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INTEGRAL FUNCTIONALS, NORMAL INTEGRANDS AND MEASURABLE ““LEC”;PNS
R. Tyrrell Rockafellar#

A fundamentzal notilon in many areas of mathematics, including opti-
mization, probabllity, varlational problems, functional asnalysis and
operator theory, is that of an 1ntegral functional. By this is meant
an expression of the form

% fls,x{s))u(ds), wwE X

where ¥ 1s a linear space of measurable functions defined on a meas-
ure space (5,A,u) and having values in a linear space E. The func-
tion f: 3 x E + B is the asscclated integrand.

Classically, only finite integrands on 8 x B were studied, usu-
ally under the assumption that f(s,x) was continucus In x and meas-
urable in & (the Carathéodory condition). However, from the modern
point of view it is essential toc admit possibly infinite values for
and If, since 1t 1s in this way that important kinds of constraints
can most efficiently be represented. Such infegrands require a distinect-
1y new theoretical zpproach, where questions of measurabillty and the
exiastence of measurable selections are prominent and are reflected in
a concept of "normallty"

The purpose of these notes 1s to provide a relatively therough
treatment of the most common case in applications, that where E = R
While many of the results have extensions in one way or another beyond
this case, as indicated to some extent in the text, these are often more
complicated technically and may require further restrictions. For ex-.
ample, it 1s only for Y that one presently knows how to develop a com-
plete theory without assuming that the measurable space 1s complete, an
assumption which appezrs to be awkward in some situations. In treating
infinite-dimensional spaces E, there are the usual problems of the multi-
plicity of topologies and duallties which must be irconed cut. It 1s de-
sirable, therefors, to have available a full and conalstent exposition

of the detalls in the basic case of E = R,

freeing cone from the need
to search for auxlliiary results through sequences of papers with

varylng framewcorks.

¥This work waz supported in part by the Air Force Office of Scientlfic
Research, Air Force Systems Command, USAF, under AFQOSR grant number
T2-2269.
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The material below is divided Iin three principal sections. First

we present the theory of measurable closed-valued multifunctions. E-
quivalent properties, any of which could actually be used as the deflni-
tion of measurability, are discussed, and the basic measurable selectlon
thecrem of Kuratowsk! and Ryll-Mardeewskl 1s derived via a stronger
theorem on the exlstence of Castaing representations. (The proofl, which

N than in the more general case

ig given in full, is simpler for R
usually seen in the literature.) Much effort 1z devoted to establishing
convenient means of verifying that s multifuncticen 1s indeed measurable.

The gecond part applies the results on measurable multifunctions to
the study of rnormal integrands, & concept originally intreduced by the
author [1] in a szetting of convexity, but developed here in more general
terms. Again the emphasis 15 on measurability guestlons and the manu-
facture of tools which make easler the verification of "normality".
Normal integrands are also Important in the generatlon of measurable
multifunctions glven by systems of constraints, subdifferential mappings,
ete.

These technical developments come to fruition in the theory of
integral Tuncticnals presented in the third sectlon of the notes. It
is here also that convex analysls comes more to the front of the stage.
This is due to natural considerations of duality, which are always
important in a setting of functiecnal analysis, as well as deesper reasons
related to Liapunov's thecrem and invelving the weak compactness of level
sets of integral functlonals.

For cbvious reasons of spaece, the discussion 1s limited to integral
functionals on decompossable functicn spaces, such as Lebesgue spaces.
These are characterized by the wvalidity of a fundamental result on the
interchange of integration and minimization. The trestment of more
general function spaces usually relies heavily on this, more basic
theory, as for example the case of Banach spaces of continuous Tunctlons
as developed in [2], or the spaces of differentiable functions encounter-
ed 1n variational problems (cf. [13], [1%5], [26], [32]). We have made
no attempt to cover the many results 1n such directions.
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1. Measurable Clcsed-Valued Multifunctions.

In everything that follows, & 15 an arbitrary nonemptiy set eguip-
ped with a o-algebra 4; thus (5,4} 1ls 2 general measurable =pace
zubject only to the restriction that 5 ¢ 4. Elements of 4 are called

e

measurasble subszets of 3.
A& multifunction T:5 + X, where ¥ 18 another set, 1z, like a
function, best defined simply as & subset of &5 x ¥. The seft of all

¥ ¢ X such that (s,x) ¢ I for a glven & ¢ 3 1z denoted by T(s).

d
Unfortunately, this notation is ambiguous in the zpeclal case where T
7y, and 1t 1= sliight-

ly troublescme in sugpesting more generally that T can really be

n
happens to be a function (T(s) = {x} or T(s) = x?

thought of as a mapping assigning to sach 8 ¢ 3 =2 subset Ti(s) of X,
It is true that T gives rise to such a mapping and iz uniquely deter-
mined by 1t, but of course the twe are nct the same. The mapping

s + I'(s) corresponds, strictly speaking, to a subset of 5 x 21, and
thus the guestlon of whether or nol it is measurable, for example, 1s
properly answered in terms of the usual theory of measurable functions
on the space EK. This 1s

(3]

and the cholce of a measurablllity structur
not the point of view we want te adopt, and so the distinction should
be borne in mind.

Nevertheless, 1t 15 hard to be a purist on such matters without
having a nuisance with basic ways of writing things (e.g. one could
write T[s] 1n place of T(s), reserving the latter for the unigue
element of T[s] when one exlsts, and the mapping s + T[s] could be
denoted by [I']). In practice, no serious confuslon arises even if
technicallties are slightly szbused in thils respect.

We content ourselves with the following notation for multifunctions
I':5 - X, which, 1f a little redundant, does serve to emphasize the

ting:
dom T = {5 ¢ 8|T(s) # £},
gph T = {(s,x)|x ¢ T{s)},
T(T) r{s).

USeT

Of course, gph ' 18 really no different from what we have called T,

and dom T _is 1ts prolectlon on 5. We shall denote by F_l:X + 8

the multifunctlon obtained by reversing the palrs constituting T; thus
rHx) = {s e S|x e I(s)},

r o) {s ¢ 8|T(s) n C # A}

1]
o=
=t

5

"

e
1

For the most part, we shall be concerned only with multifunctions
r:s = r" which are cloged-valued, in the sense that T(s) 1s a closed



subset of R for every =5 ¢« 8. Such 2 multifunction is szid to be
measurable (relative tc the o-field 4), if for each clozed set C = A
the set F—l(C) 41z measurable (1.e., belongs fto 4).

This definiticn of measurability of multifunctions was first adopted
in a general context by Castaing, who in his thesi » [3] proved its eguiv-
slence with a number of other possible definitions. Many such equlva-
lences, which are very useful to know, will be stated below. It 1=
important to realize, however, that they break down when 5" is re-
placed by a mors general space, or 1f T is not closed-valued, and just
which property should then be called "measurablility" is open to contro-
versy. We want the reader to understand that the present definltion may
well be subject to revision In such cases.

Note that if T 1s acbually single-valued (hence trivially closed-
valued) and everywhers nonempty-valued, i1.e. T is a funcetion, measur-
abllity reduces to the usual concept.

It is ohvious that [ 1s measurable if it is constant: T(s) = D
for a fixed closed set D. Ancther fact worth recording ls that if T

Il

is measurable, D = R iz eloged and T « & is measurable, then the

multifunction T' defined by

is measurable. OFf course, the measurability of T dimplies the measur-
abillity of the set dom I, inasmuch as dom [ = T " (R
In the result whiech follows, we denote by dist(z,C) the Euclldean

et

i 5 LIt
distance of = from a closed set C < R4
dist(z,C) = min{|z-x||x ¢ C},

where |+| 48 the Euclidean norm. (This is interpreted as += I

c=8.)
1A. PROPOSITION. For z closed-valued multifunction T:5 + R, £the
following properties are eguivalent:

{a) T 1s measurable;

(b) T l{C} is measursble for 211 open sets o
b

(c) (C, is measurable for all compact sets G
(a) }( ) iz measurable for all closed balls ©;

(e) dist(z,T(s)) 1s a measurable function ¢f s ¢ 5 for each

zZ ¢ R

FROOF. (e} = (a). Let C be any closed set in R'. Then

o ‘ . s _ )
c = Uk=lck’ where each Ck is compact, and hence




(1.1)

| We have ea
i

(a) = (

(d) = (

& closed b

conelude

(B) =(
|
| Then G,
| (g3 o
| ris} n by
and since

Therefore

ch

d).
bl

iz

for all .k 1if a

iz closed,

(s)

A # nk:lT

@

ﬂk=l

dist(z,

g

B

<

{z]dist(z,T(

nd

o

r C

=t

=

ri(s)

al

compact,

nly

the latter

k}a

7 1z meazurable

)

closed unit ball, a > 0),

<o

1f Ti{s) ncl
1s equivalent
Tf“—‘ 'y Rl
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Condition (e) meazns that all ithe sets

4

T(z) me

et

]

of the form on the left in (1.2)

are measurable, while (d} means 211 those on the right are measurable.
Q.E.D.
1B. THEOREM. For z clesed-valued multifunction T:3 =+ Rh, the Tfollow-
ing conditicns are eoguivalent:
{a) I 1is measurable;
(b} (Castaing representstion): domT is measurable, and there iz a
countable (or finite) family ({x,|f ¢ T) of measurable functions
- } r y -
xi:uoml + T, such that
(1.3 Tis) = cl{xifs}i e T} for all s ¢ doml;
{e) There is z countable family (x,|1i ¢ I) of measurable functions
n ;
| xi'S + R, such that
i BELN LA
(1.4 {5 ¢ 3|x,(2) « T{a)} gasurable for all 1 ¢ I,
(1.5} Tla) o {x,(s)|1i ¢ I} 4is dense in T(s} for all = ¢ &,
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PROOF: (b} = (c). Trivial.

(¢) = (b). We can suppose without loss of generallty that
I=1{1,2,...}. Let the measurable sets in (1.4) be dencted by Si'
Then u:=1si = domI' by (1.5), so doml' is measurable. Let £ be

the function which agrees with X, on Sl’ with %y on SE\SJ, wilth

xg on 83\(31 u 52), etc, Then £ is measurable, and E(s5) e I'(s)

for all 5 e doml'. Now for each 1 1let xi’ be the function which
agrees with x, on Si and with £ on (dom?)\si. The functlons

x{’ are alsc measurable and satisfy x{(s) ¢ T'(s) for all s. Moreover
(1.5) implies

I'(s) = cl{x{(s)|i =1,2,...} for all s ¢ dom 3.

In other words, (b) holds for the collection (x{li = L@ )i
(b} = (a). PFor any open set €, we have by (1.3) that

rie) = Ug p{s € doml|x,(s) e C},

and hence F-l{c) is a countable union of measurable sets. Thus r'l(c)
1s measurable for all open sets C, and from Proposition 1A we see that
I' 1s measurable.

(a) = (b). For every nonempty closed set ¢ < R" and eVEry Z € Hn,
let

PC={x e Cldist(z,x) = dist(z,0)}.

(a nonempty compaet set). Observe that if the points BpsZyaeesl of

R are affinely independent (i.e. not contained in a hyperplane), then

the set Pz Pz ---Pz C consists of a single element. This follows
8] 1 n
from the fact that the set in question is contained in the intersection

of a family of n-spheres with centers ZgaBysnesE by an elementary

ik

induction argument, any nonempty intersesction of k+l n-spheres 1in R

1s, for some m < n-k, an m-sphere in an m-dimensional affine subseﬁfga“B

of R". éon .'f:'j
Let T be the countable index set conszisting of all

1= (ZD’Zl""’zn) such that BuaZysreesB have rational coordilnates

and are affinely independent, and for such 1 and each 5 ¢ doml let

xi(s) be the unique element of P_P_ --+P_T(s). In particular,
3 Zy 2y z,

x,(s) 1is one of the points of TI(s) nearest to z,» and since z

ranges over all "rational" points of R® as 1 ranges over I, we

see that (1.3) holds. Hence to obtain (b), 1t will suffice to show that
xi(s] is measurable in s for each 1 ¢ I. But this will follow from
showling that 1f T' 1s any multifunction of the form T '(s) = PZF(S),



where T 13 measurable and 2 1is & flxed polint In By then T ig

measurable.

To prove the latter, we intro far ko= 1,7, the multi-
function T, :S » R" such that T (2] co of all x & B°
satisfying
{1.8) dlst{x,I'(a})) < k_l and dist{z,x) < dist(z,T{s)}) + k -,

Observe that ?k(s) is open for all = {nonempty il and only if
g ¢ domT). Let € be any closed set. The condition C n Pzr(s] # 8
1s obviocusly equivalent to C n Fk(s} # @ for 2ll ¥k, and hence we have
—1 o -1
7 ! = n £C )
(1.7) CELy e Me=1ly (€D

On the other hand, denotling by D any countable dense subset of C
(which existe since R" 1tself has 2 countable dense subset), we have

by the open-valuedness of T, that

(1.8) PEEOY S TN B b T

{
k xeD ¥ (3.

