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Necessary and sufficient conditions for optimality are derived tor multistage stochas-
tic programs. In particular it is shown that under some standard regularity conditions and
a condition of “nonanticipative feasibility”, a system of Lagrange multipliers, character-
ized by a martingale property, can he associated with the constraints of the problem.
Nonanticipative feasibility is expressed in terms of the nonanticipativity of a certain
multifunction and is shown o be related to the more familiar concept —in stochastic
programming — ol relatively complete recourse. It is also shown that this restriction
renders possible the justification of the dynamic programming technique.

1. Introduction

We study a class of multistage stochastic optimization prablems, moti-
vated by the following heuristic model. First a random event is observed;
this singles out an clement &, of R". Based on this observation. a decision x,
is chosen which is an clement of R™. A second observation is then made
vielding & in R', and a (recourse ) decision x in R™ is selected based on the
information acquired so far (&, &). This continues until the N™ stage: at
each stage k a new observation & € R is made and the (recourse) decision
x. 18 selected as a function of (&,.... &). At the N™ stage, we determine
& € R™ and choose xy € R™. The result of this sequential decision process
is a “cost” f(x. &) where
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£=(£ & E)ER =RUIXRYX ., X R,

X =(X5 % Xn)ER"=R"XR:X .. XR™

The objective 1s to find a decision rule — also called a recourse function —
£ x(&)

which is nonanticipative (the decision x. depends only on the past observa-
tions £.....&, but not on the future &.p..... &) and minimizes the
expected cost. This is a mulristage (or N-stage) stochastic program (with
recourse ).

Constraints are introduced by allowing the function f to take on the value
— =, f(£ x)= += mcans that il the sequence of events € = (£, &.,.... &)
does occur then the sequence of decisions x = (X5, Xy, ..., v ) IS unaccepta-
ble, or in other words x fails to satisly the constraints of the problem. For a
fixed £ € R", we denote by D(&) the effective domain of f with respect to x,
i

D(&y=dom f(&-y={x | f(& x) = + =}, (1.1)

The map D : £+ D(&)is a multifunction on R” vielding a description of the
feasibility region as a function of the random cvents.

In a sequel to this paper [1] we deal with multistage stochastic programs in
which the constraints appear explicitly in the formulation of the problem;
here we concentrate on the restriction introduced by the requirement that
recourse functions must be nonanticipative. The goal is to show that it i
possible (under certain regularity conditions) to associate with nonan-
ticipativity a price system (i.c.. a system of Lagrange multipliers) which turns
out to be a stochastic process with summable paths satisfving a martingale
property. Qur carlier results in this direction, sketched out in [2], involved &
number of technical assumptions that limited the scope of the applications,
The existence of a price system associated with nonanticipativity was first
pointed out in [3, Scction 4] in connection with our work on stochastic
convex programs dealing with a special case with N =2,

Price svstems associated with constraints appearing in multistage stochas-
tic programs have been investigated by Yudin [4]. Eisner and Olsen [3, 6]

If the sequential decision process actually starts with a decision rather than an observation
of & random evenl or il 1t terminates with an ebservation of g random guantity with no
suhsequent decision allowed, the problem can nevertheless be made 1o it into the mold laved
out here, by introducing either a fictitious first stage random event or a fictitious decision in the
last stage which would not alfect the value ol the ebjective function.
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and also by Dynkin [7, 8 9], Evstigneev [10, 11] and Radner [12] in the
framework of models for optimal economic development. The model
studied by Yudin |4] involves constraints on certain means, or in other words
chance constraints, and does not quite fit in the class of problems described
above. But it can be “reduced” to this case by a well-known equivalence [13]
exploited by Eisner and Olsen, who exhibit in [6] a price system associated
with chance constraints, using the results of [5] for a model without chance
constraints. The model considered here is more general than the one studied
by Eisner and Olsen [3] in the sense that it allows for convex objective and
convex constraints rather than linear objective and linear constraints. Also,
our main objective is to establish the existence of a ‘‘nice’ price system, a
question left open in |5]. In this sense. the results presented here are more
closely connected to those of Dynkin. Evstigneev and Radner, who have
similar preoccupations, at least in terms of the properties of the equilibrium
price system to be associated with optimal growth programs. These prob-
lems are in fact multistage programs of a very specific nature. Our results are
actually applicable to that class of problems and vield some refinements of
the results of Dynkin et al.

