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l4aly decision processes are of a sequential nature a.ltd make use of infor-

nlatlon which is revealed progressively through the observation, at various tirFs'
of ra.lralom varlables with k1oun distributions. A sjrple niodel with discrete stages

is the folfowulg.
Fjrst we lEke a.n observation' which singles out for us an elerFnt t1 of

R 1 Based on the infoniation thereby gained, we choose a response x1, which is ar
nr-v2

element of R I Then he make a new ooservalion' yjelding E2 € R' ' and choose a
.n.

response xa € P - Thi s continues unL:I' aL rne Nth stage, we deterTnine 6^ 6 RvN

' t*
a.'rd choose \ € R '' The choices €.re subject to certain constraints of the folm

x€ x a,1d fi(E,x) :o lor i=1'.'.,in,

where

(2) E = (€r,...,6m) 6 Rv := Rv1 ' -uN

n- rL,
x = ( x 

1 , 
. . . 

' 
xN J € Rn : ' P r ' .' * F'u'

of course, some of the ftmctions fi might depend only on certain irftial conponents

ol E and x, The result of the decision process ls a cost fo(6,x). The distiibution
of E is assuned hlor^'l'l : one is given a regula.r Borel probability measu:'e oon R! with

support 3 . The problem ls to deternfne decision rules which nininize the expected

cost, takjng inlo account the fact that the decision xk can depend on the past obser-

vations €rr...rEp, but not on the f\rture obseraations Ek+1,.",4N
This is an N-stage stochaEtic prograrmling probfem. Our interest here is in

the convex case, where x is a nonenpty closed convex set in Rn, and fi(t,.) is a

finite convex function on Rn for every 6 €: ajd i=0,1,.'.'m. The feasible set

(1)

(J)

is then

D(6) = tx€ xlfi(E,x) < o , i=1,.;.,n)

closed ard convex for every 6 €: .

t 
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A rrdecision n-rfe is represented by a fl-&ction x :3+ Rn. Such a
said to be nonanlicipative if it is of the lorm

x(E) =

function
1g

(4)

The objective in

(x,(6r),xr(€,,E2),...,xN(81,...,8N) )

the problem is to lrlnimize the erpectation

f1(E,x(E)) < o for every E €:, i=1,...,n ,

(5) o(x) = E ro(E,x(E)) = /_ 10(6,x(E))o(d6)

over sone class of nonanticipativf functions x, not yet specified precisely. For
sirpticity here, we take the set X to be bounded, so thab only bounded Jtnctions x
need to be considered. (tris is no serious foss of generality in practice). We assrnne

that fo(t,x) is srnn"iable (Bore1 measurable) with respect to € € 3 , and thai fi(q,x)
is continuous with respect to t €:for i=1,...,m. Then for every boutled, Borel
measurable function x ,3r fl orlu has fi(6,x(q)) Borel neasurabl in € €:,surnabLe
for i:0 and bounded for i=1,.,.,rn. (This is krcon Jyom the bheory of nollnal convex
integrands ) ,Note afso that the graph of the mrltifunction Dr [ * D(E) is closed.

f-et tll le the linear space consisting of a-11 the bounded, nonanticipati.ve
functions x : I ' pn. We adopt as ou1' basic model the problem :

(P) nrirrjmize 0(x) over atI x e 'l1 satisfying x(E) € D(E) fo! every t €:.
The aim of this paper is to outline a theory of tagraige nruttipl-iers correspording
to the constraints defining D(t). the proofs, based naj.nly on results in ld and the
general theory of dual optindzation probla'is []], will be presented elsewhere in a
broader context. For a sonewhat different approach ih the two-stage caee, see [2].

Let A ue the set of all x € ?t satisfying x(E) € x for every E 5 ],
a,"xl tet \ be -he set of alt m-tuples y = (y1 ,,..,ym), where y. is. no*"g"tiu",
regular Bor.l measure onf . tor x et a,rA y € ?Zt , Lhe flmction

(6) L(x,y) = / ro(E,x(q))o(dE) r rT., J= ri(E,x(€))yi(dg)

ls well-defined and finite, convex in x art attine in y.
Moreover, setting

l(x) = sup
v€9

L(x,y) for x€rf(1)

we have

(8)

( e.-
l1
I-

fo (€,x (E )) if
I txl

- otherwise



Therefore (P) is equivalent to nrin lzing f(x) over all x e t . Aqcordingly, we

defi ne

(9) C(y) = inf L(x,y) for y €{,
^E r'.

and take the F8'ob1ero dual to (P) to be

(D) maxini ze g(y) over a\ t < tl,[

then by definition

(10) inf(P) = inf sup L(x,y) > sup inf L(x,y) = sup (D)
K\ re\ - vej vtf

It is elementa.ry in this franework that a paj.r (i,!) is a saddle-polnt
of l on 1.1, if end onty it min (p) = nux (D) , i solves (p), 8rd t solves (D).

An inportant task therefore is to establish, under reasonable condilions, a duality
theorem of the type nin (P) = nnx (D), since this not only fr.mishes the existence
of solutions to (P) and (D), but atso thei-r characterization.

