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AUGMENTED LAGRANGIANS AND
APPLICATIONS OF THE PROXIMAL POINT

ALGORITHM IN CONVEX PROGRAMMING*
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The theory of the proximal point algorithm for maximal monotone operators is applied to
three algorithms for solving convex programs, one of which has not previously been
formulated. Rate-of-convergence results for the "method of multipliers," of the strong sort
already known, are derived in a generalized form relevant also to problems beyond the
compass of the standard second-order conditions for optimality. The new algorithm, the
"proximal method of multipliers," is shown to have much the same convergence properties,
but with some potential advantages.

1. Introduction. Let C be a nonempty closed convex subset of R", and for
i = 0, 1, ... , m let J; : C ~ R be a lower semicontinuous convex function. We con-
sider the convex programming problem

minimize fo(x) over all x E C satisfying j{x) .;;;0, ... ,fm(x) .;;;0. (P)

Our purpose is to present theoretical results on the convergence of three approaches
to solving (P). all of which are shown to be realizations of the general "proximal point
algorithm" for maximal monotone operators (multifunctions), studied in [1]. Each
algorithm replaces (P) by a sequence of "better" minimization problems.

The first method is the primal application of the proximal point algorithm: the
proximal minimization algorithm for (P). It is not the main focus of our attention, but
it is nevertheless of some theoretical interest, and its properties have not before been
analyzed in detail. There is a sequence of numbers Ck'

(l.l )

(which is given, or constructed in some manner not here specified) and an initial
vector xo. A sequence {x k} is generated by letting x k + I be an "approximate" solution
to the modified version of (P) in which fo(x) is replaced by

(1.2)

where I . I denotes the Euclidean norm. (The exact meaning of "approximate" depends
on the particular stopping criterion which is used in the minimization; this will be
discussed later.)

An attractive feature of this approach (which must of course, in a given case, be
weighed against the fact that a single problem is converted into a sequence of
problems) is that the function in (1.2), in contrast probably to fo itself, is strongly
convex with modulus II ck (at least):

f;«(1 - A)x + Ax') .;;;(I - >-')f;(x) + V;(x') - (A(1 - >-')/2ck)lx - X'12
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98 R. T. ROCKAFELLAR

for all x and x' in C and A E (0, I). In many algorithms, strong convexity is a boon to
good convergence and makes possible more convenient stopping criteria, including
estimates of how far one is from a minimum point. One is also assured that all the
level sets of the objective function are bounded, and (assuming feasibility) that a
unique optimal solution exists.

The possible benefits of strong convexity are not limited to direct algorithms for
constrained minimization but are noteworthy too for indirect methods based on
duality. Such are especially significant, for example, in the decomposition of large-
scale problems. The ordinary dual problem associated with (P) is

maximize go(Y) over ally> 0, (D)

where go is the concave function defined by

go(Y) = inf Uo(x) + y.J.(x) + ... + ymfm(x)}.
xEC

( 1.3)

Dual methods, which solve (P) as a by-product of trying to solve (D), typically involve
executing, repeatedly for different choices of y, the minimization in (1.3). Even if there
is no danger of the infimum being - 00, so that implicit constraints besides y ~ °
must be dealt with, troubles can arise because the infimum may not be attained at all
or not attained uniquely. This may make it harder to generate simultaneously an
asymptotically minimizing sequence for (P) itself.

These difficulties are avoided if fo is replaced by ft as in the proximal minimization
algorithm, since then the minimand in (1.3) is for any y ;. ° strongly convex with
modulus 1/ck (entailing for the subproblem the advantages already mentioned), and
furthermore go is differentiable on R":. (d. Falk [2]). Observe too that separability of
the kind essential to decomposition methods is preserved: if

fo(x) = fo.(x.) + ... + fON(XN) for Xj E R"J,
then

ft(x) = ft.(x,) + ... + ftN(XN) withf~(x) = fo;<x) + (1/2ck)lxj - x/12
•

A crucial question in deciding when the passage from fo to the sequence {ft} is
worthwhile, is whether the outer algorithm (generating approximate solutions Xk to
the corresponding modified versions of (P» has an adequate rate of convergence. This
is some of the motivation for the results presented here concerning the proximal
minimization algorithm.

One unusual property is that the sequence {Xk} typically converges to a particular
optimal solution to (P), even though this may not be the only optimal solution.

The second method we treat in this paper is the dual application of the proximal
point algorithm, i.e., the application of the above idea to (D) instead of (P). Seen in
the framework of its effects on (P), this is the important method of multipliers,
originally suggested in basic form for equality-constrained nonlinear programs by
Hestenes [3] and Powell [4]. This algorithm is expressed in terms of an "augmented
Lagrangian function," which depends on a positive parameter c.

For the inequality-constrained problem (P), the augmented Lagrangian is

m

L(x,y, c) = fo(x) + L 1/;(.t(X)'Yi' c) for all x E c,y E R'", c > 0, (1.4)i-.
where

1/;(.t(X)'Yi' c) = yj;(x) + (c/2).t(x/ if.t(x);. - Yi/C,

if .t(x) « - yj c. ( 1.5)

--_ ....._ ... -
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The algorithm in question again depends on a nondecreasing sequence of numbers ck

satisfying (I. I), and there is an' initial multiplier vector yO. The sequences {y k} C R m

and {Xk} C C are generated as follows:

( 1.6)

(1.7)yk+1 = yk + ck '\lyL(Xk+I,yk, ck) = Y(Xk+l,yk, ck),

where Y(x,y, c) is the vector in R'" whose coordinates are

Yi(x,y, c) = max{O'Yi + c};(x)}. ( 1.8)

The method of multipliers has recently attracted much attention for. its evident
advantages over ordinary penalty techniques, and many authors have made contribu-
tions, too numerous to describe here (see the recent survey article of Bertsekas [5],
treating a bibliography of 66 items). The main result of this theory, embellished by
many details and variations, is that when the "strong second-order sufficient condi-
tions" for optimality hold in (P) and an appropriate criterion is chosen for the
approximation in (1.6), the sequence (x\yk) converges to an optimal pair-(.x,}) at a
linear rate whose ratio is, roughly speaking, inversely proportional to Coo if Coo is large.
(The convergence is superlinear if Coo = + 00.) This is true in a local sense even
without convexity: d. Polyak and Tretyakov [6], Bertsekas [7], [8].

Global convergence in the convex case with equality in (1.6) was established by
Tretyakov [9]. Rockafellar [10] obtained a similar result under weaker assumptions,
allowing in particular for inexact minimization in (1.6), and showed that {yk}
converges to a particular dual optimal solution yOO, even though there may be more
than one such. The fact that, for convex programming, the method of multipliers
amounts to an application of the proximal point algorithm was noted and used in [10]
in obtaining the latter fact, although the general theory of the proximal point
algorithm in [I] was not then available.

Here we demonstrate that the rate-of-convergence results mentioned above can be
obtained in the convex case as corollaries of results in this general theory, moreover in
a form which is broader in some respects. Notably, we are able to replace the
second-order conditions for optimality by a certain property (the Lipschitz continuity
of a fundamental mapping T,- I just at the origin) which can be expected to be
satisfied "usually" in more general classes of problems than those for which the
second-order conditions can sensibly be formulated (see the remark at the end of §2).
We also obtain new estimates which promise to be useful in terminating the computa-
tion.

