ON THE EQUIVALENCE OF MJLTISTAGE
RECOURSE MODELS IN STOCHASTIC OPTIMIZATION

R.T. ROCKAFELIAR®

The following abstract model covers many stochastic optimization problerms re-
s«iring a sequence of decisions. In each of N stages, an element Xy is chosen from &
¢ X . Ultimately a cost f(£l veess &y X 50 .,x.N) must be paid, where the elemernts
; , oelonging to spaces & y» represent exterior factors beyord the control of thc de-
cision raker. The cost may be +e , as a representation of the fact that certain com-
Jirations of £ = (& ,...,&',,\J) and x = (x ,...,x\]) are impossible or forbidden. It is
assuned that only (6 ,...,Ek) is known w:Lth certainty at the time when x, must be
cniosen. The only othez' information available about the exterior factors is that the
occurrences of ¢ are governed by a known probability distribution. The problem is to
determine "decision rules" such that the overall expected cost is minimized.

To meke more precise, let us suppose that each = *’k is a Hausdorff topological
space, and ¢ is a regular Borel probability measure on = -1 XoeeX Eye The support of ¢

will be denoted by =. A function
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:vc:s-r}(1 x...xxN

is ronanticipative if it is of the form

&% x(g) = (xl(al) ; xz(51’£z)""’ xN(al,...,aN)).
The problem may be formulated as that of minimizing the functional

Fx) = [; £(& x(8) o (a8)

-~
M
—

over some class of nomanticipative functions x.
Of course, the integral (2) may not be well defined, unless further corditions
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e imposed. 3ub these can be of a very general nature. Assume that the spaces Iw:k are

Uiy i

ccrolozical, and that £ is Borel measurable. If x(g) is measurable in &, then the
mznoirg ¢ » (Z, x(E)) is Borel measurable, ard herce £(g, x(§)) is measurable in .
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& following convention is then adopted : if either the positive or negative part ol
ohe furetion £ » £(&, %(&)) is summable, the integral F(x) is assigned ifs classical
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value (possibly +e or == ), while otherwise F(x) is taken to be += .

Ooserve that under this convention the inequality F(x) < +» implies
(3) x(&) € D(E) for-almost every £ e E,

wihere the set

P
4=
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D(E) = {x | £(g,x) < +x}

is the implicit feasible region of the decision space X, x...X Xy Thus in minimizing

T over a class of measurable functions one is, in effect, minimizirg subject to the
constraint (3).

Tnis note is concerned with two fundamental questions that arise in justifying
ard analyzing the model. First, to what extent is (3) essentially equivalent to the
stronger constraint '

(3) x(£) e D(E) for every £ e E ,

wrich in some contexts appears more natural ? In other words, what conditions are ree-
<83 to insure that a measurable, nonanticipative function x satisfying (3) can be con=
verted to one satisfying (5) by alteration on a set of measure zero ? Secondly, when
is it true that the infimum in the problem can be approached by functions x which are
actually continuous ? The "noranticipative" property renders these questions quite
difficult for N > 1, and no one has previously provided any answers.

Our purpose is to describe some results in this direction in the case where

n n
: N san
X, x...xxNzr-t‘ X.,..x R =R
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and certain convexity, semicontinuity and summability conditions are satisfied by the
cost function

£5 2 xR =Rl

“ost of the proofs will appear elsewhere [1].
The context 1s delimited by the following basic assumptions.
) The support £ of the probability measure ¢ is conpact.
{A2) For each £ ¢'£ , f(£,x) is convex and lower-semicontinuous as a function o

\=3) Tor each § «Z , the set D(§) has a nonempty interior.
‘-4 The multifunction & - cf D(E) is continuous from = to R (i.e. lower-semicorti-
raous with closed graph).



[N

A3 Tor each x e R, £(&,x) is measureble as a function of £ ¢ =.
(al) henever U<E is open (relative to E), V< E” is open, and f is finite on U x°,
one nas

[y | £(&,%) | 0(ak) < + for each x & V.

o PLE

Let X < R" be a closed convex set, and for i = 0,1,...,m let f be a ral va-
iued (finite) function on £ x R™ such that f. (E x) is convex in x. Let

£,(6,x) if x eXand £3(6,x) £ 0, 1 = 1,..0,m,

£(&,x) =
+°  otherwise.

Then { satisfies (A2), and we have
D(E) = {x €X | £,(£,%) <0, &= 1,...,m .

Suppose that X has a nonempty interior and fi((-;,x) is contiruous in i for i = L,..,
If for each £ € £ the set

{x ex | fi(E’x) < O ] i = l,..-,m}
is norempty, it follows by routine convexity arguents that (A3) amd (Al4) holc. If
furthermore fO(F,, x) is a summable function of £ € £ for each X e X, 1en (AG) wd
(A7) are obviously satisfied as well.

