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STOCHASTIC CONVEX PROGRAMMING: RELATIVELY
COMPLETE RECOURSE AND INDUCED FEASIBILITY*

R. T. ROCKAFELLARY anp R. J-B, WETSE

Abstract. The basic dual problem and extended dual problem associated with u two-stage
stochastic program are shown to be equivalent, if the program is strictly feasible and sutisfies a
condition generalizing, in a sense, the condition of relatively complete recourse in stochastic Hinear
programming. Combined with carlier results, this yields the fuct that, under the same assumptions,
solutions to the program can be characterized in terms of saddle points of the basic Lagrangian. A
couple of examples are used to illustrate the salicnt points of the theory. The last section contains a
review of the principal implications of the results of this paper combined with those of three preceding
papers also devoted to stochastic convex programs,

1. Introduction. This is the fourth in a series of papers[1],[2].[3] devoted to
the following two-stage model in stochastic programming. Let C, and C, be
nonempty. closed convex sets in R" and R™, respectively, and let (S. 2, o) be a
probability space. Let [, be a finite convex function on R™ fori=0. 1.+, m,,
and let f5,(s, +, - ) be a finite convex functionon R™ x R™fori=0,1.- -, m,and
s € S. The problem is to minimize

(113 Frolx )+ ' Fanls. xq. x-08))orids)
Jo
overall x,€ R™ and x,€ ¥, = ¥7(8. 2, o, R™) (the Lebesgue space of equival-
ence classes) satisfying
(1.2) ) xeC, and fix=0 fori=1,--+, m,.
and almost surely
1.3} x.(s)e G, oand  fHs x xs)=E0 fori=1, - m..

It is assumed that f-(s. x;, x5) is measurable in s for each (x;, x;)€ R" X R™, in
fact summable if [ = 0 and bounded il i =1, -+ -, m. (From this it follows that for
each x, 2 R™ and x,€ %, f2;(s, x;, X2(5)) is measurable in s, summable if i =0
and essentially bounded if i= 1.+ . my.)

The basic Lagrangian function introduced for this problem in [1] is defined
on the product of the sets

(1.4) Xo=1{lx;, x:)e R x 7, x; € C, and almost surely x,(s) € Cy}.

(1.5) Yo=1{ly1. ¥o)e R™ % L} |y, Z 0 and almost surely y,(s) = 0},
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by the formula

my

L(xy. X2, ¥, y2) = fiolx) + X yifiitxy)

(lﬁ] f e L[5S £
+ 1 [ools xp, X080+ X yau(8)fs0s xq, x5(s)) ]er(ds).
cy i=1
The given problem can be identified with
P minimize f(x, x,) over all (x|, x,) € X|,, wherc
f{xl,xi}: sup I.[.'L'|..‘Cj"\-’[1 }'3]
(¥1.y215 Y
The hasic dual problem is
D maximize gly, v») overall (v, v,)e Y, where
gly,.ya)= inf  L(xy, X2, v, ¥2).

(xr.azlc Xy

The relationship between P and D was studied in [1]. and it was shown in
particular that

(1.7) min P=sup D if C, and ( are bounded.

In cases where actually min P=max D, a pair (x,, £.) solves Pif and only if there
exists (¥, Vo) e Y, suchthat (£, ., ¥,. v.)isasaddle pointof the Lagrangian. This
saddle point property was reduced in [2] to a certain set of Kuhn-Tucker
conditions involving a function p € £, which essentially associates prices with the
constraint that x; must be chosen before the observation of s. The pairs (y,. y,)
are, of course, solutions to D.

To apply this basic duality theory at its fullest, one needs a simple criterion for
the relation int P=max D. But the latter does not hold in general, even if P is
strictly feasible in the sense that for some £ =0 the constraints (1.2) and (almost
surely) (1.3) can be satisfied with — ¢ in place of (.

The goal of this paper is to obtain such a criterion in supplementing strict
feasibility by a condition on the availability of sccond-stage recourse. The
technique is to analyze the so-called induced constraints in the first stage in terms
of the “extended duality™ developed in [3]. The extended duality adjoins to the
" Lagrangian additional terms involving “'singular” linear functionals on #7". It is
interesting that, despite reliance on such esoteric objects in the proof, our main
result on basic duality makes no mention of them in its statement.

Let K| be the set of all x, € R™ satislying the first-stage constraints (1.2) and
let K, be the set of all x, € R” such that there exists an x, e %, satisfying the
second-stage constraints {1.3) almost surely. It is evident that K, is convex.
According to [ 1, proof of Thm. 1], we have x; € K, if for the set

(1.8) T 8 ) =i e Gilfails 21, %) £0, =1, «++, msf,

there is a bounded region B with I'(s, x,) N B # & almost surely.
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We shall call K, the induced feasible set for the first stage of P, as opposed to
the explicit constraint set K.

