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An optimization model is studied in which a convex functional, giving
expected cost subject to convex constraints, iz minimized over a class of
measurable recourse [unctions describing decisions that depend nonanti-
cipativelv on a sequence of observations of random variables. Conditions are
established under which the infimum of the cost functional is not altered if the
recourse functions are restricted to be continuous,

1. INTRODUCTION

Let &, be a Hausdorff topological space for £ — 1,..., N, and let o be a
{regular Borel) probability measure on 5y X -+ % Ey with support denoted
by = (that is, = is the smallest closed subset of 5 X <+ X Ey of measure 1).
We consider an abstract scquential optimization problem with N stages,
where in the kth stage an clement of R™, called a recourse, is selected. The
measure o gives the probability distribution of all possible outcomes
£ = (& ., £y), where & is the element observed in stage k.

Not only are decisions made in a scquential manner, but it is essential to
our model that the recourse selected in stage & can only depend on the observa-
tions made up to that time, Thus we specifically limit our attention to recourse
functions

£ RY &2 R™M o X R
of the form

\(E) == £'\:J(EI)? J‘J(i‘:l » 52)!"'! :\5;\—(5[ Fh LY g‘)\ls (ll)

where x4(£, ..., £,) € R, Such a function is said to be nonanticipative. The
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837 N-3TAGE STOCHASTIC PROGRAMMING

object of the optimization problem is to minimize a functional of the form

-

F(x) = | f(£ x(§)) do = E{f (£, (D)} (1.2)

over a class of nonanticipative recourse functions, Constraints are represented
by allowing f to be extended-real-valued (cf. [9]).

This rather abstract modecl is the prototype of a large class of stochastic
optimization problems of the adaptive type. The only significant class which
is not included is the one whose dynamics are described by a continuous
process and involve continuous feedback. A nonanticipative function of the
type (1.1) can naturally be viewed as the feedback control of a stochastic
dynamical system with a finite number of observations and decisions (cor-
rections). More specifically, this model includes various classes of inventory
problems [5], stochastic dynamic programming problems (with possibly an
uncountable number of states) [1, 12], stochaste programming problems [2, 4],
and discrete stochastic control problems [3].

For each of these types of problems the question of characterizing the class
of admissible and optimal recourse functions has been studied extensively.
This was done in order to obtain various results of more or less theorcetical
interest, as well as to develop useful properties which have dircet bearing on
devising efficient methods of solution. The first results we know of appear in
papers analyzing certain classes of inventory and cconomic problems [5],
where recourse functions are known as decision rules. It is also under the name
of decision rules that these functions first entered the literature devoted to
stochastic programming. Charnes, Cooper and Symonds [2] werce the first
to be concerned with their properties, in particular for stochastic programs
with chance constraints. I'or a review of the results for stochastic programs,
sce [4] and the refercnces mentioned there, Recourse functions are known as
policies in (stochastic) dynamic programming [1, 12]. Of course, given :
very specific models studied in that context (usually the sets &, are finite and
the process is Markovian), it has been possible to obtain thorough characteri-
zations, if not the explicit form.

The positive results which are available in the literature rely on the speci
nature of the problem being analyzed. As background to the results obtained
here, we cite briefly what has alrcady been shown for linear stochatsic pro-
grams with N = 1, i.c., for the case where & — =) and f(£, x) is a map from
& R*to (—oe, + oo] which is measurable with respect 1o & for all v and
polyhedral convex in x for all £. Kall [6] gave a constructive proof of the fac
that x(£) could be chosen measurably to approximate the infimum of f(£. -
for each ¢, so as to minimize the functional (1.2). With some further restric-
tions on the form of £ and integrability with respect to €, it was shown that the
recourse functions could be restricted to the class %=, o) without affecting
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the infimum. Specializing f even further, it was shown in [13] that if the
problem has a finite infimum, then in fact the minimum is attained by a
eontinuous piecewise linear recourse function.

A measurable function v: 5 — R" will be called essentially nonanticipative
if it can be made into a measurable nonanticipative function by altering its
values on a set of measure zero.

Let A7, denote the space of all measurable, essentially nonanticipative
functions x: Z— R* which are essentially bounded, and let 4% denote the
subspace of .47, consisting of the continuous nonanticipative functions. Our
chief aim in this paper is to give conditions on f ensuring that the functional F
is welldefined on .47, and has the same infimum over 47, that it has over % .
We do not treat possible relationships between 4, and more gencral spaces
of measurable functions, and indeed for N > 1 these are not as clementary
as one might suppose, because the direct ways of “truncating” a recoursc
function tend to disrupt either feasibility or the nonanticipative property.

The arguments we furnish about the relationship between A7, and A%
depend on L. Michael's theorem [7] on selecting a continuous function from a
lower-semicontinuous, convex-valued multifunction. Convexity is thercfore
fundamental, and we usc it accordingly to simplify other assumptions as well.
Our basic assumptions are the following

(A1) 'The support £ of o is compact,

(A2) Foreach £ = Z, the function f(&, ): R"— (—w, |-20] is convex
and lower-semicontinuous.

(A3) For each £e 5, the convex set D(&) — {xe R f(& x) =2 |-}
has a nonempty interior.