Such results do not appear to carryover to "nonquadratic" variants of the method
of multipliers, such as have been introduced by Kort and Bertsekas (I I] and Golshtein
and Tretyakov [12], and they thus serve to emphasize the special importance of the
"quadratic" augmented Lagrangian (1.4)-( 1.5).

One aspect of the method of multipliers which is not entirely satisfactory is how to
formulate a really convenient stopping criterion for the inexact minimization that still
ensures global convergence. The rule utilized in [10], [I3] requires verifying that the
value of the minimand in (1.6) is within a specified tolerance of the true minimum.
This is practicable in some cases (see [14, §2]), and in particular, as has been utilized
by Kort arid Bertsekas [11], it can be translated into a verification of the smallness of
the gradient of Jo, if C = R nand Jo is differentiable and strongly convex with known
modulus. (The latter result can be extended to cases with C i' R"; see §4 below.)

Since the desired strong convexity of Jo is not always present, the idea arises of
manufacturing it, as above, by replacingJo by the functionJ; in (1.2) at each iteration.
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The resulting algorithm, which may be dubbed the proximal method of multipliers, is
identical to the method of multipliers, except that instead of (1.6) one has

( 1.9)

It is remarkable that such a seemingly heuristic device can again be construed as a
realization of the general proximal point algorithm. Indeed, it corresponds to the
monotone operator associated with the ordinary Lagrangian function for (P).

For this reason, we are able to derive convergence results for the proximal method
of multipliers along the same lines as those for the usual method of multipliers. It
turns out that the new algorithm has essentially the same rate of convergence, but
with notable advantages at hardly any apparent extra cost. Not only i&,there the
desirable numerical feature that at each iteration one minimizes a strongly convex
function with known modulus lick' but also the sequences {Xk} and {yk} are both
convergent (even though primal and dual optimal solutions may not be unique).

The plan of the paper is to treat the three applications of the proximal. point
algorithm consecutively in §§3, 4, 5 after some preliminaries about monotone opera-
tors in §2. Remarks about various extensions, such as to equality constraints and
infinite-dimensional problems, are made in §6.

2. Representation in terms of monotone operators. A monotone operator from R N

to RN is a multifunction T with the property that (z - z')· (w - w') ;;. 0 whenever
w E T(z), w' E T(z'). It is maximal if its graph is not properly contained in the graph
of any other monotone operator. Important examples are the subdifferential mappings
associated with closed proper convex functions [IS], [16, Cor. 31.5.2] and, more
generally, modified forms of the subdiff'erential mappings of closed proper saddle-
functions [17], [I6, Cor. 37.5.2].

Many problems can be reduced to the calculation of an element z satisfying
o E T(z), where T : R N ~ R N is a maximal monotone operator. The general proximal
point algorithm for T accomplishes this by associating with a nondecreasing sequence
of scalars ck > 0 and an initial vector ZO a sequence {z k} eRN generated by

Zk+ I ~ Pk(Zk), where r, = (I + ck T) -I. (2.1)

(It is a fact that Pk is always single-valued everywhere; d. [I].)
Two general criteria for the approximate equality in (2.1) were studied in [I J,

namely
DC

L Ek < 00, and
k=O

(A)

(B)

where one has the estimate

To summarize the results, we showed very broadly that (A) guarantees the conver-
gence of {z k} to a particular solution ZOO to 0 E T(z), even though there may be other
solutions. If (B) is used with (A) and T -I is "Lipschitz continuous at the origin," then
the convergence is at least at a linear rate whose modulus tends to zero as ck increases
(thus providing superlinear convergence if Coo = (0).

Lipschitz continuity of T -I at the origin (with modulus a ;;. 0) means that T -1(0)
consists of a single element z, and for some 7' > 0 we have [z - zl ,;;;;alwl whenever
wE T(z) and !wi ,;;;;7'.

-
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As explained in the introduction, our aim is to put these results in a more concrete
form in the context of convex programming, showing that (A) and (B) can then be
expressed in terms that are convenient and implementable. This requires that we look
at problems (P) and (D) in a more abstract fashion.

Let us denote by I the ordinary Lagrangian function for (P) in extended form:
In

I(x, y) = fo(X) + LyJ;(X) if x E C and yEW;',
i=l

= - 00 if x E C and y tf R ';',

=+00

The essential objective function in (P) is

f(x) = sup I(x,y) = fo(x) if x is feasible in (P),
yERm

= + 00 if x is not feasible in (P),

while the essential objective function in (D) is

if x tf C. (2.3)

(2.4)

g(y) = inf I(x,y) = go(Y) if v > 0,
xE Rn

= - 00 ify ~ O.

We observe that I is a closed saddle-function in the sense of [16, p. 363], due to our
assumptions of convexity and continuity (and the closedness of C), and the mapping
T,: (x,y)-'> {(c, u) I (u, - u) Ea/(x,y)} is therefore a maximal monotone operator
in R'":" [16, Cor. 37.5.2]. A solution to (0, 0) E T,(x,y) is a saddle point of I. At the
same time, f is a closed convex function on R ", while g is a closed concave function
on R '". Let Tf = af and Tg = - ago If f ~ + 00, then f is proper, and Tf is a maximal
monotone operator in R" such that the solutions to 0 E T/x) are the optimal
solutions to (P) [16, §§23-24]. Similarly, if g ~ - 00, then g is proper, and Tg is a
maximal monotone operator in R m such that the solutions to 0 E Tg(Y) are the
optimal solutions to (D).

The three algorithms described in the introduction will be shown to correspond
respectively to the monotone operators Tf, Tg and T,. The relationship between these
operators and their various inverses is therefore of some importance.

For each v ERn and u E R m, consider the following perturbed form of problem
(P):

(2.5)

minimize foe x) - x . v over all x E C

satisfying};(x) + ui < 0 for i = I, ... , m. (P(v, u»

(Note that the variables ui are introduced here with the opposite sign from that in
other treatments such as [16]. This simplifies certain relationships below.) From the
definition, we have

Tf- I (v) = arg min (J( x) - X· c},
«e s»

(2.6)

and hence, assuming the constraints x E C and };(x) < 0, i = I, ... ,m, can be
satisfied,

Tf - I (v) = set of all optimal solutions to (P( G, 0».

By the same token, we have

(2.7)

Tg-I (u) = arg max (g(y) + y" u}
yERm

= set of all optimal solutions to (D (0, u», (2.8)

-
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where Dt», u) is the ordinary dual of (Pi», u», assuming g ~ - 00. If min(P(O, u»
= sup(D(O, u» for all u, as is true for instance if C is bounded, or more generally if
for some a E R the set of all x E C satisfyingfo(x) .;;;a and };(x) .;;;0 for i = I, ... , m
is nonempty and bounded [16, Corollary 8.7.1 and Theorem 30.4(g»), [18, Theorems
17', 18'), then

Tf!,-' (u) = ap(u) where p(u) = inf(P(O, u»

[16, Theorems 23.5, 30.2). Fina lly,

T,-I (u, u) = arg minimax {/(x, y) - X· v + y' u},
xER".I'ER'" .,

(2.9)

(2.\0)

where the "minimaxirnand" is none other than the ordinary Lagrangian fQf (Pt», u».
(See [16. p. 386).) Therefore

T,-I(V, u) = set of all (x,y) satisfying the Kuhn-Tucker

saddle-point condition for (P( c, u». . (2.11)

Since a saddle point of the Lagrangian always yields primal and dual optimal
solutions. it is clear that in general TJ-'(v) contains the projection of T,-I(V. 0) on R",
while Tf!,-I(U) contains the projection of T,-I(O, u) on R'". The inclusions may be strict
without the imposition of further conditions, however.