Still another set is of interest in this connection. Let us say that a function
0 e F7(S, 2, o) is singularly nonpositive, if for every e = 0, there exists a (measura-
ble) set T'< S, comprised of a finite number of atoms with respect to o (or empty),
such that 6(s) = e for almost every s € S\ T. The reason for this terminology will
become clear in the next section. The singularly induced feasible set K5 is defined
as the set of all x; € R™ such that there exists an x, € 7, with x,(s) € C, almost

surely and f5,( -, xy, x2(  }) singularly nonpositive for i =1, - -+, m,. Like K, and
K., the set K5 is convex. Obviously
(1.9) K,= K5,

but in general the sets are not equal. The relations between these two sets 1s
investigated further in § 4.
The main result is the following. (r1 C denotes the relative interior of a set C,
i.c., the interior of C relative to the smallest affine set containing C [10. § 6].)
THEOREM 1. Suppose that P is strictly feasible and r1 K, < K3. Then

(1.10) inf P=max D,

so that solutions to P and D correspond to saddle points of the basic Lagrangian L.

In the last section (§ 4) of this paper we pursue the implications of this result
and the significance of the hypothesis ri K; = K5. We note, however, that this
hypothesis is automatically satisfied whenever

(1.11) K;=K,.

Stochastic programs satisfying this last condition are known as stochastic prog-
rams with relatively complete recourse. Strictly speaking, this is the version of that
condition for the class of stochastic programs under consideration here.

This is not an unusual property for stochastic programs. In fact, we might
expect that for many stochastic programs arising from specific applications a
stronger property will actually be satisfied, namely, the so-called complete recourse
condition, which requires that for all x; € R™, there exists x, € %, satisfying the
second stage constraints (1.3), or equivalently that K, = R™; this implies that for
all xi, U'(s, x,) # & almost surely.

The seminal papers on stochastic programming of G. Dantzig [4] and Beale
[5] consider only stochastic programs with complete recourse. This restriction is
not artificial, since the applications envisaged by these authors fall in this class,
Actually, Beale’s model [3, § 5] and one of the problems motivating Dantzig’s
work, described in [6], belong to an even more restrictive class, known as
stochastic programs with simple recourse, which has received considerable atten-
tion (cf. [7] for a survey). Roughly speaking, for simple recourse the recourse
decision is simpht a way to record the “state of the system™ after a first stage
decision x, has been selected and a particular element s of § has been observed.

The term “‘complete’” was first utilized by G. Dantzig in-[4]. The more
detailed classification sketched out above was introduced in [8]. Interest in the
class of stochastic programs with relatively complete recourse—but not necessar-
ily complete recourse—stems from theoretical considerations, but also from the
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observation made in § 4 of [§] that some important allocation problems arising in
agricultural economics and formulated by G. Tintner [9] arc indeed members of
this class and not of the more restrictive class of stochastic programs with complete
recoursce, Independently of the implications resulting from the theory developed
here, stochastic programs with relatively complete recourse are also of interest
from a computational viewpoint, since they usually possess special structures
which can be exploited in the solution procedure ; see, for example, [8, §§ 2 and 4.

2. Singular multipliers and inducedfeasibility. Asin[3]. we denote by Y the
setof all y°=(y5. - - - . y ) such that y{ is a nonnegative singular linear functional
on #7. The latter means that y¢ is a continuous linear functional with y7(¢) =0 for
every nonnegative ¢ € 47, and there exists an increasing sequence of measurable
sets S, with Uy, S, =S, such that y5(¢c)=0if c(s) = 0 almost surcly for £ S;.

The extended Lagrangian associated with P is the function L= on
Xuyx(Yyx Y§) defined by

(2.1) L~_(x]‘ X2, V1, Y2, YO = L%y, X0, yi. yo) + S Vil x Xl ).

The extended dual problem is

D maximize g{v,, y-. v overall (y,, y,, v Y, x Y. where
Z(yy, ¥y2.¥°) = inf L (e ¥ ¥
(x1.xals X
We have
(2.2) g1, y2. 0)=gly:. y2),

so that D can be regarded as a “subproblem” of D.

It was shown in [3] that strict feasibility in P implies inf P=max D. We shall
demonstrate in the next section that, in some cases, solving D is equivalent to
solving D, and this will yield Theorem 1 The present section paves the way to this
argument by developing a representation of the singularly induced feasible set K3
in terms of the singular component of I.” in (2.1). This representation, in the
theorem which follows, explains the name we have given to K53,

THEOREM 2. One has x, € K3 if and only if there exists x,€ £, such that
v-(s) e C; almost surely and
(2.3) Pl XXl MEQ Jorall i =

a—]

Proof. Clearly, the theorem will be proved if we establish that a function
8= #7 is singularly nonpositive if and only 1f b°(8) =0 for every nonnegative
singular functional b®.

