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SOLVING A NONLINEAR PROGRAMMING PROBLEM
BY WAY OF A DUAL PROBLEM (%) (*¥)

. TYRERELL ROCEAFELLAR

The uses of duality in linear programming are well known. For
instance, it is often advantageous to zolve a problem by applying the
gimplex method to its dual, rather than dircetly. There are also com-
putational procedures for special classes of problems which invoke
dunality with respect to subroutines, or to obtain some sort of decom-
position. Some of these applications can he extended to convex pro-
gramming, but in this case it is important to exploit the many possi-
bilities offered by current theory. Different duals and Lagrangians
with contrasting properties can be associated with the same primal,
and the choice of one of these depends very much on the purpose
one has in mind. The same is true in nonconvex programming where,
until quite recently, almost no really substantial duality theorems or
minimax theorems were known at all.

Our purpose here is to review some of the ideas in this direction,
especially a duality scheme related to penalty methods which has
important implications for both convex and non convex problems.
Much research has been devoted in the last couple of years to this
form of duality and corresponding algorithms, but many interesting
questions and possibilities remain. This is especially true regarding
problems, such as in optimal control, where there is essentially an
infinite number of constraints, or in general where the dual elements
range over an infinite-dimensional space. Such problems will not be
discusged below, but it is hoped that our remarks may serve to sti-
mulate further thinking in the area.

The primal problem we consider is:

(P) minimize f(x) over all e X such that fi(#)=0, ..., f.(2) =<0,

{*) I risultati conseguiti in questo lavoro zono stati esposti nella conferenza
tenuta 1'8 aprile 1974

(*%) This work was supported in part by the Air Force Office of Scientific Research
under grant n, AF-AFOSR-72-2269.
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where X is a subset of a locally convex linear space E, and f; is a real-
valued function given on X for ¢ =0, 1, ..., m. This problem can also
be expressed abstractly as that of minimizing the so-called essential
objective funection f over all x € E, where
. folz if » is feasible
0.1) flay=1 P B ;
+— oo if » iy not feasible .
For simplicity, we suppose that (P) has at least one feasible solution,

and we make the following compactness assumption: for every choice
of the real numbers o, the set

(0.2) {we X|fy(@) <o, Hl@) <oty oovy ful®) <o)
is compact in E. The latter is satisfied in particular. of course, if X
is compact and all the functions f, are lower-semicontinuons.

These assumptions imply, among other things. that the infimum

in (P) is finite and attained, or in symbols:

(0.3) —oo<min (P)< +— co.

By the conver case, we shall mean the case where I and all the
functions f; are convex. The compactness assumption is then fulfilled
it X is closed, every f; is lower-semicontinuous, and there is a single

choice of the «,’s such that the set (0.2) is compact and
(0.4) {we X|folw) < oy, Ful2) < otyy very Fnl) < 2} == 9.

(If B = R~ one can replace < by = in (0.4)). This can b
by applying [3, Theorem 2] to the level sets of the funetia

h= max {f,—a;} on X.
i=0,1,..,m

1. Ordinary duality.

The ordinary Lagrangian associated with (P) is the function I
on X x B defined by

(1.1) Ly, y) = Mm)_;%%f«;(ﬁf) i y=(4,.... %) >0,

— oo if y=0.

an
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One has
sup Ly(z, y) = {(») ,
ysR™
and hence
min (P)=min sup Ly(x, y) .
reX yeh™
This leads one to introduce, as a dual of (P), the problem
D,) maximize ¢, over R", where g,(y)=inf L(@, y) .
weX
If the functions f; are affine and E-= R», X = R", so that (P) is
a linear programming problem, then (D) amounts to the familiar
(¢linear») dual. In the general case (even without convexity), g, is
a concave function and upper semicontinuous. Thus (D,) is an abstract
concave programming problem whose implicit feasible set is
(1.2) 1w e B |go(y) = — oo} C R .
17 (P) is strietly feasible, i.e, there exists
13 FeW with f(@)<0 for i=1,..,m,

toen 21l the level sets of the form

1.2 {y ER’”E%(;UJ :':/3} » ﬁ eR ’

ire compact, and one can therefore write max (Dy) in place of sup (D,)

forthe d imal value. This follows from the upper-semicontinuity
£ and act that the set (1.4) iz contained in
m
{veRRA@ + Suitud)>8).
i=1

Convexity in (P) does not really enter the picture decisively until one
comes 1o the main duality theorem in this context:

T=roreEM 1: In the convex case, min (P)= sup (D,).

umption, see [16, Theorems 17/, 13

1 1 for computational procedures Les essentially
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THEOREM 2. Suppose that min (P)=-sup(D,). Then (%, %) is o
saddle point of L, on XX R™ if and only if F sol
(D). Indeed, if iy solves (Dy). then for T fo solee (P) it is necessary and
sufficient that:

(a) the minimum of Lz, J) orer all z= X is achieved at Z, and

(b} fE) =<0 for i=1,.... m, with egualify jor i such that %,> 0.

