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Existence Theorems for General Control
Problems of Bolza and Lagrange

R. TyrreLL ROCKAFELLAR*
Department of Mathematics, University of Washington, Seattle, Washington

DEDICATEDY TO GARRETT BIRKHOFF

The existence of solutions is established for a very general class of problems
in the calculus of variations and optimal control involving ordinary differential
equations or contingent equations. The theorems, while relatively simple to
state, cover, besides the more classical cases, problems with considerably
weaker assumptions of continuity or boundedness. For example, the cost func-
tional may only be lower semicontinuous in the control and may approach
-} @0 as one nears certain boundary points of the control region; both endpoints
in the problem may be “free’”. Earlier results of Cesari, Olech and the author
are thereby extended.

The developmment iz based on the theory of convex integral functionals and
their conjugates. The first step is to show that, for purposes of existence theory,
the problem can be reduced to a simpler model where control variables are not
present as such. This model, resembling a classical problem of Bolza in the
calculus of variations, but where the functions are extended-real-valued, is then
investigated using, above all, the conjugacy correspondence between generalized
Lagrangians and Hamiltonians,

1. INTRODUCTION

The problem we consider consists of minimizing the functional

Yx, u) = J: Kz, x(t), (1), u(t)) dt - {x(0), (1))

over all absolutely continuous functions x: [0, 1] — R* and Lcbesgue
measurable functions u: [0, 1] — R™, where
K: [0, 1] % R* X R* x R®— RU {40},
I R* 5 R" — R U {-}o0).
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We denote this problem by (Q) and call it a control problem of Bolza.
Here the value -} 00 is used as a penalty to incorporate constraints into
the definition of K and J, so that constraints do not appear explicitly in
the model.

This model was intreduced in an earlier paper [1, Section 6]. There
we discussed its relationship with optimal control problems in other
formulations, as well as the question of its equivalence with the reduced
problem (P) in which one minimizes the functional

1
P(x) = f Lz, x(2), %(2)) dt -I- 1{x(0), x(1))
0
over all absolutely continuous functions x: [0, 1] — R", where

L{t, x, v) = inf K(t, x, v, u).
e R™
The equivalence was used in deriving, by methods of convex analysis,
various extensions of results of Cesari [2] and Olech [3] on the existence
of solutions.

The goal of the present paper is to demonstrate the equivalence with
the reduced preblem in a more general way than in [1] and thereby to
obtain new cxistence theorems. These theorems, couched in terms of the
compactness of level sets of the functional @, invelve new growth
conditions broadened to include properties of /, as well as of L.

The following technical assumptions are imposed. T'he functions
K{(t, -, -, *) and [ are lower semicontinuous. Furthermore, K i1s & X #-
measurable, which is to say, measurable with respect to the o-algebra
generated in [0, 1] x R* x R® »x R™ by products of Lebesgue sets in
[0, 1] and Borel sets in R® X R™ x R™.

The latter assumption ensures in particular that the integrand

t = K{(t, x(t), &(t), u(t))

is Z-measurable (Lebesgue measurable) when x is absolutely continuous
and # is #’-measurable (since then the mapping ¢ — (x(£), £(2), u(t)) is
#-measurable). If for a given x and u this integrand is majorized almost
everywhere by a summable, real-valued function of ¢ and if
Hx(0), x(1)} <= - oo, then the value of ¥(x, u) is well-defined in the
customary sense of the theory of integrals (possibly —o0). In the

remaining case, we adopt the convention that ¥(x, u) = - co.
By definition, then, if x and u are such that W(x, u) <= -]-co, the
conditions
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() e F(t, (1), u(t)) for almost all ¢,
((0), x(1)) & C,

are satisfied, where

F(t, x, u) = {ve R™| K(¢, x, v, ) < -0},
C = {(a, )€ R" x R* | a, ) < +oo).

These conditions may therefore be regarded as the implicit constraints in
(Q).1f they can be satisfied at all,i.e., if inf ¥ < o0, then(Q)is equivalent
to minimizing ¥ subject to them, and in particular every optimizing
pair must satisfy them. If [ is an indicator function, ie., identically O
on the set C, then (Q) is a control problem of Lagrange. If on the other
hand, K is an indicator function, i.e., K(f, #, v, #) = 0 for all v e F(t, x, u),
then (Q) is a control problem of Mayer. In the general case, the sets
F(t, ¥, u) and C may not be closed, if the functions tend to -}-o0 at
certain boundary points,

Although the model treated here has a fixed time interval, normalized
for convenience to [0, 1], problems with variable time are also covered
by the results, since most such problems can be reformulated as problems
over a fixed interval. This does not raise difficulties, because the condi-
tions imposed here are very broad and flexible. A method of reformulation
is given in [1, Section 3] which, contrary to classical “parametrization™
of the problem, does not necessitate any topological assumptions on the
way K depends on ¢.