(A4) The multifunction &+ cl D(§) is continuous from & to R",

(A3) For each x = R, the function ¢+ f(£, x) is measurable,

(A6) If U'CE is open (relative to &), IV C R" is open, and f is finite
throughout ' ¢ T’, then

]. | f(€, x)| do = + 20, for cachx g T,
v

By the contindty of a multifunction I': & R", we mean of course that
the graph set

G(I) = {(¢, %) | e I(&)) (13)

is closed, and I' is Jower-semicontinuous, i.e., the sct (& &N T £ )
is open (relative to Z) for every open sct 7 C R*. We shall denote by %=
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the space of all essentially bounded, measurable functions x: &— R"
equipped with the usual seminorm

| % | = css sup{| a(§)] | £€ F}, (1.4)
where | - | is the euclidean norm in R*#; analogously %%, Let
B={xeR||x|<IL (1.5)

TueoreM 1. Under assumptions (A1)-(A6), the functional I’ in (1.2) &5
well-defined from L% to (—oo, —oo], in the sense that for each xc % the
Junction &— f(&, x(¢&)) is measurable and majorizes at least one summable
function (the meaning of the integral then being unambiguously a real number
or o). In fact F is eonvex and lower-semicontinuous, not only relative to
ey but also relative to the weak topolagy induced on % under the natural
pairing with L. The set

W ={xe. L7 |3e >0, x(£) - B C D(§), ae} (1.6)
satisfies
intfx e 2= | F(y) <« G+ oo} =% £ g, (1.7)

and on ¥~ the functional F is continuous.

Since in the weak topology induced on #* by #" every closed bounded sct
is compact, Theorem | immediately yields a result on the existence of optimal
recourse functions.

CoroLLary. If (A1)~(A6) hold and the union of the sets D(E), £<Z 05
bounded in R", then I' attains iis muninuon over A7, |

Theorem 1 establishes the sctting, but for our main result a further
restriction on the nature of the probability measure ¢ and its support = is
needed. For anv SC 5 and index &, | < & << N, let

= 1

S* = projection of Sin =, X =+ ¥ 55, (1.8)
Ll £ = riu ol | B Bii B BD€8) (19)
We shall say that o is laminary if the following two conditions are satisfied.

(a) If S is a measurable subset of 5 with o(Z\5) =0, and if S is
measurable, then

el AS(Ey y-ues &) = A 5(E1 -0 &) for almost every (& ,..., §) € 8%
(1.10)
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(b} The multifunction .5 is lower semicontinuous relative to Z*
(The measure on =, % - X 5, in (1.10) is of course the “projection” of
the probability .}

It is an elementary consequence of the theary of product measures (essen-
tially, Fubini’s Theorem) that o is laminary if, for example,

(dE) = p(Ey youny Ex) ma(dEs) e mapldEr), (1.11)

where the density function p is (measurable and) positive on the product of
the supports of the (regular Borcl) measures =, on the spaces &; . (This
product is then the set 5, so that cach multifunction /1,7 is actually constant-
valued,) In particular, o is laminary if the random variables £ arc inde-
pendant. However, the definition also covers various cases wherc the con-
ditional distribution of (€., ,..., £y}, given the value of (&, ..., &), Is well-
defined but has its support dependent on (£ ..., £.). Note that, trivially,
7 is also laminary if = is an arbitrary finite set.

We shall denote by .4 the set of all measurable functions x: = — R®
such that x is (truly, not just cssentially) nonanticipative and bounded and
satisfies

x(E) e cl D(E) for every £ 5. (1.12)

TueoreM 2. Suppese in addition o (Al)-(A6) that o is laminary. Then

each x e N, with F(x) <2 o0 agrees abmost everyiwhere with some function
in A% . Thus in particular,

inf{F(x) | x e M) — inf{F(x) | x &A%, (1.13)

where one tnfomum is attamed if and only if the other is. If furthermore
WA, 7= T, then WAy 7 oand

inf{F(x) | x e AL} — inf{I(x) | x & Ny (1.14)

Without the assumption that o is laminary, the first conclusion of Theorem
2 may not be valid, and strict incquality may hold in (1.13). Our proof shows
however that one would still have %" m.4% = @ and
inf{F(x) | x € A5} — Inf{I'(x) | x e A5}, (1.15)
assuming the existence of an x £ 47 and an ¢ == 0 such that x(€) -|- B C D(¢)
for every £<E. Without the continuity assumption (A4), equality can also
fail in (1.15), cven in the case of N =
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CouNTEREXAMPLE |, In this example all the assumptions are satisfied
except condition (a) of the definition of “laminary”, but

—oo < min{F(xy) | ¥ .42} < min{F(x) | ¥ e A5} < +oC. (1.16)

Let N = 2,5 =R = 5, R = R! = R¥:, Definc the probability measure
 as follows, Let the interv. aI [0, 1] be expressed as the union of two digjoint
subsets 4 and B of positive measure with 4 dense and B closed, and set

o(S) = mes(S N T)/mes 7' for all Borel scts S,

where T = (4 % [0,2]) U (B » [0, 1]). Then, & =l I'—1[0, 1] x [0, 2
Observe that ¢ 1s absolutely continuous with respecet to a product measure
(Lebesgue measure), but cnndltwn (a) in the definition of “laminary™ fails
for § — T. Define fon T - R by

. i if 0w ==y — &,
T Eas i %)) = {+o0 otherwise,
so that

D, &)=l D, &) ={(v,5)eR 0 xmay — &)
Consider now the function ¥ = .47, defined by

7€) = (R(&), T(éy, &) —= fE? g) ai i

i m
e

for which onc has
F(x)=[4 mes 4 — mcs B]jmes T' = 2 — (mes Bfmes T').
If x is any function in A7, with F(x) < +-oc, then
(\1 f1 Z(fl ] Ez ) = D(“‘-T ’ ‘f‘i) fDI' almost all (51 ’ ‘fQ)a

implying 0 = xy(&) — & for almost all (&, &) e T. Hence, ay(&) = 2 for
almost all & = 4, while xy(4,) = 1 for almost all £, = B. This shows that the
function ¥ actually gives the minimum of I over A7,

min{F(x) | x A4} =2 — (mes Bjmes T) < 2. (1.17)