2. Formulation

A rigorous formulation of the problem demands appropriate assumptions
on the underlyving probability space, on the function f and the associated
multifunction D. as well as some restriction on the class of admissible
recourse functions in particular in ensuring that the expected cost is in some
sense well-defined.

A, The probability space. Let (2. #. ¢) denote the underlying probability
space, with = a Borel subsct of R”, & the Borel field on = and & a regular
probability measure on (Z.%). We assume that the images of = under
projections R"= R" X .. x R™ are Borel, so that the ““marginal’” probabil-
ity spaces induced by these projections are describable in the same terms.
This will automatically be so, if for example = is a product of nonnegative
orthants, integer lattices, whole Euclidean spaces, ete.

B. Admissible recourse functions. For present purposes, we deem admissi-
ble as recourse functions only those (Borel) measurable, essentially bounded
functions x : = — R" which are essentially nonanticipative in the sensc that
for some (Borel) measurable set ' C E with o(E') = 1 the restriction to =’
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of each of the component functions x, fork =1,..., N -1 depends only on
(£1,....&). The set of all these is denoted by 4. An equivalent definition of
A 18 that it consists of the functions which differ by only a (Borel) null
function from a (Borel) measurable function which is bounded and nonan-
ticipative relative to E itsclf. Note that ¥, can be regarded as a linear
subspace of ¥ = ¥(Z. % ¢: R"), which is closed, not only in the norm
topology. but in the weak topology w-(#5. %)

Our restriction to esseantially bounded recourse functions is chiefly for
technical reasons. but it plays a very substantial role in our approach.
Certainly it involves no real loss of generality if the sets D (€) are uniformly
bounded for £ € Z. which 1s not unrcasonable in real applications. Further
justification is given in our paper [14, §3], along with a proof in the case
N =2 that the measurability restriction does not have some hidden,
undesirable effect on the optimal value.in the problem. Results in this
context on the approximation of the minimum by means of continuous
recourse functions when = is bounded may be found in [15].

Let P. denote the generic operator projecting a vector with L (= k)
components (each one being possibly a vector) into its first & components,
eg. for 1=k =N,

ka:P;\(L,X: ...... X _.\-)Z(_X'|,.¥3,.,..xk}
and
Pnf = P,-\(fh L E A E\e} = (5 6:, — EL)

The tail profection of P, is denoted by (I — P.), specifically, (I — P &=
(&, ..., &v). Nonanticipativity of a recourse function can be expressed in
terms of projection, namely &~ x(£) is nonanticipative if for all k =
1,2,..., N andall § € Z we have that P.x (&) depends only on P& The set of
admissible recourse functions is thus given cquivalently by

No={x e Fjforallk=1...., N, Px(€)

= Pux(&)as. whenever P& = P.E}.

C. The objective function. The function f: ZE X R" — | — =, + =| is a normal
convex integrand, by which we mean that

(i) for each ¢ in E, the function x = f(& x) is convex, proper (not
identically +2) and lower semicontinuous:

(i) therce cxists a countable collection U/ of measurable functions from =
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into R" such that £ = f(& w(&)) is measurable for all u € U, while for cach
fixed &€ in E the set U(E)MN D(£) is dense in D (&) where

Ué) ={u(§)ER" |u € UL 2.1)

