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'r'hc existcnce ofsohtiom is.stat'lished lor 0 vdy sene..l cls$ orprobl€mr
in the calculus of mri.tions rnd ontinal contrel inblyids ordinrry difierentirl
cqu.tions or continsent cqnxtioN. The theorems, vhil€ r.lativ.ly sinple to
strte, ovcr, hesidcs tne n'o.c clasicd c8e3, Froblem! with conriderrbly
$.alcr arlumptioru ofcontinuity or boundcdn$s. For dample, rh. @s. fu.c-
tional may only bc lowcr scni.ontinuous in .he condol and mry rpproach
+a .s onc nerro ce ain bounda.y poinb olth..onrrol rclior; hothendDoints
in thc probl.m mry hc "ircd". Itrnic. rcsulb ol Cesri, Olech dnd tne nurhor
rre th€r€by dteDded.

Thc d.v.lopmcnt iR bscd .n rho rh.ory oi conv.x integrd functionsb rnd
rhcirconjr$tcs. Thc nrst s(p is to shov that, for pu.pos.s ol.xhrence thcory,
the probl.'n.an bc rcduccd to 3 shDl.r nod.l wher. control Eri.bld dE not
pr$ert * such- This model, rcscmblins r .la$ical Drobled of Bolza in the
.alcun's of uridtions, but $here rhe funcrioru are extend€d-rc'l-v.lucd, is drcn
n,vcslkated usins, abone all, theconjrlsrcy corr8pon den c. h etueen se n. rsl izcd
Lrqrrnljrne Dd lllmilionii.s.

1. INTRoDUcrroN

'I he trobl€m e consider consists ofminimizing the functional

v,(x, !) | /(r/, \r/). *{r), !rq)/l I ir(o), {l))

ovcr all absolutcly contintrotrs fu.ctions r: t0, ll - n" and Lcbessue
mcasur.bk functions !: J0, ll " R-, where

r: [0, l] x fi" x X" x I?'+ R u {+co},
l:R"xn^+Ru{+.,.)

r Rcsc,r.h sponsor.d by tho djr lrorce OthceofScientificRescrrch, Air Forcc Stdem!
connnmd, usAF, und$ srarr ,\l ()sR-72,2269.

coryrtft ro re75 byaodroLre,, r,c.
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W€ denote th;s problem by (9) and call it a co,tt/ol ttohten of Bolza.
Herc the valu€ fo: is used as a penalty to itrcorporate constraints into
the definition of /. lnd l, so that const.aints do not appear explicitly in

This model vas introduced in an earlicr papcr U, Scction 61. There
we discusscd its rclationship with ottimal conftol problems in other
formulations, as well as the question of its equivalence with the /ed,r.rd
groblem (P) in which one minimizes the futrctional

o{r) - J" 
r(r, x(). illl),'// , 1(r(0i, y{l))

ovcr all absolutely continuous functions r: [0, l] + n', where

I(,,.,(,) : inf ((t,,, ', r).

The €quivalence was used in deriving, by methods of convcx analysis,
various extensions of results of Cesari [2] and olech [3] on the existence

The goal of the pres€nt paper is to demonstrate the equivalence 1lith
the reduced problem in a nore general $ay thrn in [1] and thereby to
obt.in new cxistence th€orems. These theorems, couched in terms of lhe
compactness of level sets of the functional @, involve new growth
conditions broadened to include properties of l, as well as ofr.

The following technical assumptions are irnposed. 'lhe functions
r(t, ., ., .) and I are lower semicontimtous. Fudhcrmorc, ( is l4 x .4-
neasurablc, which is to say, measurable with r€spect to the d-algebra
generated in [0, l] x n" x n" x n- by products of Lebesgue sets in
[0, l] and Borel sets in R' x na x Rn.

The Iatter assumption €nsures in particular that the integrand

r + r(r, r(,), ii(r), 40))

is -ra-measurable (Lebesgue measurabl€) when r is rbsohrtely continuous
and , is -tt-measurable (since then the m,ppi.s t + (aO, t(r), 

't0)) 
is

J9-measurable). If for a given r and z this !ntegrand is najorized almost
everlvhere by a summablc, real-valucd function of t, and if
l('(0),41)).:: l.o, rhen the value of Y(i, r) is well defined in the
custotr,ary sense of the theory of ;ntesrrls (possibly .'o). In dre
remaining case, we adopt the conv€ntion that Y(r, ,4 : I co.

By dciinition, rhen, if ' and r arc such thrt V(', r) -: I (,], dre



('(o),,(l)) e c,

are satisfied, where

r(r, r, !) : {!€ R- lr(r, r, t, /) < +@},

c : {(4, b) €R" x R" ll(u, i) < +@}.