Consider now, on the other hand, the function ¥ & 47 defined by

M(é) = (®m&) ®o(é, &) = (2,0),
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for which one has trivially F(5) = 2. If ~ is any function in A7, then
0 = xy(8) — & for all (&, 8)eE, so that x,(§) =2 for all &= [0, 1.
Therefore ¥ gives the minimum of F over oA7:

min{F(x) x4y =2, (1.18)

In particular, it is impossible, by modifving the function ¥ on a set of measurce
zero, to obtain a function in 4% . In other words, the constraint
0 = a(éy, &) s mlé) — & for almost every (&, &) e S

is in this example distinctly less restrictive than the constraint

0 = w6, &) =0 ay(&) — & for every (&, &) e 5.

CouNTEREXAMPLE 2. In this case all the assumptions are satisfled except
condition (b) of the definition of “laminary”, but again (1.13) is falsc. Let
N=2,8 =R =58,, R _ R' =R Let

o(S) = Fmes(S N T) for all Borel scts S,
where

Then = = T. Define fon £ 2 R* by

\0 if & and —2 L+
Jé1y &y 50, %) = 10 if &= and  —2 =
f oo otherwise,
For the function 5 = A7, defined by
(@0 &>0
(&) = (®(&), &, &) = 10, 0) if £ =0,
f( 50) i £ <0,
we have (&) — £ BC D(£) almost everywhere, and hence in particular
min{F(x) re .} =F&) =0 (1.19)

However, if & is any function in A% we have %(0, 1) = D(0, 1), impl}-‘ing
x,(0) %= 1, while at the same time (0, —1) £ D(0, —1), implying x,(0) =
These conditions on x,(0) are incompatible, so A7 must in fact be (mpt\

inf[F(x) | # €A%} = o0, (1.20)
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CouNTEREXAMPLE 3. This is an elementary example from the theory of
continuous selections, showing that equality can fail in (1.15) if (A4) is
omitred, even if all the other assumptions are satisfed and N — 1. Let
H =R R =R

o(S) —

mes(S ™ [—1, 1]) for all Borel sets S,

so that 5 —= [—1, 1]. Define

(0 it & =0 and xe[l,2]
et w10 if & =0 and x,2[-2,2],
FlErs m) = I it & =20 and wxe[-—2, —1],

4o otherwise.

Consider the function ¥ & .47 defined by

(¢ it &=0
W(§) = x(&) = i 0 if & =0,
_% if 51 < 0

Then in fact,

#(&) + 1BCD(E)  forall ¢

M

-
flu}

and
min{F(x) | x € A%} = Fla) = 0. (1.21)

But there does not exist any & £ 4% with F(x) <= oo, so that
min{F(x) | x e A%} = Lon. (1.22)

Remark. An extension of Theorem 2 to recourse functions with values in
a Banach space, rather than R”, would be desirable, for example, in connection
with models in optimal control, where the component x.(¢, ..., £.) could
represent a function of time to be chosen over an interval [1,,, ,.,] in response
to the observation of certain functions of time &, ,..., £, over previous inter-
vals [ty, #4],-.., [te_y s %], Unfortunately, the proofs below make cssential
use of finite-dimenstonality in many ways.

2. BackorounD REesvrts

Here we state and prove some facts, partly of interest in themselves, which
will be needed in establishing Theorems 1 and 2.
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ProposiTioN 1 [11, p. 4358]. Let Z' be an arbitrary compact Hausdorff
space. Let T E' — Rv be a multifunction such that for each & the set T(£) 1s
convex with int T'(§) 2= 7. Then I' is lower-semicontinuous if and only if the sef
{(¢& x) | x sint (&)} is open.

PROPUCITID\' 2, Let & be an arbitrary compact Hausdorff cpm:e Let
T E' = R" be q loweer—semicontinuous multifunciion such that for each & the set
F(g-) is convex with int 1(€) = 2. Then for all € = 0 sufficiently small the
multtfunction

I ésincR o —eBCI(E, x| = 1/e} (2.1)

has the same properties, If T is actually continuous, so is I'.
Proof. Clearly I'*(€) is convex. Let
A ={xc R x+eBCint I'(E), [ x| < e} (2:2)

For each ¢, we can find x € R* and ¢ = 0 such that xe I.#(&). Then, in
view of the lower-semicontinuity of I'and Lemma 1, ﬂ'u‘:re is a neighborhood
U s Vof (6 ) such that & ¢ I, S(&) forall § e Uand w' e V. "T'hus the scts

G. = {(& %) e A&

are open in = 2n, and their projections on &' (also open, and increasing
as € [ 0) cover 5. Since £ is compact, one of the projections must be all of
' In other words, for some e = 0 sufliciently small, we have I'.5(§) 5= 2
for all £= & But I'.4&) —int (&) if T.3(6) = . Thercfore, for «
sufficiently small, the set {( x) | ¥ & int I*(£)} is the open set G, implying
via Proposition 1 that I'is lowersemicontinuous.

If I'is continuous, the graph set G(I") is closed. Then G(I'} is obviously
closed as well so that 1'% also is continuous.