Various criteria for normality of convex integrands are given in [16, 17, 18
and 19]. These properties of [ imply in particular that the [unction
£ f(E u(£))is measurable whenever i is a measurable function from = to
R" [16, Corollary of Lemma 5]. A normal convex integrand is said to be

it tor all &« €R, the (level) set {x | f(& x) = a} i1s compact,

The multifunction &+ dom (&)= D(£) associates with cach §E€E a
certain set D (&) CR" of acceptable decisions. We assume that the sets D (€),
& € = are closed and uniformly bounded. The interpretation of D(£) as the
set of acceptable decisions, a set typically determined by a system of
inequalitics involving continuous convex functions, makes D(¢) naturally
closed. The uniform boundedness is a definite restriction, but an assumption
of that type can not be avoided altogether when admissible recourse
functions must be elements of #7%. These assumptions, when combined with
the fact that f is 2 normal convex integrand, imply that D is a compact-
convex valued, uniformly bounded. measurable multifunction [18] and that f
is an inf-compact normal convex integrand.

The objective function of the stochastic program is taken to be a
funectional I; on #, defined by

I(x) = E{f (& (&) @2
For every measurable [unction, the value of the integral (expectation) is
finite or — = {in the standard sense) if f( -, x(+)) is majorized by a summable
tunction of £; otherwise its value is set at + 2, The effective domain of T, is
simply

G =4{x EF7|L(x)< +8}, (2.3)

The definition of the integral implics that

DCB={x ELF2E)ED)as) (2.4)
If we take as premise that a recourse function, which associates with almost
all £ sequences of acceptable decisions, should have finite expected cost;
then & = %, This will certainly be the case if there exists a summable
function ¢ :E— R such that x € D(£) implies that | (& x)| = pn(€). We
shall assume that such a function o exists : we therefore say that x is feasible
if x € #7. x is nonanticipative and x(&) € D(£) a.s. or equivalently if
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x €9 NN, (2.5)

Observe that the postulated function p satisfics

p(g) = inf f& x). (2.6)
so that

I-(0)=E{f*(£.0)} = —E{u(é)} < + =, 2.7)
wnere f*(£ ) is the conjugate of f(& ). that is,

(& x*)=Sup{{x. x*)— f(&.x)|x ER"L (2.8)

In view of the uniform boundedness of [, (2.7) also implies that L-(y) = + =
for all y € .. (To see this, note that the condition D(£) C BB for £ €E,
where B8 = () and B is the closed unit ball, implies that f*(& x ) is finite and
Lipschitz in x*, since

[f*E ™) —f (&x%)| = Bllx*—x*| (2.9)

forall €= and all x*. x* in R". Thus, if I;.(v) < += forone y € #_. then
the same must hold for every y € ¥).)

The functional [; is clearly convex. Moreover, from (2.7) and the existence
of at least one [casible solution. it follows from Theorem 2 of [16] that I, is
also lower semicontinuous relative to the weak topology w-(#75, £)).
Actually it is inf-compact relative to this topology: the uniform bounded-
ness of D implies that the level scts, which are w-(F71..77) closed. are
contained in {x € Fl|x||= B} since D(&) C BB for all &

D. Nonanticipative feasibility. We define the multifunction & = D(£) to be
nonanticipative if for all k =1,....N and for all £ €= the projection of
D(&)on R"XR™x .. xR™ ie, P.D(¢). depends only on P& Note that if
D is single valued, this new definition reduces to the customary one for
functions. We shall assume that D is nonanticipative.

To gain insight into this concept. supposec that up to stage k, the events
(é..... &) have been obscrved and (x,.....: x: )€ P.D(£) an associated
sequence of decisions. where € ds an element of = such that P =
(&.....&). Nonanticipativity of D implies that there ¢xists Xy ., .. .. X, such
that (xi,....x)EPD(E)for =k +1,....1] N. This tollows directly from the
tact that P.D (&) only depends on Pié and that P is a projection. In other
words, nonanticipativity of D means that the constraints on the choice of x,
in stage k depend only on the past decisions xo..... v, and the realizations
(&..... & ): there is no further restriction induced by the fact that feasible
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recourse must be possible in the future. Multistage stochastic programs that
possess this property are termed stochastic programs with relatively complete
recourse. Every stochastic program can be reduced to a stochastic program
with relatively complete recourse by introducing explicitly the induced
constraings. i.e., those additional constraints induced on (x1,....x) by the
requirement of feasible future recourse. The properties of induced con-
straints [20] and the role they play in the theory of necessary and sufficient
conditions [21] have been treated in detail for stochastic programs with
N=2

E. The Multistage stochastic program. The problem at hand can be expres-
sed as:

P Find infl; on ...

