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ractlical or unverifiable character of such condlticns when

the ofton

ates for a minimum point to a

there 1s no simple way of reducl the cand

few explicit neminses. Perhaps the reason is that the minimax approach to

optimality, however desirvable, has scemed limlted Lo the 2zmaller class of

Ly,
problems where "everything is convex".
While zuch iz largely true for a minimax approach based on the ordinary

it 1Is not necessarily

for the infinite wvariety of other

functions that now can be generated for a preblem using the

theory of conjugate dualiliy. 4s a matter of fact, a global saddle point

gharacterization of optimallty has rec

101y been developed for nonconvex

programming problems in terms of a certain "augmented" Lagrangian (see [7],
[8] and the references given there). As one might expect, this characteri-

o

methods of galeulation, in particular to

What 1s eszpecially importan

Lo other general types of

smming. This would

of optimality conditions for modern

that polnt towards this develop-
ment. We

ditions in rneonlingar programml

= of MeCormick

to the vonstruction of 5 broad classzs of

i i
awlng

(%,¥) where y 1s a generallized multiplier vector.
(4 g 1 tne

in nonlinear
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THUALITY CONSTRAINTS

-
T3
=

1 CLASST(
Let us consider first a nonlinear programming problem of the form

(P minimize fo(x) subject to fl(x) = O,...,fm(x) = 0,

O)

where each fi : R" > R for 1i-= l,...,m 1is of class Cz. The set

]

(L M= {x ¢ R" | SO0 = Ddea 00 = B

the feasible "manifold". M dis in fact a differ-

-
m

entiable manifeoid of dimens but of course the

situation could be more complicated without further restrictlions on the

constraing functions.

Let % b2 a logal solution to (P.), i.e. a point where fp

lgeal mindimum relative to M. Let

5 , n e o=
(2) ¥ = subspace of R gensrated by ¥, (x), LVE . (x),

denotes the gradient of f, at x. 1y, each
the hypersurface £.(x) = 0 at X s0 that N
K / 3

to M at x and

-r
;
w
o

i}
a1}
o
o
[

fined more dirsctly as the et

the

{4y T' = lim sup & 2
£ -

Trivially T' o T.

pelnt of M ir T
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worwial
1’ m

FoUP. (%4, . +T (x) =
¥y rl(/) +;memLx} g3

]

0, and I¥ = (¥ ) e BT

These conditions have a simple representation in terms of the function

i T SN fae Womens e e R . nr m
Oy Tyl = rg(a}+ylll(x}wll.+jmfm{X) fer all x ¢ B, ¥y ¢ R,

(]
p

{on ]

an agsociated with problem (

which 18 called the ordinary Lagran

Namely, (6) iz equivalent to

(8) 51? such that vKL{E,E) = 0 and V. L(X,¥) = 0.

it
w
o
=
m
0
s}
=
{& 1
o
o
[
=)
4
o
(]
@
s

Observe that th

was a "regular staticnary point" of

This result is interesting, because 1t shows that a ¢constrained

staticnary point of f, corresponds to an unconstrained stationary point
po

af L Thus constrai 1an be eliminated at the sxpense of introducing

called Laggrange multipliers.

thought that a constreained minimum of f, typically
et 0

8% not

Howewver, 1t

corresponds to an unconstréined i L, The staticnary point of L

a leoeczl minimum of Li{x,y) with respect to x.

not even 1n

in (P.) can be derived using

the Hzgsian (z2econd derivatlve) matrix

and

()

mein result

£ TEeErms.

conditd

int of
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4 proef of Theorem 1 can be found in the book of Hestenes [2, Ch., 1].

It deserves emphasis that the "rsgularity" of X is not required in
the sufficient conditicon but only in the necessary condition. lUnless every
point of M 1is regular, this is an awkward assumptlon which cannot Gbe

checked without ¥nowing the solutlon to the provlem in advance. A more

honest statement of the necessary condltion would be that "if X% = a local
solution, then either (8) and (10) hold, or x 1is not a regular point of
M", Ewven sc¢, this is a stronger asssrtion than one sometimes sees.
Especially in exposltlons insplred by the maximum principle in optimal
control, 1t is common to include a nonnegative multiplier §O for f,
which, If nenzerc, can be normalized as equal fto 1. The necessary condi-
tlon then asserted, 1n efleet, 1s merely that "if X is =z local solution,
then either (8) and (10) heold, or (5) iz falss".