Our approach rests essentially on the theory of convex integral
functionals and their conjugates. This ujpears to have the advantage of
yielding stronger results with less notation and fewer direct assumptions.
However, the ideas are closely related to those in Olech’s work [3, 4],
where the setting is somewhat more geometric. In particular, the growth
conditions in our first two existence theorems were inspired by corre-
sponding conditions of Olech in [3].

2. EQUIVALENCE WITH THE REDUCED PROBLEM

A multifunction I': [0, 1] — R¥ is will be called Z-measurable if its
graph

G(I) = {(t, 3) | s € I(t)}
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is % % %-measurable as a subset of [0, 1] x RM. If I'is closed-valued,
definition is equivalent to various others in the literature; see [5, 6] and
the references given there. We cite several facts from this theory that
will be needed.

ProrosiTion 1. Suppose I':[0, 1] — RY is a closed-valued multi-
function, and let

T —{te[0,1]1 T() # o).

In order that T' be ¥ -measurable, it is necessary and sufficient that T be a
Lebesgue set, and that there exist a countable family (2;);c; of &-measurable
functions z;: T — RN such that

) = cl{z,(t) | iel}  forevery teT.

CoroLLARY (Measurable Selections). Suppose I':[0,1] — RN is a
closed-valued, ¥ -measurable multifunction such that I'(t) is nonempty for
almost every te(0,1]. Then there exists an ¥-measurable function
z: [0, 1] —> RY such that

wt)eI'(t)y  for altmost every te (0, 1).
Prorostrion 2. Let f:[0, 1] x RY — R U {40}, and let
I() = {(z @) e RM [ 2= f(1, )
Then f is & x %B-measurable if and only if I is L -measurable.

The set I'(t) is the epigraph of the function f(¢, -). We note that it is
closed if and only if f(¢, 2) is lower semicontinuous in 2.

Proposition 2 is entirely elementary, but Proposition 1 has, of course,
a deep proof, due to Rokhlin, Castaing and others.

We also state at this time a result which will not be needed until
paragraph 3, but which provides one of the most valuable criteria for
% % %-measurability—the Carathéodory condition.

Prorosirion 3. Let Z be any Borelset in RY, and let f: [0, 1] X Z— R
be such that f(¢, 2) is continuous in z for fived t and F-measurable in t for
fixed z. Then f is & X B-measurable, and in fact all the level sets

{t, 2)e[0, 1T x Z|f(t,2) = o

are & x JB-measurable as subsets of [0, 1] = RV,
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Proof. We indicate a particularly simple proof. Let (w,)i2; be a dense
sequence in Z. Fix o€ R, It is clear that f(¢, 2) < « if and only if for
every positive integer j there exists w; such that |w; — 2| << 1/j and
fltw) < e+ (1), Let

Ty = (e [0, 111 £( @) < o« + (1)
Zy={(zcZ||w—z| < 1}

Clearly Ty is #-measurable in [0, 1], and Z;; is #-measurable in RY.
From what we have said, the level set in the proposition can be expressed
as

OU Ty % Zy.
Je=l dmal
Hence it is % X %-measurable, and the proof is complete.
We shall say that the function K satisfies the inf-boundedness condition
if every fixed t € [0, 1], x € R, and every bounded set S C R™ X R", the
set

fuc R™|3I(x, v)e S with K1, x, v, u) < a)
is bounded.

EquivaLeNcE THEOREM. Suppose that K satisfies the inf-boundedness
condition. Then the function L is & x %B-measurable, and the infimum in
its definition is always attained (hence never — o). Also, L(t, x, v) is lower
semicontinuous in (x, v). Thus in particular, the functional @ which one

minimizes in the reduced problem (P) ts well-defined.
Furthermore, for every absolutely continuous function x one has

P(x) = min{¥(x, u) | © L-measurable}

(where the minimum is attained by at least one L-measurable function u).
In this sense, (P) is equivalent to ((J).