Suppose first that 8 is singularly nonpositive. and let 5° be a nonnegative
singular functional with an associated sequence of sets S, as per definition. Let
& =(. Then there exists T< S, consisting of a finite number of atoms, such that
Bis) = ¢ almost surcly outside of T. Since S, T 8. we have a5, ) T 1. Hence for
some k sufficiently large we have S, 2 T (except possibly for a subset of T of
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measure zero), implyving that 5°(0) depends only on the restriction of # to S\ T.
Let e be the function in ¥} with e(s)= 1. Then b°(#) = b°(ee) = eb®(¢), because b°
is nonnegative and 6(s) = se(s) almost surely on S\ T. This is true for arbitrary
& > (), so we conclude b°(8)=0.

Assume now that the function § £ #7" is not singularly nonpositive. Thus for a
certain £ = () the set

T={seS|8(s)>¢}

is not comprised of a finite number of atoms (up to a set of measure zero}. We shall
construct a nonnegative singular functional b° such that 5°(#) = ¢. The assumed
property of T implies the existence of a decreasing sequence of measurable sets
T, = T such that o(T, ) >0 for all k and (T, ) =30(T,). Then

O=lm o(T ) =al N T,
koo k=1
Deleting the null set To. = (1 - T, from each setin the sequence. if necessary, we
can suppose that MN;., T, = &. For each k, let &, be the nonnegative linear
functional on ¥#7 defined by

S ; 1 i ] .
(2.4) BlE) = \ c(s)o(ds).
A ed ST

Observe that
(2.5) bole)=|bl=1 forallk,

where, as above, e(s)= 1. The set {h, |k =1,2, -} is thus bounded in the dual
space (#7)* and hence has an accumulation point in the weak™ topology. Let b°
denote any such point. Then b° is again nonnecgative, and b°(e)= 1 by (2.5).
Moreover, b° is singular: setting 8, = S\ T, we have S= U, S.. and for (= k
the functional b, has b)(c) = 0 for all c € # vanishing almost surely outside of S, ;
thus b°(c) = Ofor all c € #7 vanishing almost surely outside of S,, In particular. for
c(s)=max{8(s)—eels), 0} —[0(s)—ce(s)] we have c(s)=0 for all se T. and
hence b%(¢) = (). Therefore

b(@)—e = b"(B —ee)= b (max {# —ee. 0}) =),
and the proof is finished.

3. Equivalence of D and D. We consider now. as in the extended Kuhn-
Tucker conditions in [3], the function { on R™ x Y7 defined by

(3 1} E{X-]‘ _\'0} =inf I Y? }"f(f:‘{ e i .rg{ A ,")J|)C3 = -%,?_ X_w_{.\"]'\'—; C}_ d.5. (.

=
This is convex in x,, concave in y*, and nowhere +20. Let
(3.2) K3 ={x,e R"|l(x,, y*) =0 forall y°€ Y{}.

This is a closed convex set in R™. (Each of the functions {{ -, y°) for y°¢ Y5,
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convex on R™ and nowhere + o0, is continuous.) Moreover
(3.3) K=K,

in view of Theorem 2.

THEOREM 3. Suppose there exists at least one x,€ C; with fy,(x,)<0 for
(=1, , my, and that every such x, which is also in ri C, belongs to K5°. Then
the dual problems D and D are equivalent, in the sense that for every
(¥1. ¥2. ¥°) € Yo Y7 there exists y; such that (y. y;)€ Y, and

(3.4) g1 Y2 ¥ Z E(yh. v2. 0) =gy}, ya).

Proof. Let (v, y.. ¥°)€ Y, xX Y. We assume g(y,. y.. ¥°) is not —x (and
hence is finite), since otherwise the conclusion of the theorem is trivial. In this case
we have the following formula:

(3:5) gy, ¥y, ¥ = inf {L{xy X3 vy va) Hixg yOL
' (Xp.x2ve X
To see this, ﬁx{jf,. v, ¥ € Y, X Y§. and observe that for all x, € C, we have that

inf {[ Lo(s, xy, x5(8), vals))olds) + ﬁ_ yifal e x x50 )
2D -y i=1

= inf [ Lo(s, xp. x2(8), yvolsDetds)+ inf y5(fo, 0L xp, xa0 - ),
12D Y5 x2e D
where
D ={x,e L% |xs(s) € C, almost surely}.
Since the inequality = certainly holds, equality will follow if we show that for

arbitrary xie @, x5 e & and e =0, there exists x; € @ such that

2

Lofs, xy, x2(8), ya{s))o(ds)+ Y ¥ a:( -, xp, xa( - )
f=1]

-5

(3.6) ' .
éJ' Lo(s, xp. x5(s), volsNa(ds)+ & yofor - X x50 ) +e.