But every set of the form F;l(x) ccnelats of the elements s ¢ 8

gatisfying (1.6) for fixed x and =z and hence 1s measurable by virtue
of the implication (a) = (e) in Proposition 1A fer T. In this way,
(1.7) and (1.8) confirm the measurability of (F')_lfcj for arbitrary
closed C. Thus TI' 4is measurable. RLE D

The important equivalence of (a) and (b) in Theorem 1B was [irst
established by Castalng [3]. It 1s for thls reason that we shall eall
a family (xi|i ¢ I} with the properties in (b) a Castaing representa-

tion of I. The existence of such representations provides a handy tool
in many situatiens. The following fact, whleh is the focus of all the
theory of measurable multifunctiens presented here, 1z an immedlate

consequence.,

1C. COROLLARY (Theorem on Measurable Selections). If T:3 =+ rM is a

measurable closed-valued multifunction, there exists at least one measur-
TmesgeraliE J X

able sgelection, 1.2., & function x:doml = E® such that x(s) e I(z)

aule Se oL lon 2,uneraon

for all =2 ¢ doml.

This result may be credited to Kuratowski and Ryll-Nardzewski [47;

42
although Castalng arrived at it independently at about the same time,
hne did net publish any detalls until mueh later [3]. An earlier proof

by Rokhlin [5] is now known to be invalid [29]. Actually, these citations

all refer to a more general selecticn theorsem than 1C, namely where r?

is replaced by an arbitrary separable complete metrizable space (Polish




space, in the Bourbaki terminoleogy). Theorem 1B also remains true in
this case [3], but the proof iz more complicated because a finlte
number of nearest point "projecticns” Pz.does not suffice, and the
]

compactness arguments must be replaced bybscmething invelving Cauchy
sequences.

Another conseguence of Theorem 1B 1s a simpler condition for meas-
urabllity in certain cases, generalizing a criterion of Rockafellar

(6] for convex-valued multifunctions.

1D. COROLLARY, Let T:S + R' be z multifunction such that, for all

s ¢ 3, T(s) = el{intT(s)) (as is true, for instance, if T(s) 1is an

n-dimensional elosed convex set)., Then T 1s measurable if and only

n

At F_l{x} 1s measurable for gvery x ¢ R

PROOF. The necessity 1s trivial., Tor the sufficiency, let

{ai|i ¢ I} be any countable, dense subset of Hn, and let [xi|i e I)
be the corresponding family of constant functions: xi{sj =a,. If
F_l(a*) 1z measurable for every 1 ¢ I, we have gonditlon (Q) of

Theorem 1B fulfilled, and hence T is measurable. Q.E.D.
The completion of the measurable space (3,4} 1s the measursble
space (S,4), # belng the interzection of a2ll the o-algebras of the

form AU’ where u is a nonnegative, o-finlte measure on 4 and Au

consists of all p-measurable sets (or equivalently, all sets of the

form T A To’ where T ¢ A, T0 is a subset of a set of p-measure
zero in A, and A& denotes symmetric difference). One s=ays that
(8,4) 1= complete 1if ; = 4. It iz elementary that (S,E) iz aslways
complete., Moreover, (3,4) 1s complete 1f 4 = AU for some p.

Thus for example, 1f 8 is & Borel subset of some Euclldean spzace

and A4 1z the algebra of Lebesgue sets in &, we have (5,4) complete,

—

If instead 4 1s the algebra of Borel sets in S5, 3,4) 1is not com-
plete but could, for many purposes, be replaced by 1ts completlon

(8,4), 4 being in this case the algebra of all universally measurable

sets in 5.

The most important property of complete measurable spaces £8,40,
for present needs, is that for each measurable sef T in 8 x B the
projection of T on S 1is measurable. The measurability of T here

n

meanz, of course, that T ©belongs to the g-algebra in 5 x R renerated

by products of zets in A =and Borel measurable subsets of R, TFor &
. . i i n
recent proof of this projection theorem in the general case where R

ig replaced by any Suszlin space, zee Sainte-Beuve [7].

1E. THEOREM. Let T:S + R’ be el

properties the implicationes (e) = (a

vsed-valued. Then among the following
4
4

= (b) are aiways valid, with
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full eguivalence among the three if fhe measurable space (5,4} is
complete:
(a) T 1s z measursble multifunction;
(b) mph T 15 an 4 ® B-meszurable subsel of & =% (where
£ 1s the algebra of Borel 3
fe) 1t i) iz measurable Tor all Borel sets O ¢ R
PRODF {c) == (a). Trivial from the dzfinitior.

x I

a,} be a dense szequsnce in R, =and for each

I and K= 1,200, Cik be the closed ball with center ay and
radius k l‘ We have x e T'(s} 1f and only 27 for all %k there exists
i such that % ¢ C,p and F(s} n C*F # 4. But this says that
S hes T ) ~
gohl Me=qVsap [T (00 % R E
r=Lleo

Eaeh of the sets &
tella us that gphl beléngs to 48
(b) == {e), assuming (3,4) is complete. Tet { be any Borel
set in R". Then {gphT) n (8 % C) belongs to £ = B, and hence the

projection of this set, which is just F-I(CJ, 1z measurable by the
fact clted just prior to the theorem. Q.E.D.

For the more general context of rl replaced by an infinlte-dim-
ensional space X, the 4 @ B~ measurabllity of T can usefully be
adopted as the definltion of the measurabllity of [ as z multifunetion,
and many of the facts developed here remain trus., For a2 summary of
gome of the central aspectz of this approach as regards Integrands and
integral functilcnals, ses [8] and the references glven there. However,
it must be realized that the completeness of the measurable space ls
essentlal in such & context. This completeness may not always be con-

venient, sz for instance 1n cases where one must desl with a whole fam-

i1ly of Rorel measures and perform freguent me ipulations on the measur-
able spaces (such as taking products, which does not Ereserve
completeness).

The next theorem, due essentially to Castaing [3], exploits the
extra structure present i1f & is a Borel set in R™, Recall that if
3 is a2 topological space, a multifunciion TI:8 = BT 1a asid to be
upper semicontinuous (or of closzed graph) 1f gphl dis closed in the
product topolegy. (This is equivalent to the condition that for Bvery
compact set C < RY, 1 l(g) is closed.) On the other hand, T 1s

r .
sald to be lower semicontinucus if for every apen set © - RJ, r 1(C)

is open. If voth upper znd lower semicontinuity are present, T 1=

sald to be centinucus.

THEOREM

=
e
I
1)

ot
W]

be a Borel subset of some Euclidean space,with 4
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the zlgebra of Lebesgue sets. TLet T:8 =+ B! be nonempty-—closed-valued.

e = S e W v S = o At Sh _

Then the following condiflens are equivalent:

(a) I is measurable;

: H a m
(b} There is a clesed-valued multifunction T1:8 + & , Buch that

zphT' 1s 2 Borel set in 8 x B' and TI(s) = I'(s) for almost every a.
gp i85 g torel 5et in , and 3
(¢) (Lusin property). For every ¢ > 0 there is a closed set

T = 8 with mes(S\TE} < e, zuch that T 1is continuous relative to

(d} For every e > 0, there 1s a closed set T, = 8 with

y E) < e, such that the set {(s,x)]s « T, % ¢ T(s}} 4is closed.
PRAOOF. (ec) = (d). Trivial,

(d) = (b). For g = kql,

the corresponding seguence of sets Te' Then T 1z measurable with

k=1,2,..., let T he the union of

mes(SAT) = 0, and the set {(s,x)|s ¢ T, x ¢ T'(s)} 4g a union of
closed sets, hence Borel measurabls., Thus (&) is satisfied with T
the restriction of T o T,
(b) = (a). We have J
is complete. Let C c R" be closed. Then {P‘}_l(C] is measurable

e |

measurable by Theorem 1E, because {(3,4)

-] e
and differs from T ~{C) by 2t most 2 set of measure zero. Hence
_l(C) is measurable, and it follows that T 15 measurahle.
{2) = (¢). First we demonstrate the argument can be reduced to

y 7 m
the case where mes S < ». Since 5 is & Borel set in R

for some
m, we can express 1t zs the union of the disjolnt Borel sets
5% = {s ¢ 8|k-1 < [a] <k}, k=1,2,...,

ok

and these have mes 5" < =, If (o) holds relative to every S°, we
can find for any e > 0 a sequence of compact zets T ¢ Sk, such that
I' is continuous relative to 'I‘k and mes{Sk\Tk) < EE-R. Mo more than
finltely many of the disjoint sets Tk touch any bounded region.
Therefore, T 1s alsoc continuous relative to T = u, T which 1s8 &
closed subset of S with mes(S\T) < &.

In the rest of the proof, we assume mes § < », Let (x,[i=1,2,...)

k?

be a Castaing representation of T. Let e > 0. For each i there

-5
exists by the usual form of Lusin's Theorem for measurahble functions a
compact set Ti, such that %y iz continucus relative o Ti , and
-3

mes{S\T{) < g2 7. Let T_ = nm_tTi. Then every x. 1s continucus
£ - £ 1=i"¢ i

relative to TE, and TP iz a compact set with mes(S\Te} < e, If
no, s - -1
C c R iz open, we have xs

1, 30 that the set

{(C} n T, open relative to T, for all

-1 . Loy oom o1
I7E) n T, =l D5 NE) T

1s open relative to T_. Thus T 1is lower semlcontinuous relative
L €
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ta T .

g2

It remains only to show (assuming mez 5 < =) <that (a) implies
(d). Let (Ck|k=1,2,...) be an enumeration of all the (countably many)
closed subsets of R complemantary to balls 71, with ratiocnal

center and radius. For each s, T(g) r1 the intersesction of all
s}

the sets €, containing 1t. Let 35 _=

= -] = o
3y = 8\5_ = {s|T{s) ¢

k
Then Sk and Si are megsurable (by criter {e} 1 Proposition 18],
and 2 _
gehl = qk=l:(ck x B7) u “SQ % Cﬁ)j‘
Flx € > 0. For each Xk, there exist compact sets K_k o Sk and
K& e Sﬁ, such that i
mes(S\[Kk u Kﬁ)) e
Let
T o= g (K v KD
Then T_ is a compact set with més(S\TEJ < g, and we have
{(s,x)|s ¢ T ,x ¢ I(s)} = n;=l[(Kk x Ry g Ky % B0

The latter set is closed, so (d) is established. Q.E.D.

The preceding results provide the main direct criteria for measur-
abllity that are convenlent in practice. However, we add for complete-
ness one further condition,which has been used as the definition of
measurability by some =zuthors, such as Debreu [§].

1G. PROPOSITICN. Let TI:3 = BT be nonempty-compact-valued. Then T
is a measurable multifunction if and only if the corresponding mapping

from S £o the space M, consisting of all compact subsets of PRI

under the Hausdorff metric, is measurable (in fhe usuasl sense of

functions from a measurazble space to 2 metric space).

PROCF. BSuppose first that this mapping from S to M 15 measur—
able. Let C be any closed subset of Hn, and let U be the open set
in M consisting of all compact ¥ such that K n C = @. By assump-
tion, the set

{s ¢ 5|T(s) ¢ U} = s\r-L(oy
1s measurable, and therefore F-l(C) i1z measurable. Thus T 1s g
measurable multifunction.

For the converse argument, let MO dencte the collection of all
finite sets in g© consisting only of "rational" points. Then M, is
countable and dense 1n M, so0 that every open st In M iz the unloen
of a countable family of closed balls whose centers beleng to MO'

Therefore, to show the measurability of the mapping from 3 to M

A
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assoclated with T, we need only verify that for each such ball W, the
set {5 ¢ S|I'(s) ¢ W} is measurable. Suppose W has radius e > 0
and center F ¢ M, and let B denote the closed unit ball in R".
Then K ¢ W 1if and only if K< F + 8 and F c K + €8, or in other

Wores Kni{x+eB) #¢ for each x ¢ F,

K n (R (F + eB)) = 4.

It follows that the set {s e 3|T'(s) ¢ W} 1s the intersection of the
finite family of sets I I(x + ¢B) for x e F (each of which is
measurable by hypothesis) and

s\t (F + eB)).
The latter 1s mezsurable by Propesition 1A, since RN(F + eB) 1s
open. Hence {s ¢ S|I'(s) ¢ W} 1s measurable. Q.E.D.