Proof. 'The condition implics in particular that for fixed (1, », v)
the level sets

{fue R™ | K(t, %, v, u) << af, xeR,

are all compact, since we alrecady have them closed by our lower semi-
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continuity assumption. Thus the infimum in the definition of L is always
attained, and we have for each € [0, 1]and xe R

{{x, ©) | L1, x, v) << rx}l = {{x, ©) | 3u, K(1, x, v, 1) = a}.

Invoking the inf-boundedness condition more fully, as well as the lower
semicontinuity of K(t, x, v, ) in (x, v, u), one sces the closedness of the
set on the right. The level set on the left is thercfore closed; thus
L(t, x, v) is lower semicontinuous in (x, v). Consider now the epigraph
multifunctions I and I'y defined by

I(t) = {(x, v, u, o) | K(t, x, v, v) = o},

Iy(t) = {(x, v, &) | L{L, ¥, v) = o}
These are closed-valued, since K(L, -, -, *) and (¢, -, -, -) are lower semi-
continuous, and I'y(f) is the image of I'(f) under the projection

(x, v, u, &) — (x, v, a).

We know from Proposition 2 that I' is .#-measurable, because K is
#-measurable. Hence by Proposition 1 the set

T = {te[0, 1] I'(t) # o}
i3 .Z-measurable, and there exists a countable family of .#-measurable
functions (x; , v, #; , &;) on T, i € I, such that
() = clf(x,(2), v(t), (2)) | i €1} for every teT.
Then we have

Iy(t) = cl{{x[2), vy(t), a(t)) | i1} for every teT,

implying by Proposition 1 that I'y is #-measurable. Hence L 1s # X %-
measurable (Proposition 2), and @ is well-defined as claimed.

Since K(t, x, v, u) = L(t, x, v) by definition, we always have ¥(x, u) =
@(x). To complete the proof of the theorem, we suppose therefore that
x is an absolutely continuous function with ®(x) << 400, and we
demonstrate the existence of an #-measurable function u such that

Y(x, u) = D(x). Define
St u) = K{t, x(t), £(t), u),
#(t) = L{t, (), (1)),
) = fwe R | f(t, ) < g0}
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The ¢ values here belong to the Lebesgue set T of full measure where
#(t) exists; for other ¢, we define I')(f) = ©. We need to produce an
#-measurable function # with u(z) € I'y(¢) for almost all ¢, and to do so
it suffices to show that the multifunction I satisfies the assumptions of
the Corollary to Proposition 1.

Certainly I'; is closed-valued, because f(¢, #) is lower semicontinuous
in u. It is also nonempty-valued for ¢t € T}, because the infimum in the
definition of L is always attained. We observe that fis % x #-measurable,
because K is # x Z-measurable, and because the mapping

&: (t, w) — (L, x(1), 2(2), u)

on T, % R™is measurable in the sense that 671(S) is & < % measurable
when the set § is .%¥ X #-measurable. ('['his property is evident for sets
S of the ¥ x B x & < # product form in [0, 1] x R* x R™ x R™,
and hence it also holds for all sets in the o-algebra generated by such
product sets). Similarly, the function g is #-measurable, because L is
¥ x @-measurable and the mapping

0: 1 — (3, x(t), (1))

1s measurable in the sense¢ that 8 (S} is #-measurable when S is
¥ % #B-measurable. Since g is .#-measurable and f is & X #-measur-
able, the set

{(t, )e Ty x R | f(2, u) < g(t)}

is & x #-measurable in [0, 1] % R*. But this is the graph of I', . Thus
I, is #-measurable.

3. SemricoNTINUITY OF THE Borza FuNcCTIONAL

The question of whether the control problem (Q) has a solution is
reduced by the equivalence theorem to the question of whether () has
a solution. From now on, we thercfore direct our attention at the func-
tional @ and the properties of its level sets relevant to the study of whether
@ attains its infimum. It is assumed, as is true in the context of the
equivalence theorem, that L is % x %-measurable, and L(¢, x, v) is
lower semicontinuous in (x, ©) for each t. The results below are valid
for any such function L; no particular K need be involved.
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We shall say that L satislies the convexity condition if L(t, x, v) is
convex as a function of v for each (¢, x). This holds if L is derived as
above from a function K with K(¢, x, v, u) convex in (v, u).

