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Introduction.

. In Lagrange problems in optimal control and the calculus of varia-
tions, an integral functional of state and velocity is minimized over a
class of arcs in Rn satisfving an endpoint condition and other constraints,
For problems with joint convexity properties in state and velocity, a
theory of duality is available in the context of arcs which are absolutely
continuous. However, for inherent reasons, a fully satisfactory treat-
ment of state constraints is not possible without an extension of the
basic foundations so as to admit arcs which are merely of bounded varia-
tionn, Such an extension in symmetric form is carried out here for the
first time. Results are obtained on the characterization of optimal arcs
in terms of a generalized Hamiltonian ''equation', as well as on their
existence and the possibility of identifying or approximating them by

absolutely continuous arcs.

1. Lagrange Problems with Abstract Constraints.

Let [tO’tl] be a fixed, bounded interval. An extended-real-

valued function h on [to,tl] x R" is said to be a Lebesgue-normal-

integrand (or respectively, a Borel-normal integrand) if the epigraph

epi hit,-) = {(z,a) ¢ R" XR| @ >h(t,z)}

is closed and depends Lebesgue (resp. Borel) measurably on t, in the

m .
sense that for each closed K TR X R the set

{te [ty,t] | € N epihit, )+ p}
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is Lebesgue (resp. Borel) measurable, This concept has been introduced
in the study of integral functionals. General results covering all facts
cited below may be found in [1], but we shall be concerned mainly with
the case treated extensively in [2], [3], [4], [5] where the integrand is

convex and proper, i.e, h(t,-) is for each t & convex function which

is not identically 4+« and which nowhere has the value -co,

Normality implies that h(t,z(t)) is Lebesgue (resp. Borel) meas-
urable in t when =z(t) is. The closedness of epi h(t,+) is equivalent
to the lower semicontinuity of h(t,.). In fact, h is Lebesgue normal
if and only if the latter property holds for every te [to’tl] and h is
measurable with respect to the ¢-algebra in [tO’ tl] X R™ generated by
products of Lebesgue sets in [tG’tl] and Borel sets in R, However,
the same is not true with '""Lebesgue'' replaced by ""Borel''; the sufficiency
fails.

Let & be the space of all absolutely continuous functions on the

fixed interval [to,tl]. By a Lagrange functional on ¢ , we shall mean

an extended-real-valued functional of the form
t

rl e
(1.1) IL(x) = J Lit, x(t}, =xit))dt ,
£
0
where the function
(L. 2) L:tg,t] X R' X R'=RU {+w}

is & Lebesgue-normal integrand called the Lagrangian, Normality ensures
that L{.,%(-),%(+)) is Lebesgue measurable {defined almost everywhere)
for each xe ¢. We adopt the convention that ]‘L(x) = 4w if neither
the positive nor the negative part of L{:,x(-),%(-)) is integrable over
[tD’tl]' Then IL is well-defined on all of ¢ , although both +e and
-%  are generally possible as values.

For each choice of x. and x, in Rn, there is an associated

0 1
problem of Lagrange:

(1.3) minimize IL{X) subject to x{to} =xo,x(t1} =%
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Here the minimization is formally over all xe¢ & , but because of the way
4+ is admitted certain constraints are abstractly represented. Unless

IL is identically 4+ on ¢ , the minimization effectively concerns only
the arcs x such that

(1, 4) x(t) ¢ E(t, x(t)) a,e, (control constraint),
{1, 5) ®(t) e Xt a,e. (state constraint),
where

(1.6) E(t,x) = {ve R | Lit,x,v) < 4=},

(1.7) X(t) {xe RT | B(t,x) # ¢} .

The abstract model (1, 3) thus serves for a wide variety of prob-
lems. It appears very economical for existence theorems in optimal con-
trol (see [6]). In that context it is natural (and virtually essential) to
require also that L{t,x,v) be convex in v for fixed (t,x). Fenchel's
notion of conjugate convex functions [7] then provides a one-to-one cor-

respondence between such Lagragians L and certain functions
T n n f
(1.8) . h:[to,tl]x R X R = RU{xn}

called Hamiltonians, namely

(1.9) H(tJX,p} = 5Up = {p AV L{t,X,V]} L
ve R

(1.10) Lit,%,v) = sup {p. v - H(t,x,p)}.
Pe R

Existence theorems in the context of x¢ ¢ typically entail the assump-
tion that H(t,x,p) < += forall (f,x,p). (This is a growth condition on

the functions L{t,x,-).} Note by way of contrast that
(1.11) H(t,x,p) » -0 <> xe X(t).

In the present paper we shall be occupied with extending the
duality theory developed in [8], [9] and [10]. This requires L(t,x,v) to

be convex not justin v, butin x and v jointly. We therefore assume

henceforth that the Lebesgue-normal integrand L on [to,tl] X RZn is
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convex and proper (as defined earlier), The convexity of L{t,x,v) in

{x,v) is eguivalent to the concavity of H(t,x%,p) in x for each p.
(Trivially, H(t,x,p) is always convex in p.) It implies the convexity
of the set X{t) and the functional IL 5

A generalized Hamiltonian "equation” can then be formulated
using concepis of convex analysis. For each te [tg’tl] and (x,p) e
R? x ’" , let BH(t,x,p) denote the set of all subgradients of the con-
cave-convex function H(t,.,-} at (x,p) [7, p. 374], i.e. the closed
convex set consisting of all (y,q) ¢ Rn X Rn such that g is a subgra-
dient of the convex function H(t,x,:) at p , while vy is a subgradient

of the convex function -H(t,-,p) at x . The generalized equation is
(1.12) (-B(t),x(1) e BH(t,x(t),p(t)) a.e.

It was shown in [9] that if H(t,x,p) > - everywhere (no state
constraints}, solutions xe¢ ¢ to Lagrange problems (1, 3) can typically
be characterized in terms of {1.12) being satisfied for some pe & . More-

over, such an arc p solves a parallel Lagrange problem corresponding

to a certain dual Lagrangian,
M o[t t] X R X R RU{+w0}.

The latter function, which is likewise a Lebesgue-normal integrand, con-

vex and proper, is related to L by

(1.13) M(t,p,8) = sup{p-v + s-x - Lt,x,v}},
X,V
{1,14) Lit,x,v)] = supq{p-.-v + s-x - Mlt,p,s)}.

P,s
The dual class of Lagrange problems

{1.15) minimize IM{p) subject to p(to) = Pys p{tl) = pl ,
also involves abstract constraints, in particular

(1.16) p(t) ¢ Pt} a,e. {dual state constraint},
where

(1.17) P(t) = {pe R' |Tsc R’ with M(t,p,s) < +} .
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It can be shown from (1,13) and (1. 9) that

(1.18) P(t) C {pe R" | H(t,x,p) < +%} C cl P(t) for each Xe X(t)
(see the remarks in §4 just prior to Theorem 2) and therefore

(1.19) P(t) = R <=> H(t,x,p) < 4o forall (x,p).

The absence of effective state constraints for L does not imply
the absence of such constraints for M , and therefore the Hamiltonian
condition (1,12) does not lead to a fully satisfactory theory, from the
point of view of duality, unless Hft,x,p) is actually finite everywhere.
On the other hand, the introduction of state constraints apparently re-
quires far-reaching extensions, not only in the formulation of the "equa-
tion'', but also in the scope of the problem.

Experience in the theory of optimal control leads us to expect that,
if the arc x is really affected by state constraints, this should be re-
flected in optimality conditions by the possibility of the dual arc p hav-
ing certain jumps. Thus both the Hamiltonian "equation' and the dual
class of Lagrange problems must be broadened to allow for p to be not
absolutely continuous, but merely of bounded variation. ‘

We have demonstrated the feasibility of such a generalization in
[10], but in the context of a particular structure for L which deoes not
carry over to M . It is desirable to broaden this to a more symmetric
framework. Clearly, this means by duality that arcs x which are only
of bounded variation must be admitted into the original class of Lagrange
problems.