PROPOSITIO. I. If T,-I is Lipschitz continuous at the origin with modulus a. then so
are Tj-I and Tf!,-I. In fact. then Tj and Tf!,are maximal monotone, and

Tj- I ( c) = project ion of T,- I (v, 0) on R n for each v ERn,

Tg-I (u) = projection of T,-I (0, u) on R'" for each u E R'",

(2.12)

(2.13)

PROOF. Lipschitz continuity of T,-I at the origin entails the uniform boundedness
of the sets T,-I( c, u) in a neighborhood of (0, 0), or in other words the local
boundedness of T,- I at (0. 0). But T,- I, as the inverse of a maximal monotone
operator, is itself maximal monotone (by symmetry in the definition), and hence the
local boundedness implies T,- I is also nonernpty-valued on a neighborhood of (0, 0)
(19). In particular, since T,-I(O, 0) oF 0, I has a saddle point (x,y); then x is an
optimal solution to (P) and ji is an optimal solution to (D) (so that f ~ + 00 and
g ~ - (0), implying T; and Tg are maximal monotone. In view of the fact noted above
that the inclusion ::J always holds in (2.12) and (2.13), we can complete the proof
merely by showing that the operators in R" and R'" corresponding to the right sides
of (2.12) and (2.13), respectively, are maximal monotone under our hypothesis. Let M
be the subspace of R n x R m corresponding to the R n component; thus M = R n x (O)
and M:" = {O} X R"'. The maximal monotonicity of the multifunction V~ projection
of T,-I(V. 0) on R", as an operator in R", is equivalent to that of

S: (c, u)~ S(v, u) = T,-I(V, u) + M:':

=0

if(t:.u)EM,

if (c, u) tt M.

Actually, S = T,- I + aOM' where OM is the indicator of M (i.e., the closed proper
convex function which vanishes on M and is + 00 everywhere else). Thus S is the sum
of two maximal monotone opera tors, T,- I and aoM' Since T,- I is nonernpty-val ued on
a neighborhood of a point where aOM is nonernpty-valued (namely the point (0, 0»,
we may conclude via [20, Theorem I) that S is maximal monotone, as desired. The
maximal monotonicity of u --'> projection of 1/- 1(0, u) on R m is argued in the same
way, only with the roles of M and M.l reversed in the definition of S.

'w



AUGMENTED LAGRANGIANS AND PROXIMAL POINT ALGORITHM 103

To obtain a plausible condition for the Lipschitz continuity of T,- I at the origin, we
appeal to the strong second-order conditions for optimality ill (P). These are comprised
of the following properties (d. Hestenes [21, Chap. ID.

(a) There is a saddle point (x, Y) of I such that x E int C. Moreover, the functions j;
for i = 0, I, ... , m are twice continuously differentiable on a neighborhood of X.

(b) Let [ be the set of active constraint indices at the point x: 1= (i E [I, m] I j;(x)
= O}. Then Yi > 0 for every i E I, and the gradients "il j;(x) for i E I form a linearly
independent set. .

(c) The Hessian matrix H = "il~l(x, Y) satisfies W· Hw > 0 for every w 1= 0 such that
W· "il j;(x) = 0 for all i E I,

As is well known, these conditions (along with convexity) imply that x and yare the
unique optimal solutions to (P) and (D). -

PROPOSITION 2. If the strong second-order conditions (a), (b), (c) are satisfied, then
T,-' is actually single-valued and continuously differentiable on a neighborhood of the
origin, and so are Tf- I and Tg-'. Thus in particular, these mappings are all Lipschitz
continuous at the origin. '

PROOF. Let Q denote the neighborhood of x mentioned in condition (a), and
suppose for notational simplicity that the active constraint set is 1= {I, ... , r}. Then
(a) and the complementary slackness in (b) can be expressed as

r

"ilfo(x) + L s. "il j;(x) = 0,
;=1

(2.14)

j;(x) = 0 and j', > 0 for i = 1, ,r,

j;(x)<OandYi=O fori=r+ I, ,m.

Let G : Q X R r --4 R n X R r be the mapping defined by

G(x,y" ... ,Yr) = ("ilfo(X) + i~/i "il j;(x), - f,(x), ... , - !rex»). (2.17)

(2.15)

(2.16)

Then G is continuously differentiable. At (x, YI' ... ,Yr), G vanishes and its derivative
is the linear transformation

(
HW +± Zi "il j;(x), - W· "ilj;(x), ... , - W· "il!r(X»).

I-I
(2.18)

This transformation is nonsingular by virtue of (c) and the linear independence in (b).
(If (w, ZI' ,zr) is such that the image in (2.18)' IS the zero vector, then w- "ilj;(x) = 0
for i = 1, ,r and Hw + ~~-l Zi "il j;(x) = O. Hence 0 = W· [Hw + ~~=I Zi "il j;(x)]
= W· Hw, implying by (c) that w = O. It follows that ~~_I Zi "il j;(x) = 0, and hence
from the linear independence in (b) that z; = 0 for i = I, ... , r.) The nonsingularity
of G'(x; y" ... ,Ym) guarantees via the implicit function theorem that there is a
continuously differentiable function Y, defined on a neighborhood Q' of the origin in
s: X «; such that

G(y(v; u" ... ,ur» =(v; ul, ... , ur) and y(O; 0, ... ,0) = (x; YI' ... ,Yr)'

(2.19)

Now consider the continuously differentiable mapping S : Q' X R" --4 (R" X Rr) X

Rm
-
r = R" X R'" defined by S(v, u) = (y(v, UI' ... , U,), 0). If v, U is sufficiently

near the origin, then for (x, y) = S( v, u) we have x E int C, ("il j;(x) I i = 1, ... , r}

r--- ------
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still linearly independent,
r

[Vfo(x) - v] + LY; V,[;(x) = 0,
;=1

f(x)+u;=Oandy;>O fori= I. ... ,r,

f(x)+u;<Oandy;=O fori=r+I, ... ,m,

as well as w' V;l(x,y)w > ° for every w = 0 such that w - "If (x) = 0 for i ~ I, ... , r.
But this means that the strong second-order conditions for the perturbed problem
(P( v, u» are satisfied by (x, y), and hence of course that (x, y) is the unique pair
satisfying the Kuhn-Tucker saddle-point condition for (P(v, u». Therefore, in accor-
dance with (2.10), T,- I agrees with the continuously differentiable mapping S in a
neighborhood of the origin. The fact that then Tf- I and Tg-I are also continuously
differentiable in a neighborhood of the origin follows from Proposition 1.

N ext we give direct conditions for the Lipschitz continuity of Tf- I and Tg- I.