The chlef goal of the theory of measurable multifunctions 15 to
enable us to verify the exlstence of measurable zelectlonsz for multi-
functions T of the kinds that arise in practice, and this is to be
accomplished by showing that I is measurable (cf. 1C). However,
the criteria given above are not always easy to apply directly. Typi-
cally, I 1s given Iin terms of a more or less complicated construction
involving other, simpler multifunctions, as well as certain functions
("integrands", which will be discussed in §2). The measurability
propertles of these more fundamental objJects may be more accessible,
and it 1s important to know how they are preserved under various opera-
tions. Without zuxilliary results in this direction, no theaorem on
measurable selectlons can be viewed as more than a preliminary step
towards applications. It may be remarked that the very cheoice of the
definition of "measurability" is heavily influenced by such considera—
tions; the appropriate category of multifunctions must not only possess
measurable selections but also be convenient to manipulate.

The next serles of results describes operaticns on closed-valued
multifunetions that preserve measurability. The pilecture will be com-
pleted in §2 by analogous results about "integrands" and their intimate
relation to multifunctions.

.mcﬁunbk’
1H. PROPOSITION. Let TI:5 -+ R© be gﬂclosed—valuea multifunetion, and

let T' be the multifunction such that, for each s ¢ 8,
r‘(s) = el col'{s) (closed convex hull). Then T° 1s measurable (and

closed-valued).

closed cone containing T(s), or the affine hull of T(s), or the sub-
space generated by T(s).




1A

PROCF., We exploit the aect ti oyem cloment of aTis) ecan be
expressed as a convex combinatien o o+ (op Tewer) clements of I'g)
(Carath€odory's Theorem). Let (x.| 77! %o 2 “asialns representation
of T (cf. comments following the procf of Theorem 1E), Let A bhe
the set of all rational A = (A ,} ,...,} ' In B, such that
kk > 0 and £;=01k = 1., TFor egch of The countzbly many indices

= (3, io....,in) e J = A % T %xeeex I {n+l times),

define the function xj: doml’ - E" by
xjfs) = RDx1 () +eeed 2 x, (),

1 of T', and hepce T!

Then (lej € J) 1is a Castaing representati
is measurable by Theorem 18. (The proofs for the other cases in the
proposition are analogous.) Q.E.D.

I,
1I. PROFCSITION. Let PJ: §+R"Y be ¢losed-valued znd measurable
n n
for 4 =1,...,m, and for B = R lxseexB " 1pt T: § 4 RV be defined
by
F(s) = F (s ;x---xr { 15

Then T is measurable (closed-valued}.

PROOF. Let (xy]i e Ij) be 2 Castaing representation of T
fer J =1,...,m. For each of the countably many indices

J= (13000 0,8) € T = IxeenxI,

let x5 = (xi seeeaky ). Then (leJ ¢ J}) is a Castaing representation
i <

of I, so0 T is measurable., Q.E.D.

17. PROPOSITION. Let Iy: 8 + K pe closed-valued and measurable for

i=1,...,m, 2nd let T: S+ R’ be defined by
T{s) = cl(Tl{s}+»--+Fm{s}J.

Then I 13 measurable (closed-valued).

PROOF. The argumenlt 1s simllar to that for 1I.

be a measurable closed-valued multi-
a

1K. COROLLARY. Let T: § + R
n

funetion, 2nd let a: S + R be a measurable function. Then ths
multifunction T' given by (8) = T'{s) + a(s) (translate) is

measurable (closed-valued).

1L. PROPOSITION. Let T1: 5+ " be closed-valued znd measurable for
gach 1 ¢ T (countable index set), and let T: & =+ pt be defined by

(aY = A
I'(s) cluiETFi(SL

Then T 1is measurable (closed-valued).
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/// ) PROOF. Tor each open set C < R', we have

r7ice) = E{(Ir;l(c).

Hence by the equivalence of (a) and (b) in 1A, T 18 measurable. (The
result alsc follows immediately via Castaing representaztionz.) Q.E.D.

1M. THEOREM. Let Ti:S + 7" be clogsed-valued and measurable

for each 1 ¢ T {countable index set), and let T:3 =+ R be defined

I (s} = ”1¢Ir*(5)‘

Then T 1s measurable (closed-valued). In particular, the set
{s) # 8} = dom [

{s « S'”ielri

1is measurable.
PROOF. First we treat the case where T = {1,2}. Fix any closed
set C, and define the closed-valued multifunctions Fi and Fé by

Fi(s} = C i Fl{s), Fé(s) = -Fe{s}.
Then ri and ré are measurable, and cne has

CnTly(s)n FEES} # 8 &= 0 ¢ Ti(s) + Té(s).
Therefore .
_1(

-1 = 1 ]
i) = (1) + T 7O,

and we may conelude via Proposition 13 that T'l(c} 1s messurable.
Thus T 1s measurable.

The validity of the theorem for I = (1,2} implies by induction
its validity for any finite I. It remzins to consider the case where
I 1s infinite; we can suppose I = {1,2,...}. For each index k, the

closed-valued multifunctlon Fk defined by

. K e
To(8)  fy .08

is measurable by what has slready been proved. For each compact set
CeR', wehave T(s) nC# @ 1f and enly 1f Tk(s}Fﬁ-ﬁ for all k.
Therefore

Pk=1

-

-1
Vo=
r-=(c re (e,
where r;l(c) is measurable, and it feollows that r'l(c) is measurable.
This establishes the measurability of T by way of eriterion (e¢) of

Proposition 1lA. Q.E.D.

Theorem 1M, a crucial fact in severazl arguments below, was first
proved in the present framework in Roeckafellar [6]. Of course, 1f the
measurable space 1s complete, the result 1s triviazl 1n terms of criterion
(b) of Theorem 1lE, and hence it is trivial alsc in general ccntexts



where this criterion 1z adopted as 'he 0T ilon of the measurability
of a multifunction.

The next result 1s new,

1N. THEOREM. Let T:5-+R"
ezch =5 ¢ £ let AS:EK + g

depending mezsurably on & (1.s.

closed-valued 2nd measurabls).

delined by

IV (aY = 18 (i)

is measurable {(closed-valued).

ation here is superflu-

ous if T(s) is bounded.)

C be any cpen set in R°. Then £ 1g the unilon of

“plosed sets Ck' For each k, -define the multifunctlon
by Gk(x) = I'(z) x Ck‘ Then G, 1s measurable by 1I.

= u:=l{s| (x,¥) e gphh, with x ¢ T{(s), ¥ ¢ C.}
oo

< = (= il =) "
vy 1s]6(s) 0 8,(s) # £}

Each of the sets in the latter union is measurable by Theorem 1M.
Therefore ET‘)"l{C} 15 measurable, and we conclude from condition (b}

of Preposition 14 that T[' is measurable., (If T(s} is bounded, it

15 compact, and one sees easily that ﬁ [F(s)) 1a plozed, making the
closure operation in the definition of T'(s) unnnecessary.) Q.E.DL.
iP. CORCLLARY. ©Let T:5 = E" be closed-valued and measurable, and
for each s ¢ & let F:3 x R% + 8" be a mapping such that F(s,x)

iz measurable in s znd contlnuous in x Let T':5 + B" be defined

by Piis) = ¢lF{s,T(s))

{s
(closed-valued).

PROOF. Let A_ = F(s,+). Let aai|1 ¢ I} be a countable dense

= m

(5)

" n = n
supset of R . For each 1 define z,:5 + R x R by z 88

Then T' 1is measurable

= (a{,F{s,ai)}. Then {zi|i ¢ I} 1is a Castalng representation for the
multifunction G(s) = gphhs, which therefore is mezszurable (Theorem 1B).
Thusz the hypothesis of Thecrem 1N iz satisfied. Q.E.D.

1¢. CORCLLARY., Let TI:8 =+ 5" be closed-valued and measurable, and

H ot e P e e

for each s ¢ 8 let F:8 x H = R be a mapping such that F{s,u) 1is

measurable in s and continuous in u. Let T[':5 =+ B" be defined by
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I'(s) = {ue B m(z,u) e T(g)}.

Then T' 15 measurable (closed-valued).

[

I'ia) 1s ¢los

i)

¥ ed for all s. Let ﬂs = F(s,-) ~.
ilar to the one in the preceding corcllary, the
) Ca

PROOT. Clearly
£ sim
multifunction Gi{=s

Theorem 1N 1is applicable. @Q.E.D.
m

By an argumen

= gph ﬁs has a staing representation, and hence

v 1
1R. COROLLARY, Let T: & + r™ x r? x g¥ be a measurable, closed-valued

multifunction, and let T': § + R' be defined by

I'(s) = el{x| 3w ¢ " witk (w,x,uls)) e I'(s)},

where u: 8§ =+ Rk is meagurable, Then T' 15 measurable {eclosed-valued)

(The cleosure ocperation here 1s superfluous if T({s) 1s bounded.)

PROOF. Let F; be the projection (w,x) + x, and let

Toles,w,x) = (w,x,u(s)). Let

Then T" 1s measurable by 1§, and T'(s) = cl F,(I'"(s)), so that T

1s measurable by 17. Q.E.D.

REMARK. Two new articles will he especially useful to those in
need of 2 more general theory of measurable multifunctions than is
furnished here. Wagner [29] has put together a comprehensive SUrvey
of the exlsting literature. Delode, Arino and Penot [30] have worked
cut a new zand broader framework for the subject, from the point of view
of fiber spaces, and have thereby cbtalned extenalons of a number of
previous results, for example, invelving a weakening of the "complete-

ness'" requirement in Theorem 1E.



ikt

2. Normal Integrands.

%K'+ F will be called
an integrand on & x A", Here T denotes the extended reals:

For present purposes, any function I

F =R u {+=}. Corresponding to < agd completely determining it, 1s

its epigraph multifuncticon E- S » ?5+*, defined by
(2.1} Ef(s) = epl fla,*) = {(x,a) ¢ " % 1| oa > fls,x)).

We shall say that f 1& a2 lower semicontinuous integrand if f(s,x)

is 1.s.c. (lower semicontinucus) in x for each s (i.e., Ef is
eclosed-valued), and that f 1= 2 normzl integrand if, besides this,

Ef is & measurable multifunctlon, Of course, normality depends on the
cholce of the g-zlgebra A4; if more than one cholce is possible, cone
can speak of [ being A-normzl, for clarity.

It is convenlent to say that the function f{s,«) 1is proper on
R' 4if f(s,x) > - = for all x and f(s,x)  +=, and to call f a
proper integrand if f(s,+) 1s proper in thls sense for every & ¢ 3.

n

Furthermore, f is said to be a eonvex integrand if f(s,x) d1s convex

in x for each s, i.e., If Ef is convex-valued. Thus, fer a proper
integrand, f(s,-) is obtained for each s by extending as += a
certain finlte function defined on a nonempty set

(2.2) dom £(s,*) = {x ¢ R| f(s,x) < +=),

This set 1s convex fof all s, If f 1is a convex integrand. Observe
that the multifunction s =+ el dom f(s,+) is measurable if f is
normal, since dom f(as,+) d1s Just the image of E.(s) under the pro-
Jection F:(x,a) + x (Corollary 1F). )

The theory of normal integrands with pessibly infinite walues was
introduced and developed by Rockafellar in a series of papers [1], [2],
(61, [8]1, [10], that originally treated only the convex case. A different
definition of normality, taking advantage of convexity, was employed in
most of this work, but it agrees with the present definition applied to
convex integrands, as will be seen below. However, there 1s one slight
change of terminology to be noted: what previously was 2 normal convex
Integrand 1s new a proper normal convex integrand.

The e¢lassical precursors of normal integrands are finite integrands
satisfying the Carathfodory conditions. These willl be shown to fit in
as a specilal case.

Various results, generalizing some of the development in these notes
to spaces other than R, may be found in [8] and, more recently, in
Valadier [11], Castaing [24] and Delode-Arino-Penot [30].

Coviously, any integrand of the Torm f{s,x) = ¢(x), where
¢ R' + § is lower semicontinuous, is normal. The following results
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furnish other criteria.

2k, THEOREM. Let f be a lower semicontinucus integrand on 5 x B

If £ 1s normal, then f 1is A @ B-measurazble (where 5 1s the algebra

of Borel sets). The converse is true if the measurable space (5,4)

is complete.
PROOF. Necessity. For 8 ¢ R, define Tg: S + R" by

rE(s) = {x| f(s,x) < B}.
Then T is cleosed-valued., For eveny closed C Rn, we have

rzh(e) = EzH(c,), where

™

hn+1|

Cy = {(x,0) ¢ R x € C,a = B},

gl{c} is

measurable. Thus FB is measurable, and 1t follows from Theorem lE
that the set

and since E.f iz 3 measurable multifunction, this implies T

gphr, = {(s,x)| f(s,x) < 8}

is 4 @ B— measurable. This being true for every £ « R, § is
A @ B-measurable.

Suflficlency. If £ 1z 4 @ B-measurable, then so 1s the function
g{s,x,a) = f{s,x)-a on B8 x a1, ohie implies the 4 8 B-meazsurabillty
of the set

{(s,x,a)| gls,x,a) < 0) = gph E,.
Assuming (8,4) to be complete, we can conclude from Theorem 1E that

Ep 12 2 measurable multifunction, i.e., [ ds normal. Q.E.D.