In the clas=zical framswork, Thecrem 1 1s regarded zs solving (?) in
principle in the sense of reducling 1t to the solution of a system of m+n
equations in m#n unknowns: VIL(X,F) = 0. Thus we should proceed by finding

solutions (X,¥) Lo thass equations. The ones satlsfying (10')

[a]

lutions, althcugh not nec¢essarily all suech solutions.

To determine the global solutions, agsuming the minimum in f?D) is

indeed attained, we should form the collectlen & conslsting of all the X

pairs (x,¥) (8) and (10), a= well as all points

components of
¥ of M which are not rezular (or, for casier checking, all points Xx of
M where (5) lails). Tor =ach X € 2, the wvalus TO(E) iz caleulated;
the gicbal soliuticgns to (?7) are then the elements o¢f S for which this
value is lowest. In other words, ths minimization of fg cver M 1is

-

reduced to the minimization of f over & much more special aset £ (possi-

bly a finite zet).

Unfortunately, however reasonable thls procedure may seem by analogy
with the elementary (and carsfully concoeted!) cases treafted in calculus
textbooks, [t iz hopeless from the modern point of view. The sst 35 is

to work with. Anyway,

problem, numerically

do not lead

If Lagrangs

i

procedure as Just of what value are they? They seem nevertheless
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7]

to have twe main uses in the theory of computation. The first occcurs in

it soms algorithm produces a ssquence whnose cluster points satisfy

the first-order condition (§). The second lies in demonstrations that i a
certein algorithm is initiated with 2 peint close encuph te an % satis-
ving the second-order sufficlient conditions (8) and (10'), then the se-
quence it generates converges to X, moreover at a particular rate.

The idea behind this presumably ig that points satisfying (8) and (10)

"

tions to (FOJ’ while in "most" cases a local

solution to {?O) satiasfies (8) and (10'). Theoren 1 is customarily cited
as the justificatlon of this heuristic regsoning, altncugh it really says

nothing quite along such llnes.

Another use of lLagranges multipliers stems not from their role in compu-

tati f'rom & certain interpretation of them. Thiz is in terms of the
rate of c¢hange of the minimum in {?D} with respesct to wvarlous perturba-
tions.
. . B v . N

To gain an understanding, consider for each u = R the
merturbed" problem
il e F s PRt T e A RT PoE * =
(BLY minimige f.ix} subject to (xd =u, =0 FPor I & Li-wesm

i

8]

The first-order condition for (Pgl corresponding to (8) concerns a pailr
(x,¥ )
i1) ?XTu(x,J} = 0 and a,
where
Ixpy) = 1 t oy irlxd - sty E G0 =)
We ean express (11) s Dlu,x,y3 = 0, oois i éiff&renti-

able. Suppess X iz a loecal solutien to (F.) actually satisfylng (5%

(8) and (10') Cnr some ¥. One sess that then D(0,%,7) 0, and the

Jacobian ?7 _D{0,%,¥) iz nonsingular. Esnce there exist differentiable
S,

functiona x{u) and y(u), defin=d on an rhiborhood of wu = 0, =sugh
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satlsfied for u near enough to O, but also the gecond-order condition
u " £ = o = - s

for (F,} corresoponding to (10'). This can be verified using continuity
Lo

and the fact that X and satisfy (10'). ‘hecrsm 1 says that x(u) is

[ |
(5}

o (pY

an isolated Ioeal solution D)’

the loeal minimum values being

plu) = folxud) = 1%(x(u),y(u)).
It fellows from (12) that
¥e(u) = (9,19 (x(u),y(w) = =y(u),

and in particular

" Ji _ u i
Thus 1£ a computational msihod for solving (P,) produces along with

a solution x an asscelated multiplier vector ¥, the components Ei

furnish definite information about the way the minimum depends on pertur-

vations of the constraints.
2. INEQUALITY CONSTRAINTS AND CONVEXITY

Convex znalysis snters the picture as soon as inequality constraints
are zdmitted, even I[' Lthe functlons in gquestion are net convex. Although
a problem may have a mixture of eguality and inequality constraints, we

1imit oursclves for clarity to.the purs inequality case:
(pl] minimize f
Again each f, is aussumed to be of elzss C° on =Y. The feasible set
X) € 0,00, (x) < 0}

and ecocrners", and loeal convexiflcation, ratherp
3 3

may well have "edgen
then linsardzaition, is needed in characterizing the minimum.