5 fm]
Now to each singular functional y%. there correspond an increasing sequence of
measurable sets S, with U §,, =S, such that y%(a) =0 if for some k. the function
a € 77 vanishes a.e. outside S,,. The latter property implies that y2(b) = y}(b') il b

and b' agree almost everywhere outside of S,.. Now for each index k define

xi(s) ifse8; fori=1,+'-.m,.
x5(s)  for all other s.

x:ts}: {

For each k, the function x5 & and
Farlso & k3= Fuli  xis)) HEES;

so that

Y il o Xa 250 M) = 1 wiEa o, xpsmbl
i— 1

=1 =
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On the other hand, since limg_ = (S S ) =0, we get that

lim | La(s, xp, x5(s), va(s))o(ds) = [ Lo(s, X1, x5(8), ya(5))o(ds).

koo Y 5
From the two preceding equalities. it follows that (3.6) holds for x, = x5 il k is
sufficiently large, which in turn directly yields (3.5).

Now, define the functions h and k on R™ by
inf{L{x. Xa: Vs Volls € Xo(8)e Cras} ifxjeC),
+0o it Ciy
kix,)=—{{x,, y°.

Then h is a convex function. not identically +20, while k is a concave tunction.
nowhere —a0, and

.’1(.{1}:{
(3.7) :

(3.8) glyy, ya, vO) = inf {hix))—k(x))}.

xR
The finiteness of g{y,, v», v7) implics k cannot be identically +o0, and hence k is
finite everywhere; furthermore h cannot have the value — o0 and hence is proper.
Fenchel’s duality theorem [10, Thm. 31.1] is thus applicable to (3.8), and we
obtain
(3.9) g1, ¥2, v°) = max {k*(x¥)—h*(x¥)},

L= R™

where the conjugate functions k* and h™ are defined by

(3.1 h*(xf) = sup {xy - xF- hix)h
=R

and

(3.11)

k*(xF)= inf {x, x¥—k(x)}

iR

Fix x7 for which the maximum in (3.9) is attained. Then
(3:12) —h () = 831, ya. yo) k(Y

and therefore by formula (3.10),

N,

(3.13) hix)—x " xT= gy, y2 y)—k*(x7) forallx;eR

Also from the definition of k and by formula (3.11],

(3.14) I(x, V) +x; - xfz=k*(x?) forallx;eR™
The latter implies that x, - x¥ = k*(x¥) if {(x,, y© )=0, and thus, in particular, if
x, & K5°. Qur hypothesis th:,n }leidb that x, * ’f“ K*(xT) for all x, in the set

(3.15) Ki={xie Gl =0 = Loy, b,
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Define
[316] KT :{X] = (,Y1‘f[;'L.t1.}<U. =1, 0n ey mt}.

By hypothesis, K}’ is nonempty. From this (and the finiteness, hence continuity. of
the convex functions f,,) it follows that K| =ri K{', while on the other hand,

(3.17) cl K;;__{I] € C;ilfh'-fﬂéo.f: 1.+, m.}= K,.

Hence K, is in fact the closure of the set K. where the inequality x, - x7 = k*(x})
holds. so that
(3.18) k*(xT)S mf x, - x}.
v Ky

The right side of (3.18) represents an ordinary convex program which. by our
hypothesis, 1s strictly feasible. In consequence, there exist multipliers ¥, =0,
i=1,+-,my,such that

k*(xf) £ if}ﬁl {-Tl @ f+ E )?nfn[xﬂ}-
The latter 15 better expressed. for our purposes, as
(3.19) Y, Fufulx) =k x¥)=x, -xF forallx,eC,.
-=1

Combining this inequality with (3.13) and reverting to the definition (3.7) of h. we
see that

(3.20) Lixy, x5, vi. Y2+ Y viufudx)Z gy v2. ¥°)  forall (x4, x,) € X,,.
i=}
But the left side of (3.20)is L{x,. x5, y, + ¥,. v2). Thercfore, setting v} = y, + §, we
have (y}. y.) € Y, and
g'{_\"p )’3._\’0)23 inf I.{.l';.,’.'_\. '\'{.- _\-';?:g{_\’;:}'g).
fxp.xzie Xo
which is the desired relation. )
Proof of Theorem 1. Since P is strictly feasible, we know that inf P=max D
[3. Thm. 2], and also that the set K\, as defined in (3.16). is nonempty. But then.
as in the proof above, the set K| in (3.15) is ri K} while ¢| K" = K. Thercfore
rn K, =rilcl K)=ri K =K/.
Our assumption that ri K, = K3 then gives us. by way of (3.3), that K| = K5°. Thus
the hypothesis of Theorem 3 is fulfilled, yiclding the conclusion that max D
=mux D.
4. Analysis of induced feasibility. We turn now (o investigating further the
relations between the induced feasible set K, the singularly induced feasible set
K$and a related set K. which consists of all vectors x; € R"' such that for almost

all s & § there exists a vector x-€ C> < R™ such that

(4.1) Fa:(s X030 fore= 1y o, My
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We shall call KY the e-induced feasible set. [t is evident that
Kio K.

One can view K7 as the set of all (first-stage) decisions x, with which we can
associate at least one feasible recourse decision for almost any “observed value™
of sin §. In order for x, to be also in K, one must be able to string these recourse
decisions together so as to form an essentially bounded measurable function of s.