The Hamiltonian associated with L is the function

H:[0,1] x R* X R* — R U { Lo}
defined by

H(t, x, p) == sup {p - v — L(t, x, v)}.
veR"
We shall say that I satisfies the basic growth condition if for each fixed
pe R and bounded set S C R™ there exists a summable function
¢: [0, 1] = R such that

H{t, x, p) < ¢(t) forall te10, 1) and xS,

This is a generalization of the classical conditions employed in existence
theory by Nagumo and Tonelli and later by Cesari. It was first used in a
form equivalent to the present one in papers of Olech [3, 4].

Before deriving the main consequences of this condition, we prove a
couple of results that shed more light on it.

ProrosiTioN 4. The Hamiltonian H always has the property that
H({t, x, p) is convex and lower semicontinuous in p. If L satisfies the con-
vexity condition, the formula

L(t, x, v} = sup {p - v — I, x, p)}
peR™
is also valid. If H satisfies the basic growth then H is & X Z-measurable,
and H(t, x, p) is upper semicontinuous in (x, p).

Conversely, suppose H is any £ x Z8-measurable function such that
H(t, x, p) is upper semicontinuous in x, convex in p, and everywhere less
than -| oo. Let L. be defined as above. Then L is an & x ZB-measurable
function such that L(t, x, v) is everywhere greater than -0, lower semi-
continuous in (x, v), and the convexity condition is satisfied. Moreover,
then H is the Hamiltonian assoctated with L.

Proof. 'The fact that H{t, x, p) is convex and lower semicontinuous
in p is obvious from the formula. Indeed, (2, x, -} is the conjugate of
the function L(, x, -). If L(¢, x, -) is convex, in addition to being lower
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semicontinuous and everywhere greater than — oo as we have assumed,
then it is in turn the conjugate of its conjugate. In other words, the
formula given for L in terms of H is valid. (For the theory of conjugate
functions, see [7].)

To show the measurability and upper semicontinuity of I, assuming
the basic growth condition, we rewrite the formula for H as a special
case of the situation in the equivalence theorem:

Lt, x, p) = inf K¢, x, p, v),
ve R"
where L, = —H and
Kyt x, p, v} =L(t,x,v) — p 0.

It is clear that K, is lower semicontinuous in (x, p, v) and & x H#-
measurable. We want to establish that L, is lower semicontinuous in
(%, p) and & x Z-measurable, and for this it suffices by the equivalence
theorem to show that for fixed £ € [0, 1], x € R and r = 0, the set

M={v|3x, p)with | x| = r, |p| =7, L{t,x, v)—p-v = of

is bounded (| - | = Euclidean norm). For later purposes, we shall state
the argument somewhat more broadly than would really be necessary
at the moment. Consider any s == 0 and let {p, ,..., p;} be a finite sct in
R such that

|| == implies  p €co{py,..., Pi)-

There exist by the basic growth condition summable, real-valued
functions ¢; such that

|a| <r implies  H{t, =, p;) << (1), £ = ., m
It follows then from the convexity of H(t, x, p) in p that
|x| <r and 1P| =5 implies H(¢, x, p) < $(2),
where

We note in passing that the function ¢ is again summable. For all (x, v)
with | x| =2 », we have by the defimition of H the inequality

pro—Lt v <d@) it |p|<s,
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and consequently
Lt x,v) = sup {p v —$(t)) = s|v]|—¢(t).
Inl<a

Supposing now that s > r, we observe that if © belongs to the set M
above with corresponding (x, p), then

a Lt w0 —pro=s|v| =4 —|pllo] = (s —r) o] —b0)
Thus every v € M satisfies
lo] = (@ + ¢ —7)
and the boundedness is verified.
For the converse part of the proposition, we note that the properties

of H imply that H(Z, x, p) is continuous in p (cf. [7, Theorem 10.1]).
The formula for L in terms of H can therefore be written as

L(t, x, v) = sup{p, v — H(i, x, p;}} = —o0,
iel

where (p;);c; 1s any countable, dense family of points in R*, Tach of the
functions

(t} Xy ‘D} _*Pi U — 11(1! &, P:)

is lower semicontinuous in (x, v) and .% x Z-measurable and therefore
L, as the supremum of a countable collection of such functions, also has
these properties. Moreover L(#, x, ) is by defimtion the conjupate of
H(t, x, -) hence convex. Since H(t, x, -) i1s a convex function everywhere
less than -|- oo, it agrees with its biconjugate, the conjugate of L(¢, x, -).
Thus H is the Hamiltonian corresponding to L.