Let x be a loeal solution t6 (P.), and let I be the set of

agblve conatraint indices at =

(1) I=4t|1=1sm (%) =0k

i
Let
(15) N = polyhadral convex cone generated by {??iii) | e T}
R oa = A . = = n
= £=1:+x;ﬁ,x\ | v 2 with y; = 0 4if £ (X)<0}

- > A ol ¥ s = s
{16) T = ¥ (polar cong) = {v ¢ R Jewv £ 0 for all te1},
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If T agrees with the tangent space T' te M at x

fuid

3 defined by (4},

ore that x 1s a regular r This holds in particular 1if
the gradienss Vr.(%) for 1 e I are linearly independent.-

—
=
w2
s
o
H

egular, local optimality implies that VL. (X)v =z 0 for all

i)

i W CURTIR 1o MI-C O .
v e T. TIn other words —va(x) e 99 §%2 Byt N%9= N by the laws of

canvex analysis (Lemma of Tarkas). We thus get the Tirst-order necessary

gorditio

1...,m,

{183 Llx,¥) =

we can expressz (17) equiv

Second-order conditicons concern

) =0 it

the set W = {x & M |

where T i3

an
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Kunn and Tucker [3], at leasst under a slightly narrower formulation of

"pegulari . However, historiecal antecedents ars now known; sse the
article of Kuhn in this veolume.

Thne commernts made about the significance of the Lagrange multiplier
veetor § in Theorem 1 apply equally to the ¥ in Theorem 2. In particu-
lar, it can be shown under mild assumptions that ¥ = -vp(0), where p(u)

glves a leocal minimum value in the perturbed oroblenm

{??} minimize f£.(x) subject to fl{x) S Upseeesf {x) < u_.

m m

¥

While much research has gone into improwving the first-order necessary
condition in Theorem 2 (or combined versions of Theorems 1 &nd 2) by substi-
tuting different forms of "repularicy™ (whlch make the potential nonregu-
larity of % a more restrictive preperty and hence supposedly "less likely
to oceur'), this has had a2lmost no impact on applications. What would be
far more valuable in this ares would be & family of generle theorems

asserting that for "most preoblems" in a given elass (In some well defined

mathematical senze) a solutlon x can be charaseterized by certaln stronger
conditions, 1liks those 1In Thecrem 2(b). New research should be conducted in
this direction.

O course, we do not mean to say that work on necessary conditions as
such is not of Interest. There are many examples where such work has led
to great theoretical elarificatlon of the nature of a class of problems and

now their propertiez can be formulated and derived In an elegant mamner. As

]

an example, we nention the recent work of Clarke [01] on nécessary condl-
tions in eoptimal control using new idsas of generaliized gradisnts; this may
1ead to developments in other branches of optimlzation. Howsver, we do fgel
that work on "practiecal" sortz of sulficlent conditions has not been

stressed enough in ths pest.

Thers iz g dramatic change in the theéary of Laprange multinliers when

we reach the cass of & convex propgramming problem, tha Tunctions £,

in (P,) are all convex. Then local selutions X

and L{x,y¥) i1s convex in x [for sach ¥. statlonary point of L{x,y)
with respect to x must give g gi num With respeet to x, and the

M{rst-order condition (19) can ute writtsn as
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(22) 37 ¢ R™ such that min L(x,¥) = L(Z,7) = max L(X,y).

xeR" yERm

This fact was recognized by Kuhn and Tucker in their pioneering paper
[3] and proved to be very fertile ground for new growth of the thecry. A
pair (x,¥) satisfying the relation in (22) 1s said to be a saddle point
of L. As such, it can be given a game-theoretic interpretation which
further enhances the meaning of the Lagrange multipliers, especially in an
economlic context.

It was guickly recognized that in deriving (22) as a necessary condi-
tion in convex programming no differentlability assumptions are needed.
Convex analysis suffices, if an appropriate substltute for the notion of
"regular point of M" is provided. A convenient assumption often invoked

in this connection is the Slater ccondition:

(23) 3z e’ such that %] 0 FPor W= Lgsevsms

However, a much broader, yet also meaningful criterion can be stated in

terms of the "stability" of (P with respect to the perturbations intro-

1)
duced above.

u
175

(The infimum is taken to be +w if the constraints in the

Let ¢(u) denote the glecbal infimum in problem (P so that

= inf(P. ).
$(0) inf(P,)
problem cannot be satisfied.) The convexity of the functions f, implies
the convexity of 4. It follows then (assuming the finiteness of inf{Plj)
that the one-sided directional derivatives

o' (03w) = 1im £LE¥) = ¢(0)
£40 =

all exist (possivly +e or -=). One says that (?7) iz =table if there
is no W with ¢'(0;%) = -=. The 3later condition (23) implles that (Pl)
is stable, but cther verifiable eriteria are also known, cf. [41, [51, [6].

A more general concept of stabillity for the nonconvex case will be treated

in §5 (ef. [51)).