Proor: The first assertion is an elementary fact in minimax theory
(cf. [4, Theorem 2]). If 7 solves (D). then >0 an

(1.6) inf Z(z, ) = inf j(z), where L(x, §)<j(z) for all z€X .
weX

#EX

In view of thig and the definition of 7, condizions =z and (b) are equiv-
alent to j achieving its minimum at 7. or i other words, to ¥ being a
golution of (P). The theorem is therebv proved

Theorem 2 furnishes the dual meiiod o7 =olwtion of (P) in its pure
form: first determine any 7 solving (D. . 2z then determine the ele-
ments ¥ minimizing L,(-, J) over L. o= oness which turn
out not to satisiy (b) of Theorem 2: iI n the golutions
to (P). (Thus, if there is a unigus = izinz L(-.7) over X, as 18
true in particular when f, is strictly econvex. it must satisfy the con-
straints and be the unique solut

The potential advantages of ©
original problem, with the co £ . p
optimization problems in which the comstr=izt sitzation may be much
casier to handle. Presumably X is, if not the wools T an orthant,
g fairly elementary kind of setf, such as 2 ball o == ed rectangle.
The implicit feasible get (1.2) in (D, maw =2lso Dave 2 simple expres-
sion. For example, if X is compact it i= just ET.

Even if the esgential objective function o cannot be reduced to
a more directly convenient formula, iz which ean be
used to solve (ID,). These are largely base efinition of g, as
the pointwise infimum of a collection of 27 ne fanctions of y, restricted
to RZ. The epigraph

(1.7) G = {( Yn+1) |y ER™, Yur ER. ¥u . <3(¥)}

ig given as the set of points in Z7 1t satisiving 2 certain infinite system
of linear inequalities:

(1.8)  fo(®) + 4fu®) + e+ Y n(@) — Yurs >0

for each 22X, 51,20, ..., Y20

o -,

™ (e
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In particular, we may regard (D,) as the problem of maximizing the
value of y,., over all vectors (¥, ..., ¥m, Ynya) Satisfying (1.8) and

(1.9) and try in this context to apply a cutting hyperplane method.

Consider moreover the situation where, for a given y € R™ and
==0. we are able to defermine an
1.10 2 minimizing L,(+, y) over X to within &,
or in other words satisfying

111 Lo(z, y) <l goly) + €

Then trom the fael that
goly' ) s Lyl ') for all y' e B™,

we have the inequality
; %
112 Goly") =L[guly) + —:2 Ye— Yty for all ' e Rm.

This means by definition that the vector (fi(), ..., fu(z)) is a so-called
-subgradient of g, at y [39, §23]:

(:fl.("ﬂ:]: - fra ) € E J’D[y) *
Thus an e-subgradient of g, al o given point y can be caleulated by finding

satisjying (1.10). This is especially interesting in view of recent
w0 i Bertsekas and Mitter [7'] and Lemarechal [27], [28] providing

al i.—_:mb for maximizing a concave function in terms of e-sub-
oradients. In the ideal case of e= 0, one actually caleulates, by min-
;*_zi;:f L(+, y) over X, an element of the subgradient set 2¢,(y), as
well asg ‘rhp v alup go(). If for each y 0 the minimum of Jy(+, ) over X
ained at a unique z=&(y) (as is true for instance if f, is strictly
vex and X is compact), then g, is finite and differentiable relative
Py uuu ("1"(3;}), ...,fm(E(y))) is actually the relative gradient at y
12]). In other words, (D) amounts to maximizing a differ-
concave function over R.

swever, it is clear that the process of evaluating g, and its sub-
sradients (or ﬂarlient] at y by m_i_uimi?ing Lo( -, z/'} over X is cc-rnml—

i _'_;::'.‘_:.:: n.mLh. ._a}—. I'E'.Q'{IH'Q:: in eqch iteration ﬂ:lTL’ g, be ma r’-
mrmed over some line segment.
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The greatest potential for a dual algorithm based on this approach
is in situation where, because of special structure, it is unusually easy
to carry out the minimization step. The case which has received the
most attention is the one where the dual approach leads to a decom-
position of the original problem. (For a general account, consult
Lasdon [26] and Geoffrion [15].) Suppose that

) [ 3 =,

fdz) = falz) — ... - ix(@y) ,

where X, is a subset of a linear space £, ;£ X, and f;;: X';— R. Then

%
(1.15) L, )= % Lylz;, ),
where xe X and

jﬁ:r-'r: =

:ilf‘L:

(1.16) T Ui i Yfulzs) if y=0,
. 0\ ST -

—_ o ify%’:@.

Minimizing Zy(x, y) in & € X is therefore reduced to minimizing Ly (2;, %)
in #;e X, for j=1, ..., N. This reduction can be very advantageous for
large-scale problems, and even for problems of moderate seale if the L,
problems can then be solved by special methods (e.g. when multicom-
modity flow problems are decomposed into single commodity problems).

It is well known that the Dantzig-Wolfe decomposition method
corresponds to this approach in the case where the funections j;; are
affine and the gets X, polyvhedral. The simplex method is used to
minimize each Ly (-, y) on X, exactly, and this information is incor-
porated, in effect, into a cutting-plane method for maximizing g,.
Here g, is a polyhedral concave function, so the algorithm terminates
in prineciple in finitely many iterations. However, computational expe-
rience hag been disappointing.

Probably this is due mainly to the use of a cntting-hyperplane
method, It is conceivable, therefore, that by using another method
to maximize g, (one which does not entail maximization along line
segments), better convergence can be obtained. The most interesting
results in this direction have been reported recently by Held, Wolfe
and Crowder[18]. These authors have had considerable computational
guccess with highly decomposable problems, using for the maximiza-
tion of g, a slightly modified version of an algorithm developed chiefly
by Shor[53] and Polyak [33].[34]. This is remarkable, because the
algorithm in question, while having the advantage that one only
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needs to caleulate an arbitrary subgradient at each point, does not
have a reputation for fast convergence.