ProrosiTioN 5. Suppose H satisfies the basic growth condition. Then
H actually satisfies the growth condition

H(t,x, p) < h(t, | =], [ p]) forall t x,p,
where the function h on [0, 1] x [0, + o) x [0, 4 o0}, defined by

h(t,r,s) = max{H({t, x, p) | | x| =7, | pl| =5} < oo,
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is & x H-measurable, nondecreasing in r and s, upper semicontinuous in
(7, 8), convex in 5, and

1
[ h(t, r, s)dt <2 -0 forall v =0, s=0
0

Proof. The maximum in the definition of % is indeed attained and
not oo, since H(t, x, p) is upper semicontinuous in (x, p) by Proposi-
tion 4. In fact, if we write the dcefinition of / as

Lyt r, 5) = mi;1 Ki(t,r, s, % p),
where Ly(¢, r, s) = —h(t, | v |, | s]) and

Kt r, s, p) = —H(, x, p) if |x|<r, [p] = s,

= -} oo otherwise,

the hypothesis of the equivalence theorem is satisfied. We may conclude
thercfore that 4 is upper semicontinuous in (r, s} and £ X %-measurable.
We also can express k by

h(t,r,5) =sup{s(p-v) —L{t, », o) | [x| <r, | p]| < 1},

and this shows the convexity in s, since the supremum of a collection of
affine functions of s is convex. It is obvious that % is nondecreasing in r
and 5. The proof of Proposition 4 constructs for each r and s a summable
function ¢: [0, 1] — R such that k(t, 7, s) <X $(f) for 0 < ¢z < 1, and
hence the integrability assertion about & is valid.

We proceed now to state the main result of this section.

Let 7 denote the Banach space consisting of all absolutely continuous
functions x: [0, 1] — R*, the norm being

Il 1)+ [ 150 .

(We denote by | - | the Euclidean norm in R™.) Let € denote the usual
Banach space consisting of all continuous function x: [0, 1] — R",

| %lle = max | *(2)]-

We have | xlle < || %|lq for x e C €. It is known that every weakly
compact subset of (7 is strongly compact as a subset of €. ('This follows
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from the Ascoli-Arzela criterion for strong compactness in % and the
Dunford-Pettis criterion for weak compactness in %7 spaces, applied
to x).

SEMICONTINUITY THEOREM. Suppose L salisfies the convexity condition
and H satisfies the basic growth condition. Then for all real numbers o« and
r the set

fxedl | ) <ol xlle <7}
is compact in the weak topology of (¥ and hence also compact as a subset of €
in the norm topology of €.

In particular, @ is lower semicontinuous relative to the norms of (¢ and ¢
and lower semicontinuous sequentially relative to the weak topology of (Z.

The proof of this theorem will be based on a fundamental result about

integral functionals. Here %, denotes the usual Lebesgue space of RY-
valued, summable functions on [(, 1], and similarly %,*.

Prorosition 6 [6,8]. Let F be an £ x JB-measurable function on
[0, 17 x R» such that f (¢, 2) is lower semicontinuous in 2, and let

g(t, w) = supfew + 2 — f(t, 5) | z€ RN},

Then g is & < %-measurable. One has the representation
1 i 1
[ g, ity de == sup ; [ wete) - sty de — [ £, 20 dr\ze_g;wz,
o 1] ha i}
provided that J"l) f(2, 2(£)) dt << + o0 for at least one z € £,”. If actually
1
j ft, 2)dt << o0 for every zeR®,
0
then for every z € £, and f € R the set

}weﬁ?Nl

Iﬂlg(f, w(t)) dt < 8 - _[1 w(t) - 2(t) dt

1]

is compact in the weah topology of 2.



324 R. TYRRELL ROCKAFELLAR

Proof of the Semicontinuity Theorem. We first fix € R and r > 0
and apply Proposition 6 to the function

[, p) = h(t, 1, | p ),
where h is the function in Proposition 5. The hypothesis are satisfied,

and hence the set

1
Sp=lrea|[ g se)a <p sl <r
o
is weakly compact for every 8. (We can identify 7 with R* x %! for
considerations involving the weak topology, x «+ (x(0), %)). Since
prv— L, x, v) << H(t, x, p) < f(1, p) for |x|<r,
we have
It %,v) > sup (p-v— (L, p)} —g(t,v)  for |x|<r.
¥ wk"

Thus if || x l¢ < r we have
B(x) — LI L(t, x(t), #(1)) dt + (=(0), *(1))

1
> [t #0) e+,
where (using the lower semicontinuity of [)
y =minfl(a, d) | |a| <r, |b| <7} > —c0.