This then is our goal: to extend the convex functionals ]L and
IM from ¢ to the larger space £ of arcs of bounded variation in such a
way that optimality in the Lagrange problems is characterized by an ex-
tended Hamiltonian condition. It happens that this can be accomplished
without, as might be feared, losing contact with the original problems:
the extended problems will be seen usually to differ only in allowing

“jdeal" solutions when solutions in the sense of absolutely continuous
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arcs might not otherwise exist, One reaches in this way the conclusion
that solutions in the latter sense, when available, are optimal in a wider
context than has been realized.

The results obtained here largely encompass the ones for state-
constrainted Lagrange problems in [10], as well as a necessary condition
derived by Halkin [11], although we shall not go into the details at this
time, We plan to show later how to apply them with slight further devel-
opment, to problems of Bolza to get generalizations of various other

theorems of [9] and [10].

2. Arcs of Bounded Variation,

Every function x: [to,tl] —~ R of bounded variation gives rise
to an R'-valued regular Borel measure dx on [to,il]. The atoms for
dx occur only at discontinuities of x , of which there are at most count-
ably many. At any discontinuity, the right and left limits of x exist:
if these are equal, there is actually no atom, and the discontinuity is
said to be removable, This cannot be the case if the discontinuity is at
f= to o S i t1 .
Removable discontinuities have no useful role in our development,

and we therefore regard as equivalent any two Rn—valued functions X

and x, of bounded variation on [tD, tl] such that all the discontinuities

. - s o A n
of xl-xz are of this type. An arc of bounded variation in R over

[to, tl] is defined to be such an equivalence class, and the space of all
these arcs is denoted by &7 . Nevertheless, where there is no harm in it,
we often speak of an element x of & as a function, being careful only
to associate with x objects that would not be aifected if x were re-
placed by an equivalent function, We thus regard the space ¢ of abso-
lutely continuous arcs as a subspace of 2,

Observe that we can unambiguously associate with each arc
X ¢ the endpoints x(to} and x{zl}_. as well as the value x(t) at any
te (to,tl) where dx does not have an atom, Furthermore, there are
uniquely determined functions X, and x from [to,tl] to Rn, right
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and left continuous respectively, such that x, (t) = x (t) = x(t) at all

the nonatomic points just mentioned, while

(2.1 ® (t.) = x(t.) and XL{’El'_I = xt

-0 1} 1
It is sometimes convenient to use the notation
(2,2) =(t+) = X+(t'} and x(t-) = X‘_(t] for t{] < t< tl.
The quantity
(2.3) Ax(t) = x(t+) - x(t-) = =K (t) - x_[t}

4
is called the jump of the arc x at t, and if it is nonzero there is an
atom of dx at t with this value.

There is no ambiguity in associating with each arc x¢ 2 the
derivative function % = dx/dt, since this is only defined in an almost
everywhere sense anyway. (& function of bounded variations is differ-
entiable almost everywhere,) Strictly speaking, % is an element of the
Lebesgue space :,; = .1‘.1 ([te,tl],Rn). We denote by x dt the absolutely
continuous part of the measure dx. The singular part of dx, which may
of course consist of more than just the atoms described above, can be
represented as (dx/de)de, where df is some nonnegative singular
measure (a regular Borel measure}, and dx/dé is the Radon-Nikodym
derivative of dx with respect to d8 .

The following formula for 'integration by parts' will be needed,

Propositlion . Forany X« & and pe &, One has

t t
x(t) - B(t) - xtg) - Bltg) = [ xdp + [ dx
(2.4) ’ °
b 5
= j x_dp + f p%dx
% %
Proof. Let x: (~ca,+00)—+ R be any function whose restriction to [t ,t,]

0’1
belongs to the equivalence class constituting the arc x and which has
the constant values x[tO} on (-w,to} and x[tl} on [t1,+<>0)‘ Similarly

B oif-00,+0) = R corresponding to p . Then ¥ and P are of locally

bounded variation, and over any bounded open interval (a,b) we may
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apply an integration-by-parts formula furnished by Asplund and Bungart
[l2, Prop. 8.5.5 0n p, 374]:

o

do + [ pdx = x(b-)- B(b-) - x(at) - pad)
ia,b) (a,b)

+ ) [x(6) - X(ta)]+ [Blt) - p(t)] ==Y [x(14) - X(B)] - [(t4) - BB)],
a<t<b a<t<b

Taking (a,b) to contain [to’tl] and

X(t) = x,(t) and B() = p (1) for ty <t <t

0 12
we have x(t+) - x(t) = 0 and p(t) - p(t-) = 0 forall t, so that
the two sums reduce to zero and the formula turns into the first equation

in Proposition 1. The second equation follows by symmetry,

3. Extended Lagrange Functionals.

The question of how to extend the Lagrange functional IL from
arcs in ¢ to arcs in A has a natural answer in the light of recent de-
velopments in the theory of convex integral functionals [5]. Since
L{t,x,v) is a lower semicontinuous, proper convex function of (x,v) for
each t, the guantity
(3.1) rL(t,z) = lim [L(t,x

A=t o0
is well-defined and independen: of {xo,v

0rVo ¥ 22 - L{t,xo,vo)]/h

), @s long as L{t,xo,v } <+,

and as a function of z it is lower semico?'ltinuous, positively hor?mge-
neous, convex and proper [7, §8]. In fact, rL(t, -) is the so-called re-
cession function of the convex function L(t,x,-} for every Xxe X(t).
Since the conjugate of L(t,x,+) is H(t,x,.) by (1,9] it follows from

{7, Theorem 13,3] and (1.18) that
(3.2) r(t,2z) = sup{z - p|Pe PO} }.
We extend the functional IL from & to £~ by the formula
t t
Al . 1
(3.3) I (x ={ Lit,x(t),x(1))dt + { r(tE(t)de() for xe B,

o 0
where £ dO is any representation of the singular measure dx - xdt
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(with d0 nonnegative and £ Borel measurable). Here our earlier con-
ventions about #¢ remain in force for both integrals, and IL{x) is inter-
preted as +w= if the integrals are oppositely infinite; the requisite norm-
ality of the integrand r. is discussed below, The expression is inde-
pendent of the particular representation £df, because r_(t,-) is posi-

L
tively homogeneous: if £'d0' were another representation, we would

have
. de de' g
;ajr = E d_ a.e, drv with dr =do + do? :
and consequently
t . t
A A dO' -
Jto r(t,E(D) Fo(BdT(Y) = fto r(6,E1(0) S (DdT(t) .

Note that if the singular part of dx is purely atomic, one has
1.

(x) = jt LLit, x(t), x(t)dt + Y r (AR .
0

L
tp<t<t

Of course, if xe¢ & then (3,3) reduces to the earlier definition (1.1,

(3.4) L

because then £{t} =0 and rL{t,D) = B

For (3. 3) to make sense, we need r_(t,£(t)) to be Borel measur-

I
able in t whenever £{t} is, so that the integral can be taken with re-
spect to a general Borel measure df. An appropriate condition ensuring
this would be the Borel-normality of - This can be translated into a
condition on P{t) .

no. e
Proposition 2. The integrand r. on ] X R" is Borel-normal if and

1 28 et
only if the convex set ¢l P(t) depends Borel measurably on T .

‘

Proof, The second property is equivalent to the Borel-normality of the
integrand

B _{ low if pe clP(t)

if pe cl P(t)
[2, Theorem 3]. But h(t,:) and rL{t, +} are conjugate to each other by

(3.2), and normality is known to be preserved under conjugacy [4], [2].
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Of course, IM is extended from & to 5 in the same manner.
In analogy to (3. 2) and Proposition 2, the corresponding function rM

satisfies
(3.86) Tyltswl = sup{w-x | xe X(t) },

and it is a Borel-normal integrand if and only if cl ¥(t) depends Borel
measurably on t.

