutliptiers l. andt' tor p sotlc a certain
durpro\lem lh,.ui nus ed(\.rb(a D(tre,t. rr .i;^,,. o.r= R R
by

,(1.'r i,fl i, \ .Rl.
(: lll) cl1, t. p)=

Itlt): 
"L1l 

. lriu ).

1r('r )- Eil(t ll({))}.

i""
It will be shown below rhat 8 js a nornal
(2.19) r"0, p) = Elc(a. ) ({).p({))}

The dual probb assoclaied with P is raken

itrtRi.
con\. ex irlegrrn.i Lei

lor (!. p) € al.r r;.

D Maximize4(). r)over all lJ, p )E. t.tt 1

12:0) 41.\,p)= inf,I'lu \ p) tatdl!(.\,p).9 /.,t).

Thus.opirutl solutiotrs b D eri\t. and the\ dre pfttiset\ he ompon.tlts F r) oi the
saddb points (n,i. i) of th? LasnnsiM r,,. h r1lti.utar

minP=m!\D.



Prdol. We begin by proling that -g is e (Borei-)normal convex integrand
There exists in {l a counlable subcolleciion ?l' such lhat U(1) is alrnost sureLy the
ciosu.e of the set Iu(t)u€L'|. (Thjs folloss from the measurability of the
multifunction Lr via Castains's theoremi cf. f2, ThII]. ll.) Then by convexil!

(2.2t) s(f, r, p) = 
"int.h(f, 

| (6).I. p ) a.s. forlERl.

For each u e ?', define

rl1 \t. t. t{l. r pJ : \.R"
("(C, r,, p)= i-----' Lc if ldRT.

Then -g is a normal convex integrand by virrue ofour regularity assumptions. and

we have l.om (2.21) the representation

c({,),p)=inl 8,({,r'.P) a.s.

Since the coilection is counrable, lhis inplies g is a normal convex integrand [2,
Cor.,1.11.

Normality ensures that g(f. f(€).p(1)) is measurable in { whenever i( )
and p( ) are. On the other hand. fixing anr- u e Z we have for all )' € tL and

p El: ihe bound

s(1, y(d), p (€)) 
=.f"({, 

!G)+ I y,(€)r(f, u(d)) x(f) p(f),

\\here lhe righL.rde i' rJmmdo e. Thrs /!r).rrr\ cl$d)( undmbrgJorr\ \ d rear

number or -cc. The concavity of Is is obvious.
We esiablish (2.20) by 6xinc any (l,p) in g\,ft\ and colrsiderins the

integrand

l({. r,. } 11r.p(t)) ir , I (6).
(2.22) iG, u')= 1' , ! ituzu(t)
The siluation is extremelyclose to the one at the end of the proof ofTheorem 2;l
is a normal convex integrand, and we gel from the lheory of irtegral Iunctionals
that

(2.23) e}p \\q,ul-It!tj-IrQ) forall 4el],

l*({,4({)): s,'P \sG) u - j(t' u)l

Taking q = 0, we turn the latler into

l*(d. o) = s(d, p(1). ) (f))

by (2.22) and (2.18), afld then (: 23) becomes the equation in (2 20)- 
rhe rest ot Theorem 3 is erident from (1 20):nd thc existencc of a saddl€

poinr of 1,, LIl Theo.em L.
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3. Special struclur€s. So far. it has bccn convenient rnd rseful to endor! P

with as litlle structure as posrible. This level of gereratity js rarell, il ever.I]ecded
in practice. The main purpose of this section. and the next one. is ro consider
recouise problems thal possess some of the slructural characieristics most .om-
monly encountered in appLications.

An iDitial obsenation may be made abour Ihe dillerenllable.ase. i.e. where
U(1)= R' and the functions u4l,(t. r) are all difierentiable wlth gradients
denoted by !/'(1, !). Then (1.16) of the Kuhn-Tucker condirions becomes

and hence part (c) of the condjtions asserls simpi]- !hat

lr.1.2, f"rf/ora.kr{r, I, \ 'a,1.'{ 
j,,/ -" ".. .orL l. . \.