Tt follows that the level set in the theorem is contained in the level set
S; if B = a — y, and hence it is weakly compact as claimed, if it is
weakly closed sequentially. (A subset of a weakly compact set in a Banach
space is weakly closed if and only if it is weakly closed sequentially.)

We now apply Proposition 6 again, this time to the function f,(, p) =
H(t, x(t), p), where x € (Z. The hypotheses of Proposition 6 are satisfied
in view of Proposition 4, the basic growth condition, and the mcasur-
ability of the mapping (¢, p) — (¢, x(2), p). Furthermore, the convexity
condition on L implies that the function g, corresponding to f, is

g:r-(r! ﬂ) = sup {.'" O ;”(I', .1‘.‘{!'), P}} = L(ft x(f)= 'D)‘

peR"
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It 1s true therefore that

D(x) = H{x(0), 2(1)) S;,pq I“: p(t) - &(t) dt — Ll H{t, x(t), p(2)) dt;}.
The functional
x = {(2(0), x(1))

is weakly lower semicontinuous en (7, so that the proof now reduces to
showing that cach of the functionals

x—r -[: plt) - (1) dt — _[: H{t, x(1), p(2)) dt

is weakly lower semicontinuous sequentially, or in other words, that for
each p € % we have

lip sup J‘: H(t, x,(t), p(2)) dt < L Il H(t, x,(t), p(1)) dt

if %, — x, weakly. But this follows from Fatou's lemma and the upper
semicontinuity of I in Proposition 5, since by Proposition 6 the inte-
grands are all bounded above by the summable function

#(t) = max{0, h(t, 7, )
if r and s are taken sufficiently large.

Remark. It may be wondered why we have not necded to invoke
something like the well-known condition Q of Cesari, which is closely
related to scquential weak lower semicontinuity (see Cesari [9]). The
answer is that this property of the multifunction

x — epigraph of L{¢, x, *)

is equivalent, under the basic growth condition on /{ and convexity
condition on £, to the lower semicontinuity of L(¢, x, v) in (x, v). The
role of Cesari’s condition was taken in the proof by the fact that the dual
representation of L,

L(t, x, ©) = sup{p v — (1, x, p}},
v

is valid in these circumstances with H(t, x, p) upper semicontinuous in x,
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4. EXISTENCE OF SOLUTIONS

We demonstrate next that in certain general situations the function
& does attain its minimum over the Banach space (7. First an immediate
corollary of the semicontinuity theorem is stated.

ExisTENCE 'THrOREM 1. Suppose that L satisfies the convexity condi-
tion and H satisfies the basic growth condition. If there exists a minimizing
sequence (x,)E.y for © such that the sequence of norms || x; |l¢ ts bounded,
then there is a subsequence converging in both the norm topology of € and
the weak topology of (X to an x & (I minimizing P.

In particular, ® attains its minimum over (U if there is anr = 0 such that

Eft, x, v) =7 -}oo implies | x| << r.

Further existence theorems can be obtained by divising growth
conditions which ensure that the level sets of the form

fxe | Px) < o

are bounded in the norm of €. This scems mostly to be a matter of tricks
and happy discoveries. No single growth condition presents itself as “the”
natural one, encompassing all the others. We concentrate below on
developing a single condition which covers a great number of important
cases and yet has the virtue of being fairly easy to understand and apply.
"This condition is an offspring of one used by Olech [3] in a different
setting of problems of Lagrange; sce the result of Olech which we have
formulated as Theorem 4 of [1].

Let us say for simplicity that H and ! satisfy the stronger growth
condition if

H(t, %, p) =< pult, p) + 1 %] (o) + p(B) | 2 1)s
la, b) = l(a) + L(B),

where of), p(#) and p(z, p) arc finite and summable as functions of £ (with
o and ¢ nonnegative), I, and /, are bounded below on bounded sets, and

lim inf Lj(a)/] @ | = +c0,
lal++a

Ili;1|'| inf I{/] b] = —oo.
bl
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Certainly in this event H also satisfies the basic growth condition.

Note that the properties of I hold in particular if  is bounded below by a
constant f§ and the set !

A = {ae R™| 3be R* with la, b) <= 400}
is bounded. ('ake Ifa) = 0 if aec 4, [(a) = o if a ¢ A, L(B) = A).