LZMYA. Assumtions (A2), (A3) and (A5) imply in particular that f i Borel me isur:s
cle on  x R, so that F(x) is well-defined in the above sense wr n ver x(&) is me -

surable in E.

Zroof.

These assumptions imply that f is a normal convex irtegrani .n the ser e of
(2,Lemma 2]. On the other hand, every such integrand is Borel meas i >le [3, Tieore-
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A furction x : E + R" will be called essentially noranticipna ive if it can .e

rade Into a measurable nonanticipative function by altering its va_ucs on a se; of

measure zero. Let ?’L denote the set of all such functions which are essentizlly

bourded. I we like, we can J.dent:.fy '71 with a certain closed linear subspace of t
srach space c‘f fm\;,c H gD ) consisting of all essentially bounced functins

x : =+R0 In Iact » ‘)2 is then clesed not only with respect to the norm topol oY,
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cwv 3280 the weak topology irduced on éﬁ; by the natural pairine with
4 ¢
\

ot
ollowing prelimirary result is derived in [1] fiom the theory of convex
tegral functionals.

ROPOSITION.
Under assurptions (Al)=(A6), F is a convex functiora) from .—g‘* Lo R {+e=]

ceen is lowerwsemicontinuous, not only with rsspest to the rorm orn topolony, Dkl 0
voe weak topology irduced on $ by;ﬁl Surthermere, F is (rorm) continucus on

W tx L2 | Je>0withx(f) + ¢ BaDE) a.e.)

ze B is the unit ball of R, and _this set W is the nonem

1xeaf | F(x) < #=} ,

CCROLLARY .

1ot sot Xe=RD & such that D(§) e X for a1l € & &, Tuer

the infimum of F(x) gver gl X &'71,, is attained.
The corollary, which provides an existence theorem for soluticns to the sto-

",asuc optimization problem, is obtained from the fact that the set of fureii
X & aZ.. satisfying x(§) & X almost everywhere is campact in the weak topolozy ;xwl*
cad by ﬁ* The hypothesis is satisfied, of course, in the ¢ase of Exarple 1 i tie
set X intreduced there is bourded.
¢ all events, rnoté that under the hypothesis of the corollary there is no

loss of generality in the basic problem when the minimization is restristed vo :on=

icipative funetions x which are essem;iany bounded, or in other words, when the
rrovlem is identified with that of minimizing F over '72 v This formulation appe ro
the best suited for cbtaining strong results, at least in terris of convex amaly: is
=nd duality.

The questieons raised earlier congcern the "almost everywhere" aspeets of this
formulation of the problem, as well as the relationship between minimizing over QZ o
ard minimizing over rn és the subspace of QLE consisting of the gontinuous nerartici=
pative functions. Our main result is the follewirg (see Cl] )

{‘\
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saeialvingy x{g) eep D(&) for every £ & =.

If furghermore WN M _ # @, then W N\ '7[6# 2 ard

inf {F(x) | x é”Zm} = inf {F(x) | xwze}

To define what is meant by "lamirary", we need some notation. For any set

[¥]
f

and irdex x; 1 < k< XN, let

.S 5
‘{(c, seresy) ={(€ APPRPRTEPLNY | (51"“’5k s Epqpoermabyl e 8

i .I‘( gy = = i
voiy S - {(C_. ,utn,gk) ! IL« (g ,rot,E1) #@} ]
e say that the measure ¢ is laminary if it satisfies :

(i) The muiltifunction Af{ is lower-semicontinuous relative to Ek, and

{ii) Whenever S is a Borel subset of E _with 0(8) = 0(Z) such that g% 3
S
i

=078 s8f; then &
A

3

El,...,e ) is dense in \k(E s+ss38 ) for almost every (f; e esSy)
(with respect to the "projection" of ¢ on ER).

It is not hard to show, for instance, that ¢ is laminary if

by
€3]
he

&y o(dg) = D(El,...,EN) Tfl(dil) voe Muldd)

where T, 1s a (nonnegative regular Borel) measure on Ek for k = 1,...,N, and the den-
Al

-ty Sunction p is positive on the support of the product measure . Xo0oX T (This

loliows Irom Fubini's theorem and the fact that in this case the multifunctions ..

471

11}

]

re constant-valued).
Zven the rirst conclusion in the theorem can fail, without the presence of

Toe two properties in the definition of "laminary". This can be demonstrated by coun=

TEreXannies.

Fl)

19%] Ty
This is a two-stage example where El =2, =Rand R =R =R, Let the in-
=

TeTVaL _3,1:[ be expressed as the union of two disjoint subsets A and A' of positive
measure, such that A 1s dense and A' is closed, and let

T=(ax[0,2]) , a x [0,1]) .
2

Zeiine uhe Sorel measwre ¢ oh R by

o(8) =mes (SNT) /mes T,
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c.ere "mes" denotes Lebesgue measure, Then o is a probability measure whose support

it

f1l

&gl T = [0,1] x [0,2] .