PROPOSITION3. (a) Tf - I is Lipschitz continuous at the origin if and only if (P) has a
unique optimal solution x, and there exist A > 0 and E > 0 such that .

fo(x) > fo(x) + \Ix - Xl2 for all feasible x satisfying Ix - xl < Eo (2.20)

In this event, for eve,y 0: E R the set of all feasible solutions x to (P) satisfying fo(x) < 0:

is bounded.
(b) Tg-I is Lipschitz continuous at the origin if and only if the convex function

p(u) = inf(P(O, u» is finite and differentiable at u = 0, and there exist \ > ° and E > 0
such that

p(u) < p(O) + U· Vp(O) + \lul2 for all u satisfying lul< Eo (2.21)

In this event, (P) satisfies the Slater condition.

PROOF. Part (a) is immediate from (I, Proposition 7(b)] applied to the present
function f. (If f == + 00, then T/x) = R" for all x, so that Lipschitz continuity at the
origin, which entails single-valuedness at the origin, is impossible.) The uniqueness of
the optimal solution to (P) implies that the level set {x I f(x) < a} is nonempty and
bounded for a = min(P), and hence it is bounded for every a E R [16, Cor. 8.7.1].

In Part (b) we use the conjugate relation p* = - g [16, Theorem 30.2]. We have
Tg = op", so by applying [I, Proposition 8(c)] to p* instead of f we get that Tg- I is
Lipschitz continuous at the origin if and only if the condition in (b) is satisfied by the
function p** = cl p. However, this condition on cl p is equivalent to the same
condition on p, because it concerns an open set where the function in question must
be finite, while p and cl p agree on any such set [16, Theorem 7.4]. Of course, (2.21)
implies p(u) < + 00 for some u = (uI' ... , um) with every U; < 0, so that for some
x E C we have f(x) < ° for i = I, ... , m (Slater condition).

Finally, we provide more clarification of the condition that T,-I be Lipschitz
continuous at the origin.

PROPOSITION4. The function '11'(v,u) = inf(P(v, u» is concave in v and convex in u.
It is finite on a neighborhood of (0, 0) if and only if (P) satisfies the Slater condition, and
for some a E R the set of all feasible solutions x to (P) with fo(x) < a is nonempty and
bounded.

A sufficient (but not necessary) condition for T,-I to be Lipschitz continuous at (0, 0)
is that 'IT be twice differentiable at (0, 0). On the other hand, the strong second-order
conditions (a), (b), (c) imply the twice differentiability of '11' on an entire neighborhood of
(0,0).

r----------------------------- _ •



AUGMENTEDLAGRANGIANSAND PROXIMALPOINT ALGORITHM 105

PROOF. The function
I*(v, u) = -inf(P(v, - u») = sup inf {v·x + u'y -/(x,y)} (2.22)

x y

is conjugate to I, and in particular "closed" convex-concave [16, p. 389]; hence 1T is
"closed" concave-convex. The finiteness of 1T(v, u) on a neighborhood of the origin is
thus (by the structure of such functions; [16, Theorem 34.2]) equivalent to that of the
functionsp(u) = 7T(0, u) and 1T(V, 0) = inf{j(x) - v·x} = -f*(v). Butp is finite on a
neighborhood of 0 if and only if (P) satisfies the Slater condition, while f*( v) is finite
on a neighborhood of 0 if and only if some set of the form (x [f(x) < IX} is nonempty
and bounded [16, Theorem 27.I(dXf)]. This verifies the second assertion of the
proposition. Recalling next that (v,u)Ea/(x,y)<=>(x,y)Ea/*(v,u) [16, Theorem
37.5], we see that T,-I(V, u) = a/*(v, - u). The differentiability of T,-I at (v, u) is thus
equivalent to the twice differentiability of 1Tat (v, u). But differentiability of T,- I at
(v, u) implies Lipschitz continuity at (v, u) [1, Proposition 4]. This proves the rest, in
view of Proposition 2.

REMARK. Proposition 4 leads, at least heuristically, to the conclusion that for
"most" convex programs (P) it will be true that T,-I is Lipschitz continueus at the
origin. The reasoning is that convex functions (and concave functions) are twice
differentiable almost everywhere on any open set where they are finite (d. [22]), and
the same might therefore be expected to be true of concave-convex functions like 1T.
(However, no one has in fact tackled this question.) The twice differentiability of 7T on
an entire neighborhood of (0, 0) seems, by contrast, to be a rather special property.
The Lipschitz condition on T,- I is thus more appealing as a hypothesis in the results
below than the strong second-order conditions for optimality in (P), and of course it
has the further advantage that it makes sense for a much wider class of problems.

Similar observations can be made about Tf-I and Tg- I: since these are just the
subdifferentials of certain convex functions, they are single-valued and differentiable
(hence Lipschitz continuous) at almost all interior points of the sets where the
functions in question (namely f* and cl p) are finite. We have seen for Tg-I that the
set has the origin in its interior if and only if (P) satisfies the Slater condition, while
for Tf- 1 this is the case if and only if for some IX E R the set of all feasible solutions to
(P) satisfying fo(x) < IX is nonempty and bounded.

3. Primal application: proximal minimization algorithm. The proximal rrururmza-
tion algorithm for (P) can be expressed by

Xk+1 ~arg min <P(x), (3.1)
xERn k

where <Pkis the closed convex function on R n defined by

<Pk(X) = f(x) + (1/2ck)lx - Xk[2 (3.2)
(j being the essential objective function for (P) as in (2.4». The sequence (ck)

satisfying (l.l) and the initial vector XO are given. Minimizing <Pkon R" is the same as
minimizing jf (see (1.2» over the feasible set

D = {x E C [};(x) < 0 for i = I, ... , m}. (3.3)
Assuming that D f 0 (so that f and <Pkare proper), we have

a<Pk(X) = af(x) + Ck-I(X - Xk) = Tf(x) + Ck-I(X - Xk) for all x (3.4)

[16, Theorem 23.8]. This can be used in the estimate (2.2) to get the following criteria
for the approximate relation in (3.1) that respectively imply (A) and (B) of §2 for T/

00

dist(O, a<Pk(xk+I») < Ek/Ck, L Ek < 00, (A')
k=O

00

L s, < 00.
k=O

(8')

r----
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Of course, exact minimization of </>kcorresponds to dist(O, a</>k(xk+I» = 0, in which
event (A') and (B') are both satisfied. By convention, dist(O, a</>k(xk+I» = + 00 if
a</>k(xk+l) = 0; thus (N) and (B') entail a</>k(xk+l) =1= 0 and hence Xk+1 E D (i.e.,
x k+ 1 must be a feasible solution to (P».

The next proposition gives further information relevant to estimating
dist(O, a</>k(xk+ I». Here for a closed convex set K =1= 0 and point v we let prox( v I K)
= unique point of K nearest to v. The closed tangent cone to the convex, set D at a
point x is denoted by KD(x); similarly KcCx) for x E C. Thus prox( - V'f~(x) I KD(x»
in the next result gives the "direction of steepest descent" of f~ at x relative to the
feasible set D.

PROPOSITION 5. Suppose the functions}; are all differentiable relative 10 C (with
int C =1= 0). Then for </>kin (3.2) and any xED, one has

dist(O, a</>k(x» = [proxf - V'f~(x) I KD(x»)1

< yr;;i~ Iprox( - V'ft(x) - i~/;V'};(x) I KcCx»)1 (3.5)

y,;;(x)=o

where equality holds for example if (P) satisfies the Slater condition.