2B, COROLLARY. If { 1is a normzl integrand on 8§ x Pn, and x: § » B

ds a measurable function, then the function = + f(s,x(=)) 1s measurable.

PROOF. The transformation £: s + (s,x(s)) 1s measurable from
(S,4) to (S xR 48 5B). (For all sets T 1in 4 x B, E(T) is
measurable, and hence the same must be true for T 1n the g-algebra
A 8 B generated by 4 % B.,) We know from Theorem 2A that [ 1is a
measurable function with respect to 4 8 B, and therefore fE is
measurable. Q.E.D.

As with measurable multifuncticons, the 2 @ B-measurabllity property
can be adopted as the definition of the normality of an integrand when
the measuravle space (&,4) 1is complete., This apprcach then zllows an
easy extenslon of much of the theory below to cases where Hn is re-
placed by an infinite-dimensional space; cf. [8].

2C. PROPOSITION. For an integrand £ on S x R', the following
condltions are equivalent:




[

-1
A

both [ and -0 are normal and proper;

N
4
) {Carathéodory conditicn}: f(s,x} is Ffinite, measurable

in s, and centinuous in x.

2

PROOF. (&) == {(b). F¥or each fixed s, neither the function f(s,-)
ner -flz,-) takes on the value +=, and both are lower zemicontinucus.
Therefore, f{s,x) 1is finite and continucus in =x. On the other hand,
fls,x) is measurable in s for each fixed s by 2B,

{b) = {a). Let D and F be countable dense subsets of R° and
R,, respectively. For each J = (a,B) In J =D x P define
* +1
Far 3B B! by

L

vy(s)#@,f(s,a) + )
Then (¥1|3 ¢ J) is a Castaing representation for Ef, g0 by Theorem
1B we have Ef measurable {i.e., [ normal). Q.E.D,

We shall ezll f a Carathfodory integrand if it has property (b}

in 2¢; thus Carathécdory Integrands are examples of normal integrands.
In fact, they are among the most Important in their own right and in the
canstructlon of more general nermal integrands.

More generally, we shall call =2 function F: 8 X R + " g

Carathéodory mapping if Fi(s,x) 1s measurable in s and continuous in

%. S3uch mapplings have already been encountersed in 1P and 14.

The next result, for convex 1ntegrands, ties the present concept
of normality in with the measurability property originally used to
define nermality in [1].

2D. PROPOSITION. Let f be a lower semicontinucus, convex integrand

on S x E”. Then f is normal if and only iT there is a countable

family (xi!i e I) of measurable functions xyt S + Rn, such that
(1) f(s,xi(s}) is measurable in s for each 1 ¢ I,
{11) {xi(s)ii € I} n dom f(s,+) 1is dense in dom f(s,-) for each

3 ¢ 3.

PROOF. MNecesslty., If  1is normal, the multifunction Ef has

a4 Castalng representatlon (yi|i € I} by Theorem 1B, znd each Vs 1s
of the form yi(S) = (x;(s),my(5)), where x,: 5 + E" is measurable.
Then (11) holds trivially, because dom f(s,+-) (defined in (2.2}) is
Just the projlection of Ef(s) on Rn, while on the other hand (1)
holds by 2B,

sufficiency. Here we use the fact that, by convexity, any dense

subset D(z) eof dom f{s,+) yields
E.(s) = cli(x,0) ¢ B |x ¢ D(s),a > £(s,1)}

[12,57]. Given a famlly (x,|1 ¢ I) with the properties in guestion,

A
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let @ be a countable dense subset of R, and define the family
(yJ.IJ ed} for j =(i,o) 4in J =1 x § as follows:
¥yis) = (xi{s},a}. Then ¥y is measurable, and for each s ¢ 8 we
&
have
Er(s) = cl[E.(8) n {:,'j(s}l.j e J}H]
by (1i). At the same fime, for each J ¢ J the sat
{sly.(a) ¢ Ef{s)} = {s!f[s,xjis}) < al
is measurable hy {i}‘ Thus condition (¢) of Theorem 1B iz satisfied

by Ep and {y.|d € I}, which allows us to conclude that E. i=s

J
measurable., §.E.D.

2E. COROLLARY. Let f be a lower semicontinucus, convex lntegrand on

oo g . .
8 » B® sueh that dom f(s,+) has a nonempty intericr for every s,

Then f ig normal 17 and only 1f f(s,x) 1s measurable with respect

PROCF. Sufficiency follows from Proposition 20, by taking
(xi|i ¢ I) to be a family of constant functlons with values in a denze
1
B

subset of Necessity 1s immediate from Corollary 2BE.

The equivalence of (b) and (c) in the next theorem was proved by
Ekeland and Temam [13,p.216], who adopted (b} as their definition of
normality {(with the slight differe

lower semicontinuous in x  only

n that they required Ff(s,x) to be
8}

ce
r almost every s).

2F. THEOREM. Let S be a Borel subset of some Euclidean space, with

A the alpebra of Lebesgue sets, Let f be any lower zemicontinuous
n

integrand on 3 % R, Then the follewing conditions are equivalent:
{a} © is a normal integrand.
(b) There is z Borel measurable functlon g:5 x R® + R =zuch
that, for almost every = ¢ 5, f(s,x) = g(s,x) for all =x ¢ r,
(e) For gvery e > 0, there is 2 closed set T_ < 8 with

mes(S\T _} < €, such that fls,x) is lower semicontinucus in  (s,x)

=
relatlive to Te x R,
PROCF. The implication o) = (b is elementary, while Theoren
17, applled to Ef, vields (b ) a) = {c). 0Q.E.D.

2G. COROLLARY. Let 3 be a Borel subset of zome Euclidean space,

with 4 the algebra of Lebesgue sets, and let T be a finite integrand

on 8 = Rn. Then the following properties are equivalent:

f is & Carathéecdory inteprand;

(Scorzd~Dragani property): for every e » 0, there is a

closed set Te = 8 with mes(8\T_) < g, such that ¢ 1is continuous



. 1
relative to TF x R,

PROCT. This is immediate from Thecrem 2F and Preposition 20, Q.E.D.

Cornllary 26 1s the well-known theorem of Scorzi-Dragoni. Part (b)
of Thearem 2F ccomplements Theorem 24 in the special case of a complete
measurable space of the form in 2F.

MNext on the agenda is z further elucidation of the relationship

between integrands and multifunctions.

W be the

2H. FROPOSITION. Let be the indicator integrand of a multifunetion
T

n s
8 =R", 4i.e.

(2.4} '-I-';-(S,X) = }1

te I x £ Tia

Then &F is a normal integrand if and only if T 1is 2z measurable

closed-valued multifunction.

FROOF. This 1s obvicus from Preposition 1H and the representation
E. (s} =T(s) = R,. G.E.D.
¥ T =
:I. PROPOSITION. Let TI': & x E' bve

Tis) = {x| fis,x)

where f 15 g nermal integrand on 8

grand), and n: & + B 1z measurable.

]

QOF. Since f(s,-) is lower semlcontinucus, TI'(s) 1s closed.
Let A: & + R be the clesed-valued multifunction defined by

4{s) = {8 ¢ R| B > a(s)}. Then 4 is measurable, because o is meas-
urable. Consldering an arbiltrary closed set ¢ c Rn, we delfine a cor-
responding multifunetlen T': 3 = ?n+1 by T'(a) = C x A(s), Then T'

is closed-valued and measurable (Froposition 1I)., We have

PTR(C) = {s] T'(s) n Ep(s) # B},

and the latter set is measurable by Theorem 1M. Thus F_ltc) is meas-

urable for all elosed C. Q.E.D.

Proposition 2I 1s dimportant in providine, in conjurnction with the
above conditions for normality, especially 24, 2C(b) and 2F(b), an easily

recognizable class of measurable multifunctions to which the operationa

in the precedling szection may be applied.
2 b o -
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2J. THEOREM. (Impllecit Measurable Functions). Le T: '8 =R
multifunction of the general form

I3
i®

(2.5) T(s) = (x e c(s)| P(s,x) = a(s) and

fi(s,x) < ai{s) for-all. & 33,

where C: § » R is closed-valued and measurable, F: § x R + R is

2 Carath€odory mapping, (f,|1 ¢ I) 1is a countable collection of normal
integrands (e.g., Carathéodory integrands) on § x R?, a: 5 = g© is
measurable, and ay: § + R 1s measurable,

Then T 15 measurable (closed-valued), and hence T has a meas-
urable selection where it is nonempty-valued (i.e., relative fo dom T).

PROOF. Let

D(s) = {x ¢ R"| F(s,x) = a(s)},

1}

Fi(s) = {x ¢ R?| fi(s,x) g_ai(s)} for each 1 ¢ I,

Then D and ri are closed-valued and measurable (Corollary 19 and
Propositicn 2I). We have
= (
r(s) C{s) n D(s) MeT Ti(s),

and therefore T 1is measurable by Theorem 1M. A meazsurable selection
relative to dom I then exists by 1C. Q.E.D.

For applications to optimization problems, it is useful to have
the following complement to Thecrem 2J.

2K. THEOREM. Let f be a normal integrand on 8 x Hn, and let
r: 5+ RY be a measurable, closed-valued multifunction (e.g., T(s)

of form (2.5),or T(s) = R"). Then the function m: § + § given by

mis) = inf f(s,x)
xel'({s)

and the closed-valued multifunction M: S + R° given by

M(s) = arg min f(s,x)
xel(8)

are both measurable.
PROOF. To demonstrate the measurzbility of m, we consider the
closed-valued multifunction T': 8§ » Rn+1 defined by
I'(s) = Ep(s) n [T(s) x R].
This 1s measurable by 1M (and 1I). For any B8 ¢ R, we have

{s|m(s) < 8} = (F")"2(R® x (-=,8)),
which is a measurable set by property (b) of 1A. Hence m 1s measur-

able, and since
M(s) = {x « T(s)| f(s,x) < m(s)},

the measurablllity of M follows by Theorem 2J. (M(s) 1s closed,because
f(s,*) is lower semicontinuocus.) Q.E.D.



We turn now to the methods

tegrands

from given ones.

2L. PROPOSITION. Let f be wd on £ 2P0 of the form
fis,x) e 1
or instead, )
f(s,x) = lim inf inl. _ f (2 5
- 2 i
where (fi!i ¢ I) 1is a countabls Tarn integrands. Then

(=

1s normal.

PROOF. In the first case Eris) 1 - Ef.{s)’ so0 the normality
iz Immediate from Theorem 1M. Tn the secand ;a;e, Ef(s) iz the
cloaure of UiEIEfi(SJ’ and we can apply G.E.D.
2M.  PROPOSITION. Let f be an integrand on 5 % i of the form

fls,x) = ET:I:'_]=1 I‘i(s,x,,
where each f'1 is a proper, normal integrand. Then © 1s normal.

PROOF, It 1s sufficlent to consider m = 2., Define
r: 8= B« K™ by r(s) = B, (s) x Ep (s, and
g gD e By T e ) '

(xj,al+a2} 18 %, = %
A(xl,al,xz,agl
-
g if X, # X1

so that Ef{s) = A(l({=)). Here T 1z measurable by Proposition 1T,
while A has eclozed graph. We hzave Ef(s) closed (sinece f(s,:)
inherits lower semicontinulty from fl{s,-} and fg[s,-}, as 1s obvi-

cus from considering the "1im inf" at any point), and therefore E, is
measurable by Theorem 1N. &.E.D.

0f course, some of the terms 1n the sum 1in Propesition 2M could
be indicator integrands as in Proposition 2H {e.g., with T =asz 1in
Theorem 2J).
2N. PROPOBITION. Let f be an integrand on 3 x " of the form
(2.6) fle,x) = ¢(s,2(5,x)),
where g 15 a proper, normal Integrand on & x ®? and ¢ is a normal
integrand en S5 x R with ¢4(s,a} nondecreasing in o (convention:

${s,+=) = +=), Then I 1is normal.
Similarly, f 1is normal if it is of the form (2.6), with ¢ & normal

integrand on & x R and g: S % 7'+ §" a Carathéodorg mapping.
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PROOT, Obviously f(s,x) 1is lower semicontinuous in =x, so
Ep(s) 1s closed. Define A: pOFL o gt by

hg(x,a) = {(x,8)]8 > #(s,a)},

so that Er(s) = AS(Eg(s)). We have Eg closed-valued and measurable,
because g 15 normal, while gph A, 1s closed and measurzble in s,
because ¢ 1s normal. Hence Ef iz measurable by Theorem 1N.

To prove the other assertion, let F(s,x,a) = (g(s,x),a), so that
F: S x ;" 5 gl 44 4 Carathéodory mapping with

En(s) = {{x,0)] F(s,x,a) ¢ E¢{s)].
The mezssurability of E, then follows from Corollary 1Q. g.E.D.