For our purposes, the Borel measurability of the multifunctions

(3.7) t= cl X(t) and t- cl P(t), toi t < tI 4

while ensuring that IL and IM are well-defined, is not a strong enough

property for the resulis of real interest. We shall need to assume:

(Sl} the multifunctions (3,7) are upper semicontinuous,

The upper semicontinuity of t - cl X(t) means that the graph {(t,x)]|

xe cl X(t)} is closed in {to,tl] e Rn , or equivalently that the set

(3.8) {te [ty,t]

KM el ¥(t)+ g}

is closed for every compact K C R . Our main duality theorems will
actually necessitate the continuity of the multifunctions. Continuity
equals upper semicontinuity plus lower semicontinuity. Lower semi-
continuity means that the set (3.8) is open relative to [to’tl] for every

open KC Rn ;

Theorem 1. Assume (S5 Then the extended-real-valued functionals

l)'

IL and ]'M are well-defined on 2 and convex, Moreover, the inequal-
ity
¥ = i
(3591 ]'L{X) + IM(p) Ed X{tl, ?(tlJ X(to) P(’EO}
(with the convention 4+ -0 = 4o if necessary) holds for all arcs x ¢ 3
and pe# such that
(3.10) x(to) e cl X{t'}. or p(to) e cl P(to) i
.and
(3,11 x{tl] e cl X(tl] or p{tl) e cl P{tl}.
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Proof. The upper semicontinuity of the multifunctions (3.7) implies

their Borel measurability so rL and rM are Borel-normal by Proposition

2, and hence J_ and IM are well-defined. We next show convexity.

Let xl and x be any two elements of 7 and let

o= s N P 0 B ke 48,1

Represent the singular measures dx - %'dt in the form gide , as is in-
deed possible with a common df. Then dx - xdt-= £d8, where £ =
(1« .\)gi' + ?\gz, and we get -

; 1 2
I = {(1-Xx) IJ——(.X) A (X

from the definition (3, 3) and the convexity of L{t,:,*,) and rL(t, s
keeping in mind the convention that 4% - = 4o |

Of course, the same convention makes (3.9) trivial unless both
IL(x] < 4o and IM{p) < 4o , in which case the state constraints (1. 5)
and {1.15) must in particular be satisfied. The assumed upper semicon-

tinuity of the state constraint multifunctions then implies

(3.12) X (the clX(t) and P (t) ¢ ol P(t) for tj < t<t,
(3.13) x (t)e clX(t) and p (t) ¢ ol B(t) for t < t< t,

so that by (3. 2) and (3.6) we have

{3.14) for all te [to,tl), rL{t,g(f_)) > £ (1) p+{t)
and 1 (t,m(1) > W) - x (D),
(3.15) for all te {to,tlj, rL{E,g(t‘:) > E(1) (),
and rM(‘t,Tr(t}) > w(t) - x_l_(.t] 5
where £d8 and mdo represent the singular measures dx - xdt and

dp - bdt. The first equation in Proposition 1 can be expressed as

t t
(3.16) 5 o =j_1(x-;’:.+5<.p)dt+f (x_ - m+p_-£)de
to T'O (tG,tl)
+ x+{t0) . Ap(tO}I + p(toj - A x(to}
+ X(;L} . Ap{tl} + p_(tl) e le{il}
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We then have

1 t
(3.17) T(x) + I, (p) - x p‘l = [ hue, %%+ Mit,p, B)-x-b - k- plat
L M tO +
0
+f " {rL(th)'g'p_ + TM(t,TF)-TI'-XJI_)dB + CU{X, P} + cl(xyp))
(ty0t,)
where
(3.18) Sol%sP) = r (t, AX(T ) - Ax(ty) + Blty) + 1 (t, AB(t))
- Aplty) « x,(ty)
(3.19) o(x,P) = T (t,Ax(t)) - AX(t) - B_(t) + 1, (t,Ap(t))

- ;’.\p{tl} . x{tl) 7

The two integrals on the right side of (3.17) are nonnegative by virtue of

(3.14), (3.15) and the inegquality

(3, 20) Lit, x(t),x(t)) + M(t,p(t), B(t)) > x{t) -B(t) + x(t) - D(L) ,

which 1s a consequence of the definition (1.13) of M ., If x{to} ¢ cl X(t.)

o

and p(tl) e ¢l :?(tl}, we also have from (3.2) and (3.6} the nonnegativity

of cD(x,p) and cl{x,p} in {3.17), so that (3.9) is true as claimed. The

other cases where (3,10) and (3.11) are satisfied yield the same conclu-

sion by consideration of the following expressions equivalent to (3, 18)

and {3.19):

(3.21) CDTX,P} = I’L(’EO,AX(EO}} - &X{’ED) : P+(t0) + rM(tO’AP(tU”
& &p{to,‘ ; X(to) ,

(3,22) Cl(X, B = rL(tl’Ax(tl)) - Ax(tl) . P(tl] + rM(tl,Ap{tl))
- &p(tl) = x_(tl) ;

4. Extended Hamiltonian Condition,

A vector w is said to be normal to a convex set C C " at the
point C if forall z' ¢ C one has w- (2' -2) < 0 [7, p, 215]. If

z e int C , this holds only for w =10,
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We shall say that the arcs xe 7 and pe¢ 2 satisfy the extended

Hamiltonian condition if {(1.12) holds,

(4.1) x+(t) and x (1) belong to ¢l X(&) forall t,
(4.2) p,(b) and p (t} belong to cl P(t) forall t,
and for any representation

(4.3) dx -xdt = ¢£de and dp - pdt = 7do
(where ¢ and w are Borel measurable and df is nonnegative) it is

true that

(4,4) m(t) is normal to cl X{t) at x+(t) and x_(t) almost everywhere

relative to dé ,

{(4.5) £(t) is normal to cl P(t) at p_l_{t) and p_{t) almost everywhere
relative to de8 .
It is easily verified that the validity of (4, 4) and (4, 5) does not depend
on the particular representation (4.3).
The following jump condition is implied by (4. 4) (and equivalent

to it if the singular part of dp is purely atomic):
(4.6) Ap(t) is normal to cl X(t) at x, (t) and x_{t} for all te [to,ti},

On the other hand, if x(t) e int ¥{t) for all t in some subinterval (a,b},
we have by (4, 4) that wde is the zero measure on (a,b), and therefore
p is ab_solutely continuous over {a,b). Similar observations can be
made about (4. 5).

It is important that, in this way, conclusions about whether x
or p must actually be absolutely continuous in certain cases can be
drawn from the Hamiltonian condition_s" itself. For example, if there are
noeffective state constraints associated with L (i.e, ‘_x(’t) = Rn), the

n
R (a property amounting

condition implies pe ¢ , while dually if P(1)

to a growth condition on L } then xe & .
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Proposition 3. Assume (Sl}' Then any pair of arcs xe & and pe &

satisfying the Hamiltonian ""equation' (1,12) also satisfies the extended

Hamiltonian condition,

Proof. The subgradient set 8H(t,x(t),p(t)) is empty unless x(t)e X(t)
and p(t) ¢ P(t] [7, Theorem 37.4], Therefore (1.12) implies (1.5) and
(1.16), From the upper semicontinuity in (3.7) and the continuity of x
and p , we then have (4.1) and (4. 2). Since (4. 4) and (4. 5) are trivial
for arcs in ¢ , we conclude that x and p satisfy the extended o

Hamiltonian condition.

In order to describe the relationship between the extended
Hamlltonian condition and optimality in problems of Lagrange, we intro-

duce the functions

(4.7) fL{XO,Xl] = inf in problem (1, 3) for x¢ 7,
(4,8) fﬁ(po,pl) — inf in problem (1.15) for pe¢ 8,

Elisaim) 4f %oe el X{to)s % ¢ el ),
@9 £ %) = L7 0 0’ 1 1

i +o otherwise

B . i

oy {po,pl) if Py € cl P(EO}, P, ¢ cl P(ty),
(4,10) fM{PO,PF} =

+x otherwise ,

Condition {Sl) is always assumed in this context,
The reason for introducing fL in addition to f; is that sometimes
we shall want to resfrict attention to arcs x ¢ 5 satisiying the terminal
conditions Xg ¢ cl X{to} and X, ¢ cl X[tlj, which do not follow from
IL(X) <+ due to the possibility of jumps at 1:0 and tl . The next re-
sult sets forth some basic relationships between these optimal value

functions.
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. 5
Proposition 4, Suppose (Sl) holds, Then fL,fL . fM and f,'a are

well -defined, extended-real-valued functions on R"X R7 satisfying

5
(4.11) fL(XO’Xl) + fM(pr’pl) 2 x]. r pl - xO . pO ]
B
{4:12) f&go%) + £ (PesP) 2 X - P - X5 Py,
'8 1 1
{4.13) fL(XO;XlJ —xfr‘f I{f (x5 1]' +r (t 2 Xg=Xg) + rL{tl,xl-xl)} .
0’1
= inf ' -
(4.14) M“’o’pﬂ & .{fM{pO’pl) *+ Ia(torPpPg) + Tyt Py =P} }
PO;Pl
(where the convention ® - = Lo is understood).