A. The separuble case. By SP we denote a version of P thar satisjles all !h.
regularitv conditions laidoutin $ l and;s alsor?rdla,/d, bJ- rvhich we can rhal

(3.1)

(3.3)

(3.1)

1.1.5)

(3.6)

v/o(1, r({))+ I t,(1)sll(1. a({))=p(1) a s.,

u(.t) = ukte).

h(.t.u,y.p): t llJt,uL.r) ut pk),

t:klt, uk, ) )= f,*G. ukJ+ i,li(t 4)

tk i{. ri( (1r. -Fttit))=,,"E1. 1it{.rq.Er!(1, d.r.

(D X

(ii) f'G,u)- L f"G,uk) fori=0. 1. ./n,

where rhe multifunctions Lrk: {+ Uk (d). R'. are t!-measurable, and the func-
t;oas 14 f*(.e. u,) arc 7't-measurable relaiive io rhe set

U;1(ui= Ie e= u! e Ukt.tJl e gk.

The function I (as defined by (1.9)) is also separable. in the sense that

rnd rhc runction, f .,.ii.r..IJar( r -rr<a.r- a.erelarirero l :(..I.
Since SP possesses aU the properties ol P, the problem is solvable and the

Kuhn Tucker conditions (a), (b), (c) are necessarr and sufiicieni ror optimalit!.
We shali lhow rhat (c) can be replaced by:

{scl lor k = 1. . i\ ote has
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Of course Et]- is /-r-rieasurable by definition, ta the prctest \Ekt.k=
l, .,N] ls nondnticipattE. Note thal everything in rhe expression (3 5) is
.7*-measurable.andlhereforetbe'almoslsurel) can be interpreted \r1th respect
to lhe restiction of lhe probabilit! a to 3-. Thus the minimizarion is entirclv in
terms ol information pertinent io rrage k and independent of the fulure. In
pafticular, forthenest ofsigma-fields9t correspondingto thesequentialnoration
1=(1,, .€') ar the beginning of $ 1, f can be replaced essentially bt 4'=
({r,.,1r)throughout(3.5i-Thedecjsiontakenatstagekisthenrepresentedas
a solution lir (4r ) to an optimization problem dependingonly on the past informa-
tion {r and a vector Ekt(gk ) of expected 'prices."

THEoREM 4. A l4n.ridn a solDes the sepanble optimal rccou$e pnbLent SP

ifand on\ if there is a muhipti, function I such that (u, f)satisles (a) arul (b) af the

genetal Kuhn-Tucket conditians dnd (sc) abore.
P/orl. From the Corollaiy to Theorem 1. we know thai i is optimal il and

oniy if , E ql n"{'- and there exists t e 7 such that

The lefi half of {1.7) is equivalent to

sup r({, t(1). y) = l(L t(6), t(f)).
r.RT

which neans that ( 1.13) and (1.1s) hold (and hence all of (a) and (b)). It renains
only to show that the right half of (3.7) is equivalenl to (sc). Bur separabiliry
implies

(3.7) sup 4 (t, ) ):1: (t, t) =,.fr,,1,(,, t).

(3.8) I,(u, i') = l.,(uk,t) tot aIIu eq n,{..,

(3.10) I /r(1, rk. FLt({ll ir ,{ € al(1,
/a rf ''r=l+.o rl ar€Lr(gl.

Then lor functions irr € ai"€. 9t, o) we have from (3.9)

r1..r4.. i I rl&.{{r-1./tJ a'.
ElrL({, at(4r)l= |' ''"- t+io otherwise.