PROOF. These relations follow from the calculus of directional derivatives and
sub gradients in (16, §23]. The differentiability of fo relative to C (and hence that of f~)
gives us for any xED

</>~(x; w) = w- V'f~(x) + 8~(x; w), (3.6)

where 8D is the indicator of D. Passing on both sides to the conjugate function with
respect to w, we see [16, Theorem 23.2 and p. 215] that

(3.7)

where ND(x) is the normal cone to D at x, the polar of KD(x). Moreover

ND(x)::J Nc(x) + {i~/iV'};(x) l.r> O'Yi};(X) = O}, (3.8)

with equality if the Slater condition holds [16, p. 283]. From (3.7) and (16, pp.
339-340] we have

dist(O, a</>k(X» = dist( - V'f~(x), ND(x»)

= 1- V'f~(x) - prox( - V'f~(x)IN D(x»)1 = [proxf - V'f~(x)IKD(X»)1 (3.9)

as claimed in the first part of (3.5). On the other hand, for any multipliers Yi ;;. °with
Yi};(X) = 0, i = I, ... ,m, we have from (3.7) and (3.8) that

m

a</>k(x)::J V' f/f(x) + ~ Yi V' };(x) + NcCx),
i=1

and hence by the same reasoning as in (3.9)

dist(O, a</>k(X» < Iprox( - V'f/f(x) - i~/;V'};(x)INcCx) )1·

Thus the inequality in (3.5) is also valid (the infimum corresponding to a quadratic
programming problem and therefore being attained). The argument shows that the
inequality becomes equality if (3.8) holds with equality.

r=
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The following theorems are obtained simply by specializing to the essential objec-
tive function f the results of [1, §4] for a general closed proper convex function f on a
Hilbert space. This amounts to taking T = Tf in the general proximal point algorithm.

THEOREM I. Suppose inf(P) < + 00, and let the proximal minimization algorithm be
executed with stopping criterion (A') applied to <Pkin (3.2). If the generated sequence
{x k} of feasible solutions to (P) is bounded, then x k ----)X 00, where x 00 is some optimal
solution to (P), and moreover '

(3.lO)

The boundedness of x" under (A') is in fact equivalent to the existence vf an optimal
solution to (P). Thus it is certain to hold if for some a E R the set of feasible x satisfying
fo(x) < a is nonempty and bounded, or more particularly if Tf-I is Lipschitz continuous
at the origin (cf. Propositions I, 2, 3).

PROOF. This corresponds to [I, Theorem 4 (and Theorem I)].

THEOREM2. Suppose inf(P) < + 00, and let the proximal minimization algorithm be
executed with stopping criterion (B') applied to <Pkin (3.2). If Tf - I is Lipschitz continuous
at the origin with modulus af (cf. Propositions I, 2, 3) and {x k} is bounded (cf. Theorem
1), then x k ----)x, where x is the unique optimal solution to (P), and

IXk+ I - xl < Oklxk - xl for all k sufficiently large, (3.11 )
where

[ ( 2 2) - 1/2 ] . - IOk= af af + c; + s, (1 - 8d
2 -1/2----)0 = a (a + c2 ) < 1

00 f f 00
(3.12)

PROOF. Everything is covered by corresponding assertions of the general rate-of-
convergence theorem for the proximal point algorithm [1, Theorem 2]. (See the
remarks made there for some further refinements.)

Note that 000 ~ afl Coo in Theorem 2 for large values of cOO'

THEOREM3. Suppose C and the functions}; are polyhedral convex (or affine), so that
(P) is a polyhedral convex (or linear) program. If inf(P) is finite and the proximal
minimization algorithm is executed with exact minimization at each step (i.e., f.k = ° in
(A')), one has convergence in finitely many iterations: there is an optimal solution x 00 to
(P) such that x'' = XOO for all k sufficiently large.

PROOF. This is a special case of [I, Proposition 8].

4. Dual application: method of multipliers. The augmented Lagrangian has been
defined in (1.4)-( 1.5) on C X R m X (0, + (0), but it is convenient to extend it by
setting L(x, y, c) = + 00 whenever x ~ C. Observe that then (by direct calculation)

L(x,y, c) = max {l(x, 1/) - (lj2c)l1/ - y12} for all x,y, c > 0, (4.1)
11

where if x E C the maximum is attained uniquely for 1/ = Y(x, y, c), the simple
mapping Y being the one defined in (1.8).

The method of multipliers can be expressed as

xk+1 ~arg min <P(x) andyk+1 = Y(Xk+I,yk, ck), (4.2)
xER" k

where <Pkis the closed proper convex function defined by

(4.3)



108 R. T. ROCKAFELLAR

The initial vector yO and the sequence {cd satisfying (1.1) are given.
We shall investigate this procedure under three stopping criteria:

(AN)

00

<Pk(Xk+ I) - inf <Pk< (of!2ck)I/+ I - ykl2, ~ s, < 00, (Bn
k=O

dist(O, O<Pk(Xk+I» < (oUck)lyk+1 - ykl, 0 < O~~O, (B2)

where of course
m

Iyk+ 1_ ykl2 = I Y(xk+ I,r', ck) - ykl2 = ~ max"] - y/, cJ;(x"-+ I)}. (4.4)
i=l

If f happens to be strongly convex with modulus b, then the same is true of <Pk' and
one has the estimate

<Pk(X) - inf <Pk < (l/2b)dist2(0, O<Pk(x», (4.5)
a fact effectively used by Kart and Bertsekas [II] (see also Bertsekas [23]). (The proof
of (4.5) is obtained from the fact that for any x, x' and wE O<Pk(X). one has
<Pk(X') > <Pk(X) + (x' - x) . w + (1 /2b)lx' - X12. Minimize both sides in x' and then
maximize the right side over all wE O<Pk(X).) For more on how to estimate <Pk(X) -
inf <Pk' see [14, discussion following Theorem 4].

Parallel to Proposition 5, one has (by the same argument) that for the present <Pk'

dist(O, O<Pk(X» = [proxf - VxL(x,yk, ck) 1 Kdx»)I, (4.6)

if the functions}; are differentiable relative to C (with int C =F0).
The following result shows the relation between such estimates and the general

proximal point algorithm of §2 in the case of T = Tg, or in other words

Pk(y) = (I + ck Tgf I(y) = arg max {g(y) - (l/2ck)ly - ykI2}. (4.7)
yER'"

(It is assumed here that g ~ - 00, i.e., sup(D) > - 00, so that Tg is indeed maximal
monotone.)