2P COROLLARY. Let £ be an integrand on § x K

fls,x) = ¢(s,x,uls)),
where ¢ 1s a normal integrand on S x R? x R

of the form

k, and u: 8 » BX

measurable. Then { is normal.
PROOF. Apply the second assertlon of Proposition 2N with
E(S,X) Lo (xlu(5>)- Q.E.D.

2Q. COROLLARY. Let f be an integrand on 8 x R" of the form
f(S,J{} - }\(S)E(EJX)‘
where g 1s a proper normal integrand on 8§ x Rn, A: § + E, 1s meas-

urable, and either of the conventions 0O+«= = 0 or 0= == is used.

Then f 1is normal.

PROOF. Apply the first assertion of Proposition 2N with
$(s,a) = A(s)a; this ylelds the result for 0O+'=» = ®, The case of

0+= =0 dis then obtained simply by redefining f(s,+) to be identlcally

0 on the (measurable) set where A(s) = 0. Q.E.D.
2R. PROPOSITION. Let f be an integrand on 8 x g1 of the form

(2.7 f(s,x) = inf ¢(s,x,u),
ueR®
where ¢ is a2 normal integrand on S x R x R, If f(s,x) 1s lower
semicontinuous in x, then f 1is normal.
(The following growth condition on ¢ 1s sufficient for f(s,x)
o be lower semicontinucus in x, and for the minimum in (2.7) to be

attained: for every s ¢ S, every o e E and every bounded set
K = B", the set

{u e Fkl Ax ¢ ¢ with ¢(s,x,u) < al

is bounded.)

More generally, 52 r failes 32_23 lower semicontinuous, the
integrand




(z.8) Fls,x) = lim inf fls;x')

is nevertheless neormal.

PROOF., TFor the projection A: (x,u,n) =+ {(x,n), we have

E=ls) = ¢l A{E¢(s}}. The normality of 7 is thereby zesen to be a
consequence of Theorem 1N. If f(s,x) is lower semicentirnucus in X,

we of course have f = T. The condition for lower semicontinuity has
an elementsry proof. GQ.E.D.

T¢ gonclude this section, we treat some aspects of duallfy that

lead us into convex analysis.

(5]
o

. ) e} .
the conjugate of the integrand we shzl) mean
g 2

the integrand f* on 3 % R

(2.9) f¥(s,¥) =

The biconjugate Iintegrand is glven by

(2.10) ¥¥(z,x)

y

@
y

tceording to the theory 121, f* 43 a
se

closed convex integrand {(i.e., f*(z,-) 1is for each & a lower mi-
continuous convex funciion,which either does not take on the value -=
at all or is identlcally -=), and %% is the greatest closed convex
integrand majorized by f. If f s convex and proper, both * and
f¥% gre proper.

- n
normal irntegrand on & = B, then 80 are

m

28. PROPOSITICN. If f 1z &
the conJugate integrand % and the blconjugate integrand IC*#,

PROCF. Let ((Xi’uj}!i ¢ I) be a Castaing representation of Ef,
and let T = dom E. {measurable). The Carathéodory integrands
s,y) = xy(s)ry - ai(s)

I . N
on T % R give us the representation

tH(s,y) = supy g gi(ssy} for s ¢ T,

. . - N n =

and nence f©#* is normal relative to T x K . On the other hand, for

& £ T we nave f(s,x) = +» for all x, and consequently f*(s,y) = -=

n+l . 3

H . Thus E iz measurable relative
¥

for all ¥, i.e., E.u(s) =
tog T

and constant relative to 5\T. It follews that & iz measur-

o
able relative te &, and hence ©*¥ 15 normal. &ince [¥** 1s the

integrand conjugate te £*, it too must be normal. Q.E.D.

2T. GOROLLARY. Let T: 8 + R” be a multifunction whose values are
et T#*(s) be the polar of T(s). If T 1s

|~

closed cones, and

> -




measurable, then so is [*.

PROOF. If r = b (ef. (2.4)), then £* = Yrxe  Apply 23 and 2y,
Q.E.D.

2U. COROLLARY. Let T[: § + R© closed-canvex-valued multifunction
;

Then T is measurable if and only its support function

(2.11) his,y} = zuplx-v|x ¢ Ti(a)}
1z 2 normal (convex) integrand.

PROOF. If £ = y then f* = h and f¥*% = £, Apply 25 ang DH,

T
Q.E.D

2V. COROLLARY. Let f be a proper integrand on & x R'. Then ¢ 1.
normal and convex iﬁ and only if there is a countable collection -
(fai,ai)|i e I) omprised of measurable functions a;r 8+ 7" and

oy 5 =+ H, such that

Similarly, a multifunction TI:8 = R 1s closed-canvex—-valued if

and only if there is such collection yielding a representation

% &
T{s) = {x ¢ R"| x-ai(s) < aiis) for all 1 e I}.
FROOF. Tor f, the sufficilency follows from Proposition 2L {the
funetienzs 1n the supremum being Carathéodory integrands), while the
necessity is obtalned by ta king the collection te be any Cas taing

representation for E (Cne has f* normal and f*% = f,) For r,

il
the suffielency 1s justified by Theorem 2J, and the necessity is seen
via any Castaing representation of E., where h 1s the normal 1nte-

grand in Cerollary 2U. Q.E.D.

For a convex integrand f on 8 x Rn, there iz associszted with
each s e 8 the subdifferential multifunction af(s,+):R" + H‘, defined

by
(2.12) af(s,x) = {y ¢ Rn| fls,x') > f{z,x) + yr(x'-x) for all =x'}.
This 1s closed-convex-valued, and 1its graph is cloged,if f(s,-) is

lower semicentinuous. If f = vp (ef. Proposition 2H), the set 3f(s,x)
is the cone of normals to T(s) at x.

The following theorem was first proved by Attouch [14] in a socme-
what different infinite-dimensional setting,

2W. THEOREM., Let f be a lower semifcontinucus proper convex integrand

n
en & x . Then the following are eguivalent:

ta) £ is a normal integrand;

(b} (Attouch's condition): the graph of the closed-valued




<)

multifunction af(s,) depends mcn
multlfunceion depends mc .

one measurable function x: § » R ¢
measurable in s and 3f(s,x(s)) # ¥
in and

paeoF. (a) = (b). Tet

glayx,y) = Ploex) + MHow) = mewg,
so that
gphaf(s,-) = {(x.v)| Els,x,%}
In view of Propositions 28 and 2M, g is & normal Integrand, and this

representation therefore shows that gphal{s,: depends measurably on

s (Proposition 2I). Furthermore, t© wnempty for every s,

because f(s,*) 1s a proper convex functlion 12,p.”217]1. Hence there
exlist by Corollary 1C measurable functions x: 2 —+ " and y: 8§ =+ Rq
such that y(s) ¢ af(s,x(s)) for every =. This implies f(s,x(s))
is finite; of course, f(s,x(s)}) 1is measurable in = by Corcllary 2B,
(b) = (a). Let {xi,yj)]i ¢ I} bes a Czataing reprssentation of
the multifunction T(s) = gphaf(s,+);: this can be chosen so that, for

a certain index 1., f(s,xi (s)) 4is finlte and measurable in s. It
0

is known from [12, Theorem 24.9 and proof of Theorem 2L.8] that f(s,x)
is the supremum of

f(s,x@(sJJ + (xil(rs}-xj (s))-yiﬂ(5)+{x12(s)—x1_{s))'yi (8)

¢ 1 1

+se-4(x-x, (s)})-¥, (8)
im T

over all finlte families (ik|k=l,...,m) of indices in I. Each of
the expressions in the supremum, viewed as a function of (s,x)}, 1s a
Carathéodory integrand. Thus f 45 the supremum of a ccuntable family
of Carathfodory integrands, and the normallty of f follows from
Propesition 2L, Q.E.D.

2X. COROLLARY. Let f be a normal proper convex integrand on 3§ x Rn,

T{s) = 3f(s,x(s}),
where x: S + R° is measurazble., Then I 1is measurable (closed-valued).

PROOF. In wview of 2W, this is = special case of Thecrem 1N. Q.E.D.
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3. Integrzl Functicnals on Decomposable Spaces.
From now on, we denote by @ a nennegative, o-finlte measure on
{3.4).

For any normal integrard  on & % R
)]
:

n , ; A
¥: & = B, we have f{s,x{s)) measurable In =5, and the

integral

has z well defined value in E under the following convention:
neither the pesitive nor the negative part of the function = » fs,x(s))

ls summable (i.e., Tinitely), we set I.(x) = +=., In partiecular, then,

(2.1 | € 4o = fs,2(2)) < += a.e.

We call If the integral functicnal asscclated with the integrand

. Typilcally, we are concerned with the restriction of I. to some

o

linear space X of measurable functions x:8 -+ B". MNotice that Lo

1s a cgonvex functionzl on X, 1f ¥ is 3 normal convex integrand.

Among the linear spa ¥ of interest, besides the space of all

measurable functions, are the various Lebesgue apac

and Orlicz spaces,
the space of constant functlons, and in the case ¢f topological or
differentiable structure on 5, spaces of continucus or differentiable
functions. In thelr role in the theory of integral functicnals, however,
these spaces fall Into two very different rcategories, distinguished by
the presence or absence of 2 certzin property of decompossbility.

Slightly generallzing the origingsl definition in [1], we shall say

b §

that X, a llnear space of messurable funetions x:2 + R, 1= decompos-
able if & can be expresssd as the unlon of an increasing sequence cf
measurable subsets Sk (k=1,2,...), such that for eswvery Ek and bounded
measurable function x': 5, = & and every =x" ¢ ¥, the {measurable)

f'u ;
uhgE Lo x'(s) for s ¢ 8.,
¥
(3.2} x(s) =
x" {5} for & ¢ S\SP’

belongs te ¥. (The original definition required this property, not just

for Sk’ but 211 measurable sets T = 5 with u(T) finite.)
p iz g-finite, the sets Sk can always be chosen with ”(Sk) finite.

The zpace of all measurable functions, the Lebesgue spaces and
Crliecz spaceg, are all decomposable. However, the space of constant
functions and spaces of coentinupous or differentisble functions furnlsh
examples of nondecomposabllity.

The concept of decomposabllity is designed for the following resull.



THEOREM. Let [ be-2 normal °

LAl
Lad
s
=
(=
4
(7]
B
[£]
it
p
o
£l
i

iclent that X

imum net be 4=, (These condificr

i
% 1is the spzce of all measurable 1

o
W
o
-
©w
-
-
o
lw
|
a
a
o

ndition implying that

tilon x LoTalx) < 4=,
FROOF, The expression integ n e ripht = F{3.3) 1s
m{g) = in? fi=,x),
XePn
which 18 measurable by Theorem 2K: T., this
integral is considered to be e if -he pasitive nor the nega-

tive part of m is summable. For X, we have

fis,x(s}) is trivial

in 3.3},

that there exists x ¢ X satlsfying } < 8. 3ince u is g-finite,
rhecsypabje

there is a positive function p: § + R sueh that | pls)ulds) < =,

Setting 4 =
afs) = epl=s) + maximis), =

for € > 0 sufficlently small, we have & measurable function a: 3 + R

such that af{s) » m(s) for all s, and { o(s)u(ds) < g. The multifunc-

tian 4

ria) = {x ¢ R™| f(s,x) < uis)}

is then nonempty-closed-valued a2nd, by FPropesition 2I, mezsurable.

Hence there is a measurable function ': 8+ 7" such that fla,x'(=s))

x
< a(s) for 21l s (Corollary 1C) and co ;

nsequently I (x') < p. How-
i

ever, x' mneed not belong to ¥ {ex the cases coversd hy the

n
parenthetical remarks 1n the theorem), so in general a modification aof
I

x' is needed., Let x" ¢ X be such that [x") < +=, and let
{Sk|k=1,2,.“) be as in the definition of decompesablility. Intersecting

each &8 with the measurable set {s e¢ S

x'{g)| £ k} Af necessary,

5, |
we can suppose x' to be bounded on SP' Since Ef{x’) < B and
I.(x") < 4=, we have for all k sufficiently large that

[ fis,x'(s))ulds) + [  f(s,x"(s)) < B.

fal

bl

I S\Sk
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Thus for x defined as in (3.2), we have Ir(x) < B, and by cur de-
composibility assumption, x ¢ X. Q.E.D.

As an important 1llustration of how Thecrem 3A can be applied, let
us consider an optimizgation problem of the form:

(Q} minimize J(x) + I (x,u) over all x e X, ue U,

where ¢ 4s a2 normal integrand on &5 x R x Rk, ¥ and U are linear
spaces of measurable functions x: S =+ Rn and u: & =+ Rk, and the
funetional J: X + R is arbitrary. (To cover all contingencles, we
adopt the convention = - = = += 1in (Q).) The question to be investi-
gated 1s whether (Q) 1s egquivalent to the reduced problem

(F) minimize J(x) + IF(xJ over all x e X,
where
(3.4) fls,x} = inf ¢(8,x,u).

ue R

Here f 4s normal by Proposition 2R if, as we now assume, f{s,x) 1is
lower semicontinuous in x (ef. the sufficlent condition for lower
semicontinulty furnished in 2R).