Theri.ththdlfof(3.t).lsthereforeidenticaltotheassertionthatforf = 1. . .N:

I

(3.e) IiOk, = EI|.G, ukc), t(E)l -'.{r, (1, ur(1),-E't(1)},

the last equallty being true beca'rse the function ir. is J.i-measurablc and 1'k is

aline in the muitipliert. For t = 1,, N, d€line the integrand rr on E : R" br

the minimum of 1," 0/r) = Elrk(d. rr({))} over all

llk €l;"(3. 4. a) is attained at t&,

(3. i 1)
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while condition (3.5) is the same as

(3.12.)
the nininum of rr (4, ur) over ail

,r* : R4 is atained at ,L(4) almost surely

The equivalence of (3.11) and (3.12) follows lrom our regularity assumptions
exactly as did the equivalence of (2.16) and (2.l?) in the proof of Theorem 2: each
4 is an .?tr-normal convex integrand. This completes the proof of Theorem 4.

The Kuhn-Tucker condilions in this "decomposed" form have a number of
significani features that render them attractive lrom a compulational viewpoint.
Notably, ifat stage,i. the multiplier function !-k is known and the minimum in (3.5)
is uniquely atiained almost surely, then ihe minimizing points must be the values
tkG) of the unique optimal decision function tr associated with this srage. In
other words, the requiremeni of a-measurabilily js automa!ically taken care of,
and there is no need to worry about lhe ultimate satisfaction of the consrraints
ftc,rGD=0.

We remark also that in ihe difierentiable case. with L'r(1)=R". for all l.
cordiiion (3.5) takes on the form

/j.ll) fro^{{.n^,{}r I F i./6rr/,,r..i,\rr-u "...!/.).
The struiture of separability elso leads to a special dual problem associated

wiih SP. For & = l, . ,N. deine th€ function sr on 3xR' by

(3.14) sk (f, r): inf &(t,uk,y) ift eRi.

Then -g* is an gr-nornral convex integrand, and the funciional

(3.15) 1., (y ): E{ga (l y({))} rorl el}
is well-defined, concave (with co as a possible vaiue) and satisfies

(3.16) tk(t) = 
"i!L,Iduk, 

y\ for alt 4 -measurable y € s.

(3. t7) ttttk = luk e L:,(i, sL,,r) ar ({) e ur (1) a.s. (9r )}.

These facts are established aimost eractly as iher were for g and 19 jn the prool of
Theorem 3.

As the special dual problem lor SP, \re introducei

Ma\imize I 1"" (E'y) over all y e L

The following resuit is then immediale from the decompositlon

(3.18) I,(u, y t= L L(.uk, Ekr) ro(lu,.r€qx.iu

and the fact that the Kuhn Tucker condirions (a), (b). (sc)in Theorem I charac-
terize the saddte points of tbis e\pression.

SD



i0

prcckei\ the companentst afthe pans (n. i)satisftingthe Kull -Tuc ke t .otki nons
6).lb). (sc). I pattiulat

min SP = nrx SD

B. Lineat rccau\e rrodeir. Bv LP we denote a venion of SP lhat can be
lormulaied as follows:

LP

Min,mireFl i., u.,.',.}

suuject to i A,kuk.k)=b, a.s. lorr=1, ..\'.

(3.l9) rr. L rL(: , +,it r.

where .i=R'r, 4eR'",, A,k:R"l'& and 6t=(1,,.. ,4r) with 6i=
(cr, Ak. . . AM. br). Thus the vectors cr and ,r and matrlces A,( are randon
variables whose !'alues become known in stage k. and $e are in lhe sequential
notetional setting at the beginning ol .s lq'ithl=({r, .dN).Itisrequiredthat

where {-', Ft, i't) is the marsinal probabiLitrr space of the randomlariable !r. i e.

of the random elements observed in the 6rsl k stages

This formulation dilTers sLightl,! from the previous paitern in having (3 19) in

taceol I\<.. m<a.LJa-,lrrtol r. "..'"n.rionor :/rirh:. rhc c\ir 'ri.Jl
err(nrr.n or 'r re.rt.\r ',:. d. rnlrodLced in : I IJI hc '_rrnc \rere
1=(fr,.,1N)). In simpler terms, the recourse funcrion is taken !o be nonan-

ticipati!e. ra ther lhan just €ssen tjal1y nonan ticipative. However. the two fo.n1 ula -

tions are equivalent as long as we are not concerned wilh the multipliers t(Cl. and

this is justified in rhe present context by Theorem l. (In in{roducingl€Zi. wc

need 10 regard the recou^e funclion r as an element ol l; and therefore musl

admir. as negligible, el!erations oi llr ({. )on a sct oi {-values ol plobabilit\ zer.).

