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Problems are studied in which an integral of the form [} ™ L{k(r), k(1 ))e—f* dt
is minimized over a class of arcs k: [0, ) — R", It is '1.ssumecl that [ is a
convex function on K* x R* and that the discount rate p is positive. Op-
timality conditions are expressed in terms of a perturbed Hamiltonian differential
system involving a Hamiltonian function H(%, ¢) which is concave in & and con-
veX in g, but not necessarily dillerentiable. Conditions are given ensuring that,
for p sulliciently small, the system has a stationary point, in a neighborhood
of which one has classical “saddle point™ behavior. The optimal arcs of interest
then correspond to the solutions of the system which tend to the stationary
point as r— — . These results are motivated by questions in theoretical
economics and extend previous work of the author for the case p — 0. The case

=2 0 is also covered in part.

1. INTRODUCTION

Let - BiRe & R“ — (—oo, —a"] be convex, lower, semicontinuous, and
not identically + oo, and let p = 0. For each ¢ £ R, let

#(e) — inf || L@, Ty e dr [ k©) = o, (L1
where the infimum is over the class of all ares (taken here to mean absolute-
ly continuous functions) k: [0, -oo) — R* such that e—**k(¢) remains
bounded as t — —- oo, The integral in (1.1) has a classical value, possibly
infinite, unless neiLhcr the positive nor the negative part of the integrand

L(k(1), k(t)) e=** (a measurable function of £) is summable over [0, +o0):
in the latter case, we consider the integral to have the value oo by
convention. The convexity of L implies the convexity of ¢ as an extended-
real-valued function on R™.

Our interest lies in the existence and characterization of the arcs %, if
any, for which the infimum in (1.1) is attained. An important aid in this
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regard is the study of a generalized Hamiltonian subdifferential “‘equation”
(—eehi(1), k(1)) & GH(k(r), e*tw(z)) ae., (1.2)

which after the change of variables,

g(1) = e”'w(t), (1.3)
can be rewritten in the autonomous form
(—4(t) + pg(0), k(1)) € eH(k(t), (1))  ae. (1.4)

The Hamiltonian 77 is defined here by the conjugacy formula
H(k, q) = sup{z - ¢ — L(k, z)| ze R"}. (1.5)

By virtue of the assumptions on L, H(k, g) is concave in k, convex in q,
and the inverse formula

Lk, z) = sup{z - ¢ — H(k, q) g= R™ (1.6)

is valid (cf. [3]). The set éH(k, g) consists of the subgradients of H at
(k, q), 1.e., the pairs (r, z) € R X R* such that

Hik,g"y = Hk,q) (¢ —q) z forall ¢'e R7, (1.7)
Hk', q) == Hlk,g) + (K" — k) - r for all %'e R®, (1.8)

Established theory (cf. [3]) tells us that if k(z) and ¢(¢) satisfy the
(perturbed) Hamiltonian system (1.4) over a real interval J, then for
every bounded subinterval [¢,, 4,] of J, the integral

f1 ]
[ L(k(r), k(2) et di (1.9)
is minimized with respect to the class of all arcs over [#,, ;] having the
same endpoints as k at ¢ =, and 7 = ¢, . At the same time, there is a
dual property: for a certain function M, the integral

t

| " Mgl 4(0) — pq(1)) e=** dt (1.10)

wfu

is minimized with respect to the class of all arcs over [z, , #,] having the
same endpoints as g at 7 = ¢, and ¢ = ¢, . The function M is defined by

Mg, s)=suplk -5 +z-q— Lk, 2)| (k, z) e R* X R%}

(1.11)
= sup{k -5 + H(k, g) | k e R™,
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and one has, reciprocally,
Lik,z)y=sup{k s+ z-g— Mg, s)l(g,s)e R* x R*.. (1.12)
Indeed, in the terminology of [3] the Lagrﬁngians
L(t, k, 2) = L(k, z) e, (1.13)

M(t, w, v) = M(e*tw, e'y) e-et (1.14)

are dual to each other, whence the result [3, p. 213].
Henceforth, let (k. §) denote a pair in R” % R" such that

(pd, 0) € eH(k,g). (1.15)

(We shall comment in Section 6 on the existence of such a pair (k, §).)
Relation (1.15) means that (k, §) is a srationary point of the system (1.4), in
the sense that the constant functions k(1) = k and q(¢) =g satisfy the
system over J = (—oo. —o0). In a previous paper [2], we investigated for
the case p = 0 the behavior of the system near such a stationary point,
particularly the existence of solutions (k(z), ¢(z)) tending to (k.§) as
1— +oc or as 1 — — oo, This was shown to be closely related to question
of optimality for the minimization problems in (1.1), as well as for a class
of dual problems involving M. The analysis was carried out under the
assumption that H was srrictly concave-convex in a neighborhood of
(k.9).

The purpose of the present paper is to extend some of the results to the
case of sufficiently small p == 0, making use of a strengthened strict
concavity-convexity assumption on AH. Economic motivation may be
found in the interesting paper of Case and Shell [1], which contains certain
related results based on a somewhat different set of technical assumptions.

It will be convenient to make a translation of variables,

x=k—k p=g—3g, (1.16)
so that the stationary point of the Hamiltonian system appears at the
origin and the finiteness of certain integrals is more apparent. Specifically,
let A

Hyx.p) =HE+x 7+p) —HE ) —pxg. (117

Then H, is a concave—onvex function which, according to (1.13), satisfies

(0, 0) & 2,00, 0), (119
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or in other words, the minimax saddle point condition
Hy(x, 0) = H,(0, 0) == Hy(0, p) forall xeR" peR™ (1.19)
Moreover, one has
H,(0,0) = 0. (1.20)
The (perturbed) Hamiltonian system
(—p() + pp(1), X(1)) & EHy(x(8), p(1)) (1.21)

is clearly equivalent to the previous system (1.4) under (1.16).
Let us also define

Ly(x, 2) = L(k + x,2) — L(k, 0) — - (z — px), (1.22)
My(p, u) = M(q + p, —pq + u) — M(G, —pd) — k-u. (1.23)

These formulas yield (by the theory of conjugate convex functions.
cf. [3]) the relations

Hyx, p) =supiz-p — Lyx, z2) | z e R}, (1.24)
Lyx, 2) = sup{z ' p — Hyx, p)| p € R, (1.25)
Mip, ) =suplx-u -+ z-p— Lyx.2)|(x.z) e R" x R"} _
ol 2y 1) p{ P ) (1.26)

= sup{x *u + Hy(x, p) | x € R"}
Lyx,z) =sup{xu+z'p— M/(p, )| (p.u)y=s R* x R, (1.27)
inasmuch as (1.3) implies
—L(k,0) = HE.7) = M@, —p) + pk - I. (1.28)
Observe that
L% 2) 2 L0,00 =0  forall (x,z)eR*x R*, (1.29)
My(p,u) = My0,00=0  forall (p,u)eR*x R". (130)

Let us say that a finite function /1 on a convex set C C R" is x-convex,
where @ £ R, if for all x € R*, x' € R* and A = [0, 1], it is true that

A1 — XN x + Ax) = (1 — A Ax) + A(x) — el — D x — x" |3,
(1.31)
where |+ | denotes the Euclidean norm, Obviously, this is ordinary
convexity if « = 0 and a form of strict convexity (strong convexity) if
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o == 0. One can verify that / is n-convex if and only if the function A(x)
—3a | x |? is convex. Thus, if C is open and 4 is twice differentiable, -
convexity is equivalent to the condition that

v- O =alv? forall xeC, e R,

where Q(x) is the matrix of second partial derivatives of 4 at x. Another
casily derived characterization, for C open, is that £ is ax-convex if and
only if for each = = C. there exists y € R" such that

h(x) 2 h(x) = (x' —x)-r—3a|x' —x2 forall x'eC (1.32)

At all events, if /1 is x-convex on C (not necessarily open) and y = dh(x),
then (1.32) holds.
We shall say /4 is a-concare if. in place of (1.31), we have

A1 — X)) x -2 A7) = (1 — Q) A(x) = Mix) -+ Lad(l — )] x — x" |2
(133

CURVATURE ASSUMPTION.  We suppose throughout this paper that, for
certain valwes o = 0 and B = 0, the Hamiltonian H is locally «-concave-
B-convex near the stationary point (k. q), or in other words, that there
exists a eonvex neighborfiood U < V of (0, 0) in R* »« R" such that Hy(x, p)
is (finite and) o-concave in x e U for each pe V and B-convex in pe V
Sor each x e U. Moreover, the discount rate p = 0 is small enough so that

p% = 4afs. (1.34)

Let X, denote the set of all pairs (a, b) € R* x R" such that the Hamil-
tonian system (1.21) has a solution (x(r), p(t)) over [0, - 0) satisfying

Lad

(x(0), p(0)) — (a, b), (1.

E’_D‘:_Y(I) ‘ p(r) 0 as 1 — L~ oo, (I 36)

5)

The first of our main results is the following.

TueoreM 1. There is an open neighborhood U, x V. of (0, 0) (arbi-
trarily small, with U. C U and V. C V) such that K. N (U, X V.) is the
graph of a homeomorphism of U, onto V., and for each (a,b) = K. N
(U, % V) the solution to the system (1.21) over [0, - o0) satisfyving (1.35)
and (1.36) is unique, remains in K, N (U. X V.) and converges to (0, 0)
as t— oo,
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To give an interpretation to the set X, , we introduce the functions

fulay = inf | [ Lyx(0), $0) e+t dit | x(0) = al, (1.37)
Lo | ]

gb) = inf || M(p(0). 50) = pp(e)) € # | pl0) = B, (L38)
L) ]

where each infimum is taken over the class of afl arcs (absolutely con-
tinuous R"-valued functions) defined on [0, —o0) and satisfying the
endpoint condition in question. Note that the integrals are well-defined
(possibly +oc), due to the lower semicontinuity and nonnegativity of the
functions L, and A, . In fact, (1.29) and (1.30) imply that the functions F
and g, on R* are nonnegative and vanish at 0. Of course, these functions
are all convex; this follows immediately from the convexity of Ly and M, .