We shall assume that P is feasible. i.e. possesses at least one feasible solution.
(Tt is said to be strictly feasible if there exists a function £ € N. and ¢ >0
such that £(&)+ ¢B C D(£) for almost all £ in Z.) In fact, if it is feasible it is
also solvable. The existence of an optimal solution follows directly from the
facts noted above, that relative to the topology w-(¥7, £3), I is inf-compact
and A is closed.

3, The value function

An N-stage stochastic programming problem can be “reduced” to a
k -stage stochastic program by relying—as in dynamic programming—on the
value function. Let (2, #*, ¢*) be the marginal probability space associated
with the random variables appearing in the first k stages with the notation
=, &)=P& EF=P.E. By x* =(xi,...,x) we denote an ele-
ment of (R™=R"xR™x...XR™ and by &% the class of essentially
nonanticipative functions in ¥7x= F*(E* F* o*: R™), k=1,...,N For
k=1,2.....N. we consider the following stochastic program:

Find infI, on &% (3.1)

where the value function g, with domain =* x R"™, is defined recursively as
follows: for {=k+1,..., N we set

—
[
(8]

p—

@A )= Ee'{in,f g5 2" )€ 5

4w (fl\ X '\) = f(f. X ) (33)



R.T. Rockafellar, R, J.-B. Wets | Nonanticipativity and F'-martingales 177

Here Eo{-| &' '} is (a version of) the conditional expectation with respect to
the random variable ¢' given the random variable £'. The stochastic
program (3.1) is well defined if the expression appearing in the left-hand side
of (3.2) makes sense and is a normal convex integrand. The objective of this
section is to show that for multistage stochastic programs as considered here.
the stochastic program (3.1) is a program of the same type as P. Results
along this line have been obtained by Olsen [22, 23], for “linear” multistage
stochastic programs with convex criterion function, and by Evstigneev [24]
who in a somewhat differcnt framework derives the “equivalence” of
optimal solutions: see LLemma 3 below and its application in Theorem 1.

Conditional expectations arc defined up to an cquivalence relation.
However since 7 is the Borel field and o is a regular Borel measure on =, a
thcorem of Doob [25, Section 27] guarantces the cxistence of regular
conditional probabilitics so that a member of the equivalence cluss can be
represented as an indefinite integral with respect to this regular conditional
probability. Henceforth, conditional expectations will always be “regular”
conditional expectations, If one does not adhere to this restricted class of
conditioning, 4 number of inconsistencies may arise such as exemplified by
Olsen in [22. Section 2].

The properties of q. can be derived recursively. Consequently it will
suffice to consider the notationally simpler case of a two-stage stochastic
program and show that the reduction to a one-stage program preserves all
the desired properties of the integrand. Thus here we set N =2, g.= f and
simply write g tor g.. As a first step we intend to show that the function g
from =, X R" into ] —=, = =] and given by

a(é.x) = Efint (& 0) & (3.4)
is an inf-compact normal convex integrand with dom q(¢,, )= P,D(¢§).

Lemma 1. Suppose that f is an inf-compact normal convex integrand. Then
so is g for

[#H]
L
—

g(£x,) = inf f(& x,. x2). (3.
Proof. Let G.(§)=epif(& ) and G, (&) =cpig(é+). The condition that f
be a normal convex integrand is cquivalent to the condition that € » G(&)
be a mecasurable multifunction with nonempty closed convex values [18,
Theorem 4]. Because of the inf-compactness of f. G.(£) is the nonempty
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closed convex set Q Gi(&), where Q 1s the projection: (X, Y. ) — (x, @)
from R™ ¥ R into R™ x R. Since the projectien of a measurable multifunc-
tion is measurable (a direct consequence of the definition adopted in [18]).
we conclude that & G(€) is measurable and hence again from [18.
Theorem 4] that g is a normal convex integrand, The inf-compactness
follows also from a projection argument. cf. for example [26].