To derlve such a theoren fron the general perturbatj.onal theory of duaLity,
the Lagrangia.n L must first be shown to correspond to sone systen oi pertlrrbations
ol (P). hhile this is possibte, certain teclnicalities arise which na]{e it difficult
lo apply the theor.y in a direcb way, a.r,d one needs to use further argL!'nents based on

other fonn-rlations of the prir€f problem (P).

fet E^be the space ol all bounded neasurable functions u : !* , a]To

si,,rlilarly €n , "o 
that 3( ard ?t are subsets or €n. ror x 6 13r, ana u 6 f ,,

define :

(11) F(x,u) =

E€fo(6,x(q)) if xEatl , x(€) € x and fi(q,x(€)) < ui(E)
fo- everY € €: ' i.=1,...,n ,

+- othehrise-

Then (P) can be identified with the problen of nri.ni:rdzir:g F(xro) over au x € 
.Bn 

;
the pertlrrbed problem corTesponding to u € 6. conslsts instead of ndnirizing
F(x,u) over a1] x € €n. l.Ie can pair -t3. witn the space 71, consistirg of all.
*-val.ued regular Borel measures y on E :

0, < trrv > = tT-l /= ui(E)yi(d€) .

The Lagra,lgiar f.rnciion K .lt.esponoing Lo F is rhen

(1r) K(x,y) = inf {F(x,u)+<u,y"= {1-'t',:i:27 
"x|u

ul €m \* irx(T
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Saddle points ol X or' B , ffi^ are, of course, lhe 6ane as saddle-points of L onr"
the difficulty in using lhis schene straightfonaalilly is that it is not

clear how to get the desired continuity and conpactness properties out of topologieg
corpabible with the pairing (12) and the analogous pairing between the x-space ttn
M % n, we cj.rcurnvent this by worhing sirrultaneously with two other verslons of
lhe problem :

'c'

minimize 0(x) over

for alllrost every 5

arr x e tfL salisfying x(E) € D(q)

(7\)

(15) fr(x,y).

inf (P- ) < inf (P) < irtf (P- ).(_

( u" 
'v)

u€inf- 
[F(x,u)+<u'"t= 

t;

it re AI
ifx€&
ifx47L

,Ye4/z
,t eW

(15) L(x,y) = EEIf;(€,x(E)) + tT=r A fr,rrfr,*trll],

where dy./do is the Radon-Nikcdym derivativ-o of the ith corponent of y with lespect
too

rrinjnrize 0(x) .'.-e: all ::::inucu" 
" e fl satisfyj.ng x(a) € D(t)

for everJ 5 E ! las: ::::,rg I cornpact).

It is clesr that in general

Ebth (P€ ) and (P" ) are npre open to attack by oldinary n€thods thar is
(P). In the case of (P*), we use the sanE sy6tem ol perturbations as above, except

that rrevery E ,' becones I'alnost evelT 6,' in the definition (11) of F, a.nd the spaces

I ,., ano 'd3, are replaced by the Lebesgue spaces ll(3o) and {;Q,o). orrc

thus has a certa-in t\rction F on -d- . {i t the pncblen (Pda ) is equivalent to
nrinirnizing F(x,o) over au x e {i fnstead of pai-ning /fiG,o) witl ./ jfi,ol,
il is better notationally in the present conlext to pajr it via (12) with the

"uusoa"" 
9?lf ot r'fl consisting of the measures which a-re absoluteLy. continuols

with respect to o. (obviously, 
'7l1f ls canonicatly isonorlhic t. dl). Sj.nilarly

with J;.ard rylf . * correspording l€grargiar is then

where ?4 consists of the (equivalence classes generated ty tne) f\nctions in ??
satisf-yi-ng x(E) € D(t) for ahost every E € J (witn respect to o), and Q; consists
of the measures in 0\ which are absolutely continuous r,rith respecl !o q . obselve

that for (x,y) e f a,1fu u/e ca.n also express lhe lrgraJrgian by
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TtIe colresDondi.'rg du'lL of (P-) is
aL

(DJ) n€xinrize g{(y) : inf L(x,y) over arr V < UXKLt
A duality theorern relatir€ (P{ ) and (D3 ) car be derived, naking use of

the conpactness we llave assurEd for the ;et x in ( J ) . vJe can identify n vith a
subspace of dl wnicfr is cfosed in the weak topologr induced by the paiting with
tlA4n i tle corpactness of x then innlies tlrat L; is corpact in tte sa!€ weak

topolos/. on the other hand, it can. be shom llon the theory of convex integla]
functionals that L(x,y) is lower senicontinuous in x with respect to this topolo5/

for each y e %X , Applying a stardard rdnirax theorem (or a correspordirg result
in duality theory), we are able to prove :

nrjn(P-)=sup(D,)t--
{.-IIIEOREM 1.