3B. COROLLARY. (Theorem on Reduced Minimization). In the gggzg eon-
text of problems (Q) and (P), suppose further that

(1) the infimum defining f(s,x)} 1in (3.4) 1s always attained
(Eﬁ. the sufficient condition glven in Propositiocn gg), and

(ii) whenever wu: 8 =+ /%

is a measurable functicn ylelding

J(x) + I¢(x,u) < +» for some x € X, one necessarily has u ¢ U.
Then (P) and (Q) are equivalent,in the sense that for every
x € X with J(x) < += one has

(3.5) I.(x) = inf I (x,u),
uel

thile Infimum always being attained by at least one u e U.

PROOF. Fix any x € ¥ with J(x) < +=, and define g(s,u) =
= ¢(s,x(s),u). Then g 1s a normal integrand (Corollary 2P}, and 1
follows from Theorem 24 and assumption (11) that

<t

inf I_(u) = [ [inf g(s,u)lulds) = [ f(s,x(s))ulds).
uei B 8 LeRK s

Thus (3.3) holds. If the infimum over U 1s +w, 1t iz of course
attalned by every u e U, =0 let us suppose it is not +m; then
I.(x) < +». The eclosed-valued multifunction T: 5 = F® defined by

r(e) = {s]| gls,u) < f(s,x(s))}



1as measurable by Proposltion 21 and noncempty—valusd by gawumphion {4).

Henee it has a measurable selection . We L

= Tofw) & L (4% = #a,
7 -

alls uw ¢ U by {i1), and thoe minimum in

The wide range of problems whers reduct nrem can be

211ad

applied 1= zpparent, if 1t is re: vary gensral constralnts

ion of the elements where J

are representable in terms of the desig

and ¢ have the value +=. The result generzlizes, Tor example, one

ing a key step in establist of optimal tra-

It also furnishes,

in control theory; see
in ceombination with all the machlnery for verifying normality, =
powerful tecol for the anslysis of multistage stochastic optimization
problems. Such problems can be reduced fo "dynamie programming” more
efficiently than has previously been shown, e.g. by Wets and the author
[16] and Evstigneev [17].

In the rest of this section, we dencte by X and ¥ two Iinear

o n 1 a
spaces of R -valued functions such that
(3.8) [ Ix(s)-y(s)|ulds) < 4= for all x ¢ X, ¥y ¢ Y.
2]
[

The bllinear form

<x,y> = [ x(s)+y(s)plds)
S
defines a palring between X ard Y, in terms of which the standard
theory of locally convex spaceg can be zpplied. In particular, the
weak topologies of(X,Y) and ofY,X) are availsble. (3trictly speak-
ing, these are not, of course, Hausdorff topologles unless we identif&
zlements of X preducing the same linsar functicnal en ¥ wia <=,+>
and si

iilarly for elements of Y. This ldentification is harmless, but
2 potentlial nuisance for terminelogy and notation in what follows, so

we gloss over it, leaving the detalls implicit.)

An important case to be borne in mind is that of the {(decomposable)
3 o) .
Lebesgue spaces: X = LY and Y = L?’ l<ps<= and 1¢<gq 2 =,
' . a = Ei 5

whers
1D = tP(s,4,u5RM.

The relaticn (1/p) + {(1/q) = 1 sufflces for

totally necessary; for lnstance, it is

P == and g =« 1n the cazse where

{
The conjugate on ¥ of a functlonal F: ¥ = R is, of course,




defined by

F¥(y) = supl<x,y> - F(x)},
xeX

and simllarly the conjugate on X of a functicnal G:Y + E; thus

H
FeR(x} = sup{<x,y> - F¥(y)}.
ye¥

As is well-known, ¥* is gonvex and 1l.a.e. with respect to o(¥,¥);
F** is the o(X,Y¥)-1.s.c. convex hull of F, if that functional nowhere
has the value -=, while otherwise F** = —w, i

Our aim now is to apply these facts to integral functionals, making
use of Theorem 34 and the normality of the conl]ugste integrands f©¥
and f** in Proposition 23. The next theorem is a slightly improved
version of the main result of Rockafellar [1],as extended in [B]. The
version in [8] was presented in terms of & separable reflexive Bznach
space in place of Hn, but with the measurable space (3,4} complete,
For a recent generalizaticon, see Valadier [11].

3C. THEOREM. Let f be a normal integrand on § x R“, and conslder
I, on X. Suppose X is decomposable,and there exists at least one

* e ¥ wlth If(xj < 4=, Then IY < Iqy on ¥, and hence in perticu-
lar the convex functional Iy on ¥ 1s olY¥,X)-1.5.¢.

If Y 1s likewlse decomposable, and there exists at least one

vy ¢ ¥ with Ir,(y} < +=_  then I%* = Ir,, on X,

FROOF. Fix any ¥ ¢ ¥, and consider the integrand

gl{s,x) = fl(s,x) - <x,y{s)>.
The second term in this expression constitutes a Carathéodory integrand
(hence a normzl integrand), sc £ is normal by Propositicn 2M. Applying
Theorem 34 to g, we obtaln
inf [ [f(s,x(s8)) ~ <x(8),y(s)>TJulds) = [[-£*(s,y{s))Iulds),
xeX S
the common value not belng +=, Due to the latter, it is legitimate
to rewrlte the equatlon as
iﬁi{IrEX) = <x,¥>) = ~T(y),
or in other words, I *(y) = I,4(y). The rest of the theorem follows
by duality. Q.E.D.

3D, COROLLARY. Let f be a normal proper convex integrand
If Y 1s decomposable and there exists at least one y e Y

r E X 1_3 U{X}Y)—

If,(y} < 4o, then the convex integral functional I

lower semicontinuous {and nowhere -=).




.
PROOF. Apply Theorem 3C to T., es Fhat Ty 7 lage. The
hypothesis on f is equivalent to the properiy “het %4 =1, Q.E.D.
3E. COROLLARY., Let £ be a norms  couvesx R zuch
that I.(z) < += for at least one i ey x ¢ ¥ the
zubdlfferentia
(3.7) ATplx) = {y ¢ ¥[ T.(x') + g, N oxt e x)
is given by
Blplx) = {y e vl oyl Fls,
FPROOF. According to the defl not3.7)s h ¢ e aTa{x)
1f and only if
{X_,}-’) - X =
* “ FAY e - i T4 1T o~
where Ir{y )= Ir*\:-r',- by Theorem 3C. The result now follows from the
fact that
ex{s) ;yls)> = fla,z(s)) « f¥(s,y{s))
always holds, with equality if and only 18 wis) ¢ af(s,x(s)). Q.E.D.
e . o n - +
3F. CCROLLARY., Let T: & + R be a mezsurzble, closed-valued multi-
function, and let
C={x ¢ x| z(a) ¢ I'{s) a.e.l,
his,y) = sup ¥y Tor (a.y) e 8 % BT

If X is decomposable and C # &, then

sup <x,¥> = I {y)
Xel

If in additien Y 18 decomposable, then

g{i,¥)=el co © = {x ¢ X| 2(s) ¢ el coll(z) a.e.l.

PROQF. Let f = . (ecf. (2.4)); then f* = h, and the result

follows at once from Theorem 3C. Q.E.D.

In many situatiens, 1t 1s useful fo be able to apply 3C and 3D
without very expliclt knowledge of the integrand ¥, and this reguires

some indirect criterion for the existence of ¥ ¢ ¥ satisfying
Ir“(y) < +w=, One case which falls out immediately,is that where there
iz a2 lower bound
f{s,x) » B(g) for sll x e R,
) I

with B summable; then Ff¥(s,0) < -f(s), s0 (0) < +=, Another

[}
=
=
ot

critericen is provided by the next re

(o]

G. PROPOSITION. Let f be a normal convex integrand on 5 x R,
and let ¥ =1P, 1<p

1~
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¥ € ¥ such that Ir*Ey) < t=, the following condition iz sufficient:

for some x ¢ Li (where 1/p + 1/9 = 1) and zome ¢

s + f(s,x(s) + u) belongs to L? for each u ¢ B

lul ¢ &, while If(E} > -,

PROOF. Let [31,...,am} = B e any finite s2t whose convex hull
contains the unit ball; then
. n
(3.8} maxrir=l a2,y > |y| for all ¥ e R'.

Let & > 0 be small enough that [éay| < ¢ for all 1. Then each of
the functions

aj(s) = . (s,x(s) ¥ha 1 =1,...,m
belongs te LY, as does a&(s) = fls,x(2)). There is a measurable set
T 8 with u{3\T) = 0, such that these functions are all finite on
T. For eaech 5 ¢ T, the convex function f(s,+) 18 finite on a
neighborhood of *(s) and therefore has af(s,x(s)}) # #. Thus the
multifunction s + 3af(s,x{s)) is almost everywhere nonempty-valued;
since 1t 15 also clossd-valued and measurable by 2X, il has 3 meas-
urable selection relative to the set where 1t is nonempty-valued (10).
Hence there iz a measurable function ¥: 8§ = r" satisfying

(3.9} ¥(s) ¢ 3f(s,X(s)) a.e.
We then have, almost everywhere,
fo(s,x(s) + 8a;) > f,(s,%(s)) + ay-¥(s), 1=1,...,m

or in terme of the notatlon introduced above,

E]

a,°¥(s) < 67 o, (s) - Es)], 1=
Taking the maxlmum on both aides with respect to 1 =znd recalling (3.8)
we obtain |y(s)| < alz) a.e., where a ¢ LF. This shows that ¥ e Y.
Since (3.9) implies -
f(2,7(8)) = <x(s),¥(e)> - £(s,%(s)),

while If{E} > -=, we have If*(§} < 4=, QLE.D.

In Theorem AC, If,* turns out te be the "closed convex nhull" of
Ip. However, in an Important case connected with the theory of "relaxed"
variational preoblems, If*! 1s 2lso simply the "closure" of If; in
other words, convexity follows from weazk lewer semicontinuity. This
cgze is dellneated next.

We shall say that the integrand f 1is atomically convex if, for

each atom T e 3, the funetion f{s,:} 1s convex for almost every
5§ ¢ T. Of course, i the measure space (3,4,u) is without atoms,
this condition is automatiecally satisfied.
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tain elements

3H., THEOREM. Let
atomically convex.

B

Then the proper convex funetlois!

l.s.c, functicnal on X majorized

Ihsell 35

o(X,¥)=-1.8.c. if and only if f(s,x] Iz wu« iu x for almest
avery &.
PROOF. To prove the first assertion, it is in view of

Theorem 30, to demonstrate that the weak (nenempty) set

epl I, = ((x,0) e ¥

is convex. Remembering the nature of Lhe topology o(X,¥Y), one sees
this is equivalent to showing that the clo ‘e of Lhe image of epil If
under any mappling of the form
{x,0) + (=<x AT uﬁ1,... SXL¥ % + aBN
iz convex. Here we have o = [ Al=)p(ds) for some X « Li such that
o
[
A(s) > fis,x(s)) a.e., 8o the guestion can be rephrased as follows.
1 +
Let £ = X x Ll (this belng 3 decomposable zpace of g 1-valued func—
tions, since ¥ is decomposable), and let

(& nonempty set because epl IP is nonempty). Consider any linear

. - m F
transformation A: £ + R of the form

az = f M(s)z{s)plds) ol i
g
where M{s) 1is a matrix of dimension m x (n+l) whose components are
such that M{s)z(z) 1s summable for every =z ¢ 2. It suffices to show
that ¢l(AC) 4s convex. Passing to £ - z if necessary, where z 1is

any particular element of €, 1f can be supposed in this that © ¢ C.
Let fSk|-k = 1,2,...) be a family of measurable sets with the
Froperty in the definitlon of decomposabllity, and for each r > 0

and measurable szet T which is contained in Sk for all k sufficlent-

T

ly large, let G, denote the set of all measurable functions
a] T

zo o RIS satisfying :

(3.10) z(8) ¢ Ep(s) and |z(s)| <« r for all = ¢ T.

f ' =
The decomposability property implises C£ is the same =28 the set of 211

restrictions to T of funetions = ¢ Z satisfying (2.10), and in faet

(since © ¢ C) any =z e Ci can be extended fo an element of ¢ by

et

giving it the zero value outside of T. Thus for the mapping

hpz = L1M(s)z(s)p{ﬂ5)
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we have AC > A Cp, where the latter set increases with T and r.