For another algorithm whose applicability to the dual problem in
ial cases deserves further thought, see Oettli[31].

Some resulty of interest for nonconvex programming may be found,
r example, in Everett [10] and Falk [12]. But applications of ordinary
v in this area are severely restricted for intrinsic reasons, as
ined at the beginning of the next section. Another dizcussion
dinary duality from the point of view of computational applica-
has been furnished by Geoffrion [14].

2. General duality.

No matter what procedure is used to maximize ¢,, there are certain
inherent limitations in any dual method of solution of (P) based on L,
D). First of all, there are the difficulties of determining a repre-
ation of the implicit feasible set (1.2) in (D,). Specifically, it is

hard to find a criterion for whether the infimum of L(-, ¥)
X is finite, and whether it is attained. A second diffieulty is
- even if ¥ minimizes Ly(-, i), where # is a golution to (D), it is
=ot =are that T is a solution to (P), unless there is only one solution
s== Theorem 2), Finally, this form of duality is fully meaningful
c=lv in the convex case, sinee it is only there that one can establish
Te relation min (P) = sup (I),) with any generality.

To see that there is no real hope of having min (P)= sup (D,) in
monconvex case, except as arare ¢ accident », it is helpful to examine

21 To(u) =min Fyle, u), %= (U, ..vy %) EB™,
reX

- fo(@) it zeX and fdo)<u,, G e
(! =
oo otherwise .

The minimum in (2.1), instead of infimum, is appropriate because of

o=r Imndamental compactness assumption. (We use the convention
=it — cc=min0)., The following result is known.

T==o=EM 3: The junction g, R™— RU {L oo} is lower-semicon-
. min (Pl = 0 finite



142 R. Tyrrell Rockafellar

Moreover, in order that the relation min (P)= max (D,) hold, it is neces-
sary and sufficient that there exist a vector § with

(2.4) o) = gp(0) — F-u for all we R™,
such vectors ¥ being then precisely the solutions of (1)),

Proor: The first statement is immediate from the definitions and
our compactness assumption. As for (2.4), this is equivalent to

(2.5) min (P) = inf {g,(%) + 7-u}

wER™

=inf inf {F,(z, v) + F u}

wsR™ X
=inf Ly(z, 7) = ¢(¥) .
reR™
Since in general

(2.6) min (P)z sup (Dy) = ¢(¥) ,

equation (2.5) iz equivalent to # being a solution to (D,) with min (P)=
== max (D).

Note that (2.4) necessitates coq,(0) = ¢,(0), where co g, is the
convex hull of ¢, (the greatest convex function majorized by g,).
The special significance of the convex case of () is found in the fact
that one then has ¢o ¢, = ¢4, or in other words, ¢, is convex. Agide
from one or two very special examples, no other practical criterion
is known which implies co g,{0) = ¢u(0).

However, all these limitations concern only « ordinary duality ». If
L, and (D,) are replaced by a diflerent Lagrangian function I and dunal
problem (D), still associated with (P), it may be possible to have
min (P) = max (I}) is important nonconvex cases. Even for convex
problems, one may achieve properties more advantageous for dual
methods of solution.

A general scheme for generating duality in (P) by means of the
theory of conjugate functions, as we have expounded in[39] and [46],
may be based on gpecifying any function

(2.7) F: XIXRM" - RU{+ oo}
such that F(x, u) is lower-semicontinuous in (x, %), convex in «, and

(2.8) Fla, 0) = f(x) .
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(Here f is the essential objective function (0.1) in (P)). The vectors
u = ¥ correspond to perturbations of the original problem (for u = 0,
we have the perturbed essential objective function F(-,w) on X).
They need not have anything to do with the vectors « above, and
in particular it is not necessary that M = m.

Associated with F is the Lagrangian function

2.9) L: Xx RY— R U {— oo}

defined by

(2.10) L(z, y) = inf {F (@, u) + y-u} .
weRM

Thiz is always upper-semicontinuous and convex in g, and it is also
convex in & in the case where X iz convex and F i3 jointly convex
in (@, ).
Moreover, one has
2.11) F(z, w) = sup {L(z, y) —y-u},
y=RM

and hence in particular

(2.12) sup L(z, y) =f(z) for all zeX.
yeR

Thug, parallel to the situation with ordinary duality, we have
min (P) = min sup L{z, ¥) .
=X yoliM

The problem

(D) maximize g over RY, where g(y) = inf L(z, ),
xeX

is therefore taken as the dual of (P) corresponding to I' and L. Note
that (1D) consist of maximizing an upper semicontinuous concave fune-
tion, and one always has

min {P)= sup (D) .

Most of the results stated for ordinary duality carry over to this
general duality. Thus:

THEOREM 1'; In the convex case where X is finite-dimensional and
Flz, u) is jointly conver in (x,u), one has min (P)= sup (D).
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ProoF: See [46, Theorems 17" and 18' (d)].

THEOREM 2': Suppose that min (P)=sup (D). Then (T,7) is a
saddle point of L on X X R if and only if T solves (P) and § solves (D).
Indeed, if § solves (D), then for F to solve (P) it is necessary and sufficient
that:

(a) the minimum of L(w, §) over all wc X is achieved at &, and

(b) 7(@) <0 for i=1, ..., m, {(Z)<L(Z, 7).

Proor: The argument is the same as for Theorem 2.