THECOREM 3. (global optimality)

o

(2} (necessary condition).

uppose X iz a Jocal solutlon to (Pl)

and the funetions Fi, 1 =20,1,...,m, are all convex (finite but not

necegsarily differentisble). Then (22) holds if and only if (P,) 1s stable.
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{b) (sufficient condition).. If (22) holds, then x is a global

sglution to (Plj.

A proof of Theorem 3(a) may be found in [4] or [6] (see also §4 below),
The fact that (b) iz true even without convexity is elementary (see §3)
and was observed already by Kuhn and Tucker [3].

Parallel to the earlier characterilzation -y = Vp(0), there 1s the
result that the Lagrange multipller wvectors ¥ appearing in (22) are pre-
cigsely those satlafylng

(24} $'(0:w) =z ~w=y for all w e ge,

(3ee [47, [6]). This says that -y 1is a "subgradient™ of ¢ at 0O,
written -y € 3¢4(0).

More generally, the perturbed problem (PE} is stable if and only if
the set 8¢(u) is nonempty. Theorems of convex analysis about the existence
of subgradients show that 8§¢{u) is nonempty for every "relative interior"
point of the set of veectorz wu such that ¢{u) < . In this sense, we can
truly say that "virtually sll" problems in the convex case are stable, so

that {22) 1is both necessary and sufficient for optimality.

3. GENERALIZED LAGRANCE MULTIFLIERS

Further insight intc the computationgl sipnificance of the Lagrangilan

functien L for (P.} or (P,) can be gained from its relationship with

0;’

the egsential objective funection , defined by

sup L{x,¥)
m
veR

and the problem 1s eguivalent to minimizing f{x) aver all x ¢ R

Te add flexibility to the discusszion, let us now think of an abstract

H
i1
e
L

)
o
e
o

optimization problem having me
() minimize f(x) over all =z e X,

where ¥ iz a resl linear space gnd f is an sxtendsd-reszl-valued function
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on’ X. BSuch a problem is ceonvex is f iz a gonvex function, but we do not
make thls restriction In what follows.

By a Lagrangian representation of (P), we shall mean the cholce of a
real linear space Y and an extended-real-valued function L on X x Y
auch thsat
(26) f{x} = sup L(x,y).

ve¥

The latter formula may be interpfeted as expressing f a3 the pointwlse
supremum on X of the collectlon of funetions {L(-,y) | ¥ ¢ Y}. The

elements ¥ e Y are regarded as penerallzed Lagrange multiplier vectors,

o
o
[w}}
-
s
ol
(]

elf is a generalized Lagrsngian for (P).

For each fixed ¥ ¢ ¥, we can regard the problem of minimizing

L{*,y) over X as a sort of "lowsr representative" of (P), since

(27) flx) =2 Lix,y) Tfor 211 x.
Clearly
(28) Lix,y) for all v e Y.

We shall =ay that v i1z a Kuhn-Tucker vector for (F) (with respeect to the

Lagrangilan L) if
(29) inf £i{x) = inf L(x,¥)
Xedh XeX

If & XZuhn-Tucker vectar § were known, one could replace (P) by the

r problem of minimizing Lix,y) over all x e X, Indeed,

in view of (23) and the inequality (27) with y = ¥, the points furnishing

the globzl minimum in  {F) must then be precis

m

ly the points X which

afford the global minimum of L(+,¥) and also satisfy L{x,¥) f{x). 1In
particular, if L{-,y) has Its minimum at 2 unigue peint %, then X

must be the unique sclutieon to (P).

The determination of a4 Kuhn-Tuoker vector

over all ¥ e ¥,

whers

(30) gly) = 1inf L{x,¥).
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Cuserve that (28) iz equivalent to

(28'") inf(P) 2 g{y) for all y ¢ Y,

while the definition (29) of a Kuhn-Tucker vector is equivalent to
{29') inf(P) = max(D) =and ¥ solves (D).

Of course, computational realizations of these notlons are not really
envisicned in terms of first maximizing g(y) to get y and then minimi-
zing L(x,§) to get E, although this might be possible in some cases.

More hope rests in generating z maximizing seauence {yk} for (D) by

some method that Involwves calculation at each step of an approximate minimum
in (30) for ¥ = yk and thus simultaneously generates a sequence {xk}.
Perhaps this can be done in such = manner that {y} converges to a Kuhn-
Tucker vector F, while {xk} or some auxllliary seguence converges to an
x solving (P). 1In summary, the idea is to try to =solve (P) by replacing

it by a well chosen seguence of mors favorable problems of the form
(31) minimize L{x,yk) over all x e X.