For @ = ¢ — k, the minimization problem in (1 .37) Is equivalent to the
one defining the value é(c) at the beginning of our introduction, as will
be demonstrated in the next section (Proposition 2). This equivalence
could fail if one were to drop from the definition of ¢(c) the restriction to
arcs k such that e=*%(z) remains bounded as ¢ — -Loo; see Example 2 in
Section 6.

Turorem 2. Let U. and V', be neighborhoods of O with the properties in
Theorem 1. Then f is finite and continuously differentiable on U.,g.is
Jinite and continuously differentiable on V.., and for (a, ByelU. x V., one
has

fla) + g b) = —a- b, (1.39)
with
(a.b)c Ko =f(a) + g.(b) = —a b

(1.40)
< b= —=VNf(a) = a= —Vg(b).

Moreover, if (x(1), p(t)) is the solution to the Hamiltonian system (1.21)
over [0, +o0) corresponding to (a, by e K. N (U, X V_) as in Theorem 1,
then the arc x uniquely furnishes the minipwm in the definition (1.3 7) of
fAa), while the arc p uniquely furnishes the minimum in the definition (1.38)
of g.(b).

Complementary results are obtainable for behavior over the interval
(—oz, 0] These are of less interest for economic applications, but they
do shed further light on the qualitative nature of the Hamiltonian dyna-
mical system. They can also be interpreted equivalently, under a reversal
of time, as results over [0, + o) for a negative discount rate p.
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Let K denote the set of all pairs (g, &) € R* x R® such that the system
(1.21) has a solution (x(r), p(1)) over (— oo, 0] satisfying (1.35), and

e x(t)  p(t)—0as f — —oo, (1.41)
Define

fi(a) = inf H"U_ Ly(x(0), 5(0)) e d ‘ x(0) = a; (1.42)

i .
g-(B) = inf | [ My(p(0), pe) — pp(t)) e dt | p(0) = b]. (1.43)
The functions /_ and g_ are nonnegative, convex, and they vanish at 0,

THEOREM 1'.  There is an open neighborhood U_ x V_ of (0, 0) (arbi-
trartly small, with U_C U and V_ C V) such that K_ 0 (U_ % V_) is the
graph of a homeomorphism of U_ onto V_, and for each (a,b)c K_nN
(U_ » V) the solution to the system (1.21) over (— o0, 0] satisfying (1.35)
and (1.41) is unigue, remains in K_ N (U_ x V_) and converges to (0, 0) as
t— —aoo. Moreover,

K. 0 K_={(0,0). (1.44)

THeoreM 2. Let U_ and V_ be neighborhoods of O with the properties
in Theorem 1'. Then f_ is finite and continuously differentiable on U_, g_
is finite and continuously differentiable on V_, and for (a,b)s U_ x V_
one has

fAa) - g(b) = a-b, (1.45)
with
(a.h)sK_ = f(a) +g(b)=ab

(1.46)
< b = Vf_.(a) =a= Vg_(b).
Maoreover, if (x(t), p(t)) is the solution to the Hamiltonian system (1,21) over
(— o0, 0] corresponding to (a, b) e K_ N (U- X V_) as in Theorem 1’, then
the arc x uniguely furnishes the minimum in the definition (1.42) of f_(a),
while the arc p unigquely furnishes the minimum in the definition (1.43) of
g-(b).

Theorems 1 and 1’ say that the behavior of the system (1.21) near the
rest point (0, 0) resembles that of a classical saddlepoint in the theory of
differential equations. At least locally, K. and K. are #-dimensional mani-
folds intersecting only at (0, 0), and comprised, respectively, of the trajec-
tories that tend to (0, 0) as f — ‘oo and as t —+ — 0.



78 R. TYRRELL ROCKAFELLAR

Theorem 2 will be derived from Theorem 1 in Section 2, while Theorem 1
itself will be established at the end of Scction 4. The proofs of Theorem 1’
and 2’ are parallel, but in certain respects simpler; they will be treated in
Section 5. Various examples and a result about the existence of points
(k, 7) satisfying the stationary point condition (1.15) will be treated in
Section 6. In Secction 3, we develop some facts which enable us, in
Section 4, to deduce the local results from more special theorems based on
a global assumption of a-concavity-3-convexity.

2. LocAL BEHAVIOR AND OPTIMALITY

We start by establishing some bounds that, as a by-product, make clear
the equivalence of the original class of variational problems defining the
values ¢(c) and the notationally more convenient class of “translated”
problems defining the values £, (a).

ProposiTioN 1. The convex function Ly is finite on a neighborhood of
(0, 0), and there exist real numbers py == 0 and p, such that

Ly(x,2) el x| |2 —px|]—p  Jorall (x.2)eR™x R (2.1)

Similarly. the convex function M, is finite on a neighborhood of (0, 0), and
there exist real mmmbers vy = 0 and v, such that

My(p,s —pp)=volip| +1s—ppil—vy foral (p,x)eR*X R (2.2)

Proef. According to our curvature assumption, the convex function
H,(0, +) is finite and strictly convex in a neighborhood of p = 0. 1t follows
from this and the minimax property (1.19) that the supremum in formula
(1.25) is uniquely attained at p = 0. But H(0, -) is conjugate to L0, *) by
(1.24), so this implies 0 is the unique subgradient of L0, ) at z =20
[5. Theorem 23.5]. Hence, L,(0. ) is finite on a neighborhood of 0 (since
otherwise the subgradient set would have to be unbounded or empty
[5, Theorem 23.4]). Thus, the convex set

dom Ly = {(x,2) e R* X R*| Ly(x,2) < + o} (2.3)

contains (0, z) for all z sufficiently near 0. On the other hand, the image of
dom L, under the projection (x, z) — x consists of all x such that the
convex function L,(x, ') is not identically + ¢, or what is equivalent in
view of the conjugacy relation (1.24), such that the convex function H(x, -)
nowhere takes the value — oo, This image therefore contains the neigh-
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borhood U in our curvature assumption, since a convex function cannot
take on the value — oo anywhere if it is finite on some nonempty open set
[5, Theorem 7.2]. Thus 0 lies in the interior of the x-projection of dom L, ,
while 01s also in the interior of the z-cross-section of dom L, corresponding
to x = 0. These properties imply that (0, 0) is an interior point of dom L,
[5, Theorem 7.8], or in other words that L, is finite on a neighborhood of
(0, 0). Of course, L, is then continuous near (0, 0) by convexity. Thus
there exist v, == 0 and », such that

Ly(x, z) =2»y if | x| =y, and

z|E .
Applying this to formula (1.26) (for M in terms of L,), we obtain

Mop,u) Zsuplx-ptz-u—w x| <w,lz| = vyt

=vg|pl T+ valu| —r,

which is the desired inequality (2.2).

By a parallel argument, the concave function Hy(-, 0) is finite and
strictly concave on a neighborhood of x = 0, so that by (1.19), the supre-
mum in formula (1.26) (for M, in terms of H,) is attained uniquely for
x = 0. Since this formula expresses the convex function 3,(0, ‘) as the
conjugate of —H(:, 0), we are able to conclude, just as above, that 0 is the
unique subgradient of A£,(0, -) at 0, and, hence, that M0, +) is finite on a
neighborhood of 0. The convex set

dom M, = {(p, u)| My(p, ) < +w) (2.4)

therefore contains (0, #) for all u sufficiently near 0. The p-projection of
dom M, also contains the neighborhood ¥ of 0 in our curvature assump-
tion, because of (1.26), We deduce from this that (0, 0) is an interior point
of dom A, and consequently a point in a neighborhood of which My is
finite and continuous. Let the numbers p == 0, ' = 0, and p, be such
that

My(p, 1) = wy if |pl=pand|u|=p.
We then have from (1.27) that
Lo, 2) Zsuplxutp-z—wllpl=p ul<p)
=plxl+plz]—p.
Using the fact that

lzlZ2lz—px]|—p|x],
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we get
Lyx,2) (e —pp)l x| +p'[ 2 —px| —py.
The desired inequality (2.1) therefore holds for
fo = min{u — o', '},

provided u' is taken small enough so that this value is positive.

The next proposition is the one specifically establishing the asserted
equivalence between the minimization problems defining &é(¢) in (1.1)
(where e~**%(r) is bounded) and f.(a)in (1.3 forx =k -k, a=c— k.
(In the problem for f.(a), it is not stipulated in advance that ¢~"x(¢) be
bounded, but this turns out to be a consequence of the finiteness of the
integral.)

ProrosiTioN 2. (a) If the are x : [0, +o0) — R® is such that Ly(x(1),
(1)) e~ is summable in t over [0, + o0), then

’l_i‘_l:_r_ny e'x(r) =0, (2.5)

and for k(t) = k - x(t), we have L(k(t), k(t)) et summable in 1, with

[ L), k) et a
- ..[:rn Ly(x(2), X(1)) e=* dr — [H(k, §)/p] — x(0) -q. (2.6)

On the other hand, if L(k(t), k(1)) e=** is majorized by a summable function
of t over [0, --00), and also

151}1 sup ek(t) -G > —oo, (2.7)

then Ly(x(t), x(t)) et is indeed summable over [0, +o0). (b) If the are
p [0, o) — R” is such that My p(t), p(t) — P{r)) e is summable in t
over [0, - o0), then

Jim e="p(z) = 0, (2.8)

and for q(t) =g + p(t), we have M(q(t), q(t) — pg(t)) et summable in t,
with

f M(g(®), §(6) — pa(t)) et dt

B f;x M(p(t), p(t) — pp(t)) e~ dr — [H(K, )fp] + k - 9(0). (2.9)
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On the other hand, if M(q(t), g(t) — pqg(t)) e~ is majorized by a summable
Sunction of t over [0, + o), and also

lim sup e=*iq(t) - k = —oo, (2.10)

then My( p(t), p(t) — pp(t)) e is summable over [0, o).