Proof, All but the last two formulas is apparent from Theorem 1, To
demonstrate (4.13), we consider arbitrary pairs of arcs x and x' in £

which agree on (t_,t,) but have possibly different endpoint pairs, de-

9%+l

noted by {xo,xl) and :xb,.xi]. Let X be the arc which agrees with X
and x' on {to,tl) but is rdght-continuous at tD and left-continuous at
tl' Then by the definition (3. 3) of ]L:

IL(X) = IL(K} + rL(tO;X{tOJ' = KO) T rL(tl’xl -X{tl}) s

1 = i = I L - =

I = IL{X) +orp(ty,x(ty) - xp) + rp(tsx) = x(E)) .
But since rL{tO, +) and rL(tl, -) are convex and positively homogeneous,
we have

L{O,x{g)-x}+r(x‘ x)>r(t0,x(t}-x),

- 1 - -

rL(tl"xl xl} + rL(tl,xl x(t N >r {tl 2% x{t W
Therefore
(4.15) IL(x) < ]L(x) + rL(tG"XO - xo) +r (tl, o xl) B

and, for this reason, at least < must hold in (4.13). The truth of = is
seen from the fact that if x' = X in the above and Jp(x) < 4, then

equality holds in (4.15), and also x, ¢ cl X[to) and X cl X(tl] by the

0
upper semicontinuity of the multifunction t- <l X(t) and the automatic
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state constraint (1. 5). The verification of (4.14) is parallel.

=
Corollary, Assuming {Sl} holds, one has f'i = fT if

rL{tD,w} = rL{tl,w} = 4o forall w#0,
or equivalently, if P(to] — P(tl} = gY

Proposition 4 furnishes in particular the inequality
(4,16) IL{xo,xl) + fM(pO,pl) 2HIP 2 X Baa

For reasons clear from the next theorem, we shall say that (xo,xl) and

(po,pl] are endpoint pairs in duality for L and M if (4.16) is realized

as an eguation. (Neote that then fT(xo,.xl) and fT\»‘[

finite. ) An arc Xe¢ & will be called optimal for L if

{pe,pl) must both be

(4.17) T (x) = f (x=(t.),x(t

and extremal for L if there is an arc pe & (called & coextremal for L
corresponding to x ) such that the extended Hamiltonian condition is
satisfied,

The latter definitions are also applicable to the dual Lagrangian
M , but extremality in this case refers to the Hamiltonian ﬁ associated

with M in the same way that H is associated with L :

(4.18) ITI(t,p,x) = sup {x-+s - M(t,p,s)},
se RY
(4.19) M(t,p,s) = sup . {x-s8 - ﬁ(t,p,x}} .

Xxe R
These formulas, in conjunction with the previous four relating H, L and
M, vyield the fact that I—Mi{t,p, -) is for each t and p the biconjugate
of the convex function -H(t,.,p), while H(t,x,-) is for each t and x
the biconjugate of the convex function —Z:I(_t, - ,x%), This means that
-;I(t,p,x} and H(t,x,p) are equivalent ""closed saddle-functions'' of
x and p in the sense studied in [7,§34]. Among the consequences of

this equivalence and the fact (obvious from (1.17} ::1['1(154_18)"-E that
4 }

o~

(4. 20) H(t,x,p) = -w if and only if pk P(t)
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are the already mentioned relation (1, 18) and its dual
(4.21) X(t) C {xe R"|H(t,p,x) < +0}C cl X(t) for each pe P(t).

Inother consequence [7, Corollary 34.2.1] is that

(4.22) SH(t,p,®) = H(t,x,p) if xe int X(t) or pe int P(t),
Tf Pty = R" for every t(i.e. rL(t,w} is always += for
w# 0), one has -H{t,p,x) = H(t,x,p) forall t,x,p. The same is

, . n ) . c .
true if ¥(t) = R for every t {i.e. there are no siate constraints).

Theorem 2. Assume (Sl). Let x¢ @ and pe # Dbe any pair of arcs

such that ]L(x) and IM{p) are not oppositely infinite. Then the follow-

ing assertions are equivalent (and imply }L{x} and I\{{' p) are both actu-

ally finite):

{a) % is extremal for L with coextremal p ,

(b p is extremal for M with coextremal x ,

(c) x is optimal for L, p is optimal for M , and the endpoint

pairs (x{tOJ,X{t]}} and (p{tOJ,p(tl]J are in duality in the

above sense.
Proof, The cited equivalence of H(t,x,p) and -Hit,p,x) as saddle -
functions of (x,p) for each t implies that these functions have the

same subgradients everywhere [7, Corollary 37,4.1]. In fact, the

Hamiltonian "eguation' (1,12) for H and the corresponding one for H

can both be expressed equivalently in the symmetric form:
(4.23) L(t, X(t),%(t)) + M(t, p(t), (1)) = x(t) = P(t) + k(t) - p(t) a.e.
[8]. In particular, (a) and (b) are equivalent.

In light of (3.6), the normality condition (4. 4) is equivalent

{agsuming (4,1)) to

(4. 24) FM(t,ﬁ(t}) = m(t) -3 (t) = 7w(t) -X_l[t)

almost everywhere relative to de,

which at tO and tl entails
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(4.25) ( AP(‘CO}} = ﬁp(tol ¢ x (tg) = Ap(t,) -Xftol s

it

(4.26) it AR(E)) = AB(t) - x(t) = AP(L)- x (1) .
Similarly from (3. 2), the other normality condition (4, 5) is equivalent

(assuming (4, 2)) to

(4.27) TL(t, E(t)) = E(1) - P+{t} = E(t) - p_(t)
almost everywhere relative to dé ,

which at to and tl entails

(4.28) (t,AX(ty)) = Ax(ty) - p (ty) = Ax(ty) - p(ty) ,

0)
) e Bl = Ax(t?} '+ B_(tg)

Now we refer back to the proof of Theorem 1, where relations like

i
(4.29) rL(tl,Ax(tl}) = AX(t

the preceding were crucial, but appeared in the form of inequalities
rather than equations, Inspection of the argument given there shows that
the extended Hamiltonian condition, as expressed by these equations,

is in fact equivalent to having all of the alternatives in (3,10) and (3.11)

satisfied and
(4.30) IL(X) + TM{P) = x(tl) . P(tl}l - X(to) ’ P(tO) .

In view of the general inequality (4.16) and the definitions of fL and

£ this means exactly that

M r
(4. 31) IL(x) = fL(x(tO),x(tl}) and IM(p) = fM(p(to‘a,pftl)) 3
(4.32) fL(X(tD),x(tl}) + fM(P(tO);P(tlﬂ = X(tl} £ P(tl} - X(to) . P{to).-

which is (c) .

(A central role in this proof is played by the identity (3.17),
which however might fail in certain cases where terms involving both
40 and - might be present, In the proof of Theorem |, we were able
to reduce consideration to IL(x) < 4w and IM{p) < 4+ in which event
neither term in (3. 3) or the corresponding formula for ]M{p] can be 4%,
and (2.17) is valid, The same holds here in arguing from (c) to (a) and

(b), since (c) can be expressed by (4. 31) and (4, 32), and these equations
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imply the finiteness of IL(X} and IM[p}. In arguing in the other direc-
tion, we have at our disposal (4, 24) and (4, 27}, which imply the finite-
ness of the "singular' integrals in the definition of IL{X) and IM{p} .

Turthermore we have (4. 23), where the right side is summable. Thus the

integrals
t1 tl
[ "Let,x(t),%(thdt and [~ M(t,p(1),b(1)dt
o o

cannot be both +w«¢ or both -0, Since the theorem assumes J‘L(x) and

IM
that (3,17) is again usable.)

