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Many decision processes are of a sequential nature and make use of infor-
mation which is revealed progressively through the observation, at various times,
of random variables with known distributions. A simple model with discrete stages
is the following.

First we make an observation, which singles out for us an element £q of

v
R ¥ . Based on the information thereby gained, we choose a response X1 which is an
n v
element of R 1 | Then we make a new observation, yielding 52 € R 2 , and choose a
, n Y
response X, € R 2 . This continues until, at the Nth stage, we determine &y € R N
and choose X € R?N . The choicesare subject to certain constraints of the form
(1) x e X and fi(E,x) <0 for i=l,...,m,
where
v Vi
.
(8) B By €7 SRR W RRD
n n
X = (Xl""’XN) € R 3= R 1 s o X RAN.

Of course, some of the functions £, might depend only on certain initial components
of £ and X. The result of the decision process is a cost fo(i,x). The distribution
of £ is assumed known : one is given a regular Borel probability measure con R’ with
support = . The prqblem is to determine decision rules which minimize the expected |
cost, taking into account the fact that the decision x, can depend on the past obser-
vations El,...,ik, but not on the future observations €k+1""’EN )

This is an N-stage stochastic programming problem. Our interest here is in

the convex case, where X is a nonempty closed convex set in Rn, and f.(£,.) 1s a

finite convex function on R for every £ ¢ - arnd 1=0,1,...,m. The feasible set
(3) DE) = {xe X|f(E,x) 0 , izl,...,m

is then closed and convex for every £ € - .
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A "decision rule" is represented by a function x : =+ R", Such a function
is said to be nonanticipative if it is of the form

(4) x(g) = (X1(£1)3X2(g1’52)""’XN(gl""’gN))
The objective in the problem is to minimize the expectation

(5) 8(x) = E £.(E,x(8)) = [ £(E,x(6))0(dE)

—

over some class of nonanticipative functions x, not yet specified precisely. For
simplicity here, we take the set X to be bounded, so that only bounded functions x
need to be considered. (This is no serious loss of generality in practice). We assume
that fo(g,x) is sumable (Borel measurable) with respect to £ ¢ = , and that fi(g,x)
is continuous with respect to £ ¢ E:for i=1,...,m. Then for every bounded, Borel
méasurable function x : = + R? one has fi(g,x(i)) Borel measurabl in £ E:E,summable
for 1=0 and bounded for i=1,...,m. (This is known from the theory of normal corvex
integrands) .Note also that the graph of the multifunction D: £ + D(£) is closed.

Let N be the linear space consisting of all the bounded, nonanticipative

—

functions x : - ~» R, We adopt as our basic model the problem :
(P) minimize ¢(x) over all x € m_ satisfying x(£) € D(¢) for every £ € - .

The aim of this paper is to outline a theory of Lagrange multipliers corresponding
to the constraints defining D(f). The proofs, based mainly on results in [1] and the
general theory of dual optimization problems [3], will be presented elsewhere in a
broader context. For a somewhat different approach ih the two-stage case, see [2].

Let QX; be the set of all x ¢ Y| satisfying x(g) € X for every g € ES,
and let ﬁg be the set of all m-tuples y = (yl,...,ym), where Y3 is a nonnégative,
regular Borel measure on E:. For x € f[ and y € Qé,, the function

(6) LOoy) = [ foExENeE) + 30, [ £5(8,%(E))y; (ae)

—

is well-defined and finite, convex in x and affine in y.

Moreover, setting

(7) f(x) = sup L(x,y) for x¢ I
¥€1é
we have
E £ (€,x(8)) if £;(€,x(E)) < O for every g € =, i=1,...,m ,
(8) f(x) =

+ « gtherwise .



Therefore (P) is equivalent to minimizing f(x) over all x € Zt . Accordingly, we
define

(9) g(y) = inf L(x,y) for y € Y
xeX

and take the problem dual to (P) to be
(D) maximize g(y) over all y € ’bdl. ;
Then by definition

(10) inf(P) = inf sup L(x,y) > sup inf L(x,y) = sup (D)
xeX vel yefé xe X

It is elementary in this framework that a pair (x,y) is a saddle-point
of Lon A x 'u if and only if min (P) = max (D) , x solves (P), and y solves (D).
An important task therefore is to establish, under reasonable conditions, a duality
theorem of the type min (P) = max (D), since this not only furnishes the existence
of solutions to (P) and (D), but also their characterization.