ProrosITION 3 (Continuous Selections). Let 27 be an arbitrary compact
Hausdorff space, and let I't B .—rR” be a losver- \Mmmm‘mxmu\, convex-valued
multifunction sud: rfmf int (&) == & for all £ 5. Let 5 be a closed subset of

-

=, and let 1 = » R" be a m:zizmmus _fum!mf.i, siech that w(€) = int I'(£) for all

£c B Then can be extended o a continuous function on all of Z' such that, for
some e 7= 0,

We)+ eBCI(&)  foralléeZ. (2.3)

P Mk

Proof. Since = is compact and y is continuous, the graph {(£, #(£)) | Ee2}
is a compact subset of {(£, x) | ¥ ¢ mt I'(£)}. Moreover the latter set is open by

Proposition 1. There does exist, therefore, an e == (0 such that

&)+ 2BCT(E) forall fe k.
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Thus, applying Proposition 2, we obtain the existence of ¢ such that I is a
lower-semicontinuous, nonempty-convex-valued multifunction such that
&) & I%(&) for £ = Z. The multifunction £ —» cl <€) then has these sume
properties and is compact-valued. Michael’s theorem on continuous
selections [7] assurcs the existence of a continuous extension of v satisfying
(€)=l () for all €. Since

cl I*(&) C I'<(&) tor all &,
this y has the property (2.3) that we wanted.

PropostTioN 4 (Summability Ptopert\) Let D: £ — cl D(€), and define
the multifunction Df as in (2.1), 1.c.

Di(g) ={xcR* #+ BCa DY), |»| <1

Under assumptions (A1)-(A8), for arbitrarily small € = 0, there is a summable
Junction x: 5~ RY such that

FE ») =l a8 whenever x = DE(£). (2.4)

Proof.  The hypothesis of Proposition 2 is fulfilled with I" = D continuous.
Thus for e sufficiently small, the multifunction D* is continuous and compact-
convex-valued, with int D(£) s£ #. Fix any such ¢, Let £ € T be arbitrary.
We shall demonstrate the existence of an open nelghhorhood L7 of £ relative
to Z and a summable function x;; I7— R such that

TUE &) =2 2 () whenever ¥ £ D(£) and ¢ U, (2.5)

Since = is compact, it can be coverced by a finite collection of such open sets [7
with associated functions « , so the conclusion of the propoesition will be
immediate,

Obviously,

De(€) Cint D(§) — int (&) tor everv £ ¢ 5. 2.6

In light of this inclusion, there cxist points @, € int D(£) such that the polytope
P =cofa ..., 4y} has int P2 D€ [9, Theor, 20.4]. The continuity of D¢
then }'iclda tl_e existence of an open neighborhood {7, of & such that
int P 3 D(¢) for all €= T7,. On the other hand, there exist by Proposition |
open neighborhoods U; of £ and 7, of @, , 7 — 1,..., m, such that

I, Cint D(€) — int D(&) forall ée U, (2.7)
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Let U =0U,nU,nnU,.If £, we have D(¢) C P, implying by
the convexity of f(£, +), that (2.5) holds for

1[.'(5} oK x-__Ilnfi}:mf(ff ai).

8]

Moreover, f(€, a;) is summable in &< ', by (A6) and (2.7), since a;= 17,

Hence, af iz summable in &2 U as desired.

Propos1TION 5. If o is laminary (with compact support), then so is the
“projection” o* of ¢ on E; X -+ X 5, for 1 < k < N; the (regular Borel)
probability measure c* is defined by

I

o*(T) =o(S),  where S=[T X &y X XENE. (2.8)
Propf.  The support of ¢ is the (compact) projection % of Z. If T 15 any

(Borcl) measurable set in 2 ¢ - X Z}, then T is the projection S* of the

measurable set S defined in (2.8). Morcover, for 1 <27 < £, the sct

AT (Eryeons &) ={(Ermrveos &) | (G100 €05 G211 0o E) € T
1 the projection on &y, K+ X &, of the set
".Jf's(fl Jriay f.—_“) = {(é’.':—l ikt g.-\'} . (gl FOATY ‘:c' ' g:"—l yriey E.\') = S}-

Taking T = =¥ (hence S — E), we sce that o* has property (b) of the defini-
tion of “laminary,” becausc the lower semicontinuity of a multifunction is
trivially preserved when the multifunction is composed with a continuous
function (in this case a projection mapping). More generally, if T is any
measurable set in Z* with ¢*( 7" 2%) — 0, then the set .S in (2.8) has (£1.8) = 0,
and T7 — 8% for | =2 ] < k. Since 7 1s laminary, we know therefore that

A AS(E 5oy &) = AF (6 4o &) for almost every (& ,..., &) s T%.
Projecting the sets onto S, % 0 2., we obtain the relation

2LAFE v £ .df*(gl yravn Ep) for almost every (€, ,..., §,) € 7%
Thus ¢* also has property (a) of the definition of “laminary.”

PROPOSITION 6. Assume that o is laminary, and let 8" he any measurable
subset of = such that a(Z'S")y = 0. Then there exists a measurable subset S of S’
such that o 2'S) = 0 and for every k, 0 < k <IN, the projection S* of S on

-

S e w2 By s measurable and satisfies

AASE oo £) = AFE o £ forovery (& E) €SE (29)
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Proof. We shall demonstrate the assertion in the slightly stronger form
where .S is actually sigma-compact (the umion of a countable family of com-
pact sets), This assertion is true triviallv if N = [, since the regularity of ¢
implies the existence for every integer m = 0 of a compact set K, C & with

o(K,,) = o(S') — (L/m).