A dual method of solution of (P) can be developed from Theorem 2
just as from Theorem 2. The hope is that, by the right construction
of L and (D), condition (b) will become superfluous, and the mini-
mization of I(-, y) and maximization of g will he easier to execute,

We note that gradients, subgradients and e-subgradients of g can
be calculated in principle much as before:

THROREM 4: Let & minimize L(-,y) over X to within &, and let
u € RM be a subgradient of L(x, -) at y. Then ue 2,9(y). (The subgra-
dients are taken in the sense appropriate for concave functions.)

PrOOF: By definition, we have for all y’' € RY
(2.14) g <Lz, y) <Lz, y) + (¥ —y) - u<(g(y) —e) + @' —y)u.

This says that ue2,g(y).

In the cases of importance, L is presumably a convenient funetion
whose subgradients with respect to y are easily determined. For
instance, if the gradient of I with respect to y exists, it is the unique
gubgradient. But of course, to implement the calculation of ¢-sub-
gradients in Theorem 4, it is also necessary to have a practical criterion
for whether a given » does minimize L(-, y) over XX to within e. Typi-
eally, such a criterion is obtained by specifying for each (z, y) e X X R™
with L(z,y) finite a set S(x,y) and a funetion I(-:x, y) on S(z,¥)
such that

(2.15) L(w, y)<L(x,y) implies we S(x, y) and I(w: =, y) <L(w, y) .
Then
(2.16) inf l(w; 2, y)<inf L(-, y) < L(z, ¥) -

x

wsS(mv)

Suppose I and S are such that the value

(2.17) k(w, y) = inf {I(w; », y)|we S(z, y)}

18
I

Ce

co
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is known directly, and the difference L(x,y) — k(z, y) approaches 0 as
x comes closer and closer minimizing I.(-, ¥). We then have a practical
criterion of the form:

(2.18) z minimizes L(+, y) to within ¢ if L{z, y)—k(z, ¥)<e.

Tor example, if L(z, y) is differentiable and convex in # € X c R»,
we can take (generalizing an approach of Bertsekas [6]):

2.19) S(z,y) = {weR||jw—az|<f} where 0 <f< + oo,
(2.20) lw; @, y)= L@, y) + (w—y) - V.Lix, y) + ojw —y|*,

where 0 <o < -~ co.

Certainly (2.16) is valid for &= 0, but there are algo cases of strong
convexity where a positive value of « can be used. As for f, it is
enough that §> diam X.

We then have

\VaL(, y)|*/4a it [VoL(z, y)| < 208,

(2.21 L(w, y) — k2, y) =
(2.21) (@, y) — k(z, y) { BIV.L(x, )| —af®  if |V,L(e, y)|>2a8 .

1f either f < + oo or ¢ > 0, this furnishes a simple implementation of
(2.18) in terms of the available magnitude |V,L(x, )|. Note that the
boundedness of X, making possible < + oo, i hardly any restric-
tion in practical terms, since X can always be replaced by its inter-
section with some large ball or cube.

Other results relevant to general dual methods of solution may be
derived in terms of the function

(2.22) g(u) = inf P(e, u),
x=X
using the fact that

(2.23) gly) =inf inf{F(x,u)+ y-u}

zeX usRM

:“ielg{f;ﬂ-(ﬂ) +y ul.

THEOREM 5: The level set {yc RY|g(y)=B} is compact for every
BeR if

2.24) 0 eint co {u & R |p(u) < +oo}.

In this case, therefore max (1)) ean be written in place of sup (D).)
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Proor: From (2.22) we have —g(y) = ¢*(—y), where ¢* is the
cojugate of ¢ (in the convex sense). On other hand, (2.24) implies
0 € int dom co ¢ and hence 0 € in dom ¢**, where ¢** i3 the biconjugate
of ¢ and « dom » denotes the effective domain. Since ¢* and ¢** are
convex functions conjugate to each other, the condition 0 £ int dom ¢**
implies that the level sets {y|¢*(y)<a} are compact (see[46, Theo-
rem 10]), and this is the desired property.

The condition Theorem 5 can be viewed as a generalization of
gtrict feasibility.

THEOREM 6: The junction ¢ satisfies
(2.25) min (P) = ¢(0) (finite)
(2.26) sup (D) = ¢**(0) .

If F(x, u) is convex in (x, 1), then ¢ is convex. In this conver case with
X finite-dimensional, or in the case of X eompact, it is also true that ¢
is lower semiconiinuous and nowhere — co.

In general, in order that the relation min (P)= max (D) hold, it is
necessary and sufficient that there exist o vector i with

(2.27) pu)>¢l0) —7-u for all we RV,
such vectors i then being precisely the solutions of (D) .

Proo¥: These facts are stated, for example, in the general theory
of [46], except for the lower semicontinuity assertions. For ¥ compact,
the lower-semicontinuity is obvious from the lower-semicontinuity of F.
When I is convex and X is finite-dimensional, the equality in Theorem 1
gives us ¢**(0)=¢(0). But all the hypotheses remain satisfied if F is
translated in the % argument, which corresponds to translating ¢ so
that a diflerent point becomes the origin. Therefore ¢**(u)= ¢@(u) for
every ue ™M, and in particular ¢ is lower-semicontinuous.

In a moment, a case will be described where (2.27) can generally
be satisfied even without convexity, although this is not true with ¢,
in place of . There may also be other cases, not yet discovered, and
this is a tantalizing prospect for computation applications of duality
in nonconvex programming.