Thcsc conditions may therefore be regarded as th e inllrit nnsba;nts in
{O).lttheycanbeqarisfiedrr rll,i e,if inf W a m,rhen(p)isequivalent
to minimizing W subject ro rhurn, and in particular every olrimizing
pair must srlisty them. lf I is an indicaror lunction, i.e., identically 0
on rhe srt C, then (Q) js a .onhol Irchlcn oi LaYa,sP It on the other

hand, Kis an indicator function, i.e., f(t, *, r,, r) - 0 for all ?' € F(t' 
', 

t)'
then (O) is a nntot ?rcblen of Maret. kt th€ s€neral case, the sets

l'(,,,xi, r) and C may not be closed, if the functiom tend to +-'D at

cr:rtain boundary points.
Alrhoush rhe moJel rrearrtl here has a 6rcd time interv:l normalizcd

for cnnvenicnce to 10, ll. rtohlern" wilh \ariablc lirne are xlso.o\ered
bv the results, since mosislch ptoblems can be reformulated as problems

over a fixed interval. This docs not raise dilficulties, because the condi
tiotrs impos€d here are very btoad and flexible. A ncthod of reformulation

is giv€n in F, Section 3l which, contrary to classical "Parametrization"
of the probiern, does not necessitate any topological assumptions on the
'wxy 1( depends on t.

Our apprcach rests cssentially on th€ theory of convex integral

functionals and their conjugdles. 'lhis ll,lears to hrve the advlntage of

\ ieldinq.tronger results $ith less nolation and [cwer direct .ssurnptions.

ilore""., rh" ideas arc closcly rtlarcd to thosc in Olech's $o'k ll' 4l'
whcre the setting is somovhat more gcometric. In particular, thc growth

conditions in our first two cxiste.c€ theor€ms were inspited bv cotre-

sponding conditions of Olcch jn 
[3]
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i(r) €a(r, r(r), !(r)) for aLnGt all I,

2. Eaurv\LiN'r \1rflr 'rHL RrDU,Ln PFosI Frt
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f: [0, l] - R' is will be called g-meavtdle il its

c(r') ,l(',:):€r(41

is "ri x .4-mcasuflrble as a subset of [0, l] x R! If l- is .losed-valued,
dennition is equivalent to va{ious others in the literaturc; see [5,6] aDd

th€ referenccs given there. We cite sevenl facts from this theory that

PRorosrrroN t. StppNe Lll,ll >Rx r a dosed-xalucd rnulti'

r: t€ t0, ll I r(t) + ol.

In o/d4 that I be g-neastable, it it necexatg a"Il sufrdent that T be a

Lebessue set, and that thele etut a tuuntablc Iatuilr (,"1)1.! aI 9 -ne6uabL

fun.t;ons zt: T + RN s ch that

f(t) : cl{',(,) li €r} Jol eedy te1'.

CoRoLLARy (M€asurable Selections). SuP?ose LL0,11+RN is a

cbseda'atued,9- ea'uruble nult;functian vtch rhat l(t);s notenttt tn
alno't e.ery telo,l'L. Then the'e er;sts a g-neasurablc Jnttion
t lo, tl + RN suth that

z\t) e t(tt fot atndt eh?rr, t € [0, l].

PRoposrrroN 2. Let f I lO, ll x n! - /r u { t ,n}, d/l rr,

f(r) - {(2, a) e Rd+1ld >/(r,:)}.

The f i: 9 x 4-neasutable iJ anl onlit if f i Y-nea\uabte-

The set 1-(t) is the ,rtla?t of the function/(1, ) We notc thrt it is
(losed ir and u,,ly ifl(/, .) is Iower semicon' inuo,,s in :

Proposition 2 is entirely elementary, but P(oPosition I h.s, of coufte,
a deep proof, doe to Rokhlin, Castaing and others

We also statc at this time a r€sult which will not be needed until
paragraph 3, but which provides one of the most valoable criteria for

-tl x ,4-mel]surability the Caratheodory .ondit;on

PRoFosrrrcN 3. Let Zbe anr Botel setia RN, andtetftl0, tl x Z+R
be 'th that J (t, zl i coilinuou' ;n 2 fot f'ed t and g-hcawdblc ;n t Jot
f,ed,. Th. J n.v t g-nedsurable, a .t ;n Idct d tl the lcul set'

{(,, !). t0, Ilxz.f(t,z\<lJ
ate .? x n-neasutabte ai s'rrrt' o/ [0, l] x Rx.
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1'lool. We indicat€ a particularly simple proof. Let (r,rLr be a d€nse

scqueflce in Z. Fix d e n. It is clear that/(t,.z) ( a if and only if for
every positive ioteger j there cxists e, such that I 7J, - ' | < 1, and

/(r, &r) <d+(lr). Ler

?ii : {, € L0, ll l/(r, @J < d + (rr)),

z":lz.zl ut r.:lljJ.
Clearly ?i, is "ra-neasurable in [0, l], and Zr is 4-measurahle in lR'.
From what we havc said, thc l€{el set in dre proposition can be expressed

nU r,! x zu.