Proof. TIf Lo(x(1), x(1)) e7** is summable, then by virtue of inequality
(2.1} in Proposition 1, we have
’FM | x(1)] =7t dt == — oo and |1 | x(2) — x(t) et dt = oo,
E 0 (2.11)

Setting ©(f) = e~"'x(t). so that
2(1) = [x(t) — px(t)] e,

we see from (2.11) that

| T o(t) dr = +oo and [ - [o(t)| df << oo,

S 0
The finiteness of the second integral shows that #(r) tends to a limit as
t > 4oz, while the finiteness of the first integral shows that the limit is 0.
Thus (2.5) is true. Since

L(k(t), k(1)) e = Ly(x(t), x(1)) et
— H(k,§) e + (djdt) e x(1) - §

by (1.22) and (1.28), we then have (2.6) and the summability of L(k(z),
k(t)) e=*. Conversely, if the latter expression is majorized by a summable
function of r, then so is (d/dt) e'x(r) - § by (2.12), since L, = 0. This
implies that e=#x(1) - g tends to a certain limit other than o as f — - co,
The limit cannot be — oo by assumption (2.7), and, therefore, it is finite,
In other words, (d/dr) e'x(t) is actually summable, which leads via (2.12)
to the conclusion that L(k(7), k(1)) e=** also majorizes a summable function
(the right side of (2.12) with the L, term deleted)and, hence, is summable.
But then by (2.12), Ly(x(7), x(¢)) e must likewise be summable.
The proof of part (b) of Proposition 2 is much the same.

CoROLLARY. &(k -} a) = f,(a) — [H(k, §)/p] — a 7.

A fundamental fact about ““truncated” variational problems over the
finite interval [0, 7] will now be stated. Much of our analysis of the
problems over [0, — oo) is dependent on limit arguments concerning what
happens to this case as T — - .
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-

Prorosition 3. For arbitrary ares x : [0, T] — R and p : [0. T] — R"
with 0 <2 T <= -|-co, one has
“T . - N “T .
| Lo(x(f), x(s)) e~ et -| | My(p(2), p(r) — pp(t)) e dr
*0 bt}

= e TxX(T) - p(T) — x(0) - p(0). (2.13)

Furthermore, equality holds in (2.13) if and only if x and p satisfy the
Hamiltonian system (1.21) over [0, T].

Proof. Formula (1.26) tells us that
Ly(x.z) -+ My(p.u) 2x-u+zp, (2.14)
with equality if and only if
(. p) € ELy(x, 2), 215
or equivalently (cf. [5, Theorem 37.5])
(—u, z) € eHy(x, p). (2.16)
Therefore,

Ly(x(2), X(1)) e 4+ Mo(p(2), p(t) — pp(t)) e
2 e[x(e) - pl(t) = x(1) - p(t) — px(r) - p(1)]
= (dfdt) e='x(t) - p(1),

with equality if and only if (1.21) holds. The result is then immediate.

COROLLARY. Forarbitrary arcs x : [0. +00) — R and p : [0, +x) —R"
such that e**x(t) - p(t) — 0 as t — oo, one has

[ L), 5o €=t + [ Myp(e), pe) — pp() et de
= —x(0) - p(0), (2.17)

with equality if and only if x and p satisfy the Hamiltonian system (1.21)
over [0, +o0). In particular,

K. C{(@a,b)|fua) + g.(b) ~a-b =<0} (2.18)

Proof of Theorem 2 using Theorem 1. Fix any (a, b) € K. . Let x and



SADDLE POINTS OF HAMILTONIAN SYSTEMS 33

p denote the corresponding unique solution to the system (1.21) over
[0, 4+ =0) satisfying (in line with Theorem 1)

(x(0), p(0)) = (g, b), (2.19)
(x(t), p(1)) — (0, 0) as ¢ — +co. (2.20)

Then equality holds in (2.17) by the corollary immediately above, so that

4x

Lo [ Lyx(2), %(t) e dt
0
= —ab— | MpQ), pt) — pp(t) et dr.  (2.21)
0
If x' 1 [0, +4-c0) is any other arc with x'(0) = &', say, and

+o0 > [ Lyl (1), (1) et dt,
0
we have

;“E ex'(t) p(t) = 0

by (2.20) and property (2.5) of Proposition 2. Therefore, again by the
corollary to Proposition 3,

oo

‘ ‘ Ly(x'(2), X'(2)) et dt
i}

= —a b — [ Myp(), ple) — pp(t) et dr.  (2.22)
0

Focusing attention on the case where " — a, we see from (2.21) and (2.22)
that

[ L(x(0), 5)) e+ i = £.(a). 22

Similar reasoning establishes that

[ Myp(0), 5(0) — pp(0)) e dt — g.(b), (2.24)
i
and in consequence, by way of (2.21),

fla) = —a-b—g.(b) @.

[
B8]
Aa
g
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We conclude further from (2.22) and the corollary to Proposition 3 that
if x" were any arc with x'(0) — &’ and

+e
[ L), ¥@) et dt = —a' - b — g.(b),
-0
then (x', p) would have to satisfy the Hamiltonian system over [0, — o).
which by the uniqueness assertion in Theorem 1 would necessitate x'(t) =
x(t). In particular, taking @' = a. we observe that the arc x uniquely gives
the minimum in the definition of f_(4): in fact, the relation

fi@) = —d b —g.(b) (2.26)

holds, with equality uniquely when &' = a. Analogously, the arc p uni-
quely gives the minimum in the definition of g.(b), and one has

g:(b') = —a-b' — fa)

for all b’ e R*. Combining (2.25) and (2.26), we get the subgradient
relation
fuld) z=fla)y—(a"—a)- b forall a'eR", (2.27)

or symbolically, —b & éf_(a). By the same token, we have
e BY=g b)— B —b)-a forall b e R", (2.28)

or in other words —a € ég_(b). This establishes all of Theorem 2 except
for the differentiability assertion. For the latter, let # denote the homeo-
morphism whose graph is K. N (U, x V). thus. (a, #(a)) € K. for all
ac U, . Then - 8(a) € ¢f (a), and since # is continuous, we must actually
have —@(a) = Vf.,(a) [5, Theorems 25.1, 25.5, and 25.6]. Thus, f, is
continuously differentiable on U_ : similarly, g, 1s continuously difleren-
tiable on V. . This completes the proof.

Tn the next two sections, Theorem 1 itself will be proved, but for this
purpose a further consequence of Proposition 3 will eventually be required.
We state it now for convenience. For 0 < T =7 -l-oo, let

frla, @) = inf [

n

T L0, #e) e dt | x(0) = a, H(T) = a: (2.29)

ot 6) = inf [ M(p(e), ple) — pp(®) €5 di | p(©) = b, (1) = ],
(2.30)

where again the infima are over all arcs (absolutely continuous R"-valued
functions on [0, T)) satisfying the given terminal constraints. It is evident
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from (1.29) and (1.30) that the functions f7 and g; on R* x R™are convex,
nonnegative, and vanish at (0, 0).

ProrosiTiON 4. One has
fla,a)+gibb) =eTa b —a-b  forall (a,a)and(b,b’). (2.31)

If (x(2), p(t)y satisfies the Hamiltonian system (1.21) over [0, T] with
(x(0), p(0)) = (&, b) and (x(T),p(T)) = (a', b"), then equality holds in
(2.31), x yields the minimum in the definition of fr(a, &), and p yields the
minimum in the definition of g(b, b"). The converse implication is also true.

Progf. This is obvious from Proposition 3.

3. REDUCTION FROM THE LocAL TO THE GLOBAL CASE

The next results will be used ultimately to show that, for the purpose of
proving Theorem 1., our basic curvature assumption can just as well be
cast in a global form. Certain facts about uniqueness of solutions to the
Hamiltonian system are also implied by these results,

rd

Prorosition 3. If (x,(t), py(2)) and (._};Qﬁ), pa(t)) are solutions to the
Hamiltonian system (1.21) over an interval J, then the inequality

(dldr) e~ (i (1) — X%o(0)) - (pa(D) — pu(1)) 20 ace. (3.1)

holds on J, with strict inequality over portions of J where (xy(t), pi(£)) %
(xs(r), pa(£)) and at least one of the two solutions lies in the neighborhood
U x Vin the curvature assumption.

Over portions of J where (x,(t), p(t)) == (x:(1), po()) and both of the
selutions lie in U <V, one actually has

(dldt) e=(xy(1) — xu(2)) - (pa(t) — pal2))
= oy eMxy(t) — x,(0)) - (palt) — palt))] a.e., (3.2)

where
oy = 2 min{x, 8} =0, (3.3)

as well as

(dfdt)(xy(t) — x5(8)) - (po(r) — pal?))
= oyf] xq(t) — xa(t)] 4 | pa(t) — pult)]]? a.e. (3.4)
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Wwhere
oy = (4af — p)4(x =+ B + p) = 0. (3.5)
Proof. We have by definition of ¢H, that

Hy(x,(1), po(£)) = Hy(x,(1), po(£)) -+ x1() - (pa(r) — py(D)). (3.6)

Hy(xot), po(0)) = Hy(ora(8), po(1)) -+ (—pat) -1 ppa()) + (xa(2) — -\‘f(f‘)),

o

(3.7
H(xo(1), pr(2)) Z= Ho(x(6), pa(t)) — x5(1) - (pa(t) — pa(2)), (3-8)

Hy(x((t), po(t)) = Hy(x5(2), pu(t)) — (_pafﬂ -+ ppa(t)) * (xq(2) — }1(?})
(.9

These inequalities vield

(:(1) = X(1)) * (Pa(2) — palt)) — (xolt) — x2(2)) * (Pa(t) — pol))
—p(xi(t) — xo(1)) - (1) — pof1)) 20 aee. (3.10)

Multiplying the latter by e, we get (3.1). If (x,(t), pi(£)), say, lies
in U x ¥V, where H, is in particular strictly concave—convex, we have
strict inequality in (3.6) unless p,(t) = pJ(f), as well as strict inequality in
(3.7) unless x,(f) = x,(¢). In this context, therefore, strict inequality holds
in (3.10), and hence, in (3.1), unless (x;(2), p,(1)) = (x5(1), po(£)).