General duality can also be used in many instances to construet
dual problems explicit enough to be tackled by direct methods of solu-
tion. For example, it was shown by Duffin and Peterson [9] that for
certain convex problems in exponential programming (the original
« geometric programming ») one can substitute a dual problem different

4 h =N
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from (D,) which ¢ almost » amounts to maximizing an explicit, dif-
izble concave function subject to only linear constraints. This
was extended by Peterson and Ecker [32] to some other gpecial prob-
A broad theory of such cases of linearly constrained duals (for non-
v constrained primals) has been furnished by Rockafellar [41].
Another versatile scheme, where the primal and dual are linearly con-
=iz but the passage between the two is almost as easy as in linear
amming has been presented in [38].

So far, there has been relatively little attempt to take advantage
¢ such explicit dual problems computationally. Besides the straight-
‘orward applications, there may be possibilities of dualizing direction-
:ding schemes in various algorithms, and so forth.

[+

Augmented Lagrangians,

We turn now to a particular choice of the Lagrangian funection and
dual problem for (P) which illustrates rather dramatically what changes
can be achieved in the properties of the dual method of solution. Thig
Lagrangian, originally proposed by Rockafellar [40] in 1970, was first
studied in detail by Buys in his thesis [8], although an important saddle-
point property was derived earlier by Arrow, Gould and Howe [1].

A related funection was arrived at independently by Wierzbicki [54]).
Many recent papers have dealt with it as indicated below, especially
in connection with the generalization to inequality-constrained prob-
lems of the method of multipliers (see the next seetion). Of course,
although we have not mentioned it earlier, equality constraints are
also covered in the obvious way by the theory described here.

Letting r denote a positive parameter, we set

3.1) Fow, u) = Folee, u) + r|u)?,

where F, iz still the funetion (2.2) and |#] iz the Euclidean norm of
we R™ (= RY here). 'Trivially, F, is lower-semicontinuous in (o, u),
convex in %, and in the convex care of (P) it iz convex in (x, u).

The corresponding Lagrangian I,, obtained from F, by formula
(2.10), is easily caleulated to be

T

3-)} L,(SC_._ .‘}’}:fn{x) 4- Zﬁr(?f‘i! f;{:l’,‘))

i=1
where

3.3) 6y, fula) :{ yufda) +rfda)y’ it fila)=—yf2r,

—yifdr if filw)<—wyaf2r.
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Thus L, is a finite function on X X B™. Trom the general theory, we
know that T.(x, %) is concave in y € B and in the convex case of (P)
also convex in xe X (since in this case F(z, #) is convex in (, u)).

Note that L.(z,¥) is also differentiable everywhere with respect
to y, and

-

oLy ; 4
(3.4) {:_y (x, y) = max {f,(z), —y./2r} .
oy i

This iz to be contrasted with the situation for L,(z, ), which is not
even finite everywhere on X x Em, much less differentiable. If the
functions f, are all differentiable on X (where X c R7), then L.(w, ¥)
is also differentiable with respect to x on X, and

(3.5) VoL, y) = Vf (& Z (yu vf

where

. oL,
(3.6) oy, (@) = max {y.+ 2rfi(@), 0} =y 20 5y, T Y)

Higher-order differentiability of L, is also inherited from the f,’s, except
along the hypersurfaces given by the equations y, + 27f;(z)=0.
The dual problem corresponding to F, and L, is by definition

(D) mgximize ¢, over E™, where g.(y)=inf L.(x, ¥).
zeX

The special properties of this dual follow mainly from (2.23), which
here takes the form

(3.7) gely) = int {gr(w)+ y-u} = —gr(—1),

where

(3.8) o (u) =1inf P (z, u) = golu) + r|ul>.
aeX

We observe first an immediate consequence of Theorems 3 and 6,
firgt stated in[42].

THEOREM 7: In order that the relation min (D)= max(D,) hold, it
is necessary and sufficient that there exist a vector i with

(3.9) @oltt) =@ (0) — F u —7ju)? for all weR™,

such vectors i being then precisely the solutions of (D,).
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'ECLLARY: In the convex case, § solves (1),) if and only if § solves

T, Thus (Z,7) is a saddle-point of L, if and only if (B, ¥) is a saddle-

E
2

“=z=ooF: In this case ¢, is convex, and hence (3.9) is equivalent

D= satisded by some § for v sufficiently large. Suppose, for example,
“=:% . happens to be continuously twice differentiable in & neigh-
: od of w=0: a situation where this is true will be described in
= moment. The Hessian matrices of ¢, and ¢, are related by

In the monconvex ease, there is considerable hope that (3.9) can

Ve (u) = Vagolu) + o1,

and hence Vg, (u) iz positive-definite in gome convex neighborhood N

3.11) @) = ¢, (0) + 2V, (0)
= o (0) + - Vg (0) for all wue N .

In other words,
312} gy() = qol0) —F-u—w|u|® for all we N where ¥ = — Vg,(0).

II ¢, i3 bounded below globally by some quadratic function (as is
certainly true for instance if f, is bounded below on X, since then g,
s bounded below by a constant funetion), it is easy to see that (3.12)
can be transformed into (3.9) by taking r» still larger, if necessary.
In this event, therefore, we have min (P) = max (I),).