To derive such a theorem from the general perturbational theory of duality,
the Lagrangian L must first be shown to correspond to some system of perturbations
of (P). While this is possible, certain technicalities arise which make it difficult
to apply the theory in a direct way, and one needs to use further arguments based on
other formulations of the primal problem (FP).

Let TBm be the space of all bounded measurable functions u : =+ R" , and
similarly JBn , SO that A and ‘TL are subsets of | Bn. For x ¢ 'Bn and u e Bm,
define : :

ngo(i,x(ﬁ)) itxeMN , x() € X and fi(E,x(E)) < ui(g)
(11) F(x,u) = for every & € - , i=1,...,m ,
+°  otherwise. '

Then (P) can be identified with the problem of minimizing F(x,0) over all x € Bn -
the perturbed problem corresponding to u € ‘B & consists instead of minimizing
F(x,u) over all x € 'Bn. We can pair 'Bm with the space 7
R'-valued regular Borel measures y on = :

» consisting of all

(12) < uyp 285 [ u;(E)y.(dE)..

[

The Lagrangian function K corresponding to F is then

SERAETE TN S
(13) K(x,y) = inf {F(x,u)+<u,y>}-= —o ifxe? ,y¢
HE Wy o0 ifxé %



Saddle points of K on ’Bn X f'mm are, of course, the same as saddle-points of L on
N x "LA, ;

The difficulty in using this scheme straightforwardly is that it is not
clear how to get the desired continuity and compactness properties out of topologies
compatible with the pairing (12) and the analoguus pairing between the x-space Bn
and "mn . We circumvent this by working simultaneously with two other versions of
the problem :

(PL) minimize ¢(x) over all x € Y satisfying x(£) € D(E)

for almost every £ € = ,

(?c ) minimize ¢(x) over 211 continuous X € m satisfying x(£) € D(&)

for every £ € = (assuming = compact).
It is clear that in general

(14) inf (P, ) < inf (P) < inf (

PCL) ;

Both (P .C) and (PC.) are more open to attack by ordinary methods than is
(P). In the case of (P 2 ), we use the same system of perturbations as above, except
that "every £ " becomes "almost every £" in the definition (11) of F, and the spaces
() ,, and 'Bm are replaced by the Lebesgue spaces a{:(:—:,d) and {;E,U}. One
thus has a certain function F on o{': X {; ; the problem (P, ) is equivalent to
minimizing F(x,0) over all x € ,Z: . Instead of pairing ,Z;(E,U) with ,[é@,g),
it is better notationally in the present context to pair it via (12) with the
subspace ‘?ﬂ;f of ’Iﬂm consisting of the measures which are absolutely continuous
with respect to ¢. (Obviously, am’:,l is canonically isomorphic to of rln) . Si.l.'nilarly
with I:‘a.nd ’mﬁ . The corresponding Lagrangian is then

5 L(x,y) if x € f(z 'Y € ”gz s
K = inf_ {F s s S if s ’
(15) K(x,y) uelaf; {F(x,u)+<u,y>} ” %f X f}(ot vy & ‘HI
if x ¢ Slﬂ: 5

where X £ consists of the (eguivalence classes generated by the) functions in m
satisfying x(§) € D(E) for almost every & ¢ -, (with respect to o), and ag;_ consists
of the measures in % which are absolutely continuous with respect to o. Observe
that for (x,y) € y‘x x ’Hx we can also express the Lagrangian by

(16) L(x,y) = EEEfO'(E:XCE;)) & 2?:1 gj-" (E)fi(E :X(E))]:

where dyi/do is the Radon-Nikodym derivative of the ith component of y with respect
too .



The corresponding dual of (P ;C) is

(D) maximize g ,(y) = inf L(x,y) over all y € ‘Té .
oL < X
XXy

A duality theorem relating (P z ) and (D, ) can be derived, making use of
the compactness we have assumed for the set X in (3). We can identify ‘n with a
subspace of o °: which is closed in the weak topology induced by the pairing with
’Wl"n ; the compactness of X then implies that Xy  is compact in the same weak
topology. On the other hand, it can. be shown from the theory of convex integral
functionals that L(x,y) is lower semicontinuous in x with respect to this topology
for each y € "y £ - Applying a standard minimax theorem (or a corresponding result
in duality theory), we are able to prove :

THEOREM 1. min(PI)=sup (D‘t)>—w.
(Here min (P, ) is interpreted as +e if (P.t) has no feasible solutions ; otherwise,
the use of "min" indicates that an optimal solution exists).

On the other hand, in the case of (PC'Z) we can obtain results from the
perturbation scheme (11) with the spaces B = and /Bm replaced by the corresponding
spaces Cn and Gm of continuous functions on = .