Over subintervals where both solutions lie in U » V, we can improve the
argument by adding the term 18 | py(f) — p.(¢)? to the right sides of (3.6)
and (3.8), while subtracting io | x,(z) — xy(7)?® from the right sides of
(3.7) and (3.9). In this way, (3.10) is strengthencd to

(1(1) — (1)) - (pa(£) — palt)) = (xs(t) — x(2)) * (P4(1) — paft))

— p(xy(t) — x5(1)) - (pa(1) — puo)) = o | x3(7) — xu(2)?
+Blp(t) — (O ae.

(3.11)
Using the fact that
luP+ e =2|u 0],
we see that
o | x%,(8) — xa(2)i® + B pu(t) — pa(0)}2
2 0y [(x(1) — (1)) - (pur) + pa(8))] (3.12)

When (3.12) is juxtaposed with (3.11) and both sides are multiplied by
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e, we obtain (3.2). In establishing (3.4), the first thing to record is that
(3.11) also implies
(dld)(xi(1) — x3(2)) - (p4(7) — pal2))
= ol x(f) = 30F = plaft) — x0) * () — palt)
B pi(1) — pof0)?
2o () — xy(1)F — p | x(r) — xo()] | pale) - palt)
Bt~ ) e

(3.13)

The proof of (3.4) can be completed by showing that for all real numbers
A z=0and p = 0, one has

A — php -+ Bt = ap(A - ). (3.14)

This inequality is trivial of course if A = 0 = u, so we can suppose that
A - p = 0 and rewrite (3.14) as

of? — pB(1 = B) - B(1 — ) = oy (3.15)

where € = A/(A - p). The validity of (3.15) for all #=[0, 1] is seen by
calculating the minimum value of the left side of (3.15) as a quadratic
(convex) function of # £ (— oz, +o0) and showing that it in fact equals o, ,
which is positive by assumption (1.34).

CoroLLary 1. If (x1(2). pi(2)) and (x,(t), pa(1)) are solutions to the
Hamiltonian system over an interval J, then the expression

0(t) = e (x,(1) — x5(1)) * (pa(t) — pul£)) (3.16)

is nondecreasing ovey J, in fact strictly increasing over those portions of J
where (x4(2). p1(£)) # (xu(t), po(t)) and at least one of the solutions U % V.

Over portions of J where (xy(t), pi(t)) = (x:(1), po(2)) and both of the
solutions Iie in U < V, one has e=°0*8(z) nondecreasing where #(t) = 0, and
€%t (r) nondecreasing where 8(t) = 0.

Progf. The function @ is absolutely continuous, so it is nondecreasing
over intervals where 6(¢) = 0 almost everywhere, and it is strictly in-
creasing over intervals where 0(z) = 0 almost everywhere. The justifica-
tion of the final assertion of the corollary is seen by rewriting (3.2) as

B(t) — oy | 0(2) 20 ae.
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Multiplying both sides of this by ¢~ one finds that
(didt) €0(t) = 0 where () == 0,
(didt) e 0(t) == 0  where 6(r) = 0.
CorOLLARY 2. If among the solutions to the Hamiltonian system (1.21)
over [0, + o) satisfying
(x(0), p(0)) = (a, b) e U x V, (3.17)
Li_ﬂ__ e~*x(r) - p(r) = 0, (3.18)
there is one such that (x(1), p(¢)) remains bounded and in U % Vasi— + o,

then it is the unique solution to the system over [0, -oo) having either
x(0) = a or p(0) = b.

Proof. Let (x'(¢t), p'(r)) also satisfy (3.18) with either x'(0) = @ or
2'(0) = b. The corollary to Proposition 3 gives us

[ L. F @y et di+ [ Ml (0, P~ pp' (1) et de
Yo Y0
= —x'(0) - p'(0) =7 Loo, (3.19)

and, hence, by Proposition 2, we have

A

lilll"_l_ e"tx'(1) = {h{llr e"p'(t) = 0. (3.20)
By virtue of the boundedness of (x(¢), p(2)), the expression
B(r) = e (x'(1) — x(1)) - (p'(2) — p(1) (3.21)

therefore satisfies

r]ﬂlllly 8(z) = 0 = 5(0). (3.22)

This implies via Corollary 1 that x'(#) = x(¢) and p'(r) = p(t) for all
te [0, o).

Corollary 2 is the basis for the uniqueness assertion in Theorem 1. The
rest of Theorem 1 relates only to the local behavior of H, and the cor-
responding Hamiltonian system near (0, 0). In the proof, therefore, there
is no harm in replacing /7, by any more convenient function that agrees
with it on a neighborhood of (0, 0). The proposition below will allow us in
this manner to derive Theorem 1 by way of results that are more global in
nature.
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ProposITION 6. Let C X D be any compact convex neighborhood of
(0. 0) conrained in the neighborhood U x V in the curvature assumption on
Hy. Then there exists a function Hy, on R* X R" agreeing with H, on
C X D, such that Hy(x, p) is everywhere finite, a-concave in x, and B-
concave in p.

Moreover, Hy can be constructed in such a manner that the corresponding
convex Lagrangians

Ly(x, z) = supip * z — Hy(x, p)| p € R}, (3.23)
Mi(p, u) = sup{u » x + Hy(x, p)| x € R™), (3.24)
are finite throughout R* x R",
Proof. Let
Hy(x,p) = Hy(x,p) + 3o | x 2 — 38| p |2 (3.25)

Then H, is concave—convex on U X V. The construction given in [2, Proof
of Proposition 3.1] furnishes a finite, concave-convex function H, on
R* X R" agreeing with H, on C X D. Let

Hyx,p) = Hy(x,p) — 3 | x 2= 38 | p 12 (3.26)

Then H\(x, p) is everywhere finite, a-concave in x, S-convex in 7, and
Hi(x, p) = Hy(x, p) for (x, p) in C x D. Moreover

lim Hy(x, Ap)/A — oo, (3.27)
hxpﬂ H(Ax, p)jA = —on, (3.28)

so that the functions L, and M; in (3.23) and (3.24) must be finite every-
where [5, Corollary 13.3.1].

4. GLoBAL RESULTS

In view of Proposition 6, there is no loss of generality if in the rest of
the development of the proof of Theorem 1 we invoke the following.

GLoBAL CURVATURE ASSUMPTION. The function H, is actually finite
and w~-concave-B-convex throughout R" x R™, i.e., the earlier curvature
assumption is valid with U X V = R" X R". Furthermore, the functions
L, and M, are finite throughout R* % R".

A crucial consequence of this assumption is the following property.
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ProposITION 7. Under the global curvature assumption, if (x(t), p(1))
satisfies the Hamiltonian system (1.21) over [0, - =0). then either

Jim e='x(f) - plt) = + <0, (4.1)

or one has

lim_(x(), p(r)) = (0, 0). (4.2)

Proof. We first apply Corollary 1 of Proposition 5 to (x,(r), py(t)) =
(x(1), p(r)) and (x,(1), po(1)) = (0, 0) to see that the function

B(r) — e**x(¢) - plr)

is nondecreasing, and in fact e**f(z) is nondecreasing on subintervals
where 0(¢) = 0. Thus (4.1) holds unless 8(¢) =2 0 for all + 2 0. Suppose
now that the latter is true, so that also

x(t) - p(t) = forall r=0. (4.3)
From Proposition 5 we have at the same time

(didi) x(1) - p(t) = oy[l x(1)] -+ | p(1)|F = o, [(x(2). p(1))* ae. (44)

sl
oy | Ix(t), p(1))2 dt << x(T): p(T) — x(0) - p(0) =< —x(0) - p(0). (4.5)
Jo

This yields

[‘ B () dt << + oo, where {(r) = (x(r), p(r) = (4.6)

hi ]

Since the concave—convex function H, is everywhere finite, its subdifferen-
tial multifunction ¢H, is bounded on bounded sets [6, Lemma 4], so
that in particular there is a number A such that the elements of the set
&H(a, b) are bounded in norm by A when |(a. b) = 1. Then, since (x(t),
p(t)) satisfies the system (1.21), we have

|(x(2). p())] = A+ p whenever [(x(z), p(¢)) = 1. (4.7)
For (1) as in (4.6), this means that

£t) s 20 + p) whenever  {(r) =2 1. (4.8)
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We proceed now to show that (4.6) and (4.8) imply

lim £(f) = 0, (4.9)
£

a property equivalent, of course, to the desired conclusion (4.2). Fix any
e=(0,1) and let

S =1{=[0, +0)| {1) = €2}

The set S is closed by the continuity of {(r), so its complement in [0, - o)
is the union of a sequence of intervals. The finiteness of the integral in
(4.6) ensures that the intervals among these having length ¢2(A - p) or
greater are all contained in [0, T] for some T sufficiently large. Then for
every ¢ == T, there exists 7, € S such that | £ — 7, | <2 ¢/4(A + p). But (4.8)
implies

{0ty =2 L) = 2A+p) 1 — ¢y ] it fyeSand 2(A--p) £ —1t, | =5 €2

(4.10)
Thus &(r) = e if 7 = 0. Since e can be tuken arbitrarily small, (4.9) is
indeed correct.

We next state a result for the [unctions f7 and gy n (2,29) and (2.30)
that does not make fullest use of the global curvature assumption, al-
though the latter will enter via Proposition 7 when we argue later by
tuking the limit as 7' — 0.