Ilence it is -19 x g-mersurable, and the proof is conplete.
\ e "hall say th,t lhe ftrn(rion K salisfica the i/y'-boundedaes tonditiot

il evervfixed/-[0, ll, ' . R, and every bounded set S C R" / R".1he

{/€R- L:(r,.)€s with tK(,, r, !, !) < d)

DeurvALnNcE Tnnonrru. ,Sa2pose that K satisfes the W-bo ndednss
condition. Thci the fun.t;on L is I \ 6-neasurabb, and the inlinur ;n
its defiitioa is akrals attd;ne.t (hence neoo -':D). Abo, L(t,,t, t) is l@a
seni.ofltinuous h (,, o). Thts;n ratkulat, the lunct;o al O tuh;ch ofle

nininizes ;n the rcdrced frotttzn lP);s well-dejned.
|'u he1naft, fat ewry absolutelr .onth$ors l n tion r one has

a\N) - ninl.v(r, u) 1u 9-d4 rubh)

(uhete the nininrn is attained bj at lcalt o\e g-'neasurable ln tio u).
In th;s senre, (P) i' equ;.abnt to (Q\.

t'roof. 'lhe condition implics in p,rticular that for fixcd (t,t,o)

{', en'' ld(r,,, 0, /) i< d}, d€R,

are sll cornpact, since we alrcrdy have thein closed by our lower semi-
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continuity assumption. Thus the infimum in the definition of,L is always

attained, and we have for each t € [0, l] and d e ft

{(r, !) lt(t, r, o) < a} : {(r, ') r!, (0, t, !, r) < d)

Invohing the inf-boundcdncss condition morc fully, as wcll .s the lowet
semicontinuity of K(r, r, o, z) in (.t, .], ,4, otrc *cs the closedness of the
set on the right.'l'he level sct on dre lett is thcrcforc closedi thus
,0, x, o) is loNer seniconti.uous in (r, !). Consider now tbe epigraPh
multifunctions f and l-o defrned by

J'(,) : {{', o, !, d) 1((t, r,., r) :.: d},

rot) : {(,, ', 
d) lz(" x, !) < "}.

These are closed-valued, since r(,1, , , ) and (t, , , J ee lover scmi-
continuous, .rnd l-o(t) is the imase of l'(,) tnder the projcction

(',0, 
'l, 

d)- (,, 
', ").

We know from Proposition 2 that l" is g-measurable, bccause ,K is
9-rneasurablc. Hence by Proposition I the sct

r-{,€t0, ll lf(t) + o}

is l9-nersurable, and there cxists a countablc family of 9-measurable
functions (rir , or , zt , er) on r, t € I, such that

r-(r) : .r{(,i(4, !d,), d{,)) | i €/}

i-"(t) : cr{(r,(t), od4, dj(4) | i€ 1} for evety , e ?,

implying by Proposition I that I'o is ..r4-ncasurable. rrence L 1s I x 8'
m€asurable (Proposition 2), and @ is well-defined as claimcd

Since ((t, r, i', 
']) > r(t, r, r,) by dcfinition, we always have v(,, ,) >

4(1). To complete the proof of the theorcm, we suPPose thereforc that
r is an absolutely continuous function with O(r) < +co, and we
demonstrate the existence of an 9-measurable function / such that
s(r, ,) : @(r). Define

/(t, /) : r(t, r(,), i(,), !),

s(,) - r(r, s(r), r(t)),
r-,(t) : {! €R- l/(', /) < s0)}
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The r values here bclong to the Lebessuc set ?: of full measure where
t(t) eJiists; for other t, wc define 4(t) : 6 We need to produce an

"itjn€.Burable function , with 
'.(t) 

e 4(r) for .lmost all I, and to do so

it sullices to show that thc multifunction l"' satisfies the assumptions of
the Corollary to I'roposition l.

Certainly ]"r is closed-valued, bccausc/(r, z) is lower seniicoDtinuous
i'r ,. It is also nonempty-valucd for I € 11 , bccause the infimum in the
delinition of, is ahvays attained. wo observethat/isv x ir-measurable,
bc.r se K is ",i x .4 mcasunble, rnd because the mapping

'?: 
0. !) + (/, l0), .(t), r)

on rr x R- is neasurrblc in the sense that d 1(S) is -!a x .4 measurable
when the set s is "t? x .7-Deasurable. ('l'his property is evident for sets

S of tlrc l4 x g t g t !'t prodtrct form in [0, l] x R"x R"x -p',
and he.ce it also holds for all sets in th€ o-algcbra generated by such
product sets). Simitarly, the lunction g is -!9-rneasurable, because Z, is
I x #-neasurablc and the mapping

,: , ' (r, r(r), i(r))

is mcasurable in the s€nsc that 0r(S) is l4+easurable whcn S is
I x .4-measurable. Since g is jt-neasurable and I is g t g-me^srt-

{(', r) a ?'r x R, l/(,, /) < s(t)}

is j4 r ir-measurnble in [0, ]l x R'. But this is the graph of { Thus
l-1 is .lt neasurlble.

3. SsMrcoNrrNurlr oF THE BoLz FuNcrloNAL

'Ihe question of whcther the control problem (9) has a solution is

reduced by the equivalence theorem to thc qu€stion of whether (/) has

a solution- From now on, we thercfore direct our attention at the func-
tiooal O rndthe properties ofits level sets relevant to the study of whether
O attains its infimum. It is assumed, as is true in the context of dre
eqlrilalonce theorem, thrt, is t' x .4-measurablc, and ,(1,.r,t) is
loNcr scmicont;nuous in (i, !) for ercl, r. ]'he results below are valid
for any srch functionl,; no t)a.ticollr ,( necd bc involyed.

ro\1fioL PnOBLI.MS oF BOLI{ ANI' I4'lll,\NcF

We shall sxy thrt, satislies th. .ona:it! .afl.];t;on if L(t,r,x) is
convex as a tunction of o for €ach (t, 4. 'Ihis holds if t is derived as

above fron 
" 

ftrnction r with K(t, '' o, ,) co.ver in (o, r).
'lhe lldnilt.nia as.ocixted $ith L i{ rh( f',n.ri^D

.ar: [0, 1] x R" x R"-ftu{+d}

a(i, r,r) : suP {P z - ,(/, 
',,)1.