The singularly induced feasible set K¥ is not so easily amenable to physical
interpretation. However, the main results do not refer to K, but to the larger set

7 or even (in Theorem 3) to a still larger set K3°. At least in part, this 1s due to

technical reasons which we examine in this section. We concentrate our attention
on two “extreme’ cases: at one end the discrete case, where the support of the
random variable consists of a finite number of atoms, and at the other end the
nonatomic case, where the _probability space contains no atoms. (This latter case
includes the one of S< R™ N finite, and o absolutely continuous with respect to
Lebesgue measure). These two situations seem to cover nearly all applications of
practical interest. By abuse of language we shall refer to (S, X, o) as being a
discrete or nonatomic probability space in the respective cases.

Recall that for s S and x, € R" one has

(4.2) Dls.xiy=tue bl pin=0 fori=1, »_mah
As already pointed out in [1, Proof of Thm. 1], the multifunction
s—=is x))
is measurable. This follows from [11. Corollary 4.3], since for fixed x,; the
functions
(5. xs)—=fals, xy, x5) fori=1,-+- m;

n,

are normal convex integrands [12. Lemma 2] Thus for each x, £ . the set

(4,3 wix)={seSIT(s, x,)# I}

is a measurable set. Moreover if x, € KY, then w(x)) 1s a set of measure 1, L.e..
olw(x)]=1. We also define

(4.4) w”'(5)={x € R"|[(s, x,) # T},
which is clearly a convex set. With this notation we have that
(4.3) K7={x;e R"alwix,) =1}

ProrosiTiON. Suppose that forall s in S, w '(s) is closed. Then the o-induced
feasible set K7 is closed and convex.

- Proof. Tt suffices to show that the o-induced feasible set can be written as
- {4.6) Ki=MN w

=8
where S’ is some subset of § of measure 1. The proposition is clearly true if
(= (7. Assume otherwise and let D be a countable dense subset of K5. Such a

set exists, since K3 is a subset of the separable metric space R"™', Take §'
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=, pwix;). Clearly o(S)=1land K52, .y @ '(5). Now for all s= 8. we
also have that  '(s)> D and thus o '(s)2 K since » '(s5) is closed, i.c
KSc Nes @™ '(s).
CoOROLLARY A. Suppose that Cs is compact. Then KY is closed and convex.
Proof. In this case, @~ '(s)is closed for every s € S. since (s is compact and the

functions f.;(s, -, - ) are lower semmontinuous
COROLLARY B ([13. Thm. 3.5]). Suppose that C'w is polyhedral and that for
i=1.---.m:and all s 8 the f{mc tions (xy.X:h—=fs,(5. x,. x5) are affine. Then

K75 is closed and convex.
Proof. For each fixed s. the set

Wis)={(x,, x3)|f5 (8 X1, x2) 20 fori=1.---,my x,€ R". %, G5}

is a polyhedral convex set, and its projection in the x,-coordinatesis w '(s). Thus
w”'(s) is polyhedral convex and consequently closed.

With some additional assumptions, it is also possible to show that K3
=(),.cw (s). Thisessentially requires embedding § in a topological space (with
S then the support of ¢) and subjecting the maps s~ f5,(s5. x;. x5} to continuity
conditions (cf. [14. Thm, 2]).

The following two theorems establish the relations between the various
induced feasible sets in the discrete and nonatomic cases.

THEOREM 4. Suppose that (S, 2., o) is a discrete probability space. Then

(4.7) R =K3=K$>K;=KJ.

Proof. When (8. £, o) is a discrete probability space, every function in £ is
singularly nonpositive, since the criterion for singular nonpositivity allows us to
ignore a finite number of atoms; thus K5 = R™. The first string of equalities now
follows from the known inclusions K5< K_?“'? R” . The equality of K.=K71sa
direct consequence of the definition of these sets when the underlying probability
space is discrete,

THEOREM 5. Suppose that (S, X, o) is a nonatomic probability space. Then

(4.8) K,=K:.

Moreover, if to every x, € K there corresponds a bounded region B < R™ such that
for almost all s, I'(s, x,) N B # (J, then

(4.9) Ki=K,=K5.

Proof. When (S, X, o) is nonatomic, a function in #7 is singularly nonpositive
if and only if it is nonpositive. This yields (4.8). We have alrcady observed that,
in general, K5 = K. Thus to prove (4.9) it only remains to show inclusion in the
other direction. Fix x, e K%. The multifunction s—I(s, x;) 1s closed-convex-
valued and measurable, and thus the multifunction s+—I'(s, x;1 ¢l B is compact-

convex-valued and measurable. Furthermore, by assumption, I'(s, x,) (¢l B is

almost surely nonempty. Thus there exists a measurable selector X, with %,(s)e
I'(s, x;)Nel B for almost all s[ 12, Cor. 1.1]. Since B is bounded, x; is in . hence
x, € K> and consequently K5 < K.