For any =z ¢ ¢ and € > 0, the set

T = Sk n {s] z(s) ¢ Ef(s) and |z(s)]| < r}

ylelds |Az - ATz| < ¢ for k and r sufficiently large, and one has
ATZ € ATC;:. Therefore
- r
cl AC el u ATCT,

where ATcg increases with r and T; the union 1s respect to all

r > 0 and measurable T suech that T ¢ Sk for k sufflciently large,
The problem can therefore be reduced to showing that each of the sets
of the form ATC; 1s convex. (For this purpose, we note that the com-
ponents of M(s} 1n the definition of AT must actuzally be summahble
over s € T, since M(s)z(s) 1is by assumption summable over T Tor
every £ ¢ Z, and by the decomposablllty property the set of restric-
tions to T of the functions in Z 1includes all bounded measurable
functions.)

The convexity of ATC; will be shown to follew from the well-known
theorem of Llapunov, which asserts that the range of a nonatomie rM-
valued measure 1s convex, in fact compact. (For a short proof of
Liapunov's theorem using the Krein-Milman Theorem, see Lindenstrauss
[18]; the Hahn decomposition theorem can be used to remove the assump-

tion of Lindenstrauss that the component meagures are nonnegative,)

First we partition S into Sn and Sl, where u 1z purely atomic
relative to SG and nonatomiec relative to Sl' Let TU =T n SO and

T1 =Tn Sl' According to ocur hypothegis that f 1s atomleally convex,
we have Ef(s) convex for almcst every = ¢ Ty and hence C; is
convex. Since 0
ACt = A, ¢t + A, 0L,
T TO Ty T, T,
convexlity of ATC£ will follow from that of Ap C; . Let 2z and z'
& 1 W o

be any two elements of E§ > &and define the set function 1, for meas-
1

urable sets E ¢ Tl' by

T(E) = AE{z' -z) = AleE,

where z.(s) = z'(s) - z(s) for s ¢ E, and 2z (s) =0 for s e T;\E.

Obviously 1T 1s countably additive (since the matrix components defin-

ing th are, as seen above, summable over Tl)’ and
with 2. + 2 ¢ C; .
1

Bl

t(E) + A,z = 4_ (z_ + z)
Tl 2 E E

i




Let D = (range 1) + A_ 2, Then T Iz = a1

Lizpunov's theorem, 1s convex.
responding to E = ) and =z
segment joining = and z' is

B gE 3 this shows the latter
T, Ty

It remains %o demonstrate the inal assertion of the theorem. The

sufficiency of the condition is caversd

51light maneyver

around 2 set of measure zero), so we direct curselves o the necessity.

In vlew of what has already been proved, our starting assumption is

that T.eu(x) = If(xl for every x ¢ X.

{3.11) f##(s x(s5)) = f{s,x{s)) a.e. For each % ¢ X.

f#* < £, this implies

Making use of decomposability, we can express =2  as the unien of an

increasing sequence of sets 3 _, such ithat

k
(3.127 fR¥(s,x(s)) = f{s,x(8)) for almost every s e SP’
i o 2
whenever x: Sk + R iz measurable and bounded.

Fizx any k and r » 0, and consider the {measurable) multifunction
I' defined by

Mis) = Ef**(s) n [rB x RI,

where B is the closed unit ball in R, oLet E{xi,ai)| i ¢ I) be

a Castaing representation for TI. Then by (3.12)

oy (s) > f#¥(s,x;(8)) = f(s,x;(s))
for almost every s = 3, n doml, so that (since I 1s countable) the
relation
(313 (Xi(S],ai(S]) € Ef(s) n [rB » BE] for all 1 « I

holds for almost every s ¢ Sk n doml, Cf eourse, (3.13) impliles
I{s) ¢ Ep(s) n [rB x R,

or what 15 the same thing,

n

r**%(s,x}) = f(s,x) fer all x ¢ B with |[x]| < r.

This equation has been shown to hold for almost every s e & such
that TI'(s) # B (i.e. f**(s5,x) < +w» for at least one x with

x| < r), and it holds trivially if T(s) = @ (both f*¥(s,x) and
{

A3

£,%) then being +=). Since k and r are arbltrary, we reach

the concluszion that f¥¥(z .} = f(s,+), except for s 1in a set of

measure zerc. G.E.D.
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There are many situations where it is convenlent in direct terms
to work with integral functlonals on the space Li, because, for
example, continuity with respect to the norm is then easler toc work with
and to express via local properties of the integrand. However, such
advantages are often pald for by & troublesome problem when it comes
t? duality: the dual Banach space L;* cannot be identified wilth
L;‘ We shall describe a special reszsult in this direction whilch shows
the situation is not gquite as bad as might be imagined, and which can

be used tc derive some ugseful compactness theorems.
m

L {nocrm) continuous linezr functilonal 2 on Ln iz sald to be
singular, 1f there 1s an increising sequence (Sk|k = 1,8,...} 2? meas-
urable sets satisfying & = Uk=lsk’ such that, whenever =x ¢ Lp is a
funeticon vanishing a2lmost everywhere outside of some & one has

k)
z{x) = 0. The set of these forms a linear space we shall dencte by
Liing. A fundamental fact, equivalent toc the Hewltt-Yosida theorem
[12], 1s that under the palring

(3.12) <x,(y,z)> = <x,y> + z(xz) for x ¢ Lz, (y,2) ¢ L; % L;ing,
the relation
# i | sing
3 o L &
[ L L ] %
holds as an isometry (subject to the usual identifilcation of "eguivalent"

functions in Li and Lz)‘ For a preof of this result in & much broader

context (R" replaced by an infinite-dimensional space), see Levin [20].
The followlng theorem is tzken from Rockafsllar [2].

31. THEQREM. Let f be a normzl integrand on 3 x ?n, and consider

o
If on Ln' Suppose the set

Fo={xell| I(x) < +=}

is nonempty. Then the conjugate of I on L” ig given in terms of
25 HORempoy L &b, sp 82 L, 18 EFven . n tohms PE
the pairing (3.12) by

; * 1 sing
(3.14) To(¥,2) = Toa(y) + Jplz) for all y e Lo, z ¢ L 7

where

Jolz}) = sup =z(x}.
- el

PROOF. Using Theorem 3C and the definition of the conjugate func-
tional, we obtaln

*
If(y,z} = sup{<x,y> + z{x) - If(x)}
Xel

< sup{<x,y> - If(x)] + sup z(x) = If*(y} + JF(Z).
xed xeF




Thus < holds in {3,104y,

inequality. In th We 0QArl

#
for otherwise Tr[y,z] S ot

every & ¢ F.

=

iz v e Ly =z % L

i3

n
Y 1 1F #

encugh to show that &7 + 87 < I.07

gan choose x' and X in F =u

B' < <x',y> - Ir(X‘F & f ! - S
and 8" Lz(x"). Let (5| k=1,".... peoA mEn r
the property relative Lo 2 i Mnltion of
Maingular functicnal’, and define
=

Then z{xk—x”} = 0, ! gt i
other hand, because ft Ll
over § e 85, We have X, ¢ Foand
T f r - v 4
<x,,¥> - Ialxn ) = | ! - E 23
i ke £k .
k
-
. )
+ [ . )7 s
so that
y T o= e e T Iy
Therefore, choosing k 1t 1 e
B o+ 8" < <x, yr - T.0x, ) + 7l
- . ® \
7 = ax lyazir =1 IR I

as desired.

As a corollary,
result of [10].

3J. COROLLARY. Let
I

, considered zs a

ot
= .
1)

set

= 1

3.15) G =1y =
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#
is nonempty. Let T. be the convex functional on L_ defined 1n
terms of the canonical isemorphism (3.14) by
. S T P ] 1 . sing

Tplx,z) = Togylx) + J.(2) for x « Lo, z e LTS,

where
= sup
vl
- s wm% o _m¥
Theri I. is the greatest G(Lr ,Lr}—l.s.c. convex functional on L,
e X — 3 1 - :
i 2 o #
majorized by I. an En {regarded as a subspace of Ln Y
In fact, 1f [ is atomically convex, Tf iz simply the greatest
A o, + 1 o T IR T Foot The
crELn 2Ly 1.s.c. functional on Ln majorized by If L. Then
for each 1
o > inf{I.(x)]| x « Ln],
one has
- w¥
{(x,2)] I.{x,2) < a}l=o(L_  ,L )-elix| Ip(x) = al.
f = n 1
FROOF. We have Zf* Theorem 3C (Justifying the eguivalence
of the twe expressicns for 0 in (3.1%)). Applying Theorem 31 to
* ¥

If, we get IF = Iﬂ* = If {with respect to the extended pairing),

then 1lmmediate

and this ylelds the t result. The second resul

from Theorem 3H.

L functional F:¥X - R 1= sald to be o(X,¥Y)-inf-compact 2if a2ll

its level sets of the form {x ¢ ¥| T(x) < a}, o e R, are ofX,¥)-

compact., It is o(X,Y)-coercive if F-<-,y> has this preoperty for

every ¥ e Y.
Our next objective iz to state a rather complete criterion for
T P
Ip on Ln’
and their duallty with continuity properties of Tr*‘ It will he =zseen

these properties, in the case of an integral functicnal

that many properties,whlch might in general be expected fo be distinct,
collapse into equivelence when ihe measure space iz without atoms.

The fellowing growth conditlons on an integrand f on 8 x RH
will be crucial:

(Gl): For each »r > 0, there existz b ¢ Li such that, for zlimost

every s ¢ 3,

n
f(s,x) » rlx|l-bl(s) for all =x ¢ R .
? . - 1 . 5 y
[;p}(l < p < =) There exist r > 0 and b ¢ LI such that, for almost
every 8 ¢ S



0

(G,): There exist r > 0 and &t . wohy T P 83

every

o0
5 e 38,
fle,x) < 4= = |x| < »
* N - T -
(Gn){l £ P < =): There exist a » 2 o sunh 4 s Tor almost
avery 8 e« 9,
fls,x) < alx|P + =
L i 9 T g
(6 ): f{s,x) 1s summable in =
3K. THEOREM (VWeak Compactness). Tet f
on 8 x R, and let 1 < p <=, (i/n) 4

(d) f satisfies the growth conditlon (ﬂp), < 4m
for at least one x ¢ Lb;

{(e) f* satisfiés the growth condi > -
for at least one y ¢ L};

REMARK, The convexity of f(=s,x) in x, 2t lesst for almost

(s
every 8 e 3, is necessary for (a) to hold in the case of an atomless

measure spzce. This follows from Thecrem 3H.
PROOF. (b)) = (a). Trivial.

(e) = (b). In particular, for any finite subset {y.,...,¥ } of

4 1 m
La, the functicn "
’ als) = rr.ax}'=l f¥(s,y,(8))
is summable, and we have

f*({a,y) < gl{s) when ¥ e co{yl{s},.‘.,yn{s}}.
This shows that, for almost every s, r#(s,*) 15 finite on
co{yl(s),.“,ym(s)]. Arguing 1in this way with various cholces of the
functions ¥y, it ds 2y to ses that, for almost every s e 3,

f¥(s,y) must be finite for all vy ¢ ®™.

Proceeding after this preliminary, we show 1. 1s proper. Fix
any y ¢ L1 and let T(s) = 3r%(s,¥(s))., Then T 1s a measursble,
clesed-valued multifunction [CJrﬁ‘lnrv 2¥) and by the finiteness Just

established, I'(s) # @ a.e. He ' has a meazurable seslec

ion by



Corollary 1C: there exists X: & + R" such bthat %(s) ¢ af¥(s,F(3) z.e.
Then
q

w(s)uls) < f¥(s,yl(a)+uls)) - f¥(s,y(s)) for all u ¢ LY
1l

In other words, for every u ¢ L', X*u is majorized by 2 summable
- - = =P ; = -
functicen. Therefore x ¢ L, - Since X{s) ¢ 38f¥(s,y(5)) a.e., we also

have _ _ _
x(s).yl3) - f*¥({s,y(s)) (summable),

H
o
il
-
L1
I

and hence If(¥) < 4=, QOf course, it 1s Lrivially true that
LP

I.(x) > <x,7> - IF*(g) for all x e L,

and hernce T (x) > -« for all =x ¢ Lg. Therefore Iy 1s proper, as
claimed.
Slnce I is proper, it follows by Theorem 30 that T., is

c(Li,LE)—l.s.c. and in partiecular 1.3.c. in the norm topology. But a
finite convex functionzl having this property on 2 Banach space 1s
necessarily continucus everywhere [21; 7C ], and its conJugate on the

duzl Banach space is thenweak*-ccercive [22], [21]. For 1 < g < =,
® #
g = Lg, and I,y = If {Thecrem 3C), so0 (b) follows without

further ade. Tor g = », the dual Banach space can be identified with

we have L

L; x Li]ﬂg as In Theorem 3T, yleldlng for the conlugate funetional the
representation
*
(3.18) If*(x,z) = If{x) + JG(z),
where

i1

J.(z) = supf{z(y)] v ¢ 1Y with T4y} < +m=},
i n £

In faet, JC(Z) = 4w for all =z # 0, because Ton is belng a2ssumed
finite throughout Lg. Thus {2.16) tells us that the level sets of
#

*
If* are esgentislly those of If, and the weak*-coerelvity of Ty is

nothing other than the c[Li‘l,LE)—coercivity of T..
(e) = (c). Tor the case where 1 < q < «, we have
Tenly) < ally||® + fodp < +=  for all y LE.