(p) are not oppositely infinite, these integrals must both be finite, so

Corollary 1. Assume (8,). Let xe @ and pe & be arcs satisfying the

1
Hamiltonian "equation' (1.12) and such that IL(x] and IM{p} are not

oppositely infinite. Then X is actually optimal for L in the present

gense of arcs in @ , not just relative to other arcs in & , and similarly

p for M.,
Proof, This follows via Proposition 3,

Corollary 2. Assume (S In order that an arc xe & be a solution to

Y
1
the Lagrange problem (1. 3) for a given endpoint pair {x

O’Xl)’ it is suffi-
Ji= Xg and

cient that x be an extremal arc for L satisfving xt

0

This condition is also necessary, if there exisis an endpoint pair

[po,pl) which is in duality with (xo,x‘l} and such that the corresponding

Lagrange problem (1,15) has a solution,

A deeper result on the necessity in Corollary 2 will be stated as

Theorem 4 at the end of this paper.

5, Analysis of Some Further Regularity Conditions,

For the purpose of the results to be obtained in §6, some stronger
assumptions on the Hamiltonian H and the behavior of the convex sets
¥ty and P(t) will be required:

(8 int X(t) # ¢ and intP(t) # ¢ forall t,

5!
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{83) for arbitrary t, xe¢ int X(t) and pe int P(t), there is a rela-

tively open subinterval of [to’tl] containing t over which

H(-,%x,p) is summable.

Despite appearances, {83} does not give special weight to the
Lagrangian L and therefore call for the introduction, at some stage, of
a corresponding assumption on the Hamiltonian ;I associated with M .
It is shown below, at the beginning of the proof of Proposition 5, that
{53) in the presence of {Sl} and (SZ) is equivalent to a stronger prop-
erty (S'S}. Moreover, (8'3} im:olves only the values of H over int X(t)
and int P(t), where H and -H agree according to (4, 22), and thus
can be viewed equally as a property of H or one of ﬁ . In assuming
(51}, {Sz) and {53}, we therefore do not lose symmetry between L and
M and so are justified in invoking the "principle of duality' as a tool in

our proois,

Proposition 5. Suppose (Sl}, (SZ,\ and (83) hold. Then the multifunc-

tions (3.7) are continuous. Furthermore, for any continuous function

%1 [tg,t)]~ R" with X(t) ¢ int X(t) for all t (and such functions do

exist), there are summable functions

n nXn
B: [to,tl]-- R, b:ftg,y]=-R , B: [to,tl]- R
and an € >0 such that
(5.1)  |x-x(t)] <& => L{t,x,B(t)x + b(t)) < B(t) .

The same property holds with respect to M for any continuous function

p: [tn,t]_]- Rn with p(t) ¢ int P(t) for all t,

Proof, OQur first step is to show that {Sl), (82} and (83} imply:

For any elements te [to,tl], x e int X(t) and pe int P(t), there

is a relatively open subinterval I of [to,t]], along with open

(8') neighborhoods U of x and V of P, such that
|Hit,x",p")| < pit) forall t'el x'e U and p'c V,

where p{t) is finite and summable in t,
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Fixing t,x,p as described, we start by selecting 6§ > 0 sufficiently

small that

ptZﬁej & MERlt) I6Y G5l Bl
where

B = (B s Dmers By = 1050 a5 1Y

By (53), there is a relatively open interval I{] containing t over which

the functions H({:,x,p i25ej) are all summable and hence in particular
finite almost everywhere. Then p + Zﬁej e cl P(t") for almost all t'e IO

by (1.18) and therefore actually for all t'e I, by our upper semicontin-

0
uity assumption (Sl) . It follows that pe int P(t') and p + éej e intP(t!)
for all t'e ID s so that the functions H(:,x,p) and H(.,x,p % éej) are
and, again by virtue of (3_), all summable with

4] 3
respect to some relatively open interval I1 such that te Il c IO. Let

all finite throughout I

5 = ’ i
(5.2) Vl co{piaej,...,piéen}.

Then Vl is a neighborhood of p, For each p':¢ V., we have by the con-

l.'
vexity of H(t',x,-) that
H(t',x,p') < max?’_l H(t',%,0  5e) & py(t') ,

and po(t') is finite and summable in t' ¢ Il. At the same time we have

p'=p - (p'-p)e Vl by the symmetry in (5, 2), implying H(t)x,p") Epo(t‘)

on I, . Since p= 3(p'+p"), it follows that
H(t',x,p) < 3{H(thx,p') + H(tix,p")],
so that

ZH{t',x,p) - py(t') < H(thx,p') < p(t)

for all t'¢ Il . Let

Pt = max{|py(th], {2H(t',x,p) - py(t)] ] .
Then

l x
where p, 1is finite and summable on I1 and V

{(5.3) | Hit %, 0" < p(t") forall t'e L ple V

1
is a neighborhood of p .
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The construction now proceeds in the second argument of H .

Let &' >0 be small enough that
x £ & ej e intX(t) for j=1,...,n.

The derivation of (5.7) is valid for any of the points x + &' ej in place

of x, and we therefore have

(5.4) | H(t,x =+ 8'e,P')|[ < py(th), J=1,....m,

forall t'¢« I and p'e V,

where V C Vl is some open neighborhood of p, I C Il is some rela-

tively open interval containing t , and Py is finite and summable on 1.
Let

U = int co {x = é'ej,...,x + 5‘en}.

Then U is an open neighborhood of = containing along with each of its
points x' the point " = x - (%' - x). The concavity of H(t',.,p"}

vields from (5.4) foreach x'¢ U, p'e V, t'e I, that

H(t',x',p') > min" (t).

i=1 Hithx + B'ej,p") >

-8,
and simultaneously H(t',x",p') > -p,(t). Since x = '+ %), we
obtain

H(tyx,p') > z[H(t}x',p') + H(t,x'",p")]
and consequently

2H(t\x,p) - pa(t')g H(t,x',p") > -py ().
Thus for

f(t') = max {p,(t), |2H(t,x,8) - p,(t)|}

we have p finite and summable on I and

H(t,x',p')| < pit')forall t'e 1, x'e U, p'c V

as desired, This finishes the verification of {8'3) .

£n immediate consequence of ':813;] and (SZ) is that the interior of
{(t,x)|xe cl X(t)} relative to {to,tlj x R is {{t,x)|xe int X(t)} , This
implies (because X(t) is convex} that the multifunction t- cl X{t) is

lower semicontinuous [5, p. 458] , hence by (8)) continuous. Similarly,

1
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the multifunction t- ¢l P(t) is continuous.

It follows from Michael's selection theorem [13] that there exist
continuous functions X : ] R satisfying X(t) e int X(t) for all t;
similarly B(t) ¢ int P(t). For any such x and p there exist by a com-
pactness argument using [8'3} some € > 0 and summable function

p: [to’tl] — [0,+=) such that
(5.5) |H(t,x(t) + w, B(t) + z2)| < Bt whenever |w| <2, |z| < £.

Consider for each w with |w| < & the functions

h(ts®) = Ht,X(t) + w,p)

g, (t,v) = Lt,x(t) + w,v) .

In view of (1.9) and (1.10), hw[t,-} and gw[t, .) are convex functions
conjugate to each other. Moreover hw(t, ) 1s not identically infinite
because of (5.5}, so hw(t,.) and gw(t, +] are both "proper''. Since L
is Lebesgue-normal , it follows that 2 o is a Lebesgue-normal proper
convex integrand on [to, 1% R [2, Corollary 4.5], and therefore so is
hw [4, Lemma 5]. Property (5.9) then implies by [5, Theorem 2] the

n
existence of at least one summable function v : [to,tl] - R~ such that

L. L.
o0 > flfw(t,v(t}}dt = flL{t,;c{t) + w,v(t)idt |
tD tO
We apply this now to a set of affinely independent points WasWyse e s W

such that

0 e intco{wy,w yw } and |w | < g forall i ,

R

obtaining summable functions
v, [to,tl} -~ R and B, :[t,4] ~ R

such that

(5.6) Lit,x(t) & W, ,vi(t]) < p.t) forall t.