These two theorems have immediate implications as to the class of dual
variables we need to consider in obtaining an inf-max duality thcorem.
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COROLLARY 4. Suppose that P is strictly feasible and (S, X. o) is a discrete
probability space (finitely many points). Then

(4.10) inf P=max D.

Proof. Theorems 4 and 1.

COROLLARY SA. Suppose that (S.2. o) is a nonatomic probability space.
Then x, € K> if and only if there exists x-£ £, such that x»{s) € C; almost surely
and

(4.11) Y vi{fals xS0 forally®e Y5,

Proof. Theorems 5 and 2.

CorolL.ARY 5B. Suppose that P is strictly feasible. (S.Z. o) is a nonatomic
probability space. and to each x,= K7 there corresponds a bounded region B with
(s, x ) B # O almost surely. Suppose also thatw ™ '(s) is closed for alls € S. Then

i K, = KS if and only if P is a stochastic program with relatively complete recourse.
in which case

inf P =max D.

Proof. Theorem 5 with the Proposition wbeasg and Theorem 1.

CoroLLARY SC. Suppose that P is a stochastic program with relatively)
complete recourse, strictly feasible with C, compact and (8. %. ) is nonatomic.|
Then

inf P=max D.

Proof. Corollary 5B with Corollary A of the above Proposition.

One of the implications of Corollaries SB and 5C is that under those
assumptions K. and K5 are closed.

Corollaries 5A and 5B assert that when (8, 2, o) is nonatomnic, the “singular
multiplicrs™ result from the presence of induced constraints. The singular multi-
pliers v§ appearing in the extended Kuhn-Tucker conditions [3] correspond—
figuratively speaking——to a singular subset T of § which determines the critical
points in 5. These multipliers can not be #' functions, since these critical points
have mass (), yet they do play a crucial role in the optimization problem.

On the other hand, if (S, X, o) is discrete, Corollary 4 indicates that we never
need to use “singular multipliers’” to obtain the strong form of the duality result.
Thus the basic Kuhn-Tucker conditions [2] are in fact necessary and sufficient.
assuming strict feasibility. This does not mean that we can ignore the induced
constraints. but more simply that the multipliers associated to these constraints
will be represented by #' functions on the probability space. (In the discrete case
the dual of ¥, is ."f,],_,.} We illustrate this by a couple of examples.

Example 1. Find x,£ R™, x,& #7 such that

=),

-
I

Xisi=0 and s x;+x(s)E0 for almost all s,
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and one has the minimum of the expression

|
2x;—— ¥ xs(s).

et

nies

. Bxllen]
where S={s=(k—1)/n, k=1,---_n}with a(s)=1/n. Therc are no\i’lrsl-stage
constraints: €, ={x,/x, 2 0}. The induced feasible set is :

K3={xtf,\‘,§1}.

whereas KS=R (Theorem 4). From Corollary 4A we know that the basic
Kuhn-Tucker conditions arc necessary and sufficient for this problem. From the
differentiable form of these conditions with C| and C- the nonnegative orthants,
we obtain using [2. Cor. B] that a pair (£, ). V2)e (R X ¥7)x %) deter-
mines optimal solutions to the program (4.8),+ ++ (4.10) and its dual if there
exists a function p € #| satisfying:
(a) x,=0:
(b) %a(s) =0, vos)Z0. 5 — X, + Fo(s) =0, Fa(s) s =X, + Xals)]=0forall s€8S;
(Ca) 2=(1/n) Yeas pls)and 2x, =(X,/n) Yeespls);
(dg) pls)= —Va(s), Vals)= 1 and Xy(s)] -1+ ¥a(s)]=0forall s S.
One verifies easily that the values

: k
=1, X(s)=1-—3s fur.v:----—l. k=01, . a—L
G

and

k :
Fas)=—ps)=1 fors==, k=0,1.-- . n=2. H(l)=-p(l)=n+l
1
satisfy the above conditions. Itis striking that the ““price™ y,(s) associated with the
constraint
s—x;t+x315)=0

is much larger when s = | than when s << 1.

Example 2. We consider the same problem as in Example 1, except that the
probability space is now nonatomic. Specifically: S is the interval [0. 1] and o is
the Lebesgue measure, As before, the induced feasible set is

K ={x|x,=1}.

This is also the singularly induced feasible set K3 (Theorem 5). and as can be
verified, it is also the set K$° defined by (3.2) and utilized in Theorem 3. Corollary
SA directs us to use in this case the extended Kuhn—Tucker conditions [3. § 5].
Thus, we have that a pair ((£,. %), (V2. V) € (R x £T)X(F) X F,) determines

optimal solutions to program (4.8).- -+, (4.10) and its extended dual (with s
uniform on [0, 1]) if there exists p 2 ¢ %] satisfying

(a) %, 20: '

(b) T2(s)20. Fi(s)2Z0, s—X, +E(s)=0, Vals)[s—x 4 F(s}]=0 for s¢e
[o, 1};