We shall say th|t A satisfi€s the ,al'. g/o&t,ir corllioz if for eath fixcrl
p€ft" and bornded set SCR" thcrc cxists a summ.blc function
,r: [0, l] - R such that

nt, ", r) < /(t) for all , e 10, tl a.d ' c 's.

This is a generalization of the classical conditions ernploycd in cxistence

theory by Nagumo and'I'onclli and later by Cesari lt was first uscd in a
form equivalent to the present one in papets of Olech [3, 4]

Bcfore deriving the mllin consequenc€s of this condition, wc lrove a

couple of rcsults that shed more light on it-

Proposr oN 1. The Ha';hoidn II always has the Fope r that
H(t, :N, r\ i! .on\ei and lowo seniontiuu'! in p If L satisfc' the .on'
oexitr .o ;ht, the fornnla

I,(,,,0) : sup {P 0 1/0,,,r)}

;' al'o xalid. ]f H satilfes the ba:;t gtouth hen II n .9 x g- taswabte,
a H(t, !, 1,) is P?er seni.ont;nuous in (i, p).

Con osel|,, supfose H is any .g x q-neatrable funtbn such that
Il(t,r,l\ i 14tet sen;contiiuous it t,.awex i l, a d ereryuhde les
than 1 $. Let L be d$ned us abow. I'he L i aa I ;. g-neasurable

lun.t;on s/.t' that L(I,r,Irl i' eadruhele slcdcr thin .i., to 4 sm;'
.ontinuo s i lr,!), ar'.r fie eonxexity tundit;oh;' satislied. Moreobet,
then II ;s the |Iam;honian asso.iated with L

Ploaf.'t'l\a fa.t th^t II(t, r, p) is oonlex 3nd loqet semicontinuous
in 2 is obvious fron the formula. Indcc<1, la(r,.r, ) is the conjugate of
thc runction.l-(t, r, ). IfZ(r, i, J is conver, in addition to beins lolvcr

N. TVRRI]I-I, ROCITAFEL1AR 319
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scmicontinuous and everywhere greater than -co as we have assumed,
then it is in turn th€ co.jugate of its conjugate. In other words' the
fonnula given for L in terms of ,H is nalid. (For the th€ory of conjugate
fun.tions, see [7].)

'l o show the measurrbility .rnd upper semicontinuity o{ 1I, assuming
the basic growth condition, we rewrite the formula for H as a special
crse ofthe situ,rtion in the equivalence thcorcm:

l,(t.,.1) inl (o(/. r.1, r),

wJrcrc I" : -'H and

Kn(t, a,p,vJ : L(t, x,a') - P.o.

It is clear that 1(0 is lower semicontinuous in (,,P,o) 
^nd. 

g >< g-
mstsurable. We vant to establish thxt ,o is lower semicontinuous in
(N,?) 

'ni I x ,4-measur.ble, and for this it suffices by the equivalence
thcorem to show that for fixed t e [0, 1],d€Rand'>0,theset

nt : {, l l(,, p) with rI</, lr l < ',r(t,,, {,) -.p o <"l
is bounded ( ' | : Euclidcan norrn). For later purposes, we shall state
tbe argument som€what more broadly than would r€ally be n€cessary

at the mom€nt. Consider any s ) 0 and let [r'r ,..., r*] be a linit€ set in

lPl<s ;mplics 1€.o{A,...,rr}.
'lhfie exist by thc basic growth co.dition summablc, rcal-valued
frnctions ,fi such tbrt

I' L < ' imflics /(t, r,pi) < Cdr\, ;: t,...,n.

It f(tlo$s then from the convcxity ofli0,4,1) nrP drat

l,l<' and ltl<J implies ff(r,,,p) <d(,),

l0)--inax*Cr(r)<+@.

We note in passing that the function el is again summable. For all (", ?,)

w;th | ilj < ', we have by thc dclinition of fl the inequality

R. TYRNILL ROCKAFEILAR

L(t, r,i\ > slp {r.a d(,) - r l" I '- d(r).
l,l<,

Supposing now that r > r, we observ€ that if ! b€loDgs to the set M
above vith co(esponding (r, p), then

d > L(t, (, t) p. o > I l' | -ct) - 1, I l' ::. G') I ! I -C(').

Thusevcryo6Msitisfies

l" I < (" +d(,Di(' '),
and the boundcdness is verified.

For the convcrse part of the proposition, wc notc that the prop€rties
of Il imply that 11(r, ',r) is continuous in ? (ct [7, Thcorem l0.l]).
'lhe formula for, in terms of Ii can thcrcfore be ritten ls

,(,, r, r) - sup{r, '-I1(t,r,A)l> -,

where (?rr., is ary €ountable, dense fanily of points in R". Each of the

(t, 
',at - Pt r lt,",It)

is lowet s€micontinuous in (x, o) and it r .4-measurable and therefore
,, as thc suprcmum of a countabl€ collection of such functions, also has

these properties. Moreover f(t, x, J is by defin;tion tbe conjugatc of
I/(t, r, .) hencc convex. Since II(t, r, ) is a convex function everywhere
less than + co, it agre€s with its biconjugate, the .onjugate ofr(t, ', ).
'fhus H is the Hamiltonian corresponding to]-.