PROPOSITION6. For Pk as in (4.7), <Pk as in (4.3) and yk+1 = Y(Xk+I,yk, ck), one
has

Iyk+ I - Pk{/W /2ck < <Pk(Xk+ I) - inf <Pk' (4.8)

PROOF. The argument is essentially the same as [24, Lemma 4.3, p. 365], but we
furnish a direct proof of this estimate in the present notation. Observing from (1.7)
that

VyL{xk+I,yk, ck) = Ck-I{/+I - /), (4.9)
we obtain from the concavity of L(x, y, c) in y the following inequality for arbitrary
1IERm:

> inf , L(x, 11, ck) = inf , maxy{l(x,y) - (1/2ck)ly - 1I12}

= maxy infx{i(x,y) - (1/2ck)ly - 1I12}

= maxy{ g(y) - (1/2ck)ly - 1I12} > g(Pk(/» - (1/2ck)IPk(yk) - 1112. (4.10)

The interchange of inf , and maxy in (4.10) is justified by the growth properties iny of

..•------. --- -----
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the "minimaximand" in question [16, Theorem 37.3]. The same reasoning also yields

inf , Li xv y", ck) = maxy{ g(y) - (1/2ck)ly - /12}

= g{Pk(/)) - (l/2ck)IPk{yk) - /12. (4.11 )

Combining (4.10) and (4.11), we get

ct>k(Xk+l) - inf ct>k= L(xk+\yk, c,J - inf , L{X,yk, ck)

;;;.[IPk(yk) - /12 -IPk(/) - 1)12- 2(yk+1 - /). (1) -yk)l/2Ck

= [2{Pk(/) - /+ I). (1) - /) -11) - ykI2]!2ck.

As mentioned, this holds for all 1) E R'", so that we can take the maximum of the last
expression in 1) to get a sharper inequality. The maximum is attained for 1)

= Pk(yk) - yk+ 1+ r' and equals the left side of (4.8), proving the assertion.·
In stating our main results about the method of multipliers, we recall that a

sequence {x k} in C is asymptotically minimizing for (P) if

lim SUp};(Xk) ,;;;0 for i = I, ... ,m, (4.12)
k-HX)

and the quantity Iim sUPk~oofo(x k) has the lowest value possible relative to sequences
in C satisfying (4.12). The latter value is called the asymptotic infimum in (P) and is
denoted by asym inf'(P).

THEOREM4. Suppose sup(D) > - 00, and let the method of multipliers be executed
with stopping criterion (AU) applied to ct>kin (4.3). If the generated sequence {y k} C R ":.
is bounded, then yk~y"(), where yOC is some optimal solution to (D), and {Xk} is
asymptotically minimizing for (P), in fact with

f( k+I)" -II k+1 kl 0 t. ·-1Ji x '" ck Y - Y ~ Jor I - , ... , m,

fo(xk+ I) - asym inf(P) ,;;;(1/2ck)[ f.; + lykl2_ Iyk+ In

(4.13)

(4.14)

The boundedness of {y k} under (AU) is actually equivalent to the existence of an
optimal solution to (D). Thus it is certain to hold if (P) satisfies the Slater condition, or
more particularly if Tg- I is Lipschitz continuous at the origin (cf. Propositions I, 2, 3); in
these cases one has max(D) = inf(P) = asym inf(P).

If {y k} is bounded and there is an a EO R such that the set of all feasible x in (P)
satisfying fo(x) ,;;;a is nonempty and bounded, then the sequence {Xk} is also bounded,
and all of its cluster points are optimal solutions to (P).

REMARKS. Criterion (AU) with merely f.k ~ 0 was in our general convergence
analysis in [24] in demonstrating that {x k} would be asymptotically minimizing for
(P) if {y k} was bounded and maximizing for (D). The latter property, on the other
hand, was shown in (\0] to follow if L;;'=o f.k < 00. Tretyakov [9] treated only exact
minimization in establishing global convergence. The estimate (4.14) is entirely new.

PROOF OF THEOREM 4. Proposition 6 shows that (AU) implies the more general
criterion (A) for T = Tg• We appeal to (1, Theorem I] to obtain from this the
convergence of {yk} to a solution yoo to 0 E T(yCO), in other words a particular
optimal solution to (D). Relation (4.13) is a consequence of (4.4) and y k + I - Y k ~ O.
N ow we derive (4.14). Observing that

L(x,y, c) = fix) + (1/2c)[1 Y(x,y, cW _lykI2] for x E C, (4.15)
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we see
<Pk(Xk+l) - fo(xk+l) =(1/2ck)[lyk+112 _lykj2]. (4.16)

At the same time, equation (4.11) established in the proof of Proposition 6 yields

inf <Pk,;;;g(Pk(yk)) ,;;;max(D). (4.17)

Combining (4.16) and (4.17) we get

fo(xk+ I) - max(D) ,;;;Cpk(Xk+ I) - inf <Pk+ (1/2ck)[ly
kI2 _Iyk+ 114]

,;;;(1/2ck)[£; + lykl2 -Iyk+ln (4.18)

But every x E C satisfies
In

fo(x) + Ly;OOf(x);;;. inf , l(x,yOO) = g(yOO) = max(D),
;=1

so that max(D) ,;;;asym inf(P). Therefore (4.18) implies (4.14).
Since (AN) implies criterion (A) for Tg' we know from [I, Theorem I] that the

boundedness of the generated sequence {yk} is equivalent to the existence of somey
satisfying 0 E Tg(Y) i.e., an optimal solution to (D). It is well known that the Slater
condition implies the existence of such a solution and max(D) = inf(P) = asym inf(P).
(The Slater condition is actually equivalent to the boundedness of all the level sets
{y Ig(y) ;;;.f3}, f3 E R.) That the Slater condition follows from the Lipschitz continu-
ity of Tg-I at the origin is asserted in Proposition 3(b).

The final statment of Theorem 4 is obtained from (4.13), (4.14) and the fact that, if
the set {x E C Ifo(x) ,;;;0:0, f,(x) ,;;;0: I' ... ,fm(X) ,;;;O:m} is nonempty and bounded
for one choice of (0:0, a I' ... , O:m) E R m + I, then by convexity and lower sernicontinu-
ity (and the closedness of C) it is bounded for every (0:0,0:1, ... , am) E Rm+1 [16;
8.3.3, 8.4, 8.7].

The next theorem requires a preliminary result of a fundamental nature.

PROPOSITION 7. Let x E C, Y E R "'. C > 0, and let u = c - I(y - y') where y'
= Y(x,y, c). Then for any G E a,L(x,y, c) one has (G, u) E T,(x,y') and consequently
the estimate

dist(T,(x,y'), (0, 0» ,;;;I(e. u)l· (4.19)

PROOF. It is elementary from the definitions of I and L and the calculus of
, subgradients [16, §23] that

rn

axL(x,y, c) = afo(x) + Ly;af(x) = axl(x.y')
;=1

(4.20)

(where for the convenience of the moment j,(x) has been interpreted for x tf. C as
+ 00). (The fact that aA(f(x),y;, c) = y;aj,(x) is obtained from a!/;(t,y;, c)/at
= ma~{O,y; + ct} by calculating the one-sided directional derivatives of !/;(j,(x),y;, c)
with respect to x.) Thus we have v E a)(x, y'). Ori the other hand. as noted at the
beginning of this section, the maximum in (4.1) is found at 1)= Y(x,y, c) = y'. Hence

o E a/lex, 1) - (1/2c)l1) - yI2)1'1=y' = ayl(x,y') - c-I(y' - y).

Therefore - u E ayl(x. y'), so that (v, u) E T,(x, y') as claimed.