ProrositioN 7. Suppose H and I satisfy the stronger prowth condition.
Then one also has

Ht, 2, p) < 0(t, | p1) + | % [ (o(t) + 2p() | P ),
Ua, ) = j(lal) —n[b), 7 =0,
where 0: [0, 1] % [0, +00) —» R and j: [0, |- o0) — R U {-|-} are certain
functions such that 0 is & x Z8-measurable, 6(3, 5) is summable in t, convex
and nondecreasing in s, j(s) is nondecreasing in s and
lim j())s = +oo0.

Proof. We begin by demonstrating that for each s = 0 there is a
summable function ¢,(¢) such that

h(t, v, 5) < (1) +r(o(t) + 25p(t))  forall 7 =0.
Let {p, ,..., p} be a finite subset of R"* with | p; | << 25, such that
|p|<s implies peco{py,.., i)
We have
H(1, x, p) << ult, po) + | x| (o(t) 4 25p(2)), t=1,.,k

Since H(t, x, p) is convex in p, it follows that for |x| <~ and
| | == s we have

H(t, x, p) < ult, p) + #lo(t) 1 25p(8)), i =L, k.
The desired incquality is therefore true for

dt) = OAK plt, po
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and this function is summable in ¢ because w(t, p;) is summable in 2 ,
We now define

0t ) = suplh(t, 7, ) — r(o(t) + (1)), 5 >0,

where the supremum is bounded above by ¢,(¢). Since A(2, r, s) is upper
semicontinuous and nondecreasing in 7, the supremum is the same if
restricted to rational values of 7, and hence 8, is the pointwise supremum
of a countable family of functions of the form

(t, ) > h(t, 7, 5) — r(a{t) + 25p(2),

each of which is % x %-measurable (Propositions 3 and 5). Therefore
8, is ¥ x #-measurable. The functions just mentioned are also convex
in 5, and therefore so is 8, . Setting

8(t, 5) == max{f(t, 5), 8,(¢, 0}, 0},
we have these properties, and also 8(f, s) = ¢, 0) for all s == 0; the
latter ensures that 6(t, s} is nondecreasing in s. Since 0 <C 0(¢, 5) << $,(1),
it is clear that (2, s} is summable in ¢,

As for the assertions about /, the assumptions about I, give us the
existence of n = 0, § = 0 and y == 0 such that

Wo) = —91b] I 18] 25
L) = — i€ 161 <s.

We then have
L(B) = —y —n|b]  foralld.

A function j with the desired property is then defined by
j(s) == —y + inf{l@)] | a| < s}

ExisTENCE THEorREM 2. Assume that L satisfies the convexity con-
dition, and that H and ! satisfy the stronger growth condition. Then all the
fevel sets

(xef|dx) <), o«eR,
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are compact i the weak topology of (¢ (and hence also in the norm topology
of €, so that & altains its minimnen over (Y,

Proof. We take the growth condition in the form of Proposition 7 and
show that the level sets are bounded in the norm of €. A crucial fact is
that Proposition 6 can be applied to the function f(t, 5) = 0(, | s[) on
[0, 1] x R. This is to be done near the end of the proof.

Starting out, we observe that the inequality

pro— Lt x0) < H(t 2, p) < O p1) 1 | x| (o) 1200 | £ )
implies
s1o| —L(t, %, v) < 0(t,5) + | x| (o(t) +2p(t))  forall s>0.
Therefore
L(t, %,9) +o(t) | x| > sup{sl] 0 | — 20(0) | = ] — 0, )

= g(t, max{0, | v | — 2p(8) [ % [}),
where

Suppose now that x € (¥ satisfies P(x) < «. We shall derive an upper
bound for || x ||¢ . Let

so that
Lt, 3(2), () = —o(t) | 50| + (b, w(t)).

(This and some of the subsequent assertions are true, of course, only in
the “almost everywhere” sense.) The formula

(djdty [ s(O)] = [&() - 2]/ x()]  if ] (t)
=0 if |x()| =0,

=0,

yields for us

(dJd) | 5] — 25(6) | 58] < ).
Setting

r(t) = exp ?—2 J:If a(7) d/r} =0,



330 R. TYRRELL ROCKAFELLAR

we thereby have the estimate

(d;‘lh)[l'(f) I \‘(f)” = m([}.