Optimality in (P) can be characterlized by means of the general

saddle point condition:

(32) 3§ Y such that min L(x,¥) = L(%,¥) = max L(X,vy).
xeX vel
THEOHEM ", (global optimality).
(a} (necessary condition). If X furnishes she glecbal minimum in

(Py and min(P) = max(D), then (32) holds,

(b) (sufficient condition). If x satisfies (32), then X furnishes

the global minimum in (P), and min(P) = max(D), Morsover, the elements ¥

cegurring in (32) then furnish the global maximum in (D) and they ars
p—ta L LA oL/ VN 12 e ] oo S S ™ (R e T

rseisesly the Xuhn-Tucker veotors for (P) with respesct to the Lagraneisn L.

=]

This basic result 1is zn elementary consequence of the relations and

definltions given above.

o

The saddle polnt condition (32) is thus always sufficient for
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optimality, but it 1s necessary only to the extent that a duality relation

of the type
(33) inf(P) = max(D)

(equivalent to the exlstence of a Kuhn-Tucker vector ¥) ecan be established.
The wvalue of the condition and the corresponding numerical approach rests
therefore on our knowledge of cases where (33) 1s sure to be true, of
"almost" sure to be true., It depends also on analyzing the various ways
that workable Lagranglan representations might be constructed.

Ancther important guestion concerns the information provided by the

Xuhn-Tucker vectors y, If any. Can they, as in the earlier cases, be
interpreted in terms of directional derivatives with respect to certaln
perturbaticns of (P)?

The theory of conjugate duality has produced some far-reaching answers
that we attempi to elucidate in the next section. But the subjlect is by no

means closed to further research,

4, PERTURBATIONS AND CONJUGATE DUALITY

General perturbations can be introduced into the abstract problem (P)
py choosing a real linear space U and an extended-real-valued funetion F

cn X ® U such that
(34) F(x,0) = f(x) for alli x e X.

We shall ecall this a perturbaticnal reprssentation of (P). The perturbed

problem corresponding to a vector u # 0 1In U is
LR minimize F{x,u) over all =x e X.
For example, the perturbaticns already discussed for problem (P;1

correspond to cheoosing U = R

Glven any psrturtationsl representation, we are interested 1n the pro-

(36) ${u) = inf(P ) = inf F{x,u)

4
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around u = 0. If F(x,u) 1is convex Jointly in =x and u (we refer to

this as the fully convex case), ¢ 1is a convex function cn U and its

properties are readily investigated via convex analysis. Of course, one
cannot have F  convex in this way unless f  is convex, i1.e. (P} 1is a
"epnvex" problem as defined earlier. However, even in the nonconvex case,
we can employ varicus technigues of convex analysis to learn much about 4.
As a matter of fact, there is a very close connectlon between
Lagranglan representations and perturbational representations of (P).
This is derived from the theory of conjugate convex functlone, as we now
proceed to explaln.

Let us suppose that the real linear spaces U and Y are paired by

zome bilinear form <u,y>. This means that <+,y> 13 a linear functlon on

U for each v € Y, but it iz the zero function only if y = 0; &t the
same time, <u,*> i3 a linear function on Y for e U but it is
; - - N : m

the zero function enly if u = 0., (For U =R =Y, one can take

<u,yr = uey. ).
If h is any cextended-real-valued functlon on U, the clesed convex
1 1

hull of h (with respect to the palring of U and Y} iz the function

n#%* which is the pointwise supremum of the collectlon of all the alfine

funcetions i.e, functions of the form <-,¥y> + const.) majorized by h.
3 3

Closed gconvex

i
o]
)
o]
il
]
fuh
o
=
o
3
o
i
=
]
e
iy
e
1=
3
al
0
T
&R

If h¥* = h, one gays that h a

functions on ¥ defirned similarly. A closed concave Tunction la one

whose negative 18 ¢ d convex Tovological criteria for the closedness

off 8 COonvex

The followi extended-real-valued

funetion h on

S

Va3

is ¢l i

(38) h¥¥(y) = {kiy) = <u,y>t,

thus de

convex funcbions h on
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The theory of this correspondence (which 1s expounded in [4], [6]) is
customarily expressed not in terms of h and k, but h and h*, where
n¥(y) = -k{-y). (The closed convex function h¥* is called the conjugate
of h.) Many powerful facts are known. Generally speaking, there 1s a

desp duality betwesn local properties of h around u = 0 and propertles

of of level sets {v e ¥ | kiy) z al, a ¢ R.
The following conssguencs 1s almost immediate.