=4t g coes not satisfy property (ii) in the definition of “laminary" (take § = T),
even though ¢ 1s absolutely continuous with respect to a product measure. Define f
on = x R by
b i BE ¥ B & % & 4
( ) e e oa L 2

£ E 3X ,Xx ) =

> 51: 2’ 13 5 .

+<  otherwise ,

s0 that

2
D(E ;£ ) =6 DE £ ) =((x,x)€R |O<x <x ~E I
1 2 . F 1 2 _-a = 1 2

~. may be verified that assumptions (Al)~(A6) are satisfied and
min {F(x) | x € N} = F(X) < 2,
where
(2,0) ir g ek,
x(€) = (XE ), X (€ ,£)) =
1 27177
(1,0) ir EIC—_A' .

Sut if the strorger condition (5) is imposed, the minimum is instead F(X) = 2, where

x(8) = (x (£) , X (€ ,€ )) = (2,0).
1 2 1 2

Thus the constraint conditions (3) and (5) are not "equivalent" in this case, and in
sarticular the first assertion of the theorem is false for x = x.

Lxample 5.
Aedipe S 2

n, I,
Again we consider a two-stage case with g, s, =RandR =R =R, but

tnis time it is only property (i) of the definition of "laminary" which is lacking,
ard still the first assertion of theorem is false. The probability measure is

a(S) = % mes (SOT) ,

T = ([0,1] x [0,2]) _ ([-1,0) = [=1,0]) .

We have 2 = T, so ﬂ: is not lower-semicontinuous at £ = 0. let
1
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{ C 1f & > 0 and =-243f < x < 2,
i &= 2= 1 =
ThE e ;M X ) EX © 4P E £ 0 g <28 % & 2%
i 2 1 2 | b 1 R 2

i

| ;

| e otherwise.
Assunpbions (ALl)-(A6) are satisfied, and

min {F(x) | x &N} = F(X) = 0

cr vhe function
(ZL2.0) 2F £1> g

x(8) = (x (£ ), % (g ,€))

(0,0) 1if &

1
O

(=3/2,0) aif Ez < 0,

In fact x(£) + —5 B <= D(E) almost everywhere, But it is easy to see there does not

exist any nonanticipative function x whatsoever which satisfies x(8) e€D(&) for all
5 & =
The proof of the first assertion of the theorem makes use of convexity mainly
Just as a matter of convenience in terms of the formulation. However, for the rest of
the theorem, concerning approximation of the infimum via continuous recourse functicrs
X, convexity seems to be essential. The basic tool is a theorem of E. MICHAEL EQJ on
the existence of continucus selections, and convexity is already an important hypo
tnesis in this result, as is well urderstood.
Of course, the proof is not effected by means of a single continuous selec=-
ticn, out by a certain sequence of N selections, each from a multifunction deperdant
n the preceding selections. This is the great complication caused by the requirement
of ronanticipativity. The multifunctions must be constructed in such a way that
Michael's thecrem is applicable at each step, and here convexity seems to play a cru-
cial role over and over again.
The argument establishing the first part of the theorem is similarly compli=
ted, but a sequence of measurable, rather than continuous, selections is involved.
These results are mctivated especially by applications to Example 1. A theory
of lagrarge multipliers and duality for this case, based heavily on them, is ocutlired
B 1 i: The multipliers are certain measures, not necessarily absolutely continuous
witn respect to the urderlying probability measure g. This theory provides an alter-
rztive to the approach of R. WETS and the author in [6], where the multipliers in ge-

- '] . Y fal o
neral can take the form of elements of the dual of an & space.



L .

| Sy |
-

fon TN

REFERENCES

B TOHEART
e I"’;.L\u s

"Continuous selections, I",
Ann. of Math. £3 (1956), 361~382.

2.T. FOCKAFELIAR,
"Integrals which are convex functionals",
acific J. Math. 24 (1968), 525-539.

R.T. ROCKAFELLAR,
"Measurable dependance of convex sets and functions on parameters",
J. Math. Aralysis Appl. 28 (1969), 4-25.

R.T. ROCKAFELLAR,
"lagrange multipliers for an N-stage model in stochastic programming”,
Collogue d'Analyse Convexe (St-Pierre-de-Chartreuse, 1974),
J.P. AUBIN (editor), Springer-Verlag, to appear.

R.T. ROCKAFELLAR ard R.J.B. WETS,
"Continuous versus measurable recourse in N-stage stochastic program=
ming",
J. Math. Analysis Appl., to appear.

+]

ROCALAFEILAR and R.J.B. WETS,
"Stochastic convex programming : basic duality" and "Stochastie

.
-

convex programing : extended duality and singular multipliers",

Pacific J. Math., to appear.