even if these involve {,,,r, .1r.) Incidentalll in contrast to this equivalence.

one cannor change the "rlmost sureiy ' in lhe constraints of LP without risking a
disastrous e$ect on the problem. This is shown hy counterexamples in J8l, \'here e

condition on the probability m.asure o is also developed qhich ensures'rgainst

As with SP. we assume that LP salisfies all lhe rcgularity conditions we have

imposed on P. Actually, lhe convexily. lower semicontinuit! and measurability
conditions are trivialll saiisfiedi note $at Uk(1)=R^'. while each I' is a! afiine

function of uk with random variables as cocmcienls. The unilonn boundedness

assumption requires thai ior all realizations of 4 !he polvhedron generated b! the

constraints of LP lies within a fired ball. For the case lvhere the rnatrices .1 t are

nonrandom-or equivalentl),' , ha!€ a degenera!e distribution ! suJficient .ondi-
tion for uniform bounttedness is given hy Olsen 19. Lenma 2.'lll cl. also [10]
Various sullicient conditions forstrict feasibilitycan eatilv be found For eranple,
one such critcrtun can be deri!ed from lhc results ol Isofcscu and Theodorescu

t I I r^r .!.1<"n. rr .l,a r FIic . .c"r i'e. tr.lil ..
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Problem LP has r block-rriangular stru.ture whi(h makes ir easr to see nore
,nc. f.al ) {hcn rrc l..on.r'r I e..e L l! .,mcJ(r. -e.our.( :. pre.. n,
Consider lhe follo\ring decision procedure. In rhe first staqe lharirs olserve{r. -, .. 1...nr,r$ .\..o.e" .,rr.f\,.,\ J -^ lr qr:r. rd..cepr,1.rn
o\,erredi 'se.hou,e& .ati..,.Q { I b rh(r., r 1,... \rd,o
forth: in the lth stage (ha!ing obserred &) *e choose la sarjsflinq

(3.20) Atraar =,i. *,hererr=r, : Ar,r,

One says that rrla t.,e1l. . ample te rccause is presenr il thts procedLrre can almosr
surely be contjnued to the end (j.e. to lhe choice ol,\ ). or in orher words. if wirh
probabilily one we will not encounter a srage lvhcrr $,€ dre sr\]mied by rhe
empiiness of rhe &r polyhedron d.fined by rhe consirajnt sysrem (_r.20).

THEoREM 6. ReLati,el!- campletu rccawse implies esse tidll\ camptete

Ptoof. Let \rs Aenote ty .lri4t) rhe scr oi al (ll,,.. ., &.) whi.h can be
generated by the firsi k stages of this procedure. Relatively complere recourse
means that each element of .\a (1r )is conraincd atmosi surel\, (*rth respect to the
conditional disrriburion ot (d!,,, . . .6N) given (4, . . . fr)) in the set ,t(d) in
'.8r.uhi.h.on.i.l.or ., r.h tl-,r r, e p-o.. J.l|( cd- b. co-li-uid
to the end when the total ourcome of rhe random variabte is a=(d', , {*, d.,', , d{). Represenring l'(4') as the cl,xure ot a counrable iet,
to each element of which this facr can be aDpiied. \\,e see from lhe ctose.lness of
DoG) thar

,l'({'). r'(1)
almosr surely (condirionally. gilen dkl. But tri\.jalt),. the opposite inctusion is
universaily valid by the definjtion ol Da({). Thcretore, relativetl- complete
recourse is equivalen! to the property iha!

(3.21) Du (f ) = 
^oif 

') u.s.