and Y there iz a cne-to-one correspondence

between 211 the possible Lagrenglen representations L of (P) wilth

convex In u, namely:

357 L{x,¥) = inf {F{x,u) + <u,y>},
uell
(40) F(x,u) = {Lix,y) - <u,y>}.

convex in X oan u if and only if Li{x,y)

is econvex in x

the walldity of

o egeh other unde

o

Lagrat ( [(P_) iz obtalned from
taticn (35). This is an example whers T{x,u)
nat (x,u) (unless the functions T

imecting (F) and the duzl problem

vglue funetion |, ¢

lated by
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(42) p*¥(u) = sup {gly) -~ <u,y>l,
ve¥

and hence in particular one always has

(43) sup(D) = ¢¥*¥(0) < ¢(0) = inf(F).

Moreover, ¥ is a Kuhn-Tucker vector for (P) I and only 1if

(ub) d(u) 2 ¢(0) - <u,¥y> for all ue U.

In other words, one has inf{P) = max(D) If and only if there exists ¥

satisfying (H4).

Relation {41) 1s ocbtained at cnee from (39) and definltions (36) and
(30), and then (42) follows, just as in general (38) follows from (37). As
for (43), this is just the specialization of (36) and (L42) to n = 0. The
tnequality (U44) says that g(y) = 4(0), and hence it s =quivalent to (29'),
an equivalent form of the definition of a Kubn~Tucker vector ¥.

The implication of (U1) and {42}, of course, is that all the theory of
conjugate functions can te invoked in the study of the relationship otetween
{Py and (D), In particular, propertiez of the nest of level =zets
{y ¢ ¥ | 2(y) 2 0}, @ ¢« R, are seen to be dual to local properties of
4{u) around u = 0.

In the "fully convex" cese mentlicned above, where ¢ 1z definltely a
convex functlon, (44) can bz exprsssed by dlrectionzl derivatives as in (24)
(with U 1in place of Rm). Theorema of convex analysls lead agaln via
Theorem & to the conclusion that a Xuhn-Tucker vector "usually" exists, so
that the =addle point condition (32) is always sufficlent and "usually"
necessary for the optimality of x 1in (F).

This is potentlally a vary rich result, becauss 1t furnishes for any
class of convex problems a vast array of sufficient and usually necessary
conditions for optimaliiy, morecver, in a computaticnally suggestive Torm.
At the same time, the theory is applicable to problemsa far more general than
f?l) such as in optimzl contrel or stochastie programming.

Even for the fundamentzl convex programming problem (Pj) this theory
vields much that is new. Thne ordinary Lagrangian (18) is not the only one

that can be assccilated with i?lﬁ. There is5 an Infinite variety of
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Lagrangians L for (Fl), each cholce corresponding to a different dual
problem, ©Of course, not all of these Lagranglans can be of practical value
in computation, but the possibilities have hardly begun to be explored.

Scme examples based on special structure of (P,) are treated in [5] and

1
[81. Ancther example, not involving zpecial assumptions, is presented
below,

We remark that in the fully convex case 1% 1= possible to introduce
perturbations into the dual problem (D) in such a way that the dual of
(D) 1s the primal problem (F)}. Solutions X to (P) ean then be inter-
preted as Kuhn-Tucker vectors for the solutions F to (D).

For further details on conjugate duality, including some of its appli-
cations to problems in optimal control and stochastlic programming, we refer
to the recent lecture notes [5]. No doubt there are many applications to

£

special classes of convex problems slmply awziting dizcovery.

In the nonconvex case, it might be thought that there is little hope
in the existence of a y satisfying (44) and hence little promise in the
saddle point condition (32) as a general criterion for optimality. This
would Indeed be corrsct, were it not for the great flexibiliity afforded by
the theory in the choice of the lagrangian representation. 4 choice des-
at

eribed in the next sectlion demonstrates that, for (P,) and (P
3 w

least, the

addle roint approach is capable of subsuming nost other aspeetis

of optimality, such as the facts stated in §1 and §2.

5. THE AUGMENTED LAGRANGTAN IN NONCONVEX TROGRAMMING

)

Certain defieciencies of the ordinary Lagrangian function (18) for (Pl

ing to 3 so-cgllsed aupmented Lagrangian invelwing an

i

czn ba ovsrcome by pas

i

additional wariable r which acts much like a4 penalty parameter. In this
way a useful saddle point characterizaticn of optimality, capable of taking

ga2 place of Theorems 1 and 2, can be cbtained without assuming convexlty

of the functions f,. We shall discuss only {Pl) for gimplieity, although
& comblined form of (F,) and (P,) could easily be encompassed.