PRoposrrroN 5. Sqpse H 
'ati'Jie, 

the basic stouth condit;on. T hen

H actua r sntisfcs the gtouth Miition

H(t, x, p) < h(t, l r , l I )) Jol att t,x,P,

bherc thc fntt;o hon [0, l] x [0, +,]o) t 10, ) 6\, def ed bJ
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t, ! L(t, t,aI <,1(t) if lrl<r, i(,/,t - max{Ir(,, r,f) I'l::/, rli::r} i: fo,



,r(,, /,0 : min l(r(t, /, r, r,1),

whcre/a(,,/,t - --n(t, r,lsl)and

&(t, /, s, r,l) : --Ii(,, r, r) if lrl<',
: I 6 otherqise,
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is 9 x ,-neasutablc, non.lecled'ing in r and s, utFt sen;continuottt in
(/, t\, comien;n s, and

I h(t, ',.) dt l @ lot att r O, 3 0.

Ptoof. The maximum in tl,e definition of l' is indeed attained and
not F.o, sincc H(r, s, 1) is upper semicontinuous in (r,1) by Proposi-
rinn 4. ln la. t, it we wi ire rhc d' rinirion of, as
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ftom the Ascoli-Atzela criterion for st.ong comp,ctn$s in'l and the
Dunford Pelt;s crite.ion for weak compactness in "rf1 sraces, applied
to i).

SDNrlcoNrrNurry THEonEM. S4?osdt rat;sfd the .ofleriry nnd;t;on
a d H satilftc' the basic stouth .o itbn. Thc.n Jot att rcal nunbets a aad

{,ea oG) < d, lrld < 4

is .onpa.t ;n the ueak topolo$, of a dn.l hen.e allo conla.t ds d subset of'e
;n the noln lolologJ of s .

tn faii.ulal, o is louel semieonti ltous reldtixe to the natnt of A and s
afid lowet seni.o ;n ou! tequentialb, rclariae to the weah tofolo$t of A.

The proof o{ this theorem will be bascd on a fundamental rcsult about
integral functiomls. tl€re -t4'r d€not€s the trsual Lebesguc space of R'-
valued, sumrnable functions on [0, l], and similarly "!r1'.

PRopostrroN 616,81. Let I be an .9 \ z'ncawahle funttion on

t0, 1) t R" surh that f(t, z) i' lowet setuiontilluous in ', and let

s(t, @) : sup{@ 3-l(,,:) 2eni}.

Then E ;s 9 x g-medsurabl4. One has the replesentat;on

J,, rrr.*rttt.tr sup l]i qrr "(,)/r )"tv..rtttatp' e"y

ptobi.ted that l'"f(t,,(t)),1t < +.n fat at teart ane z e 9,'. If actua !

J'flr' '\ o, ', +.o f0 ead! z e R,

thenfot eoery z e g"' o dPeRthesct

1..',1t ,1,). 
"@ 

atl

lrl<', I

I
the hypoth€sis of the equivalcnce theorem is satisfied We nay concludc
thercforc that I' is upper scmicoDtiouous in(', t rndlt x 4-mcastrrable.
Wc rlso can express l, by

,(,, /, s) : sup{s( p ") ,(,,,,')ll'l<', I l< l},

and this shows the conveaity in r, since the suprcn m of a colle.tion of
a6ne functions of s is convex. It is obvious thrt ll is nondecreasing in /
and s. The proof ofI'roposition 4 constructs for €ach t and r a sunmable
function d:[0, 11+ R such that li(t, /, r) < d(,) for 0 < t < I, and
hence the integrability assertion about I is valid.

Wc proceed nov to statc thc main result of this section.
Let A denote th€ Banxch spxce .onsisting of all absolutely continuous

functions.r: [0, 1] + I?", the norm benrs

1.' lr I rro)l f' I 
ji(/). ,'?r.

(Wc dcnote by the Euclirlear norm in R".) t,€t (r denote thc usual
tsanach space consistins of all continuous function,r: [0, l] - n",

r 1" : -*, 1 "(Dt.

We havc lrllr <-llx nrot xeqlC'€.Ir is known that cv€ry weakly
comtact subset of r/ is stronsly comra.t xs a subset of 6. ('lhis follows

s(,, a(,)) dt < P 'F I
i eohpdct ilr the wedk to,"l"er .I .9,' .
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PtuoJ ol th. Serhi.onti,tuitr 7 heaftn. W€ first 6x c e ft and r > 0
and apply Proposition 6 to thc funct;on

J(t, f) ,. h(,t, ttt),
wirere i is the fuDct;oD in Proposition 5. The hytothesis are satisfied,

s" f'.rylJ'a',*(,))/, <p,1',,.'l
is Bcakly conpact for €vcry p. (lve crn identify A with n" x -tr"r for
co.sidcrations involvins thc wc.k topology, r e (r(0), t)). Sine

t.{ - L(r, ', !) 
.: u(t, x,I\.:Jlt, p) for I'l<',

L(t, x, a');: sw l!., -.I (t, r)l . f(r, ") ro. lrl<r.
Thus if r llc < / we lalc

q,) 
J" 4r, r(r), itr))dr I (,(0),,(t))

- J, {(r' '(/)) 
lr F},'

wficre (usins th€ lower scmicontinuity ofl)

z :nin{l(a,}) I lal <', lrl <4 > -co.
It follows thnr the levcl set in the thcorem is contrincd in thc lev€l set

.sd if B : d 7, and hcnce it is rvea&ly compact as claimed, if it is
weakly dced scquenti..'lly. (A subsctofa wcally compactset in a Banrch
sprce is weakly closed if anrl o',ly if it is weakly closed sequetrtially.)