THEOREM 3. Under the global curvature assumption, the finction fr for
0 = T == + oo is everywhere continuously differentiable and strictly convex

on R > R*, and the infimum in its definition is always attained by a unigue
arc. The same properties hold for gr . Furthermore, one has the conjugacy
relations

grlb, b) = max {e=Ta’ - &' — a - b — frla, @)} = [7(~b, eTb),
e (4.11)
frla, @) = max{e=Ta’ - b — a b~ g1(b, B)} = gr*(~a, e~Ta),
o (4.12)

and the gradient relation
(—~boe by —=VNfa a) = (—a ea’) — Vg (b, b'). (4.13)
The conditions in (4.13) are satisfied if and only if

Jrla, a) - grb. B) = ¢ a' - b — a- b (4.14)
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Proof. Relations (4.11) and (4.12) in “sup” form, and the existence of
minimizing arcs, follow from [4, Corollary 2 of Theorem 1] and the global
finiteness of the functions L, and M, . This finiteness also implies from the
definitions (2.29) and (2.30) that f; and g; are finite everywhere, and hence
that “sup”™ can be strengthened to “max” in passing to the conjugate
functions f7* and g+* [3, pp. 217-218]. In view of (4.11) and (4.12), we
have the subdifferential relation

(—b, e*"b’) e ¢fr(a, a') <> (—a, e*7a’) € Egr(b, b'), (4.15)

these conditions being equivalent to (4.14). Suppose now for i = 1, 2 that
(a;, a;') and (b, , b,") are such that these conditions hold, and let x,(t) and
p:(t) be corresponding arcs over [0, 7] furnishing the minima in the
definition of fr(a;, a;") and gr(b; . b;’). Then, according to the converse
part of Proposition 4, (x,(z). p;(r)) satisfies the system (1.21) with

(x(0), pA0)) = (a;, by) and (x(T), pT)) = (a;, b,). (4.16)

Invoking Corollary 1 of Proposition 5, we see that the function £ in (3.16)
satisfies 6(7T) = 6(0), unless (x,(¢), ps(£)) = (x,(2), po(r)) for all 70, T).
But

0(0) = (ay — az) - (by — bo), (T) = e (@) — a') - (b — by).” (4.17)

Therefore, the equation (a, , a,') = (as , @') implies (by, b,") = (bs, b)),
and conversely, This shows that the subdifferential multifunctions éf; and
&g, are actually one-to-one functions, so that /7 and g, must be differen-
tiable and strictly convex [5, Corollary 26.3.1]. The argument also shows
the uniqueness of the minimizing arcs over [0, 7], and the proof of
Theorem 3 is, therefore, complete,

The first consequence of Theorem 3 which we derive concerns the
existence of minimizing arcs in the definitions of the functions . and g.. .

ProposiTioN 8. Under the global curvature assumption, the convex
Sfunction [, is everywhere finite on R", and for each a = R", there is a unique
arﬁ){over [0, — o) furnishing the minimum in the definition of f.(a).

Proof. Since L, is finite and has the properties (1.29), it is evident that
0 < fa) = fr(a. 0) < -+oo forall T =0, (4.18)

Hence, /. is finite. Now fix any @ € R". The definitions of f, and f; yield
the identity

fil@ = inf {fr(a. @) + e=Tf.(a)} forall T >0. (4.19)
a'sR"
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We know from Theorem 3 that £ is finite, strictly convex, and cofinite
(ie., has an everywhere-finite conjugate function f7-*). In particular, this
implies that, as a function of &', fr(a, a') is strictly convex and satisfics the
growth condition

jiml [fra, a' - Aa@") — fr(a, ¢)]/A = oo whenever " == 0  (4.20)

[5, Corollary 13.3.1]. The convexity of f. ensures, of course, that the
difference quotient [f.(a’ + Aa") — f,(a"))/A is always nondecreasing in
A, s0 it follows that for each 7" == 0, the function

hr(a) = fr(a, ') + e7f.(a) (4.21)

Is everywhere finite on R*, strictly convex and satisfies
,-.“,.13-1.—. [Ar(a" - Aa") — he(a)]iA = + oo whenever " £ 0. (4.22)
Therefore, A attains its minimum over R™ at a unique point [5, Theorem

27.2]. Let us denote this point by x(7), defining also x(0) = a. We then
have the identiy

fida) = frla, x(T)) + e (x(T)) forall 7T =0. (4.23)

Note that this identity would also have to be satisfied by any arc giving
the minimum in the definition of f.(4), so the function x : [0, - ) — R*
that we have constructed is the unique candidate for such an arc. To verify
that x is absolutely continuous, we temporarily fix T and let  denote the
unique arc over [0, T] giving the minimum in the definition of f(a, x(T))
(cf. Theorem 3). For all S = (0, T), it is true that

fr(a, x(T)) = fs(a, y(S)) - e=»Sfr_s(3(S), x(T)), (4.24)
S(p(8)) = fr_s(¥(S). X(T)) -+ e T=5) £.(x(T)). (4.25)
combining (4.24) and (4.25) with (4.23), we obtain
Sfila) = fsla, p(S)) + eSf,(¥(S)). (4.26)
On the other hand, the formula
fila) = meléi {fsla, a') + eSf.(a )} (4.27)

holds, with the minimum attained uniquely at the point x(S). Therefore
(4.26) implies y(S) = x(S). This is true for all S € (0, T), so the arcs x and
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y coincide over [0, 7). Thus x is absolutely continuous, and for every
T = 0 we have

T
frla, x(T)) = | Ly(x(2), X(1)) e=*" d. (4.28)
D
Plugging the latter into (4.23), we get
fila) = [‘T Ly(x(2), (1)) evtdt  forall T =0,
0

and, therefore,

ful@) = [ Lox(r), %(0)) et dr. (4.29)
0

Thus x must give the minimum in the definition of £, (¢) and is the unique
arc to do so.

The argument establishing the assertions of Proposition 8 about g. is
entirely parallel.

ProrositioN 9. Under the global currature assumption, we hare

fila) = lim [min fr(a. a')l. (4.30)
T—-ix u'cR"
g (6) = lim [min gr(b, b")]. (4.31)
T—=2x h'eR®
Proof. Let
dr(a) = min frla, a'). (4.32)
a’eR™

(The “min”, in place of “inf", i3 appropriate because of the growth
property of /7 displaved in (4.20).) The identity

frla, a) = ri}}{lz 1 fsla, ¢) + e *Sfr_s(e, a')) for 0§« T (4.33)
shows that
fria, o) 2= _i;;f& fsla, e) = s(a), (4.34)
and it is true, therefore, that
Yr(a) = dgla) for 0 <S<T < +w. (4.35)
At the same time we have

fla) = dp(a) forall T =0 (4.36)
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by (4.21) and the nonnegativity of £ . Hence, the limit
f(a) & j_iﬂ}r‘ dir(a) (4.37)
exists and satisfies
0 < ¢ (a) = fi(a) < + . (4.38)

We must show that also #r.{a) = f.(¢). The convexity of /& implies that
of the functions i and, hence, that of ., The next step consists of
demonstrating that -, . like £, , satisfies

b (a) = min {/r(a, a') — e>Tf_(a')} forall T =0. (4.39)

1'=R
“ertainly the definitions imply
dr-sla) = inf {frla, &) + eTss(a)] (4.40)
forall 7= 0.8 = 0. In particular. then, we have
hr_sla) < frla, a') + e*Tihgla’) forall &' = R" (4.41)
and passing to the limit as §—» oo, we get
wola) < fila, a') + e T {a') forall a = R". (4.42)

On the other hand. let us fix any g¢¢ R” and T = 0, and consider the
function

kia) = fila, a) + eTh(a’). (4.43)

Since g is finite and convex, while fr is strictly convex with the growth
property (4.20). we have L strictly convex with

Jim [kg(a’ + Ad") — ks(@)]A —= +-o0 it " =0, (444
It follows that kg attains its minimum over R” at a unique point ¢’ . Then
Yirysla) —= frla, as) e Tiliglag. (4.45)
Observe that this relation entails
Srla, as'y <y g(a) =5 (a).

and, hence.

as'e B —{a' e R*| frla, a') = i _(a)}. (4.46)
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The set B is bounded, by virtue of the growth property (4.20) [5, Theorems
8.4 and 27.1(f)], so that (4.46) implies the existence of a cluster point of
as’ as S — oo, Since the functions s are convex and converge point-
wise to ¢, on R", they actually converge uniformly on all bounded sets
[5, Theorem 10.8]. Therefore, in passing to the limit as S— — o in
(4.45), we have

(@) = fr(a, &) -+ e T (a'), (4.47)

where «’ is any cluster point of a.” as s — + oc. Thus, equality does hold
in (4.42) for some a', and (4.39) is correct,

We next apply to (4.39) the same argument we applied in the proof of
Proposition & to the parallel formula for f, . This yields the existence for
each a € R" of an arc x over [0, + =) satisfying x(0) — «,

(@) = frla. x(T)) + e (x(T)), (4.48)
AT
frla, x(T)) = J“ Ly(x(2), X(1)) e~ dt, (4.49)
for all T == 0. But then

bola) = [ L), 50) e dt > f(a). (4.50)

This completes the proof of Proposition 9, the argument for g, being
parallel.

ProrosiTioN 10. Ler F. and G, be the functions defined like f. and g.
in (1.37) and (1.38), but with the infima taken only over arcs which are
bounded over [0, + o), Then

Tl_i,l__ll frla, a') = F._(a) for all a' = R*, (4.51)
_}ilﬂh gr(b, by = G.(b) forall b e R" (4.52)

Proof. The propertics (1.29) of Ly imply that fr(a, 0) is nonincreasing
as a function of 7 > 0, and fi{(a, 0) = F.(a). (Any arc x over [0, 7] with
x(0) =a and x(T)=0 can be continued over [0, -oo) by defining
x(t) = 0 for all ¢ = T.) Thus, the function

F(a) & T’ypx fr(a, 0) = F.(a) (4.53)
is well defined. For 7 > S = 0, we have

Jresa, 0) < fi(a, a’) + eTf(a', 0), (4.54)
Sr(a, @) < fr_s(a, 0) + e 75 £(0, a'). (4.55)
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Taking the limit in these inequalities as 7 — -}-oo for fixed S and a', we
obtain, respectively,

Fla) = lim inf fr(a, @), (4.56)
lim sup frla, a') = F. (a), (4.57)
T—=+m
and, hence.
Jim fr(a, a') = F (a). (4.58)

We finish the proof of (4.51) by showing that (@) = F.(a). Fix a = R"
and € == 0, and let x be a bounded arc over [0, +=c) such that x(0) = a
and

T

[ Ly(x(2), X(1)) e~ dt < F.(a) — e. (4.59)

ool

Then for all T = 0, it is true that
aT
Fi@) + > | Lyx(), (1) et dt = fr(a, X(T)). (4.60)
0

According to (4.38), the functions ¢' — f7(a, ') converge as T — L= to
the constant function ¢’ —> F_(a), and since the functions are convex, the
convergence must be uniform on all bounded sets [5, Theorem 10.8], in
particular on the set (x(7)| 0 = T == |- o} Therefore,

Jim_ fola, X(T)) = F.(@) (“.61)

and (4.60) thus implies F.(a) -~ € 3= F (). Since ¢ = 0 was arbitrary, we
are able to conclude F.(a) == F_(g) as aimed.