Let us suppose now that N > 1 and make the induction hy pntheal-‘; that the
assertion is truc for all cases of N — 1 components. Regar qu X v X Ty
as the product of the N — 1 spaces (&) » &), 5, ..., £y, we deduce the
existence of a sigma-compact S5 in S such that the desired properties hold
for every & with 2 =2 & <2 N, The projection ST of S on Z'is then measurable,
because the projection of a sigma-compact set is sigma-compact. Since o
is laminary, we have

cl A,5(&) — A,5(€)  for almost every & £ 51 (2.10)

Therefore, the equality in (2.10) holds for all & = T, where T is some sigma-
compact subset of §1 with o!(8%,1") = 0. Replacing S by its (sigma-compact)
intersection with T % &, » » &y, we obtain a new S such that the
desired propertics hold for 1 = &k < N,

ProrositioN 7. Let 5: 5 — R be an essentially nonanticipative, measurable
Junction satisfying

¥(E)ed(E)  for almost every § £ Z| (2.11)

where 4: = -~ R is a multifunction whose graph is closed and whose values 4(¢)
are all contained within some fived ball. Assume that o is laminary. Then there is a
nonanticipative, measurable function X: = - » R" wwhich agrees almost evervahere
wwith ¥ and satisfies

He)edd) forevery feE. (2.12)

Proof. Let 8" be the subset of Z for which the relation in (2.11) holds, and
let S be a subset of S with the properties guaranteed by Proposition 6.
In particular, then, S is dense in & and

X&ed(E) forevery £ 8. (2.13)

It follows from our assumptions on 4 that A(¢) == = for all =5
Define 4, % — R 5 -+ x R" recursively by d, = 4 and
Ay (€1 s Exmr) =¥y yoeey M3} | VER With (&1 50 Era &) € B

e
By, With (¥ ;005 ¥g—1s ) € Der 900y €15 E1))-
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We claim that for every A:

(i) 4 is a multifanction whose graph set is closed and whose values
are all contained in some fixed ball; and

(1)  (F(E)sers Tel&p vy E) €Ayl ,.os &) for every (& ,.., &) € SE,
These properties hold, as we have seen, for £ — N. We supposc next that
thev hold for a given % and prove that they then hold also for & — 1,

'T'he boundedness property in (i) obviously carrics over to 4, ;. Tor the
closedness property, let

. . y i G N
‘{('flr»---a g;\-—l 2 XY geeny "‘;_-_1)_:;'-_;1 (2]3)
be a generalized scquence in the graph of 4% 1 converging to an clement

(gl seeey SRl s .{'1 yrsey .{'.;'._1}. (216)
Let £, be such that (&, ,..., £, , £&.) € &%, The multifunction

(19 E) =& (G 4eeny Exq, &) € SR} (2.17)

is lower semicontinuous on Z* by Proposition § (the laminary property (b)
of ¢*). Hence there exist clements &7 converging to £, such that

(s &y E)ETF forallizsl. (2.18)

Since the clements (2,13) lie in the graph of 4% 1, there exist clements x,!
such that

(il By sBIYE M (B iy £y BT foralliel. (2.19)
Passing to a (gencralized) subsequence if necessary, we can suppose (from the
boundedness property of 4;) that x;# converges to a certain &, . Then,

(B yeees By 14 &) 5—1:.{%‘:1 yeeny Ehaly (f:} (2.20)

iy

by (2.19) and the closedness of the graph of 4, . We have thus shown that
for cvery &, with (&, ..., & ,, &) = = there is an clement &, such that (2.20)
holds. This means that the element (2.16) belongs to the graph of 4*1, and
the closedness of this graph is thereby established.

For property (ii) of 47! we make use of the fact that

| _ (2.21)
(& (o b B)E T forevery (4, £i) & S5,



849 N-ETAGE $TOCHASTIC PROGRAMMING

This is true since S was chosen to have the properties in Proposition 6,
and hence satisfies, in particular,

C]{[‘:C. LRSS f.-’\-') | (‘:C]_s'“: 5.\-._1 . g.-‘.: yreay 5.-\') = S]
(s £5) Eron ot £ ) €S (222)
for overy (& ..., &y) € §¥1,

Let (& ..., 1) € 8%, and let £, be such that (¢ ,..., & 4, &)c 55 To
establish (if) for 4;_, , we want to show the existence of x, such that

('—i:]_(‘:cl).““: "'\_‘F_-—l(é:l e Ak ] :EF_'—I): :\'I.f.:\.J £ d}.:(gl e E.-‘.‘--l 1 Ek) (2'23)
In view of (2.21), it is possible to choose a generalized sequence of the form
{(€1 s Erq s E7)ier in S® converging to (&, ..., &y, £). From property (ii)
of 4;, we have

(‘fl(gl)r“! { 1(-51 Lk é: 1): \_(é—'} FIESE ‘f.-‘-'—l * ‘gﬂ'i) S hiL(‘*Cl preny é— o E:) (224)

The boundedness property of 4, in (i) allows us to SUppOse, passing to a
(generalized) subsequence if necessary, that F,(& ...y £, £:7) converges in
71 to some &, . Then (2.23) holds by the closedness property of 4y in (i).

'L'he proof that (i) and (i) hold for all % is therchy finished, Observe that
these propertics imply

A&y yony &) 22 forall (&, ..., &)

iT

B, (2.25)

since S* (being the projection of the set S of full measure in =) Is dense in E¥,
The closedness of the graph of 4, also implies that for every compact set K
in R™ x -+ ¢ R% the sct

e

ey

D EF | Ay v EINK # 7)

is closed, hence measurable, Thus 4, is a measurable multifunction in the
sense of Castaing (sce [8, p. 5]).