We now apply Proposition 6 .gain, this time to the functionl,(., r) :
II(t, t(t ,pl, whcre r€ A.'l he hypotheses of t'roposition 6 :re satisicd
ir viciv of Proposition 4, thc bas;c growth condition, and the mcasur-
ability of the 

'napping 
(r, r) - (r, .r(,), r). Fu.thermore, thc convcxiiy

.oDdition on /, implies thrt the function f,, corrBpondins to, is

8a& a) = sr1 ( t, . a ",- II(r, a0), r)) - .r.(, r(r), !).
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It is true th$clbrc that

oirr -(r,0r.r(r)) I sup Jl ,ft) .d/J.ir - l,,rrt'."t'.tkD,ttl.

' ' (x(0),lir)

is weakly lower semicontinuous on A, so thrt thc proot now rcduces to
showing thrt rach ofthe functionals

x - Jrp0) i(t\ dt 
J,, 

tttr.'lr).|(tndr

is wcakly l v.r senricontinuous seq cnli,lly, o. in other words, that for
each, E E" we hrve

Ii,n suf, I H(r, rJr,, p(r)) dt . I ll\t,',[t), 1(t)) dt

if x1 .+ ru wcrkly. llut this follows from lxtou's lcm'rrr and thc upper
scmicontinuity of ff in Proposition 5, since by Froposition 6 the inte-
grands a.e ill boundcd above by thc su'nmablc function

C(,) : max{o, i,(,, /, t}
ifr and s arc trkcn su{iciently large.

Itedark. k may be wondcred why we hnve not nccded to invokc
somethins likr the well-known ondition p of Cesnri, which k clGely
related to scquential weak lower sernicontimriiy Gee Csei [9]). Thc
rnsw.r is th r rl,is properry of rhe mult;l'rn. rinn

r + cpigmth ofl(r, r, J

is €quivalcnt, nndcr the basic g.owth condition on /1 :rnd convexity
condition on 1,, .o the lowcr semiconiinuity of ,(r, r, {j) in (q o}. Th€
role of Ce$ri's condition wrs taken in the proof by thc flct that the dual
rcPresentnti0n ot r,

L(t,,.ol - stP\, ! - Ir(t, x, t)l,

is v.rllJ in tll' - ' rrcrrnstan.ca wiil, 1/{r, r, t) t'ln I sc ,i, on'in',uus in r.
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4. Exls'rENctr oF SoLUTloNs

We demonstrat€ ncnt that in ccrtain Seneral s;tuations thc function
O does attain its minimum ovcr the Banach space,r'. First an ;Dmediate

corollary of the semi.ontinuilY thcoretn ;s st.ted

Irx$rENcE 'fHEoRnM l. '\L!?ose thrt I' satisfes the eom'exity.ofid;-
Iion dnd.II satilfes th. bds;c E/auth to dition.4 thele 8;sts a n; inizing
sayenu ("k)f-r for <F suctt that the 

'eqrcnee 
of olns llsk ,. is bounded,

the" therc b a subsequcnee mnetgiag in both the notn toqolngt ol € ann

the ueah topology oJ a to an x e a nhinizing o
In ptic;ta' a aua;ns ns ninin noaela;f fiercisair > 0 suththat

Llt,x,a) <'l-6 ,-rli.i ls </.

lurther cxistence thcorems can be obtaincd by divising growth

conditions $hich ensure that the level sets ofthe form

{realo(x) <d}

are bounded in the norm of {f 'Ihis secns mostly to be a matter of tricks

and happy discov€ries. Nos;ngle growth condition pr€sents itself as 'the"
not."oi on", encompassing rll tbe othds. We conccntrNte below on

developing a single condition which covcrs a grcat numbcr of important
cascs and yet has the vntnc of being fairly ensy to utrd€rstand and applv.
'I'his condition is an olisprins of one used by Olcch [3] in a difierent

setting of problems of Lagrangc; see the result of Olech which we hav€

fornulated as Theorem 4 of !l
Let us say for simplicity that Il and I satisfy the storyet 8lowth

ll(t,,, r) < p(i, P) + l' | ("(,) + rO l, D,

I(a, b\ > tild\ + L(h\,

whcrc o(t), p0) andF(,, p).rc finit€ and summable as functions of I (with
c and ,l nonneeativc), l0 and 4 are bound€d belov on bounded sets, and

ljm inf lo(d)ila | : +dr,

lnn inr 1,(r)/1, | > @.
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Certainly in this event }1 also satisfics thc basic grorth condition.
Note that tbe properties of I hold in particulf it I is bounded below by a

constaot p and the set

-{ : {a € Ri I l, € R" "irh (a, r) .: +@}

is borndcd. (r'ake l"(a) : o 1r aeA, Iok): +.b ir a.!A, I1(b) - P).