(in the sense of the overalldisrribution of {) Of course, (3.21) impiies thar t tr (4)
e.\enlral r deoena. o)lt ur t. $hi.h r\ LhJ p,, n. lr o ...ejri:lrr co-p.ie

Remalf. The con cep! of relarj ! ely comptete recourse, and with irTheorem 6.
can easily be exreDded to SP and even ro ihe -aeneral conrext ol p. therebr, aho
coveflne uL- u,e I ll-( r,rn , ldl the nu.riu-ct,o t ...'.<.1 a..um-d
nonanticipati\e (as is true lor insrarce in SP): rhe proiection Ut(1) consistins of
dil cJmoon.nr, o et-.r. -.. I I I l:l . rhr. a..L-.J ;r
measurable The inde{ set 11. . , u I is partitjoned i.to sLrbsels i ruch thar. fLrr
i.L, f,l.t.u)is ./r-measurable in 4 and de]rends ont\, on the comDonenrs..'. .u.'.lu.l er-i'.r,. n.r.r ,,rt r'rrent.'... .,. .1 ,1,. .\.1.n!
'h( con'r'arnr' {..' 0ro' ,r -J..... / J l\.nr'<. il
ne"'urdhleirl Re."t.chco.T1per-rrc, rr\rr.'nerr.,f.r' rl. .J..heiem(- .
.\"r.,orlons, o/r',. ,tm...urF\,, ,,,.,n. tr ,-J.:,.:r,.J, I.Tn,..
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also bc expressed as above in rerms of the ahrosl sure ieajrbiliti of a block-
triangular'' procedure for generatirg r!, - .!{ sequenrialh. The pr.rf oi
Theorem 6 remains vaiid in this case.

Our assumption of strict feasibility appears needed for rhe lalidit\ .-.i thc
Kuhn-Tucker condhions (a), (b). (sc) of Theorem 4 in the case of LP, dcsprie lhe
linearities. This may be a$ributed to the (irfinite-dimensional) constraint oi
nonaniicipati!ity. er,en though the corresponding mulripliers are suppressed in
Gc).

The optimal recourse functions for LP, which exisi according to Theorem I
under the rcgularity conditions which have been imposed. are charact€rized as

tollows.
THEoREL 7. In oftlet that the lun(tion r-(.r,. ,frN) wih nke

t?,(i' . 1 , o'\ ne an optimal tolution to LP, n is ecessan and sufi.ient that the

follo\9ing conditions be satisled fu some lunction t-(ir, . ,l.-) nr, tk€
L ,\=,7,tt l./(=1, ,1\:

A,,,,n,G'* \> bi(t' \ a.\.,

ik(ft)=o d.s..

ttct) tb;(() A*r! (1r) = o dr.

f.(d*).a.. = cl(€*) ,r.,..

bic')=bk- I A.,r,(d',).

cl({r):c" - : (E'!.-iX6*)Ar.

P/dol. When conditions (a), (b) and (sc) oI Theorem 4 are specialized to the
prcsent contexr, we get something slightly difierent Namely. each fr wouid
appear in (3.23) and (3.24) as a function of all of 6, while the expression in !1.25)
*ould instead be (Etir)(4r). However, thcse conditions on i realiy involve only
the latter expressions (and their e xpectatio ns in earlier stages). Therefore, we can

just as lvell applyE{ to (3-23) and (3.24). so that only Ertr is relevanl throughoul:
it is a mere change of notation to then cail this function ir, instead of ihe original
function,

The dual problem in this context may be stated as:

\l
MaximizeF.I b' r'td', oreral cunmable

LD
yk(f')=0, t = 1.. .,I, satisfying

(Ei)'u)(4r).4r, =c, a.s forl=1, '..v

(3.22)

(3.23)

(3.24])

(3.2s)

(3.26)

(3.21')

(3.28)

Note lhar rhe f unction ! = 1y', ., . yp) may be called a nonanticipati* clement
of t;. However, LD does not fit the same mold as LP. since in determining the



component ]L for slage k wc need consider the conditional expectations of rhe

fuare components )/, k<l=M Looked at another wa), LD involves certain
special chance consnain 5, in.ontras! to LP, because if the expecied values of the
muhipliers It associated with future stages are ireared as variabl€s to be derer
mined atstage k. then thedecision which is takenposes a su bse quen ! consiraint on
expectations that )/ must live up to.