We are now ready for the construction of the function ¥ in the proposition,
which will be effected component by component, starting with 2 = 1, This
construction is based on the fundamental selection theorem for messurable
multifunctions (duc to Rokhlin and others, sce [8, Corollary 1.1]). Every
nonempty-closed-valued measurable wmultifunction with valwes (for exaniple)
i a euclidean space has a measurable selection.

For & = 1, we consider the multifunction 4,"; 81 » R defined by

WE(E) if SyE e,

dl (‘—glJ 2R !dl{gj_) if {f}_ = EI]I",S]- (22 ,.")]
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Since 5! is a measurable set and T is a measurable function, 4, is like 4,
measurable, as well as nonempty-closced-valued. Hence by the selection
theorem, there exists a measurable function ¥, satisfving

T(&) e d,'(&) forall £, = 21
In other words (using property (i1) of 4,),

Y& e d4(6) for all & ¢ =1,

(&) = x(€) forall £ e S

Assume now inductively that we have constructed ¥, ,..., X,_; on 51,..,, F¢-1
with

E31€3) o 1(€1 soees €520)) € Dy 5ves €1 9) forall (¢, ,..., &) & 5,7,
(2.28)

E(&)ss Fealy s E51))
— (@€ es ¥ea(Ey s £02)) forall (£, ..y & )= SE, (&2
Decfine
A1 s &) = {0 | Rl&)ens Ficalby soor €xca)s ¥) € el ooy &) (230)
From (2.28) and the definition (2.14) of 4,_, , we know that
Ay &) £ & forall (& .., &) € 55, (231
while (2.29) and property (it) of 4, imply
TEr ves E)ETi(E1 yon &) Forall (& ,..., &) € S (2.32)

It is clear from property (i) of 4, that 4, is closed-valued. We claim further
that 4, is measurable. To sce this, consider the multifunction T, decfined
on =% by

Til§1 000 &) =% 0o %) | 2 = Fyl(€y 5o, &) for ! = 1, 2 — 1}

This is measurable, hecauqe the functions ¥, are measurable and for every
compact set K C Rt o oo 4 R one has

{(E] L | 5-\] S 5""—. ’ (E], ikt | § N K i }
= ir(.E]_ “-‘ ) £z 2 (1 (51 ?% 1(‘5{ greey f:';—l)) € Kr}:

where K7 is the (closed) projection of K on R*: » =+ 32 Ru-1_ Since T, and
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4, are both closed-valued and mecasurable, so is the intersection multi-
function

Ty 04 B (Bpsvin £0) = Tl s £0) 3 il £
(see [8, Corollary 1.3]). For any closed set € in R7®, we have
(€ E) € 5V | Jk(fl s BRI o
= (& s £ EEF | (TN Ay) (1 5oy E)] N PFHC) = 21,

(2.33)

where Py, is the projection from Rt ¢ --+ ¢ R* onto R":. Since T}, N 4, is
measurable and PY(() is closed, the second set in (2.33) is measurable; thus
j,.. is a measurable multifunction as claimed.

Define the multifunction 4,": 2% >~ R by

, \x,

Ay (&1 vy £) = _'T

Then 4, is again closed-valued and mcasurable, and from (2.31) and (2.32)
we have

& # A (E e E) C Ally s &) Forall (£, £ 25 (235)

The selection theorem is therefore applicable to ;') and there exists a
measurable function ¥,: Z% —» R satisfving

FolE s €0 €Ay o £) forall (& £) & 5,

This relation means, according to the definitions (2.34) and (2.30) of 4.’
and 4, , that

(F1(Edsss Tl s £1)) Edp(br sy &) Horall (&, £,) 2 5, (2.36)

E(E)ens Fil&y voes &) = @&y Fl &1y §)) forall (&40, &) = 25,
(2.37)
Thus we have extended the relations (2.28), (2.29) from & -- | to &.
The construction proceeds until we reach 2 — N (BN = &, SV = §,
Ay = 4). At that point, the conclusion of Proposition 7 1s f!.llhl[Ld.

3. Depueriox or tHE MamN Rpsvrts
Proof of Theorem 1, The remaining argument consists of putting together

some known facts from the theory of convex integral functionals. Assump-
tions (A2), (A3) and (A3) imply by [10, Lemma 2] that £ is a normal convex
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integrand, that is, in addition to (A2) there is a sequence of measurable
functions a/; Z—» R” ‘uch t‘lat f(é «9(€)) is measurable in & for cach j,
and the set D(E) N {x(&)  j =1, 2,...} is dense in D(§) for each & With
(A1), (Ad) and (AS), we then have from [11, Theor. 5] that %" contains at
least onc continuous function \‘, and for cvery such x the function
Erx (€ a(E) s summable over 5. Let a denote a particular continuous
fum,uon x, and for every such a dennte a particular continuous function in %",
Then there is an e - 0 such that f(§, ¥(§) — ev) is summable in £ for each
y e B. T'he hypothesis of [11, Theor. 2] 1s satisfied accordingly; this yields
the conclusion that F is a well-defined, lower-semicontinuous, convex
functional in the scnse described. (The weak lower-semicontinuity follows
because I is (by [I11, Theor. 1]) the conjugate of a convex funetional on %L}

We still must verify (1.7). We have alreadv noted that %7 = g. Jt is
evident that #” is open and

intfxe £= | F(x) <+ =} CW.

Thus to complete the proof it suffices to show that F(x) <2 o0 for every
x €%, But this fact is a corollarv of Proposition 4,

Proof of Theorem 2. The first part of the theorem is immediate from
Proposition 7 applicd to 4(€) — cl D(£) — D(€). For the rest, we obscrve
at the outset that since A7, M W7 =4 2, one has

inflF(x) xe A} =inf{F(x) |xs AN W} (3.1

Indeed, if x is any clement of A7, such that F{x) << Lo, and it ¥ A, N A7,
then for O <2 A = 1, we have (1 — A)x + AF in A, %7 by (1.7) and

F((1 — X) x -= M%) < (I — A) F(x) - AF().