T'herefore
t
f0 13O~ r©) 15O < | wl)dr,

or in other words, since % is decreasing and w = 0,

r(1) | 2(0)] < | %(0)] -| j ‘a@d  foeall 1ol
a
‘I'his shows that

ke < (100 + [ ot at] 1),

We proceed to deduce bounds on | x(0)| and _f:, «t) dt from the fact
that

a == Bx) = .[: {1, x(t), £(1)) dt + 1(x(0), x(1))
= [ ole) [0 de 1 [ g, 0(0) de 421 SO — 2 150
1 1
> [ ate, ol e+ 1 (ON) — Dl [+ [ ote) ]
S O RN SO — 3 [1 O]+ [ te) ],

where

I [,] I L’ a(t) m] /f(l).

T'he expression k(| @ [) - 5 | @ | is bounded below by some number y.
"I'his follows from the properties of k asserted in Proposition 7. Hence

J:: o, () dl = —y+3 _‘: w(t) dt.

But the set of function w satisfying this inequality is bounded in #!,
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according to Proposition 6. There is a number D, therefore, such that
every w satisfying this inequality also satisfies

[ " w(t)dt < D.

0

This D can be used then in the estimate for || x ||¢ derived above.
T'o get a corresponding estimate for | x(0)|, we argue next that

« 2 K1 (O = £ 50 + [ et wft) — swl)] dr,

and consequently

k() x(0)]) — 5| %(0)] < & -+ L' 0(t, 5) dt < +co,

inasmuch as
£(t, () = swlt) — 0(t, 5)

by definition. Making use again of the properties of k in Proposition 7,
we see the existence of a number D' such that every a € R* satisfying

1
klal)—5|a] < o [ o, 5) dt
i}
also satisfies | @ | << D’. In the estimate for || x || , this now yields

I *lle < [D" + D]fr(1)-

Thus every x e (7 satisfying ®(x) < « satishes this bound, and the
theorem is thereby proved.

The preceding theorem can be applied, of course, with the roles of
x(0) and x(1) reversed in the growth condition on I However, it has
definite limitations; for instance it is not relevant for any problems of
Lagrange in which neither x(0) nor x(l) is implicitly constrained to a
bounded set. Presumahly such cases might be handled by some growth
condition involving L (or equivalently I1) and [ jointly. To show that
this is not a hopeless idea, we restate a result in this direction proved in [1].

Some notation must be introduced. l.et Dy be the set of all pairs
(¢, d) € R* > R" such that for some f € R sufficiently large one has

{a,b) zc-a—b-d—f for all (a, b).
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For each &[0, 1], pe R", let E(t, p) be the closure of the sct of all
20 & R™ such that, for some B sufficiently large, one has

Lit,x,v) 2w -x-Fp-v—f for all  (x, o).

I.et D, be the set of all pairs (¢, d) e R* x R* such that there exists
p e (¥ satisfying

(1) € E(L, p(t)) almost everywhere, POy =¢,  p(1)=4d.

It is easy to see that the sets D; and D, are convex. For a convex set
D we denote by aff D the affine hull of D, and by ri D the interior of D
relative to aff D,

Finally, let I, be the function obtained by taking the concave hull of
H(t, x, p) in x, i.e., Hy(t, -, p) is for cach (2, p) the least concave function
(extended-real-valued) majorizing H{t, -, p).

ExisteNce THEOREM 3.  Suppose that L salisfies the convexity condi-
tion, H, satisfies the basic growth condition, and

WD;AD, # @, aff [Py uUD] =Rt x R
Then the conclusions of Existence Theorem 2 are valid.

CoroLLARY. Suppose that L satisfies the convexily condition, I majorizes
at least one affine function, and the function

Mt p, w) = supf{w - x -|- p - v — L{t, x, )}
is nowhere -+ co and in fact satisfies
1
[ M, p,00dt < +0  forall peRn.
L1}

Then the conclusions of Existence Theorem 2 are valid,

Proof. We clearly have Dy ¢ @, E(t, p) == R", and hence D =
RY % RN, M is ¥ x %-measurable by Proposition 6, and

M(t, p, 0) == sup H(t, x, p).

"I'hus for each ¢ and p the function x—H (3, x, p) is majorized by a constant

CONTROL PROBLEMS OF BOLZA AND LAGRANGE 333

function of x whose valuc is summable in ¢ (namely max{0, M(s, p, O)}).
The same is then true of H, and in particular we see that H, satisfies
the basic growth condition.
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