Let € >0 be such that

(5.7) |wl <& = we co {WO’WL"""W Fa
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For each t let b(t) ¢ R* and B(t) ¢ R™ ™ be the unique vector and
matrix with the property that
gl Il m
(5.8) x-x(t) =) X NG Y N =1 =>Bux+blt) = 3, RALE
T 1Y St izo

The components of b{t) and Bt} are then summable in t. If
|x - ﬁ(t}| < &, the coefiicients Ki in (5.8) are positive bacause of

{5.7), and the convexity of L(t,-,.) yields

n n
I N =
L(t,x,B(thx + b(t) = L(t, ], MO + w), PRRALY

i=0 i=0
& n
Y‘ .

K t

< ﬁfo 5 L(t x( )+ Wl $ NV (t)& < maxi=oﬁi( )

byv (5.6). Thus (5,1) holds for the summable function § = maxi1 0 [3

As for the corresponding result for the dual Lagrangian M , thls
follows by symmetry in view of the remarks made prior to the statement

of Proposition 5, This completes the prooi.

Proposition 6, Suppose {Sl}, (SZ) and (83} hold. Then I. and INI

nowhere have the value -w= on 5, and the assumption in Theorem 2

is thus satisfied for any pair of arcs xe & and pe & .

Proof, According to Proposition 5, we can find a continuous function
X [trty] R and summable functions v : [Egat 1= R' and B [ty 4]
—--R such that x(t) ¢ X(t) and

L(t,X(t),v(t)) < B(t) forall t.

We then have
M(t,p,s) > s+ %(t) + D v(D) - Pt

for all te [to,tl], pe R, 8¢ R

v (1.13) and
= I
rM(t,w} > w . x(t) forall te [to,tl] , we R
by (3.6). This in"plles for arbitrary pegp that
f
i >f Hdp(t) + [ (e - p(b) - p1)]dt > 0>
t
0

The corresponding propert‘y of IL is true by symmetry,
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) hold. Then (3,) is equivalent

Proposition 7. Suppose {Sl) and (_SZ

to the following. For any fte [to,tl] and any xe int X{

w

et

). there is a

relatively open subinterval I containing t , along with summable func-

n
tiong v:I—= R and p :I—- R such that

(5.9 Lit',x,vit")) < B(t") forall t'eI.

Similarly, for any te [to,tl] and any pe int P(t), there is a relatively

open subinterval I containing t , along with summable functions

s:1- R and v :I = R such that
(5.10) Mit',p,s{t")) < w(t") forall t'e I.

Froof, The conditions are suificient for (S3J’ because (5, 9) and (5.10)

imply via (1.9) and (1.13) that
p-v(t) - B(t) < H(t',x,p) < y{t') - x- s(t!)

for all t' ¢ I, where the two outer expressions are summable. On the
other hand, the necessity is shown by Proposition 5: since the multi-
functions (3.7) are continuous, we can find for any t and xe¢ int X(t)
a continuous function X : Lt(}’tl] ~ R* with X(t") ¢ el X(t") for all

t! e [to,tl] and x(t) = x (Michael's selection theorem [13]).

6. Optimal Value Functions and Duality.

In this section we explore the necessity of the extended
Hamiltonian condition for optimality in Lagrange problems through the
framework of Corollary 2 above, Thus we investigate the extent to which
the fundamental inequality (4.16) for the convex ''optimal value'' func-

. z d f
tions IL an M

solutions to the Lagrange problems over £ in the definitions of these

can hold as an equation, as well as the existence of

functions,

L byproduct of our technigue is a simple condition under which
the infimum in problem (1. 3) or (1.15) is the same, whether taken over &
or 2. This is obtained by a study of the relationship between fL’ fM 4

fi , 1.7, and the optimal value functions

&
M
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e sy

(6. 1) rL(xO,xl) = infin {l.3) for ¢ @ ,
(6, 2) £ 4p.;0) = infin (1.15) f6r pe @

Gl ‘-IpD"'l = inT i 1.13) Ior Pe & .
These functions are likewise convex on Rﬂx Rn, and under {SLJ they
satisfy

; a e P &

(6.3) £ 2 szsL and k. LA WA A

{This is true because the state constraints (1, 3) and (1.16) are satisfied
whenever J.(x) < 4w and J (p} < 4.}
L M
The next theorem and its dual are our deepest results. In stating

them, we recall the notion of the effective domain of an extended-real -

valued convex function f , which is the convex set consisting of all the
elements where the value of f is not +oc, Of direct interest here are
the effective domainsg of the various optimal value functions, which ¢an

also be expressed in the following manner as sets of attainable endpoint

pairs relative to the Lagrangians L and M:

(6.4) domf"

| B

= {{xy,%) ¢ R R'|dxe £ with

1L(x} < 430, xf_to) = X x(t}] = Xl T

6,5 f = | b o 4 = vith
{6.5) dom £ {(Xo,xlj el S{(to)x lr»qtl) | & x e & with

T (=) < teo, X{to) =

L o’

(6.6) dom ff: {txg,%) € cIX (ty) X el X(t)) |Exe @ with

0
IT(X) < 4w, X{toj = XO’ x(tl) =X 1s

and analogously for E’K,_, fM and f\aﬂ. We recall also the notation for a
/1 L

convex set C that
ri C = interior of C relative to its affine hull,

Theorem 3, Suppose {Sl), {Sa) and (3,) hold, and there is an arc

3
Xe ¢ with ]J__(;Tq <+ and x(t)e int X(t) for all t. Then

" a , "
(a) IL(xo,xl) = fL(xo,xl) for all {xo,x }e ri dom §

1 L? and in

particular
a
L

(6.7) ri domf, = ridom ff: dom £ C domf_ .
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{b) For every [_Do,pl) ¢ RAx B", there exists an arc pe &

furnishing the minimum in the Lagrange problem (1.15]),

. ; i
and £ are lower semicontinuous, For every (p.,B,) ¢

v
. n{c-' Ia 202y FarBy
R X R, the minimum in (4.14) is attained and
-8 N
(6<5) Ei(Bgal) = sum Deeby - %5 ¢ Ppo= X300
(3
&
D = . - . -
(82 Ea(Pgr Py }g;,le{xl By - X5 By - B (K% F
Theorem 3', Suppose [Sl_‘a, (Sz) and (83} hold, and there is an arc

De g with ]M(ﬁ) < 40 and p(t)e int P(t) forall t. Then
7
) = 7 ; 1 nd i
{a) fM{pG,pl__ _M{po,pl) for all (po,pl) e ri dom fL , and in
particular
, ” RS b
(6.10) ri dom f_\‘I =ri aomeC dom fi\f[ < dom £, .

; i n £l oy
{o) Tor every (XO,X e R X R, there exists an arc x¢ & fur-

1
nishing the minimum in the Lagrange problem (1. 3).

(c) fL and fL« are lower semicontinuous. For every (xo,xl} ¢

R" X R?, the minimum in (4.13) is attained and

11 3 L " " = i o 7
(6,11 fL{XO,xl) 5UD {xl P - X4 " Py 'M{po’le} p
Po,pl
: B (e . . i _ :
(6.12) L_L(xo,xl) = ps:;%l {x,« P - %, Py fM(pO,_Dl}} :

Proofs, Theorem 3 and 3' are equivalent, in view of the symmeiry of
our assumptions {cf. the remarks preceding Proposition 5), and therefore
it will be enough to prove Theorem 3. In fact, almost everything can ba
reduced to establishing a single. relation: that for any {po, pl} there

exigts pe & such that

6.1 Tsg . . - ':"?f

(6.13) I % ¢ By -yt Py - B (X)) .

This immediately yields part (o) of Theorem 3 and formula (6, 8) in (¢),
because of the basic inequalities {4.11) and (6. 3). It also tells us that

the right sides of (6.8) and (6.13) are equal. Thus the convex functions
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fL and ff have the same conjugate.