TsEoREv 8. The dual problem LD has opinal saLutiotts, and they arc
p.ecitely the componen.s l:|t1, - ,!'\lof the pai$ \rt. ,"\ satisf ,-ing the Kuhn
Tucket conditiohs in Theotem 7. In paftic lat,

nin LP= max LD.

Prool. This iollows as a speciaiizalion of Theorem 5 via a slighr change in
notation as in the proof of Theorem 7.

Problem LD resembles the duat obtaincd by Eisner and Olsen [12]foriinear
recourse models formulated in l,e-spaces, 1 <p < ri'. The approach developed
here, however, yields a min=max duality theorem with corresponding I(uhn
Tucke. conditions, whereas I l:l only allows for min = sup dualit!' results.

4. A discrete time stochsstic control problem, The pupose of this secrion is
to illustrate. by an example. the relations bet$cen rhe recourse model and cerrain
types of stochasti€ controi problems in discreic time. The optimality conditions
developed here can then be used to characrcrize optrmal solurions io these
stochastic controi problems. Thc goal is not !o give a description of the most
general stochastic control problem that can bc handled in the framework of the
recourse model; it is easy to see ho\\. the problem described beloE can be
generalized in many directions and still fii our paitero.

While there are a number of substanrial contributions to lhe theory of
necessary and sumcient condirions for stochasric control problems in discrete
tirne, e.g. [13] ard [14], there does not seem to be a treatmeni that allows ior the
inclusion of state-space constraints when seeking pointh,ise optimalit/ canditians.
Seleral papers do deal with state-space constraints in the continuous case; see

t151, J161, [17] and Jl8l. The difference between ihe present approsch and the one
taken by Kushner 1151, Haussmann Ji 6l and ichikawa p?l is that they seek aD
"expected maximum principle, in whjch case the mlrltipliers associaled with the
state-space constraints (at a finite number of tirne periods) turn out to be elements
of R. It is when seeking pointwige optimality condirions that lhe difficulties do
arise. as illustrated in I18l wh€re Bismut musr rcli on an (a-)*-multipiier rather
than L I-multiplier. 

Even for coo tinuous-time determin is tic proble ms with stal e -

space conslraints these exotic multiplien cannot always be avoided ll9l.
Let (€r, k = 1,. ..N) denote a vector valued (discrete time) stochastic

proce'.:forl l. . V.rherealizalionsof €: rre(lemenl'L'f R' denoted b) 6r.
The \rare of th( \)stem ,rr time k i( denoted l-] .r.. ahn dn clemen' of R' . fhe
dynamics are given by the relations

THE OI''] I\,IAL RECoLJRSE PROALE\{

.rk ,=A-rr+alri4r-l

(4.i)

andfork=1,.. .N-1,
(,t.2)



where A is a (/ x, )-matrix. A is a 1,,'!/1 )-mairir, and llr E R' rs th€ recLrurcc
(or control) selected al time [. To be consistenr with our ear]ier noralion !,e ier
/ =.\', and, =Ih'. The recourse is selected on rhebasis ol camplete inforndtion
and totul recaLl. by which wc mean that rhe recourse decision !! is selecied in
comple!e knowledge ol rhe past history of the system, i.e. up tu and including.rk,
ih. stale of the system at rime l. (Nor€ lhat anumberof problens with incompiete
observaiion and pa(ial recall can actually be casl as problems with conlplete
information and totai recall, see for examplc 1201. J211.) In ihis seFup. it is
equivalent to asseri that lhe decision Irlakcr observes ar and recalls pasr observa-
tions and past decisjons, since clearly fronl (,1 2) ir follows rhar knowledge ot
earlier states and decisions. and observarion of:vr runiquelydcterminesai,l.the
''noise" of the system.