The argument for ¢ and G_ is parallel.

Our main *“global” result can now be treated.

THEOREM 4. Under the global curvature assumption, the functions f,
and g. are everywhere continuously differentiable and strictly convex on
R", and they satisfy the conjugacy relations

g:(b) = max {—a - b — fia)} = f.¥(—D), (4.62)
as R

fda) = max {—a - b — g, (b)} = g.*(—a). (4.63)
e R™

Furthermore, one has

(a.bys K. =f(a) L+ g.(h)+a b=20
= b = —Vf(a) = a= —Vg.(b). (4.64)
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For each (a, b) & K., there is a unigue solution (x(t), p(t)) to the Hamil-
tonian system (1.21) over [0, -+ o0) satisfving (1.35) and (1.36), and it tends
to (0,0) as t -~ — . In fact, x is the unique arc furnishing the minimum in
the definition of f.(a), while p is the unique arc furnishing the minimum in
the definition of g (b).

Proof. Defining ¢, as in (4.32), we have from Theorem 3 the rclation
gr(b, 0) — max {—a - b — fr(a, a');

(4.65)

= max {—a- b — dla)) = br*(—h).
As T — ——oo, the convex functions i, converge pointwise to f. by
Proposition 9, while the convex functions b — g(b, 0) converge pointwise
to G, by Proposition 10. Thus ; and the conjugate ir* converge to
finite limit functions as 7 -+ —+ w0, implying that these limit functions must
be conjugate to each other (cf. [6;7;5, Theorem 10.8]). Thercfore.
G_.(h) = f.*(—b), so that (again by virtue of the finiteness of the two
functions)

G.(b) =— max{—a-b — f.(a) (4.66)
ncR"
and. reciprocally.
flay=max{ a-b — G (b)) (4.67)
veR™

The next thing to note is that G_ satisfies the identity
G.(b) = inf {gg(h, b') |- eTG_(b")} forall T :=0. (4.68)
»'eR®

This is evident from the definition of G. in Proposition 10. The same
argument used in connection with Formula (4.19) in the proof of Proposi-
tion 8 shows for each b € R” the existence of a unique arc p over [0, -~o0)
satisfying p(0) = b and

G (b) = gr(b, p(T)) + TG (p(T)) forall 7 =0, (4.69)
T
gr(b, p(T)) = j' My(p(r), p(t) — pp(t)) et dt  forall T > 0. (4.70)

1]

Now fix any ¢ € R" and let x be the unique arc over [0, -+ 20) giving the
minimum in the definition of £, (@), as exists by Proposition 8. Then

fila) = frla, x(T)) + eTf (x(T)) forall 7 =0. (47D

frla, x(1)) = J’OT Lo(x(), ¥(1)) e=*' dr forall T>0. (4.72)
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Let & be such that the maximum in (4.67) is attained, and let p be a cor-
responding arc over [0, -}-o0) with p(0) = b satisfying (4.69) and (4.70).
We then have from (4,69) and (4.71) that

O0=f(a) - G(b)+ab
= fela, x(T)) - gr(b, p(T) + € “Tf(H(T)) - Go(p(T)] + a+ b
= fr(a, x(T)) + g¢(b, p(T)) — e"x(T) - p(T) +- a- b
+ e[ f(X(T)) + G(p(T)) + x(T) - p(T)], (4.73)

and, consequently, by virtue of the conjugacy relations (4.66) and (4.11),

Jrla, x(T)) + gr(b, p(T)) — e Tx(T) - p(T) +a-b=0 forall T =0,
(4.74)

fuAx(T) = Gup(T) + x(T)-p(T) =0 forall 7 =0. (4.73)
Substituting (4.70) and (4.72) into (4.74) and applying Proposition 3, one
sees that (x(r), p(r)) is a solution to the Hamiltonian system (1.21).

Moreover, (4.74) implies in conjunction with (4.69) and (4.71) that

lim sup e=*"x(7T) - p(T) = lim sup [fr{a, x(T)) — g¢(b, p(T)) — a - b]
Tt Totw

(4.76)
= f(a) - G(b) - a-b =2+,
and. hence, via Proposition 7, that
lim (x(2), p(z) = (0, 0). @77)

The minimizing arc x is thus bounded over [0, +o¢), and therefore
fu{a@) = F.(a). This has been verified for an arbitrary a = R*, so actually
Fy="F: ;

A parallel argument shows that likewise g, = G . Thus, the formulas
derived above for £, and G, are actually valid for £, and g. ; both (4.62)
and (4.63) are valid, and for each (a, ) in the set

K, ={(ab)fla) |- gb) -a-b=0}
={(a, b) fila) + gb) +a b =0} (4.78)
={(a.b) —bedf(a); =ila.b) —acsig (b)),
there exists a solution to the system (1.21) over [0, — =) with (x(0),

p(0)) = (a, b), satisfying (4.77) and (by (4.75))
(x(T). p(TH = K.' forall 7 =0. (4.79)



100 R. TYRRELL ROCKAFELLAR

But this implies K.’ C K, , whercas on the other hand, the inclusion
K. CK,' follows from the corollary to Proposition 3, Therefore,
K. = K, , and for each (4, b) € K, , there is a solution to the system
(1.21) over [0, + o) with (x(0), p(0)) = (a, b) which remains in K, and
tends to (0, 0) as 1 — -~ oo, Corollary 2 of Proposition 5 tells us this must
be the unique solution to (1.21) satisfying

lim e=?x(7) » p(r) = O,

and having either x(0) = @ or p(0) = b. Hence, for each a £ R", there is
no more than one b € R" with (4, b) € K, , and for each b = R* there is no
more than one a € R* with (a, b) € K. . Since K. = K ', this says that the
subgradient sets é/.(a) and ¢g.(h) never contain more than one element.
It follows that £, and g are continuously differentiable [5, Theorems 234,
25.1, and 25.5] and in view of their conjugacy relationship, also strictly
convex [3, Theorem 26.3].

COROLLARY.  Under the global curvature assumption, one has Fl=4.
and G, =g, .

Proof of Theorem 1. As already has been noted, there is no loss of
generality if the global curvature assumption is invoked in the proof of
Theorem 1. (The uniqueness assertion is covered by Corollary 2 of
Proposition 3.) Thus, we can place ourselves in the context of Theorem 4,
according to which K, is the graph of a homeomorphism from R* onto
R" (namely the mapping —Vf. , whose inverse is —Vg.). The task is to
show that, given any neighborhood U x V of (0,0) in R* x R, there
exists an open neighborhood U, x ¥, of (0, 0) such that K. n (U, % V.)
is the graph of a homeomorphism from U. onto V., and for each
(a,b) e K. N (UL % V.), the solution to the system (1.21) starting at
(a, b) and tending to (0, 0) stays entirely within K. n (U, x F.). Since
K, is already the graph of a global homeomorphism, the local homeo-
morphism property will certainly be satisfied if . and ¥, are taken to
be of the form

g = da | 35 with (a, b) s K. n W3, A
_ ' ) (4.80)
V.=1b|3a with (a, by K. N W,
where W is some open neighborhood of (0, 0); one then has
En(U.xVy=K.nW. (4.81)

Thus the proof is reduced to showing that every neighborhood U % ¥ of
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(0, 0) contains an' open neighborhood W of (0, () such that, for each
(a,b)e K. N W, the solution to the system (1.21) starting at (a, b) and
tending to (0, 0) stays entirely within K. N W. Actually, such a solution
(x(t), p(t)) remains in K, by definition and, hence, by Theorem 4, it
satisfies

Flx(2)) = g_(p(t)) -+ x(2) - plt) =0 forall =0, (4.82)

Moreover, x(1) + p(t) is nondecreasing in f; this follows from Proposition 5
in the case of (x,(2), p1(2)) = (x(¢), p(t)) and (x,(2), pa(1)) = (0, 0). Hence,
the expression f.(x(f)) + g.( p(t)) is nonincreasing. This indicates that the
desired properties can be obtained by taking W to be of the form

W = (@, b) fula) + £.6) < &, (4.83)

provided this set is indeed, for e = 0 sufficiently small, an open neigh-
borhood of (0, 0) contained in whatever neighborhood U x V7 has been
specified. But the latter properties follow from the fact that /. and g, are
finite, strictly convex functions (hence, continuous) satisfying by defini-
tion

fila)y =F£0)=0 and g.(b) =g (0)=0 (4.84)

(cf. [5, Theorem 27.2]).

5. RESULTS FOR THE INTERVAL (-—o0, 0]

Most of the results for [0, -+ o2) can easily be derived in a parallel form
for (— oo, 0] but with some important simplifications. In building up to
the proofs of Theorems I’ and 2, we begin with facts corresponding to
those in Proposition 2.

ProposITION 2, The inequalities

[ Lo(x(), 50) et dr < o0

and ! ' (5.1)
all
[" 3P0, p0) — pp(e) et dt <+

imply, respectively, that

Eﬂ. e"x(t) =0 and f]_‘ii’_I}\ e~"p(t) = 0. (5.2)
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Proof: The argument is based on Proposition 1 and follows exactly
the same lines as the first part of the proof of Proposition 2.

CoROLLARY. If (5.1) holds, then
;hr_ri, e='x(t)  p(t) = 0. (5.3)

ProposiTiON 3. For —oe <2 T < 0, one always has

a0 -0
JT Lo(x(t), X(1)) e~ dr + JT M(p(t), p(2) — pp(1)) e dt

= x(0) - p(0) — e~*Tx(T) - p(T). (54)

Furthermore, equality holds here if and only if (x(t), p(t)) satisfies the
Hamiltonian system (1.21) over [T, 0].

Proof. Same argument as for Proposition 3,

CorOLLARY 1. For arbitrary arcs x and p over (—oz, 0], one has

" Liato), 560y et de = [ Mplo), 566) — pp(e)) e di

[

= x(0) - p(0), (5.5)

with equality if and only if (x(t), p(t)) is a solution to system (1.21) over
(— oo, 0] which satisfies (5.3).