(The boundedness of = is needed for this to make sense). With Gm paired with 77) .
via (12), we obtain the same Lagrangian K as in (13), but with % replaced by 9:6 R
consisting of the functions in Q which are continuous. The dual problem is then

D maximi = inf .
( c) ze gc (y) xé%L(x,y) over all y € "Zé

This time a duality theorem can be derived in terms of the norm topology
on the perturbation space Cm, since this is compatible with the pairing with the
multiplier space .’mm. (The norm topology on {"; was not, of course, compatible
with the pairing with Qﬂﬁ). Let us call (PC’,) strictly feasible if there exists a
continuous function x € 'TL satisfying x(£) € X and fi(.g XE)) ¢ 0 5 i=1y.0..m , ToOr
every £ € — . For such an x, the function u+ F(x,u) is bounded above in a neighborhocd
of the origin in Cm. Fundamental duality theory therefore gives us the following.

THEOREM 2. Assuming (Pe) is strictly feasible (with = bounded),
one has inf (P, ) = max (D, ) ¢ += .
—_— c. 2

It is interesting to contrast Theorems 1 and 2.
In Theorem 1, we have the existence of primal solutions (assuming the constraints
are feasiblz), but t' : existence of dual solutions is not assured. It might be hoped



1
O
i

that dual solutions would exist under the assunption that (Pd&) is strictly feasible

i.e. that there is a function x € N satisfying for some € > O the conditions
x(E) € X ard fi(i,X(E)) < -€,i=1,...,m, for almost every § € = . But examples are
known, even in the two-stage case, which show this is generally false [2]. In Theo-
rem 2 we have the existence of a dual solution, and hence Lagrange multipliers
characterizing the solutions to the primal problem. However, the continuity require-
ment makes 1t very unlikely that the infimum in the primal is actually attained, so
this characterization is rather vacuous. Of course, neither Theorem 1 nor Theorem 2
is applicable directly to the problems we really want to analyze, namely (P) and (D).
The route we now follow in obtaining results about (P) and (D) is to impose
conditions under which, to a certain extent, the various primals and duals are "equi-
valent", so that Theorems 1 and 2 can be joined into a single statement. The extra
conditions concern the probability measure o. Without such conditions, the inequa-

lities in (14) can be strict, as seen from examples in [1].

Y} v '
For each SC R’ = R © x ... x R and index k, 1 < k < N , let SX denote
W Ay :
the projection of S on R 1y ... xR k, and 1let

o _ .
ﬂk(gij"':gk) = {(£k+1}"'J€N)| (gl""}gk’gk+1""35N) e S}

As in [1], we shall say that ¢ is laminary if the support E:of o 1s compact and the

following two conditions are satisfied :

a) If S is any Borel subset of = with o(S\ S) = 0, and if S¥ is a Borel set,
then for almost every {&1,...,£k) € sk (with respect to the "projection" of ¢ on Sk)

one has

a1

S o
CEAK(El,--Os‘Ek) = Ak(glg--'sgk) . 3

b) The multifunction ﬂ%? is continucus relative to:E;k

It is not hard to see that this condition is satisfied in particular if‘E;is a
— Vv,
proeduct of compact sets - < R k , and

O'(dE) = chl’“"gl\])cl(dgl)”'ON(dEN) 5

where o, is a regular Borel measure on Eh(. It is also satisfied trivially if‘Eiis a

finite set.



THEOREM 3. Suppose the probability measure ¢ is laminary (with

bounded support = ), and let x ¢ 9], be such that x(g) € D(¢) for almost

every £ (with respect to o). Then there exists x € Y , agreeing with x

almost everywhere, such that x(£) € D(£) for every £ ¢ = .

If in addition int X # @ and (PaC) is strictly
feasible, then for arbitrary € > O there exists a continuous function
>:< € such that

e €T ] e < | ®E) - KON <€,

This result can be derived from [1, Prop.7 and the proof of Theorem 2J].
From it, we obtain, with a few manipulations our main result :

THEOREM 4. Suppose that ¢ is laminary (with compact support),
(Pi) is strictly feasible, and int X # @ . Then
+ 0 > min (P) = min (PQS) = inf (PC‘;)
= = ] = > -
max (D) ma.x(Dc) sup (D):) L
CORCLLARY. Under these assumptions (and the basic assumptions

made earlier), (P) and (D) have optimal solutions, and the pairs of such

solutions are characterized as the saddle points of the Lagrangian L on

A x Y
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