COROLLARY. In the method of multipliers, one has the estimate

dist(T,(xk+',/+'), (0,0») c [dist2(0, a<Pk(xk+I» + Ck-
21/+1 - ykI2(2. (4.21)

THEOREM5. Suppose sup(D) > - 00 and let the method of multipliers be executed
with stopping criterion (B;') applied to <Pkin (4.3). If Tg-I is Lipschitz continuous at the

• •
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origin with modulus ag (cf. Propositions 1,2,3) and {yk} is bounded (cf. Theorem 4),
then y k ~ y, where Y is the unique optimal solution to (D) (in fact, the unique
Kuhn- Tucker vector for (P), because max(D) = inf(P) = asym inf(Pj), and .

Iyk+ 1_ YI c Oklyk - YI for all k sufficiently large, (4.22)
where

[ ( 2 2) - 1/2] - 1 (2 2 ) - 1/2Ok= ag ag + ck + 8k (I - 8k) ~ 0 co = ag ag + c co < I.

Moreover, the conclusions of Theorem 4 about {x "} are valid with f.k = 8klyk+ 1 - r' I in
(4.14).

If in addition to (B;') and the condition on Tg-I one has (BD and the stronger condition
that T,-I is Lipschitz continuous at the origin with modulus a, (> ag), 'then x" ~ X,
where x is the unique optimal solution to (P), and one has

Ixk+1 - xl';;; O~lyk+1 - ykl for all k sufficiently large (4.23)

where O~= al(l + 8D/Ck~O'oo = at/coo'

REMARK. Criterion (B2) is essentially what has been used by other authors in
obtaining convergence results of the caliber of (4.22) and (4.23) for the method of
multipliers (local convergence in the nonconvex case) (cf. Polyak and Tretyakov [6],
Bertsekas [7], [8]), but under the more restrictive assumption that the strong second-
order conditions for optimality hold in (P) (cf. Proposition 2), which precludes any
real role for the constraint x E C. Of course, (B2') with ~%"-o 8~< 00 implies (B;') via
(4.5) if fo is strongly convex with modulus b, or simply from the strong second-order
conditions if (xk,yk) stays sufficiently near (x,Y) and Ck is large enough, due to the

. well-known strong convexity of CPk near x in the latter case.
PROOF OF THEOREM 5. The first part of the theorem is obvious from Theorem 4

and the general result [I, Theorem 2], since in view of Proposition 6 we are, in effect,
executing the proximal point algorithm for Tg under (B). To establish the second part,
we recall that if T,-I is Lipschitz continuous at (0,0), then T,-I(O, 0) = {(x,y)}, where
x and yare the unique optimal solutions to (P) and (D), respectively. Therefore

if the distance in question is sufficiently small. Putting (B2') into the estimate of the
corollary above, we obtain

l(xk+1 - x,yk+1 - Y)I .;;;a,(8'i + 1)1/2ck-II/+1 _ ykl,

and this yields (4.23).

THEOREM 6. Suppose C and the functions j; are polyhedral convex (or affine). If
inf(P) is finite and the method of multipliers is executed with exact minimization at each
step (i.e., f.k = 0 in (A"», one has convergence in finitely many iterations: there is an
optimal solution yOO to (D) such that for all k suffiCiently large one has r" = yOO,and x"
is optimal for (P).

PROOF. As regards the sequence {y k}, this result is, like Theorem 3, an applica-
tion of [1, Proposition 8], namely to - g. The latter function is polyhedral convex
when C and the functions j, have this property, and then max(D) = min(P) [16,
Theorems 29.2, 30.4(e) (f)]. The ultimate optimality of {xk} is seen from the estimates
(4.13) and (4.14).
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REMARK. The finite convergence in Theorem 6 for linear programming problems
was discovered by Polyak and Tretyakov [25] and independently later in somewhat
more general terms by Bertsekas [26].

5. Minimax application: the proximal method of multipliers. Like the ordinary
method of multipliers, the proximal method of multipliers can be described by (4.2);
however, instead of (4.3) we have

</>k(X)== L(X,yk, ck) + (1/2ck)lx - xkl2, (5.1)

so that </>kis strongly convex with modulus 1/ ck. The initial pair (xo, y~ and the
sequence {cd satisfying (1.1) are given. We treat as stopping criteria:

00

L {k < 00,
k=O

(N")

00

L s, < 00. '(B''')
k=O

If the functions f are differentiable relative to C (with int C i= 0), we have

dist(O, O</>k(X» = Iprox( - v ft(x) - i~// v f(x)IKdx) )1, (5.2)

corresponding to a simplified form of Proposition 5.
We apply the general convergence theory of [I] to the algorithm of §2 for

Pk(x, y) = (J + ck T,) -1(X,y)

= arg minimax {l(x,y) + (1/2ck)lx - xkl2 - (1/2ck)ly - ykj2). (5.3)
xER" yER'"

The key to this application is the following.

PROPOSITION8. For Pk as in (5.3), </>kas in (5.1) and yk+1 = Y(Xk+l,yk, ck), one
has

(5.4)

PROOF. Formula (5.1) yields the subdifferential relation

O</>k(Xk+I) = 0xL(Xk+l,y\ ck) + Ck-I(Xk+1 - Xk).

For any wEO</>k(Xk+I), we therefore have w+Ck-I(Xk-xk+I)EoxL(Xk+l,yk,Ck)'
and we can conclude from Proposition 7 that

or in other words (ckw + X\yk) E (I + ckT,XXk+I,yk+I). Therefore, (Xk+I,yk+l)
= Pk(CkW + xk,yk). But Pk, as the proximal mapping associated with the maximal
monotone operator ck T" is nonexpansive [I, §2]. Thus

I(Xk+l,yk+l) - Pk(xk,yk)1 < I(ckw + xk,yk) - (xk,yk)1 < cklwl.

Since this holds for all wE O</>k(Xk+I), we have (5.4).

THEOREM 7. Let the proximal method of multipliers be executed with stopping
criterion (A''') applied to </>kin (5.1). If the generated sequence {(Xk,yk)} in C X R"; is
bounded, then (xk,yk)~(XOO,yoo), where xoo is a particular optimal solution to (P) and
yoo is a particular optimal solution to (D); min(P) = max(D). Furthermore, (4.13) holds

.,------------------- •
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m

fO(Xk+ I) - min(P) ~ Ck-Ilxk+ 1_ xool{t:k + Ixk+ 1_ xkl) - LY/+ j;(Xk+ I) ~O,
i-I

(5.6)

fO(Xk+ I) - min(P) ~ - Ck-Ilyool· Iyk+ 1_ ykl ~o. (5.7)

The boundedness of {(xk,yk)} under (N") is actually equivalent to the existence of
optimal solutions to (P) and (D) with min(P) = max(D), and thus it holds in particular if
T{- I is Lipschitz continuous at (0, 0) (cf. Propositions I, 2, 3).

PROOF. From Proposition 8 and [I, Theorem I] we know that (Xk,yk) converges
to some (Xoo,yoo) satisfying (0,0) E T{(xoo,yoo). The latter relation means that
(Xoo,yoo) is a saddle point of I, and hence xoo is optimal in (P), yoo is optimal in (D),
and min(P) = max(D). Since y k ~ Y 00, we have ck- I(y k + I - yk) ~ O. But y/ + I ~ 0 and
j;(Xk+l) ~ C;I(y/+1 - y/) by the definition of yk+l, so (4.13) holds as claimed and

the second inequality holding by the lower semicontinuity of j; and the fact that
(Xoo,yOO) is a saddle point of I. Thusy/+j;(xk+I)~O.