A measurable multifunction is said to be summable if every measurable
sclector is summable. When D satisfies the conditions laved out in Section
2.C. D is a summable multifunction. A somewhat weaker condition is that
there exists a summable function 8 :=Z— R" such that D(&) C (&) B.

Lemma 2. Suppose that g : = x R"—] -, +=] is an inf-compact normal
convex integrand where = CR"XR", thar érdomg(&-)=D(£)#0 is a
nonanticipative summable multifunction. Suppose moreover that u is measur-
able and that u(&)€ D(€) a.s. imply that g(+. u(-)) is summable. Then the
function g defined by

q(é.x)=E{g(&x) | &} (3.6)

is an inf-compact normal convex integrand with domg(&,.- )= P.D({)=
D (&), Moreover if uy is measurable and u,(£,)E D.(&) a.s.. then g (. ()
is summable.

Proof. The inf-compactness and convexity of x, = g(&., x,) arc a conse-
quence of the inf-compactness and convexity of g(& ) [26, Proposition @].
The properness of (&, ) follows from the fact that by nonanticipativity
x € D(&) implics that x, € P D{&)= D\(&) and that g(+, x;) is a summable
function. This also viclds the assertion about the effective domain of g(&,. - ).

Also if v : 2, = P Z—R" is any measurable function then g(&,. (&) =
E{g(& v(&)) | &) is a measurable function since it is a conditional expecta-
tion provided that &w g(& v(P,¢)) is measurable; but this follows im-
mediately from the fact that g is a normal convex integrand [14, Corollary to
[.emma 5]. If moreover v(€) € D (&) a.s.. then by hypothesis g(& v(P.£)) is
summable in & and the summability of g (&, v(£))) results directly from (the
extended) Fubini's theorem. It remains to establish the density condition.
Let Vi={v | v(&)=Elu(¢&) | &}. u € U} for U the countable collection of
measurable functions invoked for the normality of g. We may assume that
u € U implies that u(€) € D(&) for all £ € =. (If this was not the case we
could replace the collection U by the collection U'={u'=
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prox(u | ) | u € D} |16].) The clements of V, are measurable functions
(Radon-Nikodym derivatives) well-defined (regular conditional expecta-
tions) and finite valued for all & € =, (Fubini's Theorem) since D is a
summable multifunction. The fact that V,(£,) is dense in Dy(&,) now simply
follows from the facts that U{£) is dense in D(£) and that E{- | £} is a
continuous linear surjection,

Lemma 3. Suppose that [ is a normal convex integrand defined on = x R"
and such that the multifunction £ = dom f(& - )= D(£) is nonanticipative with
{D(£). £ € Z} uniformly bounded. Let q be the value function defined by
- aifire o g e g =
q{r_&|.1'|}=[*_-|Tr_1_f fE x) | &t (3.7)

and suppose that the stochastic program P
find infl, onW. (3.8)

admits an optimal solution. Then X solves (3.8) if and only if £, = P,¥ solves
the stochastic program

find infl, on¥.=77 (3.9

and sarisfies

fl& (&) = Inf f(& £i(€). x2) a.s. 3.1

Proof. Let £ be 4 minimum point of I, on AN.. To show (3.10) we first
observe that the [unction

(& xa) o fIE X (E), x2)

is an inl-compact normal convex integrand. The inf-compaciness is a direct
conscquence of the boundedness of the {D(€), € €Z} and the lower
semicontinuity of £ = f(& + ). The normality is proved in a similar fashion to
Lemma 1. (The inf-compactness allows us to replace Inf by Min in (3.10).)
Thus the function

g alf) = Min f(£ 3(£). x0)
is measurable [16. Lemma 5] and almost surely finite (a = f( . 2)). If there

exists a set § C E of positive measure such that « <2 f(-. %) on S. let 8 be a
real valued measurable function such that
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a(f)<B(E)<f(& x(§) (3.11

for £ in §. By [16, Lemma 6] there exists X,: § — R™ a measurable function
such that