(c®) X, minimizes (2x, + [p(s)alds)+(x,, ¥°)) subject to x, =0
(de} pls)= < ¥(s). yals) =1 and £5(s)[— L+ 7aAs)] =0 forsc [0, 1]:
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(&) 7°=0, 7%+ =%+ (- N=0and 0=inl {J°(+ — &, +5:( - )|x26 £
([0, 1], 2, &r). x2(5) =0 almost surely}.
Conditions (a). (b) and (d4) are the same as before. but this time a term involving
the singular multipliers /(x,, v®) appcars in (¢®), and these multipliers must satisfy
the condition (¢). The functional ¥°is a continuous linear functional on ¥, and
can be expressed as an integral with respect to a purely finitely additive measure ¢
on S. Let v be the measure on S which assigns measure | to a set A if 4 is
(Lebesgue) measurable and 1 is a point of density of A ; otherwise the measure of
A is 0. (Such a measure can be gencrated on the Borel field by a construction
similar to the one used in the proof of Theorem 4.1 of [16] starting by simply
specifying »(B) =0 for every set B of Lebesgue measure () and »(B)=1if B is
(relatively) open in [0, 1] and contains 1). One can verify that the values

=1, xls)=1-s forsell,1]

and

Jals)=—p(s)=1 forse[0,1] and §°(-)=| - vids)

satisfy the above conditions.

The solutions to the problems in Examples | and 2 resemble each other in
many ways, except for the presence in the case of Example 2 of the singular
function ¥°, and on the other hand the “jump™ in the §, multiplier when s =1 in
the case of Example 1. In fact, if we allow n to go to +oc in Example 1, it is clear
that ¥.(1) also tends toward +20. [n other words, in the hmit there will be an
“infinite” price associated with the second-stage constraint when s = 1. We know
from the derivation in Example 2 that this unusual behavior at s = 1 is due to the
presence of induced constraints. The relations between these two examples give
an illustration of the content of Theorem 1 of [3].

One can also view Theorem | as an enticement to introduce the induced
constraints explicitly among the first-stage constraints (1.2). If this is done, every
stochastic program becomes a stochastic program with relatively complete
recourse and Theorem 1 becomes applicable to every stochastic program.

This. however, requires the actual determination of these induced con-
straints. The general theory of optimization indicates that merely a finite number
of these will be sufficient to represent the binding constraints at the minimum. But
this is only of relative comfort since, in general. the constraints in question are not
especially easy to identify. Practically, we expect that the appropriate constraints
will be generated as needed. By this it is meant that the algorithm builder will use
some test to verily if a given x, € K, is or is not a member of K, and in the latter
case he will generate certain induced constraints—to be added to the constraints
determining K,—which would “cut out™ that particular x,. This procedure is
already used for stochastic linear programming [15. § 5], although in that case
fairly complete and concrete characterizations of the induced feasible sct K, are
known [15, § 4].

We conclude this paper by illustrating the effect on the dual variables of
introducing the induced constraints as first-stage constraints in the case of the
examples appearing above.
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Example 1. Same as Example 1, except that the induced constraint
Y=

is now explicitly introduced as a first-stage constraint. The same Kuhn-Tucker
conditions yield optimality criteria, except that (a) must be changed to

@) 5,20, 1-%,=0,7,=0,(1-5)7,=0.
With this modification, it can be seen that the following yield optimal solution to P
and its dual:

=, Hisl=l=y forses
and

=1, ¥s(s)=—pls)= forseS.

ey

The “curious’ behavior of 7.(s) at s = 1 in Example | has now disappeared.
 Example 2'. Same as Example 2 except that the induced constraint is
explicitly introduced as a first-stage constraint. The new problem 2" is now a
stochastic program with relatively complete recourse. We can thus turn to the
- basic Kuhn-Tucker conditions to obtain optimality criteria, They are (a') as
above, (b) and (dg) as in Example 2, but from [2, Cor. B] we also have
{(.) 2+[p(s)o(ds)=0 and x,[2 +]p(s)e(ds)]=0.
This shows that the values

xp=1, Flsj=1—5 Torseld, L]
and
fi=1, Pa0s)=—-ps)=1 forsel0, 1]

yield optimal solutions to Example 2" and its dual. Observe that the (y,, §°)
solution obtained in Example 2 is actually an optimal solution to the extended
dual D of Example 2/, but so is the solution obtained here (with y°=0), givingus a
concrete illustration of Theorem 3.

If in P the set C, is replaced by C; N K, (or C; N K35, or C M K5°%), then every
problem so generated is also a stochastic program with relatively complete
recourse. But this time the relation between the dual variables associated with the
original problem and those of the new problem is no longer as easy to cstablish.