The latter implies part (a) of Theorem 3, at least if fL’ does not
have the value -w% anywhere, and even in that case if it can be verified
by some other means that dom fL and dom fCLZ have the same closure.
However, this can indeed be accomplished by applying result already
described to LO = max{L,0}, which (we claim) also satisfies the hypo-

theses, and using the obvious fact that fL and ff are nonnegative
0 0
with

dom fL0 = dom fL and dom fgo = dom fL
As for LO satisfying our hypotheses, it is at least clear that LD
is another Lebesgue-normal integrand which is convex and proper and has
Xo{t) = X(t) forall t. (We mark all objects associated with L0 in-
stead of L by a subscript 0,) By duality, Mo(t, +y-} is the '"closed
convex hull'" of M(t,.,.) and the indicator function of the origin (0,0)
[7, Theorem 16.5], i.e. the lower semicontinuous hull of the function

(p,s) -~ inf P\M(t,.\_lp, I\_ls),
O{kzl
Therefore

cl Po{t) = cl co {P(t),0},

and the properties of X(t) and P(i) in (Sl), {SZ) and Proposition 5
carry over to Xo{t) and Po{t). The fact that (83) carries over is seen
easily from the equivalent formulation of (83) in Proposition 7 and the
above description of M{} .

The only things that will not follow from establishing (6. 13), but
need a supplementary argument, are the assertions in (c) of Theorem 3

besides (6.8). The lower semicontinuity of fB is a consequence of

(6.8) itself, and that of fM is then trivial frol\r;l the definition (4.9).
Formula (6.9) is easy to derive from (6, 8), (4.13) and the fact that (3.2)
implies

O if we cl P(t),

sup {w.z- rL(t,z)} =

w ¢ R oo if  wi el B(t)
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[7 , Theoreml13, 1. Finally, the attainment of the minimum in (4.14) can be
deduced in the following manner. Consider the convex functions

R Ci
gl(xo}xl} = fL{‘XG:x}

1

O if “Xg € cl X{to}, X.e ek X{tl},

(x )= L
HAS s ;
4+ otherwise.

* b
The conjugates are q = f . by (6.9), {gl+gz) = f& by (6, 8), and

M
gz(poypl} = rM(tO} 'po) + rM{tl!pl}
by {3.6). Furthermore, the hypothesis of Theorem 3 concerning x im-

plies that

dom 9 N int dom 9,*¢.
The theorem about the conjugate of a sum of convex functions [7, Theo-
rem 16. 4] tells us then that

(,p!) +g (p

H . e
(g +g2) (Pys Py} = min {gl{po 1 »(Pg

! P, B
0%

and this is identical to our assertion about (4. 14]),

7! -n!
Py:P) le} E

The task now is to verify for an arbitrary pair (po,pl} that (6,13)
holds for some pe B. We can assume the right side of (6.13) is not +,
since otherwise the inequality holds trivially for all pe 2. Let C be
the Banach space of all continuous functions y:[to,tl] - Rn, and for each

ve C let
tl i
- %(1) P + [ TLit, x(t)+y(t), x(8)dt }.
i
Q
Then 29 ig an extended-real-valued convex function on € such that

(6.14) p (y) = inf {x{t;) -p

L 0
Xe

(6.15) WL(U} =1 iff {xo- Py~ % ° P

1w
xiok, 1 +fL(x0,xl); @,

1

We demonstrate that or is bounded above on neighhorhood of

the origin in ¢, Let % have the properties assumed in Theorem 3 and
take B, b,B and e as in Proposition 5. Define

= n n
F: [to,tl]X R =R
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as follows:

(6.16) Flt,x) = x(t) if x = x(t),

whereas if x # x(t) and thus can be written in the form

o= (1= ME)x(t) + MEE(L)
with
Mty = a"l| x- %t >0,

£t = X(1) + Mb) x - =(t)) ,
then
F(t,x) = (1 - MEDX(D + MO[BHIED + bi)] .

In direct terms, but more opaguely,

(6.17) F(t,%) = B(L)(x-X(t)) + x(i)
+ e xRt | [BORD + bit)-x(1)] .
For any t such that |x - :>‘<(t1| <g , we have (5.1) holding and also

At) <1, =o that by convexity of L{t,-,-):
L(t, %, Fit,x)) < (1-MILIL,X(t), X (1))
+ a(t) Lt, &(t), B{t)&(t) + blt)
< max {L(t,x(t),x(t), p(t) } .
Thus, denoting the last expression by «(t), we have a(t) summable in
te [to,tl] and
{6.18) |x - x(t)] <e=> Lit,x,Ft,x)] < aft) .

Observe from (6,17) that F(t,x) is Lipschitz continuous in X« R and

summable in t, The differential equation

(6.19) x(t) = F(t,x(t) + vyit)) a.e., Xt) = x,,
thus has a unigue solution xe¢ & for any X € R and ve & . Denote
by x’ the solution to (6, 20) corresponding to x. = x(t.}. If

] 0
lix¥ +y) - %] < e in the norm of ¢ , we have

Lit,x’(t} + yl{t), ¥ (t) < elt) forall t
by (6.18) and therefore
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.t_]_
{y) £ | e(tidt < 40,

T
]

(6.20) o

¥

The mapping v - x° is continuous (as a transformation from ¢ into ¢),

¥

and for v =0 we have %' = x by (6.16). Hence there exists & >0

such that

lvll < 68 = [(xX+v)-%|| <¢.

Then (6,20) holds for all v e ¢ satisfying |v| < &, and ¢ s
bounded above on a neighborhood of the origin in ¢ , as claimed,

The latter fact, with ¢ convex and @L{O) > -0 (by (6.15)),
implies the existence of 2 subgradient of 29 at 0, i.e, a continuous
linear functional ¢ on ¢ such that
(0) + Uly) forall vec ,

r = o
@L{}} 2 ¥

or equivalently

(6.21) sup {U(y) - o (v)} = -0 (0) .
L L
Ve
We can represent
t
(6,22) uly) = J ly{tjdpr_t}, where pe 3, p{tO] =Py

tO
Combining (6. 21) with (6,15), we see that
i

rl
(6.23) sup { JI'L yitidp(t) - ¢ {v)} < 40,
veC Yo b
and that to establish (6.13) it will suffice to show this implies p(tl) =B
and the supremum equals IM(p}.

It is evident from the definition (6.14) of 23 that the supremum
in (6. 23) is the same as the supremum over all xe¢ ¢ and ve C of the

expression
t t

rl T .
1-X(t0} -P(t0)+J v{tldp(t) - f Lit, x(t)+y(t), x(t))dt ,

f ‘o
or equivalently for z = xty, the supremum over all xe¢ &7 and z¢C of

x(t) - p
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t £
X)) -pp - x(tg) o p(ty) + f Maw -x(t)]dp(t) - [ Lo, 2, x(n)at
t t
.tl 0 ._t}_ ¥ .tl
= x(t) (pp=p(t)) + [ Tz(t)dp(t) + [ Tp(t) (t)dt - [ TL(t, 2(1), k() dt.
‘ to %
Thus it is the supremum of
f £
x «{p-P(t j z(t)dp(t) + [ Loty vit)dt flLit z(t), v(t))dt
t t
0, 0

over all %, e R, ze ¢ and veg —55 {to, 1 R"). This would be 45

if P - p(tl} # 0 , so we may conclude from (6. 23) that plt) = Py s and
the problem is reduced to proving that the expression
t t t
(6,24) sup d tydp(t) + sup {J plt _] L{t z(t),v(t))dt}} ,
Ze¢ C tO ve I tD 'D
equals I‘\/I( , under the assumption it is not +eo.

The theory of integral functionals and normal integrands will be

applied in two steps to calculate (6, 24), Let
i

(6,25) = {z¢ ClEwve .El withLLL{t,z{t},v{t))dt < 4o},
o]

(Recall our convention that the integral is +w if and only if
L{+,z(.),v(+)) is not majorized by any summable function.} Note that #

is convex and
z(t) ¢ X{t) for almost t,
Z e ; ==

{6.26) zZ(t) e cl X(t) for all t .

Proposition 5 implies then that

(6.27) int? = {ze G| 2z(t)e int X(t) forall t },
(6, 28) clg = {zeC | z(t)e cl X(t) forall t},

If z} ¢ , then the inner supremum in (6.24) is -, Thus C can be
replaced by # in (6, 24).