F& X(8). (€)= B(&) < f(£ £(€)) (3.12)

for all £ € §. Now extend the domain of ¥, to Z by sctting %.(&) = ©.(¢) for
¢ € Z\8. It follows that I;(¥,, £.) < L(x), which contradicts the optimality of
% This proves (3.10) and also shows that

q(&. x.(6)) = E{f(& 2(&))| &1 (3.13)

since the nonanticipativity of ¥ allows us to redefine &, on a set of measure
zero so that it is a well-defined function of &,.

Now supposc that ; minimizes I, on .#7 . Tn view of Lemmas 1 and 2 and
the uniform boundedness of D, I, is w-(Z5, Z, ) inf-compact, which
guarantees the existence of an optimal solution to (3.9). Then there exists an
essentially bounded measurable function from = to R™ such that

f(€%:(8), %(8)) = Min f(& %.(), x:(£))  as. (3.14)

To see this, first note that nonanticipative feasibility implies the feasibility of
the mathematical program

find inff(& %.(£),:) on R” (3.15)

for all £ € = (this might involve a possible redefinition of %, on a set of
measure zero so that 1,(&,) € P,D (&) for all £ € Z). Existence of an optimal
solution to (3.15) follows from the inf-compactness. The function & = a (&) =
Min f(£ £,(£), - ) 1s measurable and thus the multifunction

£ {x: | (€ 2i(€), x) < G (&)}

is measurable with nonempty compact convex values, (£, x.) > FlE %,(€), x2)
being an inf-compact normal convex integrand [18, Corollary 4.3]. Hence
there exists a measurable selector satislying (3.14). Now let £ = (£, %.): we
have that I,(x,) = I;(¥). The proof is complete if we observe that by (3.13)
I, (x:)=I;(x) and that L (%)< [;(x,) would contradict the optimality of *.

We now turn to the applications of these three lemmas to the class of
multistage stochastic programs as defined in Section 2. This will justify the
dynamic programming technigque of telescoping an N-stage stochastic
program into a k-stage program.
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Theorem 1. Consider the stochastic program
P find intl; on N.

where f 1 2 X R" — | — =, ~ 2] is a normal convex integrand with £ » D(§) =
dom f(& ) a closed valued, uniformly bounded nonanticipative multifuncrion.
Suppaose that P is feasible and that there exists a summable function p such
that |f(&x)| = p(€) for all x € D(&). Then for all k=1,2..... N, the
stochastic programs

Q. find infl, on X%

are well-defined. The value function q. can be expressed as

g (5. x")=E {in{f q(é x") PE =& Px' =x* (3.16)
for k=1=N. It is a normal convex integrand on E*x R"™, with
£ p DM(EMY=domg(é%,+) a closed valued, uniformly bounded. measurable
multifunction and I, is a proper, convex, lower semicontinuous (relative to the
weak topology w-(#5x, F14) funcrional on ¥« Moreover, P is solvable and
forallk=1,...,] N, the programs Q. are solvable. Finally. if X is an optimal
solution of P, then Pt selves Qi and if £* solves Q. it can be “extended 1o
an optimal solution ¥ of P such that P.x = &

Proof. Repeated applications of Lemma [ and Lemma 2 yicld the assertions
about the value function ¢. except for the nonanticipativity of D, = dom ¢,.
But this follows simply from the fact that for I =k, PD.(¢)= PP.D(&)
depends only on ¢ Summability of the multifunction D, results from
Fubini’s Theorem.