Moreover, the particular form of the dynamics ol this system 14.1)altows us
to short circuit the state componert jn rhe description of rhe modet. Irdeed.
combininq (,1.1) and (4.2) we obtain

-1..1 ]{, I R')CKAtsLLLAR AND

(4 ll Buk aIt

i.e. the slate of the s]'stem is a llnear function of the pasr rccourse decisions and

For perlornauce criterion we take a real-valued tunctional po defined on
R"xR' xR" suchtharforall{€ tthe lunction (/l.r)+eo(€.ll. jr)iscon\ex. and
for all (r.r)eRr xR" the function 1+eo(1,!.-r) is (Borel) measurable. The
problem in rough rorm is to mininize E{eo({, ! ({),,! (d))} subjed to (4.3 ) and the
fufiher constraints that

(4.1)

andfori=1, .r?

(4.5)

//({)€ L(4) a.s.

e,(€. 4(1), r(1)=0 a.s.

The nultifunction U is assumed io have closed. conlex values with nonemp!\,
interior- For i=1, . .m, the functions p, on R"xR"xR', are required to
satisfy ihe same assumptions as 9D.

Reiation (,1.3) allo$s lrs to formulare this stochasric conlrol probiem as a
problem of the l)'pe P. Let us rvrite (:1.3) (regarded as jncludine (a.1)) in the lorm

r=S€+Tu
and define

f,(4, u)= @t(t, u, S€+Tu) forallrEU({) i=0.1. .n.
Suppose in fac! ihat f, (f, !, S{ + rr) is {for each fixed ll) sun1mable in { whei , :0
and essentially bounded in d whcn i = 1. . , rn. Ii can be !erified thati,, . r"
and U satisry all the conditions inrposed on them in g l. and thc corresponding
optimal recourse problem P represents the present situation IJ in addirlan P is
srricily fe:sible and thc abstrac! constraint muhiiunctron D correspondrns to
/r,. . . /^ and U is uniformly bounded and nonanriciparjle, all our gcncral
assumptions are satisfied and the above resulls can be applie.i. In rhjs $3y ne
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obtain necessary and sLriicienl conditions ior optinatit! from rhe basic Kuhn -
Tucker conditions (a), (b), (c)

Many ol the reguiarity conditions in question are "standard" for conkol
probiems. For example. it is common to assume uniiorm boundedness oi the s.t
{U(4), { € a}, and this ensures the uniform boundedness ol rhe nlutljfuncrion D
As far as nonanticipative feasibilitf is concerned. we have already explajned irs
relation lo !henotion ofrelati!elv compleie recourse thar hasplar-ed an importan!
role in the iiterature d€lored !o stochasiic progranming J.ll. Thjs concept bas atso
recently sudaced in stochas!ic controi theory [22],ll3l. For a sy-ctem $ithour srate
constrainis.Striebelll2lintroducedtheconceptoloptimalit\,framtimetonu'a,
requiring essentially that for each control satisfling (.1.4) and each rjme I
whatever be the resuking srate-there is a control which is optimal from rime .
onward. Striebel and Rishel [23] use this condrtion;n rhei. rtud! of optimality
criteria for continuous timc stochasric conrrol problens. Their motivation for
introducing 'optimality from time / onward" is quite dilierent from ours bu!
seems to be required bvtechnical consideratjons that are akin to lhose that lead us
to essentiall!' complete recourse. In particular. Rishel shows that rhis coodition
allows him io obiair an explicit form lor the gsncralor applied to rhe value

f'na l\. we r.r(,har cer.a I la*e..-...h".iqprob.en,\r.d,ep.r"hte
Iccourse prob e n.. lhi( r' ce.rar. I 'he cr.e rt

(D U(f)= X Ll(g) where L'i istr measurable,

(i') for l:0. l. ,m. etc,u.r): I e,r(f.llr)+r'r,.

where ihe functions f +p*(1, re) are .7*-measurable and /, € R'. In rhis case we
can rely on the sharper resulrs of $ 3A, if not in fact 38, in deriving optinatity
conditions.
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