PRoposrrroN 7. Suplose H a l 
'atislr 

the stnnger growth con.l;tioft.

fl(r,,, p) < d(r, ,l) + lf ("(r)+2dr)lrl),
t(a, b) > j|a )-1lbl, tt>o,

whdc 0:l0, tl x [0, +.o)+ i? a'dj: [0, ],rtr)-Ru{ \ arc mtain
functio8 su.h that 0 is .g x g-medwable, 0(t, r) i mnnabb in t, cottex
and nondere1s;ns ;n s, j(') it nondweasins in s and

,r,$, 
jG)h : +-.

I'rool. We begin by democtratins thrt for erch r > 0 there is a
sunmable funclion d"(t) such that

10, ',0 < {,(t) +'("(t) + z'pt)) Iorall />0.

Let ir', ,..., 2r] be a finite subset of ?l" with lr' | < 2s, sLrch that

lrl <r implies P€ca{A,...,fJ.

a(r, r, t,) < ii(,,ri) + l' l("(4 + z'r(r)), i : 1,...,I.

Sioce lr(t, r,r) is convex in ?, it follows that for 'l</ and

H(t, !, p) < t1(t, r) + /lo(t) | 2't(t)\, i:1,...,h.

The desired inequality is therefore true for

d,(r) : ,.ja:i /,(,, r).
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and this function is summablc in t be.ause p(t, P) is sunmable in t.

00(r,t: $rp{r(r, /,0 - /G(r) + }p()), r >0,

where the suprcn,un is boundcd rbove by {,(t). Since ,(t, r, r) is upper
sernicontinuous and nondccrcasing in /, the supr€mum is the same if
restricted to rational valucs of/, rnd hence dD is the pointwise suprcmum
of a countablc frrnily of f,rnctions of thc form

(,, 0 * r(r,', t - /(d(r) + 2'p(r)),

each of which is 9 x 4-mcrsurable (Propositions 3 and 5). Therefore
do is J9 x .4-measurable. 'Ihe functions just rDentioned are also convex
in r, ind therefore so is do . Setting

0(t, t : ndtdo(t, r), 0o(t,0i,0),

we have these properties, and also d(t, r) > d(t,o) for all r > 0; the
latter ensur€s that d(t, s) is nonde.reasins in r. Since 0 < A(t, t < d"(t),
it is clear that d(t, s) is summable in ,.

As for the assertions about l, the assumptions about { giv€ us the
cxistence of 't ) 0, i ) 0 andy > 0such that

l,(l,) > ,? lr l

l,(b) >- y

if lrl>3,
if lrl<i.

t(b)> t-nlbl for all6.

A functionj with the desired propcrty is then defined by

jG) ,." y +;nf{ro(a)l tdt<r).

lixrsrENcE THEoRDTT 2. Asnne that L sdt;s/ies the nauity nn-
dil;on, and that H and I sdt;sl! the st/oryet ercwth.ond;tion. Then a the

la.a oG) < d), "€n,
p('),r'l :' o,

z(t, r, o) + d(t) | r | > sup$tl o I 2f(t)lrll {r(r, t}
: s(t, naxl0, !l 2p(t)l'l)),

s(,, @) : sup{-s - /(t, t} : sup{l o s -- d(t, t}.

(,4rd l'(r)l : Jto) '(r)lil'(r) if l'(r) > 0,

:0 if r0)..0,

(d/d4 a(,) 2p(,) l,(,)l < -(t).
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arc .an?tct h the bcdh totologJ oJ 0t (dnl ho(e dko ia p Ntn' totolog!
ol €J, to that .b uttu;ns its nininun oxet 0l .

Proo/. We take the growth condition in the form ofl'roposition 7 and
show that thc lcvcl sets are bound€d in the norn of ?. A crucial fact is
that Propos;tion 6 can b€ applied to the function/(t, s) : ,(t, I s l) on

[0, l] x n.'l'his is to be done near the cnd ofthe proof.
Starting out, r'e observe that the inequrlity

I e - r.(r, x, o) < fl(r, r, f) < d(r, l? ) 1 'lk(,) I2p(r)ltl)

impl;es

s I o L - /,(r, ,, !) < d(r, t + I , | (o(r) I 2p(r)r) for au '>0.

Suppos€ now that llj e A satisfies d(r) { a. We shall derive an upper
bound for llllj r. L€t

-(r) - max{o, li(r)l 2,,(r) l,(r) },

/,(,, r(t), r(t) > -d(,) lr(r)l +s(t, o(,)).

(This and some of the subs€quent ass€rt;ons arc true, of course, only in
the "almost cvcrywhere" sense.) The fodnula

Setting

,(,) = *pl 2J,'



wc tllcreby hnve the estimrte

(/i //)l'(0 lr{0ll < -(t).

,(", rrr) ,,0, t(0)l Ji -(,)ln

or i', other words, sincc /. is tlccrcasins and o ) 0,

,(l) lr(rl <l'(0)l ['-k)/i rorau ,€10,r].