Ta facilitate comparlsons with the faets in 52, we denote the o¢rdinary

.«

Lagranglan by Lix,y) and the auemented lagrangian by Lix,y), where

.
¥ = {Yo,.ea¥.sp) = {¥,r) € B xR

"
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The augmented Lagrangilan for (Plj is defined by
A . m
{45y Lix,y) = foix} + Zi=ls(fi[x),yi,r},

yy By (x) +re (0% 4f £(x) 2 -yy/20, v > 0,
(46) (£ (x),yy,r) =f -y2j4r if £, (x)  -y;/2r, ¥ > 0,
yyf (%) 21f y, 20, v =0,

-=  optherwise.

We cannot go into the orlgin or computational motivation for the aug-
mented Lagrangian here; see [13, [7], [8] and the references given there.

It may be cohbserved, however, that for y =0, » 2 0, one has
- m 5
(47 L(x,0,r) = f,(x) + rzi=1 max“{f. (x),0},

a familiar expression 1n a well known penalty method for sclving {Pl). On

n

0 one get

the other hand, settlng r

L(x,¥,0) = L{x,¥) for all x.¥.
The augmented Lagrangian is thus truly an extenalon (augmentation) of the

ardinary Lagrangian, as the name suggests.

~
Note that Lix,y,r) 1=z nondesecreasing as a function of r and hence so
]
T Ar Ay o
(ug) Ely) = gly,r) = inf_L(x,y,r).
xeR™
I+t 'eliows that in the augmented dual problem,

{ .IIP'r 3 [" ) £ R » ﬁ -]

m
)
3
(=]
I
=
nl
=
[

{.I¥) maximiz
nething 1s lest in restricting v to be positive, or for that matter to b

as large as seems convenilent in some context,

-
The saddls point condition for I, can therefore, without real loss of
penerality, be wosed in the form
= =z I = - i
vy € H and r z 0 such that
(49 min L{x,7,?) = L{Z,¥,r) =

It is readlly checked that L(x,v,r) 1is closed concave in v,r) {in
fact also convex in x 1if the furnetions fi are all convex, although we

are not assuming this). Turithermore, as can be aseen even from manipulating

b



164 R. TYRRELL ROCKAFELLAR

r alone,

sup ﬁ(x,y,r) = f(x),

YT -
where f i8 the essential objective function (25) for (Pl). We therefore
do have a Lagrangian representatlon of (Pl) meeting the requirements of

Theorem 5, and 1t must correspond to a certain perturbationsl representation:

the ons glven by

fad ~ ':\ ~ ~
Fix,u) = sup{L{x,y) - u-yl,
¥
where
Py . m
u o= {ul,---,um,S; = {u,s) ¢ B x R.
The calculaticn of F is elementary to carry out, znd one cbtalns
{ i PO o
J F{x,u) if Jul|® 2= s
Flx,u)

\ +=  otherwiss,

where F 1 the crdinary perturbational repressntation of (B,) in (35)

1

and ] is the Euclidean norm. Thes optimal value functlon ¢ correspond-
ing to F, is needed in applying Theorem &, 1s therefore related to
the ordinary cptimal wvalus function ¢ corresponding te F by
o . d(u) 1f |ul|® = s,
{50) d{u) = ¢(u,s) =
+= otherwise .
(44) in the "augmented duality" context has the form
e > 5 B = = = m
(51) s(u,s) = ¢{(0,0) -~ u*y - s*r for all (u,s) ¢ R = R,

where 11 may be assumed that r 2 0, We can rewrlte thls by means of (50)
as " « ; 2 =
$(C) = ¢(0,0) = inf{elu,8) + us+y + s}
u,s
= inf {e{u) + uy + sr}
_n ;
Lel
L B
= inf ury + z|u|"t.
W
el
Thus (51) is equivalent (for r© 2 0) to
P =112 . L
plu) = - ey - vluj for all u e R,

Combini we reach the fo

g portionsz o

lowing conclusion.
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One has inf(F,;) = max(D)

) if and only if the ordinary optimal wvalue

v FET - m .=
functlon  #(u) = 1n1(P1) satlsfies (52) for some y e R and r =2 0. In

tnis event the saddle

i

woint condition (49) for L, which is always suffi-

zient for x to be a global solution to (Pl), iz also necessary.

The value of this result lies in the fact that (52) requires only the

exiztenee of some concave gquadratic "supporting function" for ¢ &t u = 0.

condition for the crdinary Lagrangisn takes the form (44

for the same ¢ (iln other words limlts (52) te r = 0) and thus requires

the existence of an affine "supporting function", the filrst

L

condition can often be fulfilled even if ¢ 15 not convex, but the second
is rather unreasonable without convexlty.