The definition of the integral and the summability assumption on f imply
that the fcasibility set & is {x € ¥}/ x(&)€ D(&) as.p. But then for
X EN.NZ, x* is nonanticipative and almost surely P.x = x* € D, = P.D,
since otherwise there would be a subset of Z* of nonzero measure for which
x* fails to belong to PD. By nonanticipativity of D, this in turn. would
imply that x fails to belong to D(€) almost surely. On the other hand if
x* € Dy a.s. then again by nonanticipativity of D there must exist a
sequence of feasible decisions (x..1, ..., x») whatever be the value of & with
P.& = ¢%, Section 2.D. This establishes a natural correspondence between
feasible solutions to (3.14) and (3.15). The equivalence of the values of the
two programs is a direct consequence of this cquivalence and Lemma 3.

-~

Finally, Lemma 3 applied recursively vields the assertion about the
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optimal solutions, The existence of optimal solutions to P and O, follows, as
in Section 2.E, from the feasibility of P and the fact that I, and I, are
int-compact functionals to be minimized on closed subspaces.

4. Basic duality resuits

Let .{f, denote the closed linear subspace of 7, consisting of those
functions p which satisty the following martingale properry: for all k =
) ,

L N

E{(I-P)p(&)| Pt =¢5)=0. (4.1)

We call such a function an ¥'-martingale. A direct application of the
iterated conditional expectation formula shows that J{, is orthogonal to ..
[2].

Theorem 2 below shows that we can associate with the nonanticipativity
restriction Lagrange multipliers which belong to Jf,, We proceed by a
duality argument. We relate P to a dual program

D find sup—1 on .,

and show that under certain conditions, there exist X and p solving P and D
respectively, such that MinP = [(f)= — L.(p)= Max D. Since

~I(p) = EMin[f(£.x)— x - p(£)| x ER"]}

the result below gives us a function p € Jf, such that £ is optimal if and only
if ¥& .4, and

f&)ycargmin|f(&x)—x - p(é)|x ER"] as
Thus for example if f(& +)1s strictly convex a.s., the unique optimal solution
to P is

I(E)=argmin[f(&x)—x p(&)|x €ER".

in which case P is reduced by the multiplier function p to a pointwise
minimization without regard lor nonanticipativity.

To obtain the existence of Lagrange multipliers we always nced a
“constraint qualification™. Strict feasibility will play that role. It is however
noteworthy that by itself this condition does not lead to the existence of
“nice” multipliers, but when combined with the nonanticipativity of D it
vields the desirad result. Without nonanticipativity. the multipliers would be
in (#;)* rather than in ¥,
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Theorem 2. Consider the stochastic program
P find infl, on N.,

where f : Z X R" — | - =, + =] is a normal convex integrand with £ » D(£)=
dom f(& - ) a closed valued. uniformly bounded nonanticipative multifunction.
Suppose that P is strictly feasible and that there exists a summable function u
such that | f(& x)| = p(€) forallx € D(&). Then P and the associated (dual)
program
D find sup-I. on .,
are solvable and

Min P = Max D. (4.2)
Proof. Note that for any x € .4, and p € {, we have that

L(x)+ L-(p)=ix.p)=0, (4.3)
and hence it is trivially true that

intP =sup D.

Moreover, if equality holds in (4.3), a condition which is equivalent by [16,
‘Theorem 2] to the subdifferential relation p € ¢I;(x). then x and p are
optimal for the two problems and minP = maxD.

The hypotheses of the theorem imply that P has an optimal solution, say £
By way of Theorem 1. the same hypotheses also imply that for k =1..... N,
the value function g, is well defined and that the stochastic program

Oy find infI, on A%

admits % = P.¥ as an optimal solution.
The proof now procceds by induction on N. The theorem is certainly true
£ .ty = {0} and

if N =1, since then AL =
- [{0) = min T,
Now, suppose that the theorem holds for all stochastic programs with N — 1
stages. Thus in particular we have that
Min I, on M. = Max =T, on ]
where ' replaces N — 1, 1.e., ¢' = g~ . and in particular .} is the correspond-
ing space of multipliers defined on (Z'. #', o') with values in R™. Hence by
induction there exists (Lagrange multiplier) p' € . such that the function
P._;. ¥ = %' (which minimizes [, on /.) also minimizes



on #.. Let us define

HE x)= f(& x)—(Py x.p/(£D) (4.5)

—r

and let F be the natural injection of %5 =575, F, ¢ R") into
F(E, F.a;R™),
Set W= F(F) and W= W'x FHE

on N, and ¥ = Py X minimizes L.—(-.phon X

F, o;R™). Since ¥ minimizes I

¥ must minimize I, on
H° by reverse argument.