'l his sl)ows that

r''. ': ['(oi 1,,-t,,all<tt.

wc proceed to deducc t'ou,ds on | f(0)l and $-(t) /, from tl e f,ct
thot

" o(9 . J" 
r.(,, 1(,r, *(/)) J, 1. r((0). r(l))

J,."(,)r'rrr tt t l^t(,ult)).I i(lr(0)l) rlr(l)'

l'a,'",ttto' r' /.0,ion) [' sh I f "(4dl

'J"r(e-t,,,4 4( .r0r , !ll\{ur lJo-(r)l//l'

' - lr ' J" <'r't'17'ttt'

'l he exprcssion t(l a l) t I a I is bounded bclow by emc non,ber /.
'l'Lis f,nlorvs from thc I'rolcrties of A nsserted in lloposition 7. Ijenc€

l"!lt'-tttt'lt 6 Y I tlr-kJ

lnrt tlic set of function o srtisfying llis inc(lurlity is borndcd in jtrl,

co:lTRoL FRoBLEMS oF no|,z^ rND r-^cRrNcE 331

according ln Iropusirion 6.'lhcrc;s a numb(r /,, rlrrclore, such rhJr
every o satisfyi g this incquality also sitislirs

J,, -(')/' /'

'this, crn bc used thcn in thc csdnatc fol r 
' 

derivcd abovc.
'lb get a corrcsponding etnnate for | {0)1, we argtrc next .hat

, l(l \(0)l) iIr(0)l J" kt,. -(I) i,(/)rd,.

l( '(0)l)-il,(o)l 3" 6 f'oP,9ar < a-,

slt,6(t ) > ."4t, o(t,,1

by delinitior. Mrking use ogtrin of thc propertics of L in troposit;on ?,
ivc $ec thc qistcncc of a number D' such that c!(ry a E R" sadsfyins

ft ar)-ildl 4 l .l,,ttt..idt

also satisfies lu | < ,'. In tlie estimdle for I ' lL' , this now yieldg

llr llr < Ir' + /rll'(l).

'l hus every r e A sat;sfy;ns @(r) < d satislles this bound, and thc
th.{,rem is thcrcby proved.

'l hc prec.ding thmrem can be applicd, of courso, with thc roles of
40) and (l) rcverscd in thc growth €ondition on I llorvever, it has
dednite IiDitrtions; for instance it is not relcvar)t tor any problems of
Lagrnnge in which neither a(0) nor {l) is iD\nicitly co:$train€d to a

bounded $t- Presum,hly such ceses might hc hrodlcd I'y $mc growth
condition iovolving -L (or €quivalendy Il) ant t joi^tlr.'l-o show that
this is not i hofckss idca, w€ rcstak a result in this dnection ttuved in Il.

Somc l.l.tion nust be inboduccd. Lct rr bc tle set of all pairs
(., .r) e R" ) R" such thit for somc p. t? suflicnartly larse one has

fi. TYNRDLL RO(I(AFELL?IR

t(n,hJ>c.d-b.d F fffr1l (a, r).
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For each t e [0, 1], p e R ,ler E(, Pt be the closure of the set of all
- e nr sDch that, for some p sutrciently large, ooe has

L(1,",t)>$.r t, r lj fo.all (,, 
').

Let ,. be the set of .ll pNirs (., d) € t" x R" such that there exists

, -. ,Z satisfyinC

rt(!)€ t(,r(t)) almost cldywh e, ,(o):,, p(t)-d.

It is easy to see that the sets Dr and ,, are convcx. For a convex s€t

, we denot€ by aff, the afine hull oI D, and by ri D the int€rior of D
r€lativ€ to afi ,.

Finally, let lto be the function obtaired by trking th€ concave hull of
H(t,', ?) |n, i.e., HoQ,,1) is for each (t,r) thc l€ast concave function
(cxtended-real-valued) n jorizits H(t,', g).

EI|sTEN.E THEoRL\a l. Suplosp lhat L tatisf.s the rcntexitj .o i-
rkn, Ho satisfes the l)a'ic gtouth @ ;t;on, and

ti DL^ ti D. + o, tfr IDLUDtl:R"xR.

Then the conclnsk,E ol Lt\isterte Theotem 2 are oalid.

CoRoLLARy. S,QpoJe t, dt L sdtisf.es the cont)exiry eo ition, I najonzes
.rt lzast one afrne fun.tion, dtut the finction

iu(t,r,@):sup{e '.1 P e zt, ', ')}

bna herc + 6 and in la.t satbfes

I M\t. t,qdt 6 ld att ? R".

The the .on h$iotls oJ L'istence Theorcn 2 arc dEd.

P/o.y'. wc clearly havc Dr * z, E(t, p\ - R, and h€nce Dz:
1lN x R!. M is li x .4 measu.able by Proposition 6, and

n1(, 1', 0) '- stP I1(r, r, P)

'l hos for erch r and I' the n!,ct;on x-/t(,.1, r') is maiorized by a constant

CONTROL PROBI,trMS OI IIOLZA AND L,ICRANGN

functioD of r whosc valuc is summable in I (namely D.x[0, ,14(r, ?, 0)]).
The same is thcn true of flo , and in particular we see that 1lo satisfies
thc basic growth condition.
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