CoROLLARY 2. One has
fla) g (by=a-b  forall (a,b)eR" X R (5.6)
K. C{la b) fla) |- g(b) =a-b}. (5.7
In fact, K_ consists precisely of the pairs (a, b) belonging to the set on the
right in (5.7) such that the infima in the definitions of f_(a) and g_(b) are
both attained by arcs x and p, respectively; such pairs of arcs give the

solutions (x(2). p(t)) to the system (1.21) described in the definition of K_.,
and they always satisfv (5.2) and consequently

lim (x(2), p(t)) = (0, 0). (5.8)

Note the absence in Corollary 1 of any assumption on e—%x(¢) * p(1),
which is justified by the corollary to Proposition 2’. This has produced the
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general inequality (5.6). We were able to derive the similar inequality for
f. and g. only under the global curvature assumption.

Proof of Theorem 2" Using Theorem 1°. This is obvious in view of
Corollary 2 above, except for the assertions about V/_ and Vg_. The
relations (5.6) and (3.7) do imply that

K_C{(a, b) bedf(a). (5.9)

and, hence, the homeomorphism @ in Theorem 1’ from U_ onto ¥_ whose
graph is K_ M (U_ % V_) satisfies

m

E(a) £ &f _(a) forall aesU_. (5.10)
But /. is a convex function which is finite on U_ . Therefore, df (&) reduces
almost everywhere on U_ to the gradient Vf_(a) [5, Theorem 23.5].
Moreover, at the remaining points g £ U_. &¢f_(a) can be constructed as
the convex hull of the limiting values of gradients V/_(a") existing at
points ¢’ near a [3, Theorem 23.6]. The existence of a homeomorphism
@ satisfying (5.10) therefore implies that &f_(a) reduces everywhere on U_
to a single element, and this must then be the gradient V£_(a). Thus (5.10)
is equivalent to

Ola) = Vi_(a) forall asU_, (5.11)

and in particular 7 is continuously differentiable on U_ . This, with a
similar argument for g_ ., justifies the second and third equivalences in
(1.46).

The next result corresponds to Proposition 7 and Corollary 2 of Pro-
position 3.

ProrosiTioN 11.  Let (x(t). p(1)) be a solution to the system (1.21) over
{(— oo, 0] with (x(1), p(1)) = (a, b). Then either

;li’_mn ex(r) - p(t) = — o0 (5.12)
-
or one has (3.3), and hence (a, b) € K. If (5.3) holds and (x(t), p(t)) remains
in U x V (the neighborhood of (0,-0) In the basic curvature assumption) for
all te(—o0, 0], then any solution (X'(£), p'(t)) to (1.21) likewise with
property (3.3) and having either x'(0) = a or p'(0) = b, must satisfy

(x'(£). p'(1)) = (x(1), p(£)) for all te(—oo, 0] (5.13)
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Proof. From Proposition 3', we have
=TT - pT) = x(0) - p(0) — [ Lx(1), 3(0) e dr
— [ M0, 50) — ppa) et dt - (5.14)

for all T == 0. If the limit of the right side of (5.11) is not — oz, then (5.3)
holds by the corollary to Proposition 2’, and indeed the stronger relations
(5.2) are valid, If (x'(¢). p'(¢)) also has these properties and has either
x'(0) = a or p'(0) = b, the function

0(r) = e=*4(x'(t) — x(t)) * (p'(t) — p(1) (5.15)

satisfies
;l_i.ﬁl_ (1) = 0 = 6(0). (5.16)

Assuming that (x(z), p(£)) € U x V for all ¢ (- oo, 0]. we must have (5.13)
because of Corollary I of Proposition 5.

ProrosttioN 8", Under the global curvature assumption, the convex
Junction f_ is everywhere finite on R*, and for each a ¢ R", there is a unique
are x over (—o0,0] furnishing the minimum in the definition of f_(a).
Similarly, g_ is finite everywhere on R", and for each b= R*, there is a
unique arc p over (—oo, 0] furnishing the minimum in the definition of

g-(b).
Proof. Closely parallel to Proposition 8. No new version of Theorem 3
need be stated for the intervals [7’, 0]. since for T << 0. one has
il .
inf ;| Lo(x(t), X&) et dt | x(T) = &, x(0) — al
L
—= e "Tf_{a’. a), (5.17)

_0 _
inf | [r My(p(t). 56) — pp(t)) e#" dt | p(T) = ', p(0) = b|
— eTg_ (b, b). (5.18)

We next derive facts corresponding to Propositions 9 and 10.

ProrositioN 12, Under the global curvature assumption, one has
Jim =T/ 1a\ @) = f@) i @ =0,
= +w if a0, (5.19)

lim e=Tg_(b', b) — g (b)  if b =0,
’ =+ i b0, (5.20)
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and consequently also

lim [min e *7f_¢(a’, @)] = f.(a), (5.21)
Te—w a'eR"
lim [min e*%g_r(b', b)] = g_(b). (5.22)
T»—w b'eR"

Proof. Note first from (5.14) that
e T 0, @) = f(a) forall T =<0, (5.23)

where the left side is nonincreasing as 7— —aoo and, hence, approaches
a limit. To show that the limit is f_(a), select an arbitrary ¢ == 0 and any
arc x over (— 0, 0] such that x(0) = ¢ and

[ Ly(e(e), %) et dt < (@) ~ e. (5.24)

For all T sufficiently low, one will have
A0
’ Ly(x(2), x(1)) e~ dt <2 f(a) — e. (5.25)
*T+1

Let X denote the arc corresponding to the minimum in the definition of
A(0, x(T - 1)) (as exists by Theorem 3), and define the arc x’ over [T, 0]
by

T+1,

0.

xX(t)=X0t—1T) for T = ¢
(5.26)
i

1

mo

—=x(t) for t

i

Then, by (5.17),
-0

e—PIf_T(O, a} ;{: ' J{.D{.x’{"f), J.,’(f)) ot (dt
I

B [ L0, 30) et + [: Ly(x(2), %(1)) e~ dr

— RO NT+ 1) + [ Lo, M) et (5:27)
YT+l

On the other hand, since f] is convex with 0 = £,(0, 0) = min f; , it is true
(for T << 0) that

0 =X eTA(0, x(T + 1)) < A0, eTx(T - 1)). (5.28)
But (5.24) implies via Proposition 2’ that

T]_iﬂlo eTx(T + 1) = 0. (5.29)
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Hence,
rliﬂ: e~ Tf(0, x(T + 1)) = 0, (5.30)

because 7, is continuous (Theorem 3). From this and inequalities (5.25)
and (5.27). it is clear that one will have

e Tf (0, a) <f(a) + € (5.31)

for all 7 sufliciently low. The first limit assertion in (5.19) is thereby
established. The second part of (5.19) follows from the fact that

!I_i’ll‘gff_r(f?", a) = fa’) =0 it a =0, (5.32)

which is valid becausc of Proposition 10 and the corollary to Theorem 4;
since £, is nonnegative und strictly convex by Theorem 4, it cannot vanish
except at the origin. The implication from (5.19) to (5.21) can be verified
using the convexity of the expression ¢ *7f_(a', a) as a function of ¢’ for
fixed «.

The proofs of (5.20) and (5.22) are analogous.

THeOREM 4'.  Under the global curvature assumption, the functions f_
and g_ are everywhere continuously differentiable and strictly convex on R*,
and they satisfyv the conjugacy relations

g (h) —maxia-b - f(a)} = f_*(b), (5.33)
as R

(@) — max{a-b — g (b)} — g_*(a). (5.34)
t=R"

Furthermore, one has
(a.b)e K_=f(a) L g (b) —a-b

(5.35)
<= b = Vf_(a) < a = Ve_(b).
For each (a.b) = K_. there is a unigue solution (x(1), p(t)) to the Hamil-
tonian system (1.21) over (— o, 0] satisfying (x(0). p(0)) = (a. b) and (5.3).
and it tends to (0,0) as t — —oo. In fact. x is the unique arc furnishing the
minimum in the definition of f.(a). while p is the unique arc furnishing the
minimum in the definition of g_(b).

Proof. Let

ér(a) = min e~"7f_ (', a) for T < 0. (5.36)

w'ck®
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Then ¢, is a finite convex function. Using the conjugacy relations in
Theorem 3, we calculate that

dr(b) = max {a b — Pr(a)}

acR*

=e¢*Tmax{eTa-b — a0 — f Ha, a) (5.37)

fa,a')

= e~Tg_L(0, b).

By Proposition 12, therefore, the functions ¢ converge pointwise to
J- as T—> —oo, while their conjugates ¢r* converge pointwise to g_.
Since f_ and g_ are finite everywhere (Proposition 8), this implies that f_
and g_ are conjugate to cach other (cf. [6, 7]), i.e., Formulas (5.33) and
(5.34) are correct. (The finiteness justifics writing “max” in place of
“inf” [5. Theorems 23.4 and 23.5].) Proposition & and Corollary 2 of
Proposition 3 give us now the facts stated after (5.35), as well as the first
equivalence in (5.35). Since f_ and g_ are conjugate to each other, we
certainly have

fla) g (b)=a-b=»beif (a)=acég_(b) (3.38)

[5. Theorem 23.5]. and, hence,
K. = {(a,b)] be bf (a)} = {(a, b)) aeég_(B)). (5.39)

The uniqueness properties in Proposition 11 assert that X_ is the graph
of a one-to-one mapping, and it therefore follows that £ and g_ are
continuously differentiable and strictly convex [5, Corollary 26.3.1]. The
proof of Theorem 4’ is thereby finished.