"Thus, considering what happens as A | 0, we sec that for every e = 0 there is
an x' € A, N Y with F(x") < F(x) — ¢, and this establishes (3.1).

Now fix any ¥ £ 47, N % and & = 0. We shall demonstrate the existence
of & £.4% such that

F(3) < F(x) + 25, (3.2)

and this will prove the thcorem.

Choose e = 0 small enough that the properties in Propositions 2 and 4 hold
for I' = D, and in addition ¥(£) + B C D«(¢) for almost cvery £¢ Z.
Altering ¥ on a set of measure zero if necessary, we can suppose that actually

(&) — eB C DH(&) for cvery £ 5. (3.3)
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This follows from the continuity of D¢ by applying Proposition 7 to the
multifunction

A(8) ={seR¥ | x4 BC DL  for e,

For the summable function «(£) in Proposition 4 and the function f (&, ¥(£))

(which is summable in £ by Theorem 1), there exists 5 = 0 such that when-

ever S C Z is a (Borel) measurable set with measure o(S) < %, one has

J‘ a(é) do = & and | f(€, ¥(£)) do == —3. (3.4)

J
According to Lusin’s Theorem, there exists for the measurable function x
- pi —_ . . =
compact set = C 5 such that ¥ is continuous relative to = and ofS) < 4,
0 o
where § = Z\5. Then,

F(¢)eint D(E)  forevery £ 5 (3.5)

by (3.3), because D+ is continuous.
Suppose we can construct £ £ A% satisfving

MHeb(s) forallécz, with &) =3¢ foréel. (3.6
This will yield, via Proposition 4,

F() = [ f(& x(9) do + [ 1(6,5(&)) do

<FE) — [ 1(6,5) do + [ a(6)do

\

< F(F) 18 +38,

F}

as desired in (3.2). The rest of our proof is devoted to this construction,
which amounts to a complicated application of Michael’s thcorem on continu-
ous selections in the form of Proposition 3. The latter result could be invoked
directly to get the existence of a continuous function v satisfving (3.6), but
this x might fail to be nonanticipative. This is where the complications arise;
their resolution requires a multistage approach based on lemmas stated below.

There is no loss of generality if we suppose each of the spaces Z; is com-
pact. (Replace =, by the projection of £ on £;.) Define the multifunction
Dyt 3 X - % 8= R* by

- i! (3.7)

=
5 L)

i D<(¢) if

(le)B i

ey ey

F\[E) ==
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and then dcfine
Ir—‘r.f.': E[ W i EI,J—;-R"'J- woeee e R

recursively for kA — N — 1., 1, by
Tial1500 & 9)
= {(A] yeies Xpa) | VELE 8, Bxp € R™, (3.8)
(5 seos Nz > 35) € Tl sove Eimn 2 )1

Lemnsa 1. There exists a easurable, nonanticipative function

I

B E x X EnFs RP = R" x o x R™
cotnciding with ¥ on Z, such that for B =1,..., N one hay
(Falér)ees Bl 1 seees €0)) — €B C L€y voves €2) for all (&, ,..., &).  (3.9)

(Here B denotes the closed unit euclidean ball of the appropriate dimension.)

Proof. Define 5.0 5, 0 0 20 5, — R™ by
Tulby s &) = ‘?"(5“ ) ]‘if g: ﬁ ;:g ' (3.10)
The function & given by
F() = (R F(Ey o Ey))
is then measurable and nonanticipative on 5; x -+ % £y, and
B(¢) = (&) forall fe 5. (3.11)
This implies by (3.3) of course that
X&)+ eB C D(E) for every é € 5. (3.12)

On the other hand, since D¢(£) C (1/e) B by definition, (3 3) implics also
that | ¥(&)| == (1/e) — € for all £= =, But (&) is for each £ a vector of the
form

(®y(€1)yewrs BlEr sy £:), 0000, 0)
for some &. Thus | ¥(£)] = (1/e) — e for all & or equivalently,
() +eBC(lle) B forevery §£2y X X Sy, (3.13)

Of course, (3.12) and (3.13) assert that (3.9) holds as desired for £ = V.,
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We now assume inductively that (3.9) holds for a given % and verify that it
then holds for & — 1. If {or given (&, ..., &,_;) we have

(81 yeoer Xa) € F(ED)reor Fomalfyseenr €11)) - €5,

—

then for all &, =&, ,
(8 e X 13 Bl yoos E0) — (B T v €ty Fuly vy £ <
Then from the induction hvpothesis,
(X sees ¥y, Tl 5oy E)) ET Wby s &) Forall &,
so that (x) sy 23y £ 25(&1 1o, € 1) by definition, Therefore,

('E]_(g)!“') i:i: 1(§1 ya=sy 'fi'-l)} _." é.B L r.k 1(&1 3oy ‘:C!c—]}p

and (3.9) is thus verified for & — 1.

Lemwma 2. The multifunctions 17, are all lower-semicontinuous and compaci-
convex-valued.