Since If' 1s a convex functicnal, this implies either If, 1s finite

throughout Lg, er I.4 = -o; but the second posslbility has been ex-

cluded by assumpticn. TIf g = +e, we again get the finiteness of Trw
(and thereby the same conclusien), in observing the following. Given_
any r » 0, choose a finlte set {yl,...,yn} in =" whose convex
hull contains every vy e B" with |¥] < r. Then since f*(s,-) is
canvex, all such ¥ satisfy

f*(s,y) < maxT=1 f¥(s5,v,) (summable).



(d) = (e) Condition (GD; - i
* b
(Gq) iz satisfied by , at lc 4 ®l;  this
is: verified by taking conjugates on bothn pidos o the {nec Lies in
question. In the case 4 is the
assertion that for each o > 0 &b such

that

#
This is implied by (G_), as seon paragraph,

and 1t Implies in turn that if*(ﬁ' ¢ 4m  Tar The as-
sumption in {4) that If(x) < o © i e 1) 2 cases
(3.17) I.F*E:r’j Rt s .’:.. 54 v Foart

and combining this wilth the facts ‘=t mopt Loned we sbtain {(d) = (e).
To ecomplete the verification of (s =

fact already established, that (e} iy

properness ol If.

I £ and

I 1s continuocus at 0

id

in particular, the convex set

ers

has a nonempty rt-interior contain

eVETY nonzero

. oa . + . . i
linear functional on L]_1 which iz bounded above G is t-continuous

and consequently corresponds to an element of LH. Ir is no such

o
functicnal, then,by convexity, G is of Lﬂ, anad dane (in
A ; . e e 1 -
view of the additionsl fact that (2.17) any ¥ « Ln with
IT.(x) ¢ 4= and at least one such x is assumed in {a) to exist).
[‘ H]

Therefore, suppose 0 # X « L;,

(3.18) w > 8 > Fup<X,y>
vel

Let {jk| k=1,2,...) bte a maximizing seauence for the supremum in
{3.18). DMNow define (yk| k= Bl ecursively as follows. To

o =
start, y¥° = 0. Given yk i let

- — k-1
Yf'\s) if x(s)ey, (s} > xle)ey (s),
yi(s) =

Then ¥ ¢ G for all k, and the expression ?(s)'yk{s} iz nonnega-—

tive and nondecreasing in ¥k, with Inteersl bounded above by o
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according to (3.18). Denoting by «als) the 1imit as k + e which

]

exlsts a.e., we have

= .k
(3.19) fady = 1im<X,y™> = sup<X,y>.
e vel

In farct, then

{3.20) yoe G =Xx(g)y(s) < als) a.e.,

for if y were a function contradleting this Implication,we would get

a contradiction to fudu being the supremum in (3.10) by considering,

~7y
fer k sufficiently large, the functiorn ¥' ¢ 3 defined by

yis) 1f x(s)ey(s) > T(a)-y¥(s),

by

yo(s) if X(s)-y(s) < X(=2)-y"(s)

We thus have

(3.21) GcH={ye L:[ x(s)+y(s) < ale) a.e.l}.
Since G has a nonempty t-interiocr, so dees H, and 1t follows that
the peolar set ;)

with

in Ly 1s U{L:,Ln)—compact. Applying Corecllary 3IF

r(s) = {y ¢ B"| x(s)-y < uls)},
one finds that

sup<x,y> = [ A(slals)y(ds) 1if =x(s) = x(s)x(s)
yeH 5
with A(s) > 0 &z.e.,
and otherwlse the supremum is +w=. Thus " consista of 31l measurable

8
functions x of the latter form wilth

[ A(s)[X(s) |u(ds) < = and [ A(s)als)plds) <1

E g
(where a(s) > 0). Actually, since G 1s a t-neilghborhood af 0 Ain
(3.21), it 1s in particular a neighborhood of 0 in the norm topology,

and there exists, therefore,some e > 0 such that ¢|%(s)| < alz) z.e.

Hence _ N

f r(s)als)n(as) < 1 = M) |x(s) |ulds) < 7,
8

and we see that

B® = {a%X] A(s) > 0 a.e., [rmdy < 1}.

We claim the c(Li,L:}—compactness of this set 1s impossible with vy
nenatomic., Indeed, if u iz of this nature, we can find a measurahble
set T with 0 < u(T) < =, together with number & > 0, such that

6 < |x(s)] < 571 ang

=3

< als) < 6_1 For all = e T,



)

3+ ix is then an is

The mapping

{which is necessarily infinlte-dimaviztnmil]

1

L,

n with the property that the

e

*

T

(T

the unit ball of Lou),

E,

finite-dimensions

implies, inadmlssibly, that is

50 LI(T,au) is

{a) = (&) for u nonatom
hawve If and Ef* conjugate to
cherefore implies If* is continuc
[22]. 1In particular, for some =& =
(3.22) li¥ll < &= Ioiv)

Because U

(c) = (b)

iz nonatomic,

above shows (even 1f the

Lmass

is relat lve

rane
n Huban
Ly nonneratlve o
= e
] ‘II

' G

the maneuvor

rler,an)
ace af

art of

This

¢ 5 x R,

required to satisfy E|y1|| < e} tihz
slmost every & ¢ &, For this reascn, wo can supp
generality 1n the rest of the proaofl, Lhs actually
(3.23) f¥(s,y) 1s Pinite for all s e & and y e M.
Define
(3.20) 8(s,n) = infi-f*(s,y)| (ly|/2)3 < n} for (s,n)
so that
(3.25) 8(s,n) < -f*(s,0} if n > 0,
(3.26) g{g,n) = += if n < 0
Tt will be encugh tc show the exlsfence of ¢ « L? and b € L*
that
(2.27) B(s,n) > cls)n - bis) a.s.,
since then by the definition (3.24) of & we will have
f*(s,y) < le(s)|n + b(s) whensver (lv]/e)? <,
and conzequently
£4(s,y) < aly|? + ble) for a = el /e
We shall ebtain this existence by applying some of the preceding theory
of intepgral functlonals to Ie on  L7.
To ses the normality of 8, we loock at the representation
(3.28) Bl=s,n) = inf ¢(s,n,¥),
yeR™
whers

dls,n,y)

~f¥(s,y) 1if

4+ ptherwize,

(ly]/e)? < n,
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We have ¢ itself normal by 2M, because ¢ is the sum of -f% (norm-
al by 2C) and the indlcator of a closed set of paire of (n,y) that
does not depend on s; hence 8 is normal by 2R. It is evident from

(3.25) and (3.26) that I. on L has the properties

a %
(3.29) I,(n) < —If,(c) < += for all n > 0,
(3.30) Ia(n} = += for all n % 0.
We claim next that
(3.31) Io(n) > -8 for all =n >0 with [ndp < 1.

For, suppose this were viclated by a certain n e L}. The set

r(s) = arg min ¢(s,n(s),¥)
n
veR
is closed and nonempty by the continuity of [¥*(s,y) in y, and T
is a measurable multifunction by 2K and 2P. Hence by 1C there 1s
a mezsurable function y: S » " such that vis) € I'(s) for all s,
i.e.
-f#({s,v(8)) = a(s,n(g)) for all =,

(l¥(s)]7e)% < n(s) for all s.

The latter implies ¥ « Li and [lyll € e, sinee [ndu < 1; the

former then yilelds
Toa(y) = =Ig(n) < 8,
contrary to (3.22). Thus (3.31) holds as claimed.
Now for k = 1,2,... let
(3.32) e, (s, ) = max{a(s,n), 8(s,0)-kn}.

Then @, 1s another normal integrand (by 2L), and T satlsfles, like

B
k
15> the conditions (3.29), (3.30), (3.31). 1In addition, we have
#®
6,(s,-k) ¢ -6(s,0) for all s e 3,
50 that, conslidering -k as 2 constant function in LT, we have
Ieﬁ(—k) < =I,00) < B.

The last part of Corollary 3J can therefore be applied to By, the

measure u  belng nonatomle, and this yilelds for every

L inf{lei‘(n)l n e Li}

the relation

{n « Lil EB;,(n) < a) = s(L%,L;}-cl{n € L}! Iak(n) < al.



In particulsr, il also o < -f, Lb

**(‘-'1) < al c {n e~ ' . Ty

in « Lil Iy < | ¥

G305 (3.31) aand the wank neednesn Al the set

(3.33) Togaln) < =8 =0 o
"k
But (3.32) z2nd (3.2%5) Imply
_¥(5,0) > o s #4 : .
i 2 By ,
where the firat term fg summable T P bt o A enBured by the

lebesgue convergence theoram,

Te*“{n) = 1im IG?*(HJ fioe nll
k

Lo
Therefore by (3.33),

Toeulnd < =B =7 >0, [rop

We also have A%¥¥(g.n) = 4= for =n < O by (7
Togaln) = #= if & 2 0.

This shows that

for all n ¢ L7

la**(n) # | n|| T )
Sinece also by (3.29), we have
IB**(”) < —Tf*EC) < 4o for 211 n > O,

and we are able to conclude that

lim inf I.,,(n) is finite.

[Inff+=0  °
implies for the convex Tunctional T .. that 1ts conjugate
LT is proper. But by Thecrem 32C this conjugste 1s
# —
Tous = Zpeww = Lga-

The sufficient conditicon for compact level sef:

Theorem 3X by (e) with q = =

was originally proved in Rockafell

?
and generalizsd in [8] te cases

and  (5,4)

complet
aladier [25].

verslions generaiize

e, For

=

related
For verslons of the

see RBerlicecchi and

th T

rezults, see zlso Castaing [23]

(s

Lasr

In

[26] and C1

the classical theorem

replaced by a Banach sp
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Theorem 3K and its proof yield,wlth small effort, the following

theorem on continulty. Here the equivalence of (b) and (o) for nenatomic

measures reflects facts noted in more general contexts by Bismut [28]
and Clauzure [27].

3L. THECREM (Continuity). Let f e a
5 1 <p <=, Then among the following
conditions the implications (a) < (b) « (c) = (d) always hold, with

normal convex integrand on

5 o= Hn, and consider If on

the cenditiens all actuzlly equivalent if the measure space 1s without

atoms and p < e,

(a) I, 1is finite on a neighborhcod of an element X « LE_

(b) If ds finite 2nd continucus at an element X « LE.

(e} TI. is finite and continuous everywhere on Lg.

(d) £ satlsfies the growth condition (G;), and
Ip(x) > ~= for at least one x ¢ I,

PROCF. fTrivially (a) « (b) « (c). The proof of {a) = (b) can be
effected by a slight refinement {localization) af the argument in
Theorem 3K that (¢) = (b) This shows at the same time that (¢) is
equivalent to the seemingly weaker assertion, (c'), that Ir 1z finite

=]
everywhere on LE. But {d) = (2'), as shown by the beginning of the

argument in Theorem 3K that (g) = (e)
(b) = (d) for u nonatomic, p < =. Let e(s,x) = f{s,x(s)+x).

Then g 138 a normal convex integrand (Propesition 2M). The convesx
functlonal TF 1s finite and continuous on a nelghborhocd of the orligin

21

*
and this implies that the conjugate I = Iy by 3C. Applying
g

Theorem 3K to g*, we see that g s=satisfiles EGp), and hence by the

P
in Ln’

T

argument Just glven, IS is finite and continuous everywhere, Hence
T
be retraced with X replaced by 0, showlng that f 1t
¥
G ks CEE
( pJ Q.E.D

£ 1z finite and continuocus everywhere, and the preceding argument can

or
I
m
=
—
'
o
o
a
5l
L]
1
in
0

3M. PROFOSITION. Let f be 2 normzl convex lntegrand on 3 x R,
and consider I. on LE, 1

2 p £ =, 3uppaose I. 1s finite o a

neighborhood of an element x « Lg. Then there exists at least one
measurable functleon y: & -+ i satisfying

yis) ¢ 3f(s,x(s)) a.e.,

and meoreover every such ¥y belongs to L% (1/p + 1/ = 1) and

therefore furnishes an eglement of 3I.(x).



PROOF, This 1s obtailned by refineoar
that (c) = (b).

imR

For generallzations of Froposit
and Clauzure [27, Frop. 51.

Further properties of integral

runctionsls on L~ spaces, connected
with the theory of 1liftings, may bhe found in Tevin [31
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