For each z e ¢ , the inner supremum in (6, 24) is not -% in view
of (6.25), nor is it +%, since the overall supremum in {6.24) is assumed

not to be 4w, Thus it is finite. Fix any ze £ and let
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{te [ty,t] | z2(t) e X(t)},

0(t,v) = L{t,z(t),v) for te T, ve R

The complement of T in [t is a null set by (6, 26) while {£(f,.) is

075l .
for each te T a proper convex function on R~ by the definition of Xi(t).
The Lebesgue normality of L on [t 0’ _l] x R* x R" implies the Lebesgue
normality of £ as an integrand on T X R? [2, Corollary 4, 5], and the
inner supremum in (6. 24) can be written as
(6.29) SL.p 1f cvtdt - [ (e, v(t)de},
T

where p can be recgarded as an element of s_oo. According to a funda-
mental theorem on conjugate integral functionals, (6.2%) equals
{6.30) J [ sup LB v - 2t v) Jdt

T wve 'Q
But the supremum in (6. 30) is H(t,z{(t),p(t)) by (1.9). Putting everything

together, we now see that

t t

(6.3)  sup {[ et - vindr - [ Lt,zm),v(0)dt)
ve I to ‘to

fl p(t))dt ,

where H(:-,z('),p(*)) is summable over [to,tl]. Moreover, this is true
for arbitrary ze 2 . The summability implies
(6.32) p(t) ¢ P(t) for almost every t.

(Consider ze int# as in (6. 27) and apply (4. 20) and (4. 22).) We con-

clude further that the functional

[ f Hit,z(t),p(t)}dt if =ze 2
(6,33} @(z) =
+w if z4 2

is finite on ; and that {6.24) can be expressed as

(6.34) sup { f 1 t)dp(t) - @(z)} .
ze C D
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Observe that @ is actually a convex functional , due to the con-
vexity of 2 and the concavity of H(t,-,p(t})) for each t . Furthermore,

for any xe int 2 (cf, (6.27)) we can apply Proposition 5 to get a bound
Lt, z(t),B{t)z(t) + Dbit)) < Pt}
valid when |z - x|| < & , and then

t
jr_ Hit,z(t),p(t))dt > _ﬁtl[P(t)' [Blt)z(t) + bl{t)] - p(t))dt
g 0
when ||z -z] <&, implying that & is uniformly bounded above on a

neighborhood of ., Therefore, in view of convexity, & is continuous
on int 2 .
At this point we employ again the Hamiltonian H corresponding

to M (cf, (4.18) and (4.19)) and define in terms of it the integrand

H(t,p(t),z) if te 8

(6, 35) hit,z) =j 0 if t £8 but ze cl X(t),
| 40 1f t& S and z kel Xt ,
Ny

where

(6,36) 5 = {te [tyt)] | B(t) e P(1)},

It should be borne in mind that the complement of 8§ in [to,tl] is of
measure zero (cf, (6, 32)), Also,

{6.37) hit,z) = =~H(t,p(t),z) if te S and ze int X(1) ,

by (4, 22], while

{6.38) hit,z) = 4+ if =z} el X(t)

by (4,21}, Thus for ze int 2 we have

h(tj Z(t)) = 'H(tsp{t}: Z{t}l} a.e.

{ a summable function, but for z} cl g there exists a subinterval (a,b)
of [tO’tl] where z(t) t cl X(t) (due to the continuous dependence of
cl X(t} on t; Proposition 5), and hence hit,z(t}} is not majorized by

any summable function of t . This shows that
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i
{6.39) &(z) = fl hit,z(t)dt if ze int@g or z¢cl .

t
0

We know from its definition (6, 33) that h(t,-) is for each
te [tD,tl] a lower semicontinuous proper convex function on Rn . The
conjugate integrand
{6.40) mit,s) = SUP_ {s- z - hit,z)}

ze R
thus likewise has m(t,-) lower semicontinuous, convex and proper for

every te [to,tl], and indeed
{64}} IT'.-{t_,S] =

by (4,19) and (3.6). The normality of the integrands M and g vields

through this the Lebesgue-normality of m Iz, Corollary 4.5], Since h
and m are conjugate to each other, it follows that h toois Lebesgue-

normal [4, Lemma 5], The integral functional
: “
(6.42) I(z) = [~ hit,z(thdt for ze C

t
0

is therefore well defined and convex. By virtue of (6.39), it agrees with
@ onint # (where & is finite and continuous) as well as outside of cl 2
(where & is identically +w) Hence the supremum (6. 34}, which we

want to prove equal to IM[p), is the same as
(6, 43) sup {Jl’tl z(tidp(t) - _fti h(t, z(t))dt} .
ZeC tO tO
We are going to apply to (6, 43) a theorem of [5] on the conjugates
of integral functionals on spaces of continuous functions. This requires
noting some further properties of h that result from its definition and the

facis already established, Firstly, we have

(6. 44) X(t) © dom hi{t,.) T el X(t) forall t

according to {6, 35) and (4, 21). Thus <l dom h(t,+) depends continu-
ously on t,

(6, 45) int dom h(t,-) = int X(t) # ¢ ,

189



R.TYRRELL ROCKAFELLAR

and by (3.6)

(6. 46) sup{w - z| z ¢ dom h(t,*}} = Tt
Secondly, if xe R? belongs to the interior (6. 45) for all t in some sub-
interval [a,b], then h(-,x%) is summable over [a,b]. This follows be-
cause of the existence of a function z ¢ int # such that z{t) = x for
te [a,b] (cf. ihe result on extensions of continuous selections stated
as Proposition 3 of [14]); the integral (6, 42) has been shown to be finite
for z¢ int g .

All the conditions needed in invoking [5, Theorem 5] for the func-

tional (6, 42) are met, and the consequence is that (6.43) can be identi-

fied via (6. 40) and (6. 46) with
b Y
(6.47) J " mit, p(t)at + [ R (GG
t{} tO
where dp - pdt = 7d8. Since in (6.4l) we have te S for almost every
te [to,tl}, this expression coincides with IM(p), and Theorem 3 has

been proved.

Theorem 4, Assume the hypothesis of Theorem 3, and let (x ) be

GERS
any endpoint pair which is strongly attainable for L in the sense of be-

longing to the set

(6.48) {ri dom fLB)H (el X(t;) X cl X(t))) D ri dom £ .

solves the Lagrange

Then an arc xe B with x(to) =x, and xt) =%

0 1
problem (1, 3) for L over & if and only if it is extremal for L , i.e,

satisfies the extended Hamiltonian condition for some 8 TG o

Proof. The inclusion (6. 48) is valid because the hypothesis of Theorem

3 concerning x implies
dom fLE N (int X(tg) X int X{tl)) + ¢
and consequently by [7, Theorem 6. 5] that

{rl dom fL’S} N {int Xfto) X int X(t. )

0
= ri[(dom ff) N (el X(to) X cl X{tl})] = ri dom fL.
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For the rest, we observe from Corollary 2 (at the end of §4) and 1
3(b) that only the existence of an endpoint pair [po,pl} in duality \
(xo,xl) needs to be established. The convex function fg is subdifi

entiable throughout ri dom £9 [7, Theorem 23. 4] and therefore has at

L
(xo,xl] a subgradient which can be expressed as (-po,pl}:
1 ' t & i b . (e 1 1
fL(xo,xl) > fL(xO,xl) - Py {xo Ki} + N (xl Xl} for all Xor %] s
or equivalently

. . - B - goiy - [ i 8 1 r
(6:49) X, * Py =Xy Po=fp (Xg, X)) = sup {x] By - X Py - £1{xp, X))} .
#,X
0’71
_ B
But fL[xo,xl) = fL(xo’}ﬁ) <+ by our assumption on (xﬁ’ﬁ}’ 50 (6. 49)

can be written in accordance with Theorem 3(¢) as

(6.50) -0 <X, * Py - Xy P - fL(xG,xl) = fopo,pl) c

1f fL(xo,xl} = .00, there can be no solution to the Lagrange problem
(1.3), inasmuch as IL nowhere has the value - (Proposition 6). Then
the necessity of Hamiltonian condition is vacuously true, On the other
hand, if fL{xo,xl) > <o, then fL(xo,x } must be finite, and (6. 50)
asserts that [xo,x.l) and [po, pl] are in duality. Theorem 4 is thereby

proved.
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