For ¢, to be twice differentiable near 0, it iz enough in the finite-
dimensional case that (P) have a unique solution ¥ at which the strong
form of the seeond-order sufficient conditions for a local constrained
minimum are satisfied, and that X be a sufficiently small neighbor-
bhood of . Buppose the functions f, are thrice differentiable near Z.
The conditions in question assert the existence of a vector 7e Rm
satisfying the usgual first-order Kuhn-Tucker conditions and also the
following, where I c{1,..., m} consists of the indices such that f,(Z)= 0:

(@) §;>>0 for all {el, and the vectors V(&) for il are lin-
early independent;

(b) the Hessian H = V2f,(z) + > 7, V?f(%) satisfies 2+ Hz> 0 for
et

every nonzero vector z with z-Vi, ()= 0 for all 1e1.
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Under these conditions, it iz possible using the implicit function
theorem to deduce the existence of differentiable functions z(u) and
y(u) of ¥ in a neighborhood of 0 in R», with z(0)= oz and y(0) =7,
such that #(u) and y(u) satisfy the corresponding conditions for f,—u,,
i=1,...,m. It follows then that polt) = fo(@(u)) if u i3 sufficiently
near to 0, and if X is a neighborhood of  sufficiently small that the
local solution @(u) to the perturbed problem (with j, replaced by
fi—u;) is actually the global solution. The thrice-differentiability of
the functions f; implies that @(w) iz twice differentiable, and hence
that ge(u) is twice dillerentiable in % ag desired.

This idea was exploited by Buys [8], although more in a context
of «local » duality, like the earlier result of Arrow, Gould and Howe [1]
(which did not actually require that 7> 0 for all 1€ ). These au-
thors imposed the restriction that y:=0. More recently, Bertsckas [5]
used the strong form of the sufficient conditions in obtaining the
duality in a global form highly suited to the analysis of convergence
properties of algorithms.

RRockafellar [44] has established a sharper criterion of the above
sort for the existence of a ¥ satistying (3.9), not entailing the twice-
ditferentiability of ¢, near = 0. Recall the weak form of the second-
order sufficient eonditions for a local constrained minimum in (P) at T
[3, p. 30): there exists 7 satisfying the first-order Kuhn-Tucker con-
ditions such that

(3.13) z-Hz=> 0 for every nonzero z£Z ,

where H iz the Hessian above, and Z is the set of all z € B* such that

ted
&
@

(3.14) ‘ =0 for all "!';EI w%th Y= 0,
2, V&) =<0 for all iel with ¥,=0.
Only continuous twice-differentiability of the function f, is agsumed.
Let us say that (P) satisfies the guadratic growth condition if for
gsome r=0 the function
m

(3.15) L,(, 0) = folx) - > max2{0, f,(x)}
i=1

1

is bounded below on X. (This very mild condition will be illuminated
in Theorem 10).

THEOREM &: Suppose in the finite-dimensional case that (P) has a
unique solution T satisfying the weak form of the second-order sufficient
conditions, and that the quadratic growth condition holds.

Then min (P) = max (D,) for all v sujjiciently large.
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=

Tzoor: This differs from [44, Theorem 6] only in that there is no

—s-<on of 7 being « globally unique in the strong sense». The latter
sssmmmroion is made superfluous by the blanket compactness aszump-

tiem in this paper.

The<e results show the applicability of dual methods of solution
= = based on (D,), even in the nonconvex case. In fact, the prob-
=== 1)) have important special characteristics that can be used to

“wantage in algorithms, The central properties are the following.

TEE0REM 9: For any F=0 and v>=T, one has

3.16) ge(y) = max {gz(2) — lz—y|*/4(r—T)},

w2l )
ind in the convex case this holds as an equation.
ProoF: See [42], [44].

TEBOREM 10: The expression g.(y) is concave and upper semicontin-
wous as @ function of (y, ), and it is nondecreasing as a function of r.
There exists & number g (in general 0= p= - oo, but o= 10 in the convex
casze or if X is compact), such that g, is finite on all of R™ if v (g, 4 o0),
chile g, is {dentically — oo if re(0, p). The quadratic growth condition
= satisfied ©f and only if o< — oo. In the latter case, the junctions g,
converge uniformly on all bounded sets to the constant function g.(y) =
=min (P) as r— oo, and in particulor

3.17) gup (Dg) < sup (D,) 4 min (P) as ¥ —co .,

Proop: See[44]. Our compactness assumption guarantees thatb
the asymptotic optimal value in (P), which is the limit of sup (D,)
according to the cited theorem, is the same as min (P). Pointwise
-onvergence of the functions g, implies uniform convergence on bounded
sets, since these functions are finite and concavefor 7> ¢ (see [39, §107).

COROLLARY: [If 7 solves (D;) and max (D;) = min (), then ¥ also
zolves (1D,) for every r>=T7.

The next result ghould be compared with Theorems 2 and 2'.

THEOREM 27: Suppose 7=0 is such thet min (P) = sup (D;). Then
7. ) is a saddle-point of Ly on X X B™ if and only if T solves (P) and §
solves (Dz). Indeed, if § solves (D;) and r =7, then for ¥ to solve (P) 4
is necessary and sufficient that T minimize L.(+, %) over X.

The firgt part of this theorem is a special case of Theorem 2'. The
second part can be stated much more broadly in terms of a general
inal method of solving (P):



152 R. Tyrrell Rockafellar

THEOREM 11: Lei (r.)i., be a nondecreasing sequence in R,. Let
(¥n)ier be a bounded sequence in R™ such that y, mazimizes g, to
within Ay, and let @, minimize L, (-, ) on X to within e, where
lim e, = 0. Suppose either that limy,—= -~ oo, or that lim A, — 0 and
lim», > 7, where ¥ is such that min (P)=sup (D,,). Then the sequence
(#r)iey @8 relatively compact, and all of s cluster points are solutions
to (P).