Proof of Theorem 1'.  First we prove (1.44). It is clear that
0.0k, N K,

since the Hamiltonian system (1.21) is satisfied by (x(t). p(r)) = (0, 0).
Suppose that also (a, b) € K_ N K_. Then there is a solution (x(z), p(1)) to
the Hamiltonian system over (— o0, --o0) satisfying (x(0), p(0)) = (., &)
and

0= lim B(t) = lim 6(1), where  8(r) = e#tx(¢) - p(r). (5.40)
Applying Corollary 1 of Proposition 5 to (x,(2), p;(t)) = (x(1), p(1)) and

(x2(7), p2(1)) = (0, 0), we find that this implies (x(7), p(¢)) = (0, 0) for all
te(—oo, o). In particular, (a, b) = (0, 0). Therefore (1 44) is correct.
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The assertion in Theorem 1’ about uniqueness of solutions is covered by
Proposition 11. The rest of the proof is just like that of Theorem 1. We
invoke the global curvature assumption and apply Theorem 4. The sets
U. and V_ are defined by

U.={a|3b with (a,b)e K_n W}, (5.41)
V_=1ib|3a with (a,b) s K_n W}, (5.42)

where
W=1ab) f(a) + g_(b) = ¢ (5.43)

for e sufficiently small. For each (a, b)) K_ N W, the corresponding
solution (x(¢), p(t)) to the system (1.21) over (— oz, 0], as in the definition
of K_, remains in K_ and, hence, satisfies (by Theorem 4)

fx(@) + g (p() = x(1) - p(t)  for —oo <t=<0. (5.44)

But the right side of (5.44) is nondecreasing as a function of ¢ by
Proposition 5. and, hence, the left side is also nondecreasing. This shows
that (x(z), p(¢)) remains in W for all r e (—oc, 0]. The details of the proof
can thus be effected as in the case of Theorem 1.

6. SoME COMPLEMENTARY RESULTS

We present now two counterexamples, as well as a theorem on the
existence of a stationary point (k,g) in certain cases where the discount
rate p is sufficiently small. For other existence results of somewhat different
import, see [1].

ExampLE 1. This will demonstrate that strict concavity—convexity of
H, near (0, 0) is not enough to guarantee “saddle point behavior” of the
dynamical system for a given p = 0, and that something like the inequality
in the basic curvature assumption is necessary. Let # = 1 and

Hix,p) = —4x* L Ip> L xp forall (x,p)eR % R. (6.1)

Then H is strictly concave in x and strictly convex in p, with H(0, 0) = 0
and VH(0, 0) = (0, 0). Thus (k, 7) = (0, 0) satisfies the rest-point condi-
tion (1.15), and we have H, = H. The perturbed Hamiltonian system

(1.21) reduces to
=0 200 (62)
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a differential equation whose behavior around (0, 0) is casily analyzed.
One finds that there is “saddle point behavior™ if 0 =l p < 2, but if

= 2, then all solutions to (6.2) (other than (x(z), p(¢)) = (0, 0)) diverge
from (0, 0) as t — + o0,

ExamPLE 2. The purpose of this example is to show that the problem
in the definition (1.1) of ¢(c¢), if deprived of the boundedness restriction
on e~#%(1), may fail Lo be reducible to the problem in the definition (1.37)
of f.(a) as in Proposition 2 and its corollary. Taking n = 1, we define

Lik.z)y=r(k) + r(z) - 4z — pk) for (k.z)eR x R, (6.3)
where

(6.4)

Note that » 15 a differentiable convex function on the real line whose
conjugate is

Mp=3lpF If Pl

; (6.5)
= 1 if |p| =1
From the definition (1.5), we have
Hk, q) = —r{k) + 1r*(qg — 4) - 4pk. (6.6)

Thus, the rest point condition (1.15) is satislied by (k. §) — (0, 4), and H is
x-concave—f3-convex near (k,g) for a«= f=1. The basic curvature
condition is therefore fulfilled. assuming 0 <= p =2 212,

We claim that ¢(c) is finite for all ¢ = R, while the function ¢ obtained
by dropping the boundedness restriction in the infimum defining ¢(c) has
in fact ¢(c) = — oo for all ¢ € R; thus, the boundedness restriction plays
an essential role. To see this. consider first an arbitrary arc k over [0, --co)
with k(0) — ¢ and e*k(¢) bounded. If L(k(r), k(r)) e~ is majorized by a
summable function over [0, <o), Proposition 2(a) implies that Ly(k(?),
(1)) et is summable over [0, — o) (here k(1) = x(f) because k = 0), and
furthermore e **k(t) — 0 as t — —co. In consequence,

[ L), () e dr
0

— [ k@) - e et dr 4+ 4 [ (didn) eth(e) d
..O ;D

= —4k(0) = —4c. (6.7)
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This demonstrates that
d(c) = —dec > —w forall ceR. (6.8)

On the other hand, the finiteness of L ensures that ¢(¢) < - co. Therefore
¢ is indeed finite. Observe at the same time that 7(z) < | z | and, hence,

Lik,z) < | k| 4+ |z — pk -} pk | 4+ 4(z — pk)

(6.9)
LA +p k|4 |z—pk]| + Hz — pk).
For the arc k(t) = —e** (which does not have e **k(¢) bounded over
[0, - 0)), we obtain from (6.9) that

[ L), k() et dr < [ [(1 = p) et + pet — dpe!] =2t dt
i

]

s
=[1—2]| etdt=—o0 (6.10)
Y0
if p = §. In this case,

— = $(k(0)) = §(—1),

and since ¢ is a convex function with &(¢) < d(c) < + ¢, it follows
that §(¢) — — oo for all ¢ € R [5, Theorem 7.2].

Thus if } < p < 212, we have é(c) = ¢(c) for all ¢, even though the
basic curvature assumption is fulfilled.

We conclude now with our theorem on the existence of stationary points
for sufficiently small values of the discount rate p.

THEOREM 5. Suppose that (ky . q,) satisfies the stationary point condi-
tion (1.15) for p = 0 and that H is «x-concave—f-convex in some neigh-
borhood of (ky , q,). Then for each p =0 sufficiently small, there exists a
unique pair (k,,§,) satisfying the stationary point condition for that value
of p, and one has

lim (K, , 7,) = (0, 0). (6.1

Proof. We know that H is globally concave-convex (since it is related
to the convex function L by (1.5)), and our hypothesis entails the finiteness
of H near (0, 0). Therefore, H is continuous near (0. 0) [5, Theorem 35.1].
Let C X D be a compact convex neighborhood of (k, , g,) such that, on
C x D, H(k, ¢) is finite and continuous, a-concave in k and fS-convex in g.
In particular, for each ¢' € R* and p = 0 the function

(k. q) — H(k, q) — pkq' (6.12)
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is strictly concave-convex on C x D and has a unique saddle point relative
to C x D (in the minimax sense), which, as is easy to see from the con-
tinuity of H and definition of “saddle point,” must depend continuously
on ¢’ and p. Let

P:CxD—>CXD (6.13)

be the continuous mapping which assigns to each (k',¢")e C x D the
saddlepoint (k”, g") of the function (6.12) relative to C x D. Then @, has
at least one fixed point. Such fixed points are the pairs (k,§)eC x D
such that

HR.G) — pk - — pk-q < HE, G —pk-g forall keC, (6.14)
HFE, q)—pk-§ = HE G —pk-§ forall geD. (6.15)

Of course, the term pk - § can be dropped from both sides of (6.15). The
theory of the minimum of a convex function informs us that (6.15) holds
if and only if there is a vector m such that

Mg im-g forall geD, (6.16)
H(k,q) -m qg= Hk,g) —m-g forall geR" (6.17)

(cf. [5. Theorem 27.4]). Likewise, (6.14) holds if and only if there exists a
vector 71 such that

k-n=k-in forall keC, (6.18)
HEk§ —pk g—k i=Hk{§ -pk-g—k 7 forall ke R™
(6.19)

Observe that (6.17) and (6.19) can be combined into
(o + 7, — ) € GH(K, ). (6.20)

If A =0and m = 0, as must be true by (6.16) and (6.17) if (k, g) is an
interior point of C x D, then (6.20) reduces to the stationary point
condition (1.15).

We have seen that for each p there is at least one set of vectors k, g, m1, 1
with (k, ) € C x D such that (6.16)-(6.19) are satisfied. To investigate
this further, consider also another set of vectors k', g', m’, i’ satisfying
these conditions for a possibly different value p’. Since H is x-concave—
B—convex on C % D, (6.17) implies

Hk q)+m-q=HEG+m-g+31g—gl? forall geC, (6.21)
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while (6.19) implies

Hk,q) — k- (o7 + 1)
< HEG) —k-(pf +7) — x|k — K2 forall keD. (6.22)

Therefore,

Hk,g)—Hk,qg) =zm-@—3)+ 3813 —q % (6.23)

Hkg)— HEK,§) =k — k) (pg +7) + 3 | k' — K2 (6.24)

and dually,
HK.9) —HE.g)=m' (7 —9 + 381§ —7 2 (6.25)
HK,§) — HK ) 2= — ) (q + ) =t | E—FK |5 (6.26)

Adding the last four inequalities and using the fact that by (6.16) and
(6.1R),

n-(Gg—qg)=0, n‘?—E’)-ﬁ =0,
m (g —q) =0, — k)i =0
we obtain
0>=k—K)ed —pq)+a|E—kP+BI7T —q8 (627)
or equivalently,
(0 —p)k—FK) G =a K —kP2+pF—k)- (G -3 +B § —q~

(6.28)
Defining

y=max{l(k — k) q'||keC,k'eC, q" €D}, (6.29)
we can convert (6.28) into the bound
vIp —plza|R—kP—p|K—F|-17—7|+817 ~q
=qllk—-k24+ 17 —q 2 (6.30)

where
= (a8 — pY4(x + B - p); 6.31)

the proof of the second inequality in (6.30) is given at the end of the proof
of Proposition 5. Let us suppose that p* << 4a8, so that ¢; > 0. Then two
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conclusions are apparent from (6.30). First, if p" = p, then k' = & and
d' = 3. In other words, (k, §) is uniquely determined by conditions (6.16)—
(6.19). Second, taking p' = 0 and (k', §") = (k. g,), we see that as p | 0,
the point (k, §) must tend to (k,, §,). Hence, for p sufficiently small,
(k, g) must be an interior point of C x D, so that m = 0 = 7 as already
explained, and the stationary point condition (1.135) is actually satisfied.
These two conclusions immediately yield the assertions in the theorem.
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