Wnile no true generic theorsms, {57) can "usually" be

satlsfled for some gategory of problems (FP.), have yet been established,

4 vrelated result is known. To atate this, we nesed zome asumpticns:

{1) the functions ©,,fy,. ’fm zre of class C74
{ii) for some o > ﬁﬂflPlj, the
It " o
{x e R | f s for 1 = 0,1,....M

. (saddle points in nonconvex programming)

Assume (1), {1i) and (iii).

{a) If % satlasfles the

V.
g {41} and af Theorem £

are not

L polnt
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were local in character. Indeed, if X is an 1solated local solution to
fPl), these assumptions can be satisfled by replacing fofx] by

?rfx) + p(x}, where p 1s a function which vanishes thrcugﬁbut some nelgh-
borhocd of x  but grows fast enough In the large. This modification of
{P;) has no effect on the analysis of a local solublon % but allows us to
=3 L Lhe v global soluticn.

In this sense, we may conclude from Theorsm 8(a) that the saddle point

condition (49) is a sufflcient condition for optimality more comprehensive

w

sic

m

in every respect than the cla 1 differential conditicns (19} and (20'),

It is edqually appliceble without any differentisbility. Tt corresponds

directly fo a perturbational iInterpratation of the Lagrange multipliers,

o
o
=]
I
e
1
%)
i
=
o
Q
¥
H
T
!

duces teo the earlier interpretation where that was

computaticnal significancze (cf. [1], [7]). Other
properties that are zometimes useful in the analysis of wvarious algorithms,

such ag the linear indepsndence of the gradients Vf€f§} for 1 € I or the

ewlase expressible in terms of L and

positivity of F. for i e I, are

problem, the zaddle point condition

to the one for tThe ordinary Lagrangian L. {Then &
k g 3

. N " iy |2 o " A 1 o~ fhon 4

that the term -viu| is superflucus.) Thus {43} is

the convex case as previous conditions,
case, (49} appears from Theorem 8(b)

and (20), It iz possivle in some
point of L for any T, no matter
ituaticn of little genuine 1interest.

it is remembered that the classical sscond-

o

order necessary conditions are of aguesiionabls virtus anyway, except as a

heuriatic

justilication in soms contexts for assuming that the gecond-order
o =1

suffigient . A better justificatiocn would bz a generic

.

1ich (

I

satislied.

theor 2} ecan

i

worthwhile contribution.

garlier that the first-order condition (19) has some uses

the study of algorithms. That this aspect is also covered by

properties of the augmented Lagrangian L is shown by the next result.
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THEQREM §. (stationary points)

Assume the functions f. in (Pl) are of class cl. fThen L is of

¢lass C:L on " o« BT x (0,=), and condition (19) is equivalent to

(53) A(y,T), ¥ > 0, such that vxL{i,ﬁ,E) =0 and V rL(i,i,F) = 0,

¥

(If the equations hold for a particular T > 0, they hold for every T > 0.)

Theorem § is derived by dlrect calculation of the gradients of L.
Setting -
n(f; (x),¥4,r) = max{f15x].—yi/2r}
for r > 0, we have

A m
v Lix,y,r) = VE(x) + Ei=1ryi+n(?i(x),yi,r))vfi(x},

X

%L; (x,¥,7) = n(fy(x),¥,,7),

al m . B
PY2 fx’yjr) = I1=l ﬂfII(XJ,Fi,?J ]

from which the assertions are obvious. BRecall that Lix,y,r) 1is concave
in (y,r), sc that the second of gradient conditions in (53) correspends

to a global maximum.

The conclusion to be drawn from all this is that there is virtually
nothing in the previous approaches to optimallty conditlone for {?l) {or
more generally, combined versiona aof (Pﬂ) ang fFl}\ which cannet be
formulated advantageously, and often more generally, in terms of the aug-
mented Lagrangilan ﬁ.

& new goal for the theery of Lagrange multipliers is thereby suggested.

Fqually potent Lagrangian functions should te sought for other classes of

not-necessarily-convex problems of optimization beaildes (?]). Optimal
control problems are good candidates. Some results In this direction have

alrezdy been achlieved by Rupp; see [10] and its references., Howsver, only

rather speclal kinds of control problems have been handled successfully up

t111 now. Thnls remains a promising arsa for rs:
finother good cbjesctive for the future ls that of devising new

Lagrangians that czn be used effectively in the decomposition of large-scale

rroblems.
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