Proor: Under either set of assumptions we have
(3.18) lim g, (%) = min (P)

by virtue of Theorem 11. Then[44, Theorem 3] is applicable and
asserts that the sequence (z.);., is asymptotically minimizing for (P).
This implies by our compactness assumption that the sequence is
relatively compact, and its cluster points are actually solutions to (P).

The standard quadratic exterior penalty method [13] for solving (P)
corresponds to the case of Theorem 11 where %, = 0. Thus the the-
orem generalizes this method in allowing (y:)—, to be any bounded
sequence. This extra flexibility makes possible a great improvement
in convergence as has been proved in particular by Bertsekas [3], [4]
in econnection with the « multipliecr method » described in the next
section.

On the other hand, Theorem 11 also describes cases where 7, remains
bounded and the success of the method is achieved entirely through
the choice of the multiplier vectors y.. This is interesting, because
the well known numerical difficnlties associated with having 7, —> oo
are thereby avoided.

The next results have a bearing on how one might execute the
maximization of g, or minimization of L.(-, y).

THEOREM 12: Let r>> o, where p is the number described in The-
orem 10, Then for every compact set ¥ ¢ R™ and every o= R, the set

(3.19) {re X3y e Y with L,(z, y)<a}
is compact. Hence in particular, for every y € E™ the infimum of L.(-, y)
over X is attained.

If in addition (P) is strictly feasible, then for every i € R the level set

(3.20) {ye R"|g.(y) > B}

is compact, Hence in particular. the supremum of g, over R™ is attained.

(™ W |
(2]
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=oorF: Let 7 lie between » and p, and let §= E™ be arbitrary.
- — oo < gx(f) =1nf {galu) + 7},

23 Gy —yu— (r—F) P (u) + (r—F) > = ¢ (u)
oz =11 u=R» It follows that the set

T ={(u, y) € B"X Tl (n) + y-u<e}

: contained in the bounded set

524 {(u, ) e B X Y|g:(@) + (y— ) + (r—F)Julr<ac} .

at T is also closed, because ¢, is lower-semicontinuous by (3.3) and
feorem 3. Therefore T is compact. Now consider the set

3.25)  S={(0,u,5) & X X B"X ¥ |Fola, u) + r[u]* + uza},
=hose image under the projection (@, w, ¥) — (4, %) is contained in 7.
Jor basic compactness assumption asserts that for each u e RB» and

=, = R the get
{w€ X |Fy(ar, u) <o}

= compact, and it implies forther that P, is lower-semicontinuous.
Therefore 8 iz closed, and all of its sections

Bl = {2 (2, u, y) e 8}
are compact. This, combined with the fact that
({2, ¥)|Sw.n 7 0} c T (compact) ,
zllows us to conclude that § is compact. The image of S under
z, %, y) = x i3 then likewise compact. But this image is the set (3.19)
in view of formula (2.10) for L, and F,.
The second assertion iz obtained from Theorem 5 and the relation
3.26) {ueRmjg,(u) < + oo} =
={ueR"dwe X with f,(z)<u,, i=1,..., m}.

This complete the proof of Theorem 12,
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The compactnesy of the level sels of L. (-, ) in X has previously
been observed by Bertsekas [6] in the finite-dimensional, convex case.
This property is valuable, of course, in computing s-subgradients of g,
in the pattern of Theorem 4. If the minimum of L.(-, y) over X ig
attained at z, then the vector V,L.(z, y) given by (3.4) belongs to
gg.(y). If g, is actually differentiable at y, as is true in the convex
according to Theorem 14 below, then V,IL.(xz, v)= Vg.(y).

The arguments proving the compactness in Theorem 12 can be
turned into useful estimates, which we now state,

THEOREM 13. If r==F=0, then for oll xe X, ye E™ and §< L™,
one has

3.27) |ly—7+20—nVLz )<
<y —y)P = 4 —F) L (e, y) —g:(7)] .

On the other hand, if & satisfies the strict feasibility condition (1.3), then
for every ye k™ and r=0 one has

(3.28) 0:(0) <Ll ) < 1ol®) + 1 31082 — 2wl (@)
i=1 i=1

Proor: It is quickly established that the minimum in the formula

(3.29) L,(z, y) = inf {Fy(a, u) + rlu]>*+ y-u}
wef™

is attained at w= V,L.(z, y) (see (3.4)). If o is such that L.z, y)<a,
then by the argument of Theorem 12 we have

(3.30) g:(7) - (y—F) T+ (r—F)a]P <,

at least if F> p. Taking the limit as ¥ — g we see that (3.30) holds
also for ¥=p. It holds trivially for 7 g, since then g;(7)= —oco.
Hence (3.30) is valid for all 7, 0 <7 < ». Rewriting this inequality, we
obtain

(3.31) ly—712 4 4lr—F)ly—7)-u + 4r —7)[uf?

<|ly—7* -+ (r —F)z—g:(®) »

from which (3.27) follows by taking &= L.(x, ). The first inequality
in (3.28) holds by the definition of g,, while the second follows from
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usly the fact that the expression 0, is (3.2) and (3.3) satisfies
ase.

g d- 339) By, 1) = min (ysu, + 7 u? [ @)}

5 to < min {y,u, + 7w, |* | — (&) = u > FdE)}
e < 7lf@)|2 + min {yu| — Fi(@) > u> @)}
L be == 7| &) 2 — [y:] [1@)] .