Proof.  The assertion is evident from formula (3.7) in the case of & — N,
because [ is known to have these properties on &, and 5(€) C (1/¢) B by
definition. Again we proceed by induction, assuming the asscrtion is valid for
a given & and verifying that it then holds also for £ — 1. Let

L (& veven &) = (%1 2oes Mpc) | Iy (%4 5000y Xy 32} € D€ 4005 G}
(3.14)

so that
oy €y sevs Ea) = N {T4(&y 4oves €15 &) | €€ B (3.15)

It is elementary that I';_; inhcrits from I, the property of being a lower-
scmicontinuous, compact-convex-valued multifunction. ‘Therefore I'._, is
also compact-convex-valued by (3.13).
To establish the lower semicontinuity of I, ; , we make usc of Proposition 1
and the fact (LLemma 1) that
ol A S - e for all £ (3.16)
Suppose that
@ soonr Fig) € it D y(Fy 1ovnr Eia)- (3.17)

It will suffice by Proposition 1 to demonstrate the existence of A = 0 and a
neighborhood U of (& ,..., &._4) such that

Wi B ) S ABETL K by PR e B €L {T18)
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We have
(Ey yees Ty} €0 TERE senben okl forall &, 5y (3.19)
by (3.15) and (3.17). Since I, 4 is lower semicontinuous, there exist for each
£, = =, neighborhoods U of (E, ey £q) and U7 of & and X == 0 such that
) — ABC I L 18
1) ST 15 €8 (3.20)

(% e
and £, U

for all (& yeu; E) € L

Using the compactness of ;. , we can deduce from this the existence of A = 0
. £5._y) such that

and a neighborhood U of (&,

(¥ ooy Xpq) = ABC T (6 s Eie1» &) o
(3.21)
sl and §&,2%;.

for all {%f]_ JEEEE ‘f}.:—l) =

But then (3.15) vields the desired conclusion (3.18)
= k= N. Suppose we have constructed

(F(E)sees Tl €y veens En))s
('fl( ‘fl}!' ek 'EE.‘.( _El ’

Levivia 3. Let 1=

, £u)) on E and

depending continuously on &, agreeing with

(%)
I~
I~
ki

&) forallé

satisfying
(F,(£))y0ry Bl &1 oeny &) £ it &y sy
Define
Al . -
et(Et sers Eron Est) o 1 | (3.23)
Felbpen & N PO | S &py Bt

e oo e
= W | (F(&2)n
Then Ty is a luzer-semicontinuous multifunction with eompact-convex values,

and
it sl Bisesy Buprd
= dopy | &(Eeens Falbyveens € Yim) €08 D00y S} (3-24)
i for all &
Moreouer,
) forall £ E. (3.25)

o i)

‘9‘_:.1'.:+1( ‘fl yenn '-_1} 1] ll’lt 1 6



857 N-STAGE STOCHASTIC PROGRAMMING

Proof. Since I, is compact-convex-valued (Lemma 2), I, is clearly
compact-convex-valued. Also, (3.22) implies by definition (3.8) that, for
every i € 5y,

(RlEr)sover TGy voves 60)) €08 1o ) | B

_ ) (3.26)
~ (‘\'}_ 1eeny Xy -"!.--1) (= -rr‘.‘ |1(§1 yasvy ‘f.‘«. 1 EJ: 1)E

where int Iy (& o, &y E3y) = 2 by Lemma 1. It follows then from
convexity that (3.24) holds. The lower-semicontinuity of 1., (Lemma 2) in
characterization of Proposition | implies via (3.24) and the continuity of
(F1(€)y-s K&y seeny &) that the set

{(gt yerey &C?\'J.-l ’ -"A:+1) I Xy £ int F.l:+1(§1 yrrey 5;'\'.—.1)}
is open, and hence Iy, is lower-scmicontinuous. Finally, since for £ =5 we
have
{.i].(gl)!"’l S':.-‘.‘.{gl yreay 'flr.)’ -i;.": | 1(&1  EEL ) gl‘—-l))
= Flla)orer Tl rms £, Faca(E oo E100) € 10t Tia(Ey oo E5cy)

by our hypothesis with ¥ as in Lemima 1, it also follows from (3.24) that (3.25)
holds

Completion of the Proof of Theorem 2 QOur task 1s to construct & ¢ A%
satisfying (3 6) This can be effected by constructing continuous component
functions

‘I'{:A': E] > E;:i )‘ka (3-27)
in such a way that

(&) = (F1&))reony Tyl(&1 ey €0))

satisfies
&(&) e I'y(8) foral (e 8, x - X B, (3.28)
and
Tl &) = 86y yonn &) forall (& ,.., E)=2,, (3.29)
where B is the (compact) projection of & on Z; x - ¢ &y .

Starting with £ — 1, we recall that the function ¥, is continuous on =? and
satisfies

&) sint Iy(§)  forall § 251 (3.30)

(Lemma 1). Morcover, I} is a lower-semicontinuous, convex-valued multi-
function (Lemma 2) having int I'(§)) = = for every £ €5 (Lemma I).
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We can therefore apply Proposition 3 and get a continuous extension
of ¥; with

B(E) zint I4(&) forall & 5. (3.31)

Procceding now by induction, let us suppose £, ,.., & have been
constructed with the properties in Lemma 3. Defining ﬁ_._.l as in Lemma 3,
we have 2 lower-semicontinuous multifunction with propertics (3.24) and
(3.25). Proposition 3 can again be applied, and we thereby obtain a continuous

function #,., on &y « -+ X E, agreeing with &, ; on =, and having
‘f.‘;—l{‘fl RAEs ‘E.‘; ! 1) eint FF_:—l(gl yamy ..EI:-I 1) for all g (3'32)

But then,

vy Epm 2 Int I (&4 4oy Epg) forall & (3.33)

by (3.24), so the construction can be carried one stage further using the same
argument. At the last stage, we have (&, ,..., &y) = & satisfying (3.28) and
(3.29) as required.
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