(Here rnin (Pa ) is interpreted as +6 if (PrC ) has no feasible solulj.ons ; othetwise'

the use of "ndn" indicates that an optinrat solution exists).

on the other hand ! in the case of (P,o ) we can obtain results
perturbation scherF (11) with the spaces b n'ara E 

^ 
replaced by the

"p"""" C', a:'rd 0n of contjnuous functlons on3.

flom the

correspording

(The boundedness otSis needed for this to ma.ke sense). With Cm paired with
via (12), we obtain tbe sanE lagrangia.n K as in (1J), but with {L replaced by

consisting of the functions in f which are continuous. The dual problen is

n^
7c,

then

(DC ) nuxinLize ga (y) = L(x,y) over a].r v € %y<Ee

This tijl]e a dualily theorem can be derived in terms of the nonn topoloS/
.. /Don the perturbation space (:., since this is conpatible with the paj.ring with the

mrltiplier space fl.. (The norm topo]og/ on dfi was not, of courlse, corpatible

rj.th the pairins wirn W), L€t us call (P^ ) sl.rictly teasible if Lhere exists a
conrlnuous l\rction x < ?f satisrying x(€) € x a.nd fic,x(q)) < o, i=1,...,n, for
every t €:. For such an x, the function u+ F(x,u) is bounded above in a neighborhocd

of the origin in C*. runoarnental duality theory therefore gives us the fouowing.

Ass i-ring (P^) is strictly feasible (w-ith: bounded),

one has inf (P^ ) = nrax (D^ ) < + -(- L

inf

ITIEOREM 2.

It is interesting to contrast Theorems 1 ard 2.

In ?heorem 1, we have the existence of priral sotutions (assunil,ig the constraints

a.re feasible), but t r existence of dual solutions is not assured. It nright be hoped
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that dual solutions would exist r,rnder the assurptbn that (P, ) is strlctly feasible
i.e. ltlat there is a function x € ,)t satislying fo. "or" Ir O the conditions
x(E ) € X and f . (6,x(1) | < - E, i=1,...,n, for alrpst every E € J . But exanples are
l.inown, even in the two-stage case, which show this is generally false f2]. In qheo-

rem 2 we have the existence of a duat solution, and hence Lagrange nnrltipliers
character'izing the solutions to the priflal problem. However, the coniinuity require-
nent rEkes it very ui1lke1y that the j.rlfinun jn the priJnal is actually attained, 60

thls chaxacterization is rather. vacuous. Of course, nellher Theorem 1 nor Tbeorem 2

is applicable direcily to the problems we rea1ly want to a.nalyze, narcly (P) and (D),

The route we now follow in obtaini.g results about lP) ard (D) is to fupose

conditions under which, to a certain extent, the varj-ous primals a.nd duals are "equi-
valentrr, so that Theorens 1 a]ld 2 can be jolned into a single statement. lllle exbra

condltions concern the probability measure o. Without such conditions, th-^ inequa-

litles in (14) ca,'i be strict, as seen from exarnptes in [1J.

Ru1 ' .., ' RUN

... " 6uu, -u
For

the projection

each Sc Rv =

ofSonFlx
and 'ndex k, 1< k< N,le! S^ denote

1et

ls in l1l, we shall saJi that o is la.nin€r'y if the support lol o is cornpact and the

following two conditions a.re satisfied :

a) If S is a.ny Borel subset ot:with d(:\ S) =

then for afrnost every (61,...,8k) € Sk (wit"h respect to
one has

a;
c(,t.,\9r,...,q.r - /rr,r9.,,..,qr.l,

lh- nnrltifLmclion Ai is continrous relative

It is not frard to see that this condition is satislied in particular if I is
_ \r, -

prodLrct of .o-lDac ScLs -.c P " , and

o(dE ) = o({.,...,4N)o1(d€1)...oN(dEN) j

where ok is a regulai Borel measure on jU . It is also satisfied trivially if: is
finire ser.

O, and if Sk is a Borel set,
the 'iprojectionrr of o on Sk)

b)



THEOREM ].

This resuft can be derived tuon [1, Prop.7 a.nd the proof of Theoren 2].
From it, we obtain, with a few rnanipufations our main resul-t :

THEOFEM 4. Suppose that o is taminaxy (with corpact support),
fP- \ is s1r'ct'J leasib -, and int X I 0 l"ren

+ o > min (p) = nrin (pg\ = id. (pC )

= mex (o) =nax(oa)=sup(or)>-o.

COROII,ARY. Under these assumptions (and the basic assunptions

S-lppgEg 'he probabiliLy !gg!!Iq o is land na-ry (with
bounded support 3 ), and 1et x € qL be such that x(E) € D(E) for ahost
every E (with respect to o), Then there exists i € 'I1 , agreeing witb x
alncst everylvhere, such that ;(E) € D(6) {91 every I E I ,

Il in addition i^t X I 0 -O (pl ) is strictlv
feasible, then for albitrary e > 0 there exists a continuous fuqtion
x c srch thst

-1-

made earfier), (P) and (D) have optinal solutions, and the pairs of such

solutions axe cha.racterized as the saddle poinls of thq Lagrangian L on
c'( , ql

"n

0rt, €--. l. < lx(q) -x(q)lJ <c,
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