We derive (5.6) and (5.7) by taking any wE a<Pk(Xk+ I) such that Iwl ~ t:d ck, as
exists under (A'''), and working with the corresponding relation (5.5) established in
the proof of Proposition 8. This can be written as the two subdifferential inequalities:

(where Xk+ lEe, yk+ I E R~). Applying (5.8) to x = xoo and using the saddle-point
property of (XOO,yoo), we get

I(Xk+I,/+I) - l(xOO,yOO) ~ I(Xk+l,yk+l) _ l(xoo,yk+l)

~ IXk+1 - xOOI{lwl+ Ck-Ilxk - Xk+II),

which translates into (5.6) on the observation that
m

I(xk + '. yk+ I) _ li x'", yOO) = fo(xk+ I) + L y/ + j;(x k+ I) - min(P).
i=1

Similarly, from (5.9) we get

l(xOO,yOO) ~ l(xk+l,yoo) ~ I{Xk+l,yk+l) + Ck-l(yOO _ yk+I). (yk+1 _ yk)

= fO(Xk+l) + Ck-I[ yoo. (yk+1 - yk) - i~//+I{y/+I - y/ - CJ;(Xk+I»)]

~ fO(Xk+ I) + c; Yoo . (yk+ I _ yk),

whence (5.7). (These calculations make use of (1.7) again.)
The necessary and sufficient condition for boundedness of {(xk,yk)} furnished by

.----
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[I, Theorem I] is the existence of (x,y) satisfying (0,0) E T,(x,Y), and this is
equivalent, as seen in §2, to the relation min(P) = max(O).

REMARK. The estimate (5.6) is of practical import, for example, if C is bounded
with known diameter, since then IXk+ 1 - xool « diam C. Also, if x E C is such that
f;(x) < 0 for i = I, ... , m, and a is any real number such that a « max(O) = min(P)
(as might be obtained via (5.6» one has

y 00 E {y I g (y) # a} C {y # 0 Ifo( x) + ;~/ 1;(X) # a }

and consequently

THEOREM 8. LeI the proximal method of multipliers be executed with stopping
criterion (B''') applied to </>k in (5.1). If T,- 1 is Lipschitz continuous at the origin with
modulus a, (cf. Proposition 2) and {(Xk,y,k)} is bounded (cf. Theorem 7), then (Xk.yk)
-'> (x. ji) where x is the unique optimal solution to (P) and Y is the unique optimal
solution to (0); min(P) = max(O). Furthermore. one has •

for all k sufficiently large, (5.10)

where

and the conclusions of Theorem 7 are valid with (k = t\l(xk + I. r' + I) - (Xk, yk)l.

PROOF. Again, this is just a matter of applying [L Theorem 2] to the present
context of Proposition 8 and Theorem 7.

6. Concluding comments. We have only dealt with inequality constraints. but
equations can be treated in the same way. For an equality constraint, the function]; is
affine, and in place of tJ;(];(x),y;. c) in the augmented Lagrangian (1.4) one simply
has the term y;};(x) + (c /2)];(X)2. Correspondingly, Y;(x, y, c) in (1.8) is just
y; + c];(x). The Slater condition must be reinterpreted as asserting the existence of a
feasible solution x E int C which satisfies all the inequality constraints in the problem
strictly. In the strong second-order conditions for optimality, the multipliers .y;
corresponding to the equality constraints are not required to be positive. With these
extensions, all the theorems and propositions in this paper remain valid for problems with
mixed equality and inequality constraints. (Incidentally, the closedness of C could be
relaxed by working in the framework of [16, §28].)

Generalization to infinite dimensions is also easy. since the fundamental theory of
the proximal point algorithm in [I] is cast in the framework of Hilbert spaces. If the
primal vector x ranges over such a space X, but still there are only finitely many
constraints (so that R m is still the multiplier space), only minor changes are required.
The extended interpretation just given of the Slater condition suffices. while the
assumption that for some a the set

{x Eel fo(X) « a and x is feasible for (P)} (6.1)

is nonempty and bounded, must be replaced, where it occurs, by the assumption that
for some a and f3 the set

U {x E C Ifo(x) « a and x is feasible for (P(O, u»)}, (6.2)
lul < fJ

• r=



AUGMENTED LAGRANGIANS AND PROXIMAL POINT ALGORITHM 115

is nonempty and bounded (d. [18, Theorem 18'(e))). The inequality in part (c) of the
strong second-order conditions must be sharpened to w- Hw > AI wl2 for some A > ° as
in the article of Wierzbicki and Kurcyusz [27]. Then again all the theorems and
propositions remain calid. (One has weak convergence under criterion (A) and its
realizations, but strong convergence under (B) and its realizations.) (But Theorems 3
and 6 are of course intrinsically finite dimensional.)

Models with infinitely many constraints present a more serious challenge. The
multiplier space R n must be replaced by a Hilbert space U (rather than some other
kind of Banach space), and the perturbed problem (P( v, u» in §2 must therefore be
generalized in terms of a perturbation vector u in this same space U. The Slater
condition can be taken as the property that for every u E U there exists £ > Osuch
that inf(P(O, w» < + 00, i.e., (P(O, w» has a feasible solution (d. [18,-Theorem
18(c)]). The nonemptiness and boundedness of (6.2) can be substituted, as above, for
that of (6.1). Although no suitable version of the second-order conditions for optimal-
ity is known for this case, so that Proposition 2 (like Theorems 3 and 6) must be left
out, the rest of the theorems and propositions remain in force under these interpreta-
tions.

The real difficulty in this context, however, is that the Slater condition is too
stringent for most applications, and indeed the existence of multipliers belonging to
an infinite-dimensional Hilbert space is very hard to guarantee in terms of any
reasonable assumption on the given problem.

The results can also be extended to generalized convex programming problems in
the sense of [16], [18]. In this case, I is any "closed" proper convex-concave function
on X X U (product of Hilbert spaces), and the augmented Lagrangian L is defined by
(4.1), the maximum in (4.1) being attained uniquely at Y(x,y, c). The functionsfand
g are defined by f(x) = SUPy l(x,y) and g(y) = inf', l(x,y). Problem (P) consists of
minimizingf over X, while (D) consists of maximizing g over U. The property in [18,
Theorem l8(c)] can serve as the Slater condition, while the one in [18, Theorem 18'(e)]
can serve in place of assuming the boundedness of (6.2). The generalized forms of all
the theorems and propositions are valid in this context, except for Proposition 2 (no
second-order conditions being available) and the estimates (4.13), (4.14), (5.6) and
(5.7) (which would have to be reformulated somehow). (In (3.10), one can put f in
place of fo. In Theorem 7, it is nevertheless true that l(x",y")-'?/(xOO,yOO); see [I,
Theorem 5]. The hypothesis of Theorem 3 is that X is finite dimensional and f is
polyhedral convex, while in Theorem 6 it is that U is finite dimensional and g is
polyhedral concave.)

For the method of multipliers and the proximal method of multipliers to be of
interest for computation for generalized convex programs, it is essential that I be such
that the maximization in (4.1) can be carried out in closed form (rather than just
numerically), giving a manageable expression for the augmented Lagrangian L.
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