Strict feasibility combined with the summability assumption on f imply
that I, and also T, are continuous at a point ¥ in .\, [17. Theorem 2]. Henee
by a version of Fenchel’s Duality Theorem [27] there exists w £ (F)" such
that

w e (X)), (4.6)
and
w is orthogonal to 7. (4.7)

Applying Theorem 1 of [17] we see that there is a unique decomposition
wo=w, - w, with w, £ 7. the “absolutely continuous™ component and w,
a “singular” functional on ¥, such that

w, € ol (%)
and
w, is orthogonal to dom [, = & at &,

From (4.7) one has

W, = (H’I ;:- U) B {P.-'\'—! W 0).

w, = (wi.0)=(Py w.0).
With w. & ¥... wiE (..'if"f-f:'and w'=w.+ w! orthogonal to #", ie.

—wi,=w. on¥H" (4.8)
The above allows us to conclude that % *w ! is a continuous linear functional
on Fy for 9% the adjoint of the injection . Thus & "w/ corresponds to some
z'€ ¥, such that for all x' € 57,

(F*w ) x' = wiFx=E {(x' (). (€. (4.9)
Since w, = (w,. (})is orthogonal to @ we must also have that w | is orthogonal
o %'=domli,. This follows from the nonanticipativity of D (and the
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summability condition on f) since &' is then simply Py 2. Let Q be the
projection from #, onto ;. defined by

(Qx)(£)=E{Py x(&)| Py (£ =&} (4.10)

Then again by nonanticipativity of D (and the summability condition on f)
QU = %" and in particular Qf = X'. With Q* the adjoint map of O and
using the tormula for iterated conditional expectation, we get

{0%2',x) =(0x, 2y = E{{(E{Px- 1Y(£)| Ehiz e
—E {(x'(£"), 2'(&)} (4.11)
which in view of (4.9) vields that
Q z'=(F7z.0)=(2.0) (4.12)

Hence. for Z(£)=z'(¢") when Py (& = &', we have that (Q*z7) = (2.0) is
orthogonal to & at £ We also have that

wils)={x".2) on W (4.13)
This. with the fact that (w!.0)& aL (%), implies that

(wi.T2z0)e dl(x). (4.14)

Moreover for x € W,

(w20 =wix)+wix)=wilx)+{x" z%=0, (4.15)
Now let ¢ be an element of #'(Z, # o R") corresponding to w ! and set

F(E)= D(E)+ Z(E). (4.16)

The orthogonality of w' to ¥ yields the same property for 7 which is
cquivalent to asserting that

E{f(6)| £} = E{é(§)+ ()| =0. (4.17)
Thus we must have

E{z(&) &'} =2'(¢") = —E{6(8)| ¢} (4.18)
or equivalently,

HE)=5(&)~ E{5(&)| &'} (4.19)

Now also (A 0)E ()= aL(%)—(p'.0) Set
p=(r+p.0) (4.20)



186 R. T, Rockafeliar, R. 1-B. Wets | Nonanticipativity and ¥'-martingales

Clearly. p € .4, since p € ¥, and
E{p(&) &r=p'(&) (4.21)

for p' € ;. Morcover p € 8I,(x). This completes the proof of the theorem,
since the latter relation is equivalent to L(X)+ I-(p)={x. pr=0.

Corollary. Under the same hypotheses as in the theorem, a recourse function ¥
is optimal for the multistage stochastic program P if and only if there exists a
p € M, such that the pair (£.p) is a saddle point of the Lagrangian function Z
defined on ¥ X (£.)" by

L [Hw e T pEdL.
Lix.p)- {—-x if p&.J.
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