Finally, we observe that from the proofs of Theorems [ and 3 it follows that
we could actually use the larger sct K5 in place of K35. This gives a more general
result, but K%° is at the same time “less concrete”. We have not succeeded in
proving any more intimate relationship between K3° and Kz than the inclusion

'SC —} K’O
except in the discrete case, when evidently equality holds.
5. Conclusion. The objective of [1]. [2], [3] and this paper is to develop
necessary and sufficient optimality conditions for stochastic convex programs, The
model chosen P (see §1) demands that the recourse (or second-stage) decision as a

function of the random ¢lements be measurable (an inconsequential restriction)
and essentially bounded. This last condition is a definite restriction, in general.
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{not if the second-stage feasibility region is bounded [ 1, Thm. 2]) but it is not a
significant restriction [ 1. Thm. 1] since the main concern is not with the existence
of optimal solutions. The approach is through general duality theory: we first
embed the original problem in a class of perturbed problems (the natural choice
turns out to be to perturb the constraints by elements of R™ x 7 ). then set up a
Lagrangian L associated with the system of perturbations and finally from L
derive a dual problem D. Saddle points of L are characterized by the so-called
Kuhn-Tucker conditions. These Kuhn-Tucker conditions always provide suffi-
cient optimality conditions for P: moreover they become also necessary if it can be
shown that inf P —=max D (and not just inf I’ = sup D). To guarantee the existence
of optimal solutions to D, the standard requirement is to demand that P satisfies a
constraint qualification {e.g., strict feasibility).

This is precisely what happens [3, Thm. 2] if the space associated with
perturbations is sufficiently “large™, viz., if the multiplier space is selected to be
R™ X (¥£,,.*. The extended Kuhn-Tucker conditions [3. § 5] are then necessary

”). uf - . . .
and sufficient. The choice of R™ x(¥,,,)" as the multiplier space is however
rather unsatisfactory since calculations involving elements of (#,,,)™ are generally

unmanageable unless once can handle “separately” the singular part and the
#'-part of every such (.%5,.)* multiplier.

This paper shows that the singular parts of the optimal multipliers correspond
basically to the induced constraints (Theorem 2), more precisely to the singularly
induced feasibility set. Consequently, if there are no induced constraints (rela-
tively complete recourse) or. more generally, if the induced constraints do not
determine binding constraints at the optimum, we may restrict the multiplier
space to R x i"_.‘,,_\ and still obtain the necessity of the Kuhn-Tucker conditions
(Theorem ). Note also that every stochastic program can be transformed into a
stochastic program with relatively complete recourse by the inclusion of the
induced constraints in the first-stage constraints, In this case the basic duality
theory [1.§4] is applicable, and the necessary and sufficient conditions for
optimality are given by the (basic) Kuhn-Tucker conditions [2] involving only
%' -functions as multipliers.

REFERENCES

[1] R, T. ROCKAFELLAR AND R. WeTs, Stechastic convex programming: Basic duality, Pacific J.
Math_, to appear.

[2] ———. Sichusiic convex programming: Kuhn-Tucker conditions. |. Mathematical Economics,
o appear,

[3] — . Swchasiic convex programming: Extended duclity and singular multpliers, Pacific 1.
Math.. to appear.

[4] G. B. DAaNTZ1G. Linear prograpuming under wncertainry, Munagement Sei. 1 (19551, pp.
19721}

[3] E.BEALE, On ininimizing a conves funciion subject 1o linear incqualities. . Roy. Statist. Soc. Ser.
B, 17 (1955}, pp. 173184,

[6] A. R, FERGUSON AND G DaNTZics, The allocarion of aircraft to routes: An example of linear
programming under uncertain demand, Management Sci., 3 (1956}, pp. 45-73.

[7] W, Ziinana, Stochastic programs with simple recourse, Mathematical Programming in Theory
and Practice. P Hammer and G. Zoutendijk, eds., North-Holland, Amsterdam, 1974,



STOCHASTIC CONVEX PROGRAMMING 589

[8] D. WALKUP AND R WETS, Stochastic programs with recourse: Special forms, Proc. Princeton
Symposium on Mathematical Progrumming, 1. Kuhn. ed.. Princeton University Press,
Princeton, N, I., 1970, pp, 139-161,

[9] G. TINTNER. A note on stochastic linear prograniming, Feconometrica, 28 (1960), pp. 490-495.

[10] R. T. ROCKAFELLAR. Convex Analysis, Princeton University Press. Princeton, N. I, 1969,

[11] . Measurable dependence of convex sets and functions on purameters, J, Math. Anal, Appl..
28 (1969). pp. 4-25.

[12] — . Integrals which are convex functionals. Pacific J. Math_, 24 (1968). pp. 525-339.

[13] D.WALKUF aND R, Wits, Stochastic programs with recourse, SIAM J. Appl. Math, 1511967},

pp. 1299-1314,
[14] R.WETs, Induced constrainis for stochastic optimization problems, Techniques of Optimization.
A. Balakrishnan, ed.. Academic Press, New York, 1972, pp. 433443
. Stochastic programs with fixed recourse: The equivalent deterministic program, SIAM
; Rev., 16 (1974), pp. 309-319,
[16] K. Yosipa anp B, HEwrr, Finitely additive measures, Trans. Amer. Math. Soc,, 72 (1952),
pp. 46-66.

[15] —