COROLLARY: If r> 530 and 2 minimizes L,(+, y) over X to within ¢,
Iye, Hen
5.33)  (r—9)[VyLe(w, y 1 <g,(y) — g.(y) + e <min (D) —gl(y) +- &

Proor: We have Lz, y)=g,(y) e by hypothesis. Take y=y
and F= ¢ in (3.27).

In the convex case, at least, tests for whether 7-(-, ) minimizes
then L.(-,y) over X to within & can be set up as described following The-
orem 4 (cf. also Bertsckas [6]). It turns out that in this way one can
actually calenlate the gradient of g, to within any desired approxi-

mation.

THEOREM 14. In the conver case with # > 0, g, is continuously dif-

1la erentiable throughout ™, and in fact the gradient mapping has the Lip-
sehitz property
3.34) \Vo-(y') —Vag(n)| <y’ —y!/2r.

<, Furthermore, one has for all y and y
3.33) 9:(¥") > 8:(9) + ' — ) Vg () —rly' =y .

It = minimizes I.(+, y) over X to within &, then

1ds 3.36) (Vo Lo (x, y) — Vg (y) * < der .

o0,

we ProOOF: All these properties are consequences of Theorem 9; ef. [42].

The Lipschitz property in Theorem 14 was first noted explicitly
by Martinet [29].

), :. The method of multipliers.

itv The results of the preceding section are not limited to any one
. scheme for maximizing g, in the dual problem, aside from the stipula-

i “on that it should be eflicient with respeet to the number of steps
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where g, or one of its subgradients must be evaluated. However, an
interesting method is suggested by certain of the estimates.

In the convex case, for instance, we can proceed as follows for
any fixed r > 0: given the vector y,, let 9,.., be chosen to maximize
the expression

Gely) + (Y —y) Vaeltn) — rly'— |2
in ¥'; thus

{"-LlJ Yo = Y¥u— ‘3?“}%{3)’;&] .
Then from (3.35) we have

(4.2) Gel¥ner) = () + (Hreor—Uz) Vglyr) — )2 w1 — Yul*
= g:(¥e) + r[Vge(ye) | -

It has been demonstrated in[43] that the sequence (y,)5, converges
to a solution of (D,) (and hence of (D,) by the corollary to Theorem 7),
provided a solution exists. This remains true if the rule (4.1) is re-
placed by

(4.3) Yrpr =Yy + 27V, Lo (2, ¥s) ,

as suggested by (3.36), where o, minimizes L,(-, y.) over X to within &,
provided that

(4.4) >V <+ co.

Moreover, Theorem 11 is then applicable, and hence cluster points
of (w);, exist and are solutions to (P).

Martinet [29] has shown that (4.4) is superfluous if (P) is strictly
feasible; then one only needs e.—0. Bertsekas[7] has pointed out
that convergence is obtained in a finite number of steps if (P) is linear
and e, = 0. Both of these authors have also considered replacing the
step size 27 in (4.3) by a different value. In general, one can study
the rule

(4.5) Yra= Yr + 28 \_'y};r,,(fck: i) -

This approach to solving (P) is called the multiplier method. It was
originally proposed for equality-constrained problems by Hestenes [19]
and Powell [37], and somewhat later by Haarhoff and Buys[17], all
independently.



"er, an

wi for
Ximize

).

rerges
m 7),
is re-

.iII_ Ery

ointy

ictly
_out
near
* the
tudy

Was
[19]
, all

Solving a nonlinear programming problem ete. 137

— == motable results are due to Bertsekas, partly in collaboration with
Cors 31,041,051, [6],[71: [23], [24], [25]. These results besides strength-
=== =nd extending the theoretical framework, include excellent theo-
—= on convergence which show that versions of the multiplier method
= = bounded or even 7,— oo are much superior to the usual

“airatic penalty method. Convergence properties in the nonlinear
=-mality-constrained case have also been studied recently by Rupp
=1 .752]. See also Buys[8] and Polyak[35], [36].

]

Alore research would be valuable especially in connection with how
== extend the multiplier method ellectively to problems involving
-=nitely many constraints. Interesting efforts have been made in

= direction by Janin[20],[21], [22], Martinet [29], Rupp [47], [48],
£97.[50], and Wierzbicki and Hatko [55].

Intriguing questions are also raised by new results of Mangasa-
30]. These concern a Lagrangian which has many of the advan-

. of L, and better differentiability properties, but does not quite

o the duality framework presented here.

1ally, we would like to bring to attention an important respect

hich L, is worse than L,, and that iz when (P) iz decompogable

= the sense described in section 2. It is not true in that case that
— =imizing L.(x, y) in « i3 equivalent to N separate problems in the
wzriables #,. Work should be done on how to combine the idea
sehind L, compatibly with those of decompogition, so as to forge a

==+ tool for the solution of large-scale problems.

Note added in proof. In the two yearg gince this paper was written
Alarch, 1974), there have been a number of new developments, and
s=veral important earlier contributions in the Russian literature (by
TorvAK and TRETYAKOV) have come to my attention. TFor more on
=2is, see R. T. ROCKAFELLAR, Augmented Lagrangians and opplica-

ns of the prowimal point algorithm in convex programming, Math, of
Jperations Research, 1 (1976).

Testo pervenuto il 4 aprile 1974,
Bozze licenziate il 30 marzo 19786,
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