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Preface

Several books have recently been published describing applications of the
theory of conjugate convex functions to duality in problems of optimization.
The finite-dimensional case has been treated by Stoer and Witzgall [25] and
Rockafellar [13] and the infinite-dimensional case by Ekeland and Temam [3]
and Laurent [9]. However, these are long works concerned also with many other
issues.

The purpose of these lecture notes is to provide a relatively brief introduction
to conjugate duality in both finite- and infinite-dimensional problems. The
material is essentially to be regarded as a supplement to the book Convex Analysis
[13]; the same approach and results are presented, but in a broader formulation
and more selectively. However, the order of presentation differs from [13]. I
have emphasized more from the very beginning the fundamental importance of
the concepts of Lagrangian function, saddle-point and saddle-value. Instead of
first outlining everything relevant about conjugate convex functions and then
deriving its consequences for optimization, I have tried to introduce areas of
basic theory only as they became needed and their significance for the study of
dual problems more apparent. In particular, general results on the calculation
of conjugate functions have been postponed nearly to the end, making it possible
to deduce more complete versions of the formulas by means of the duality theory
itself. I have also attempted to show just where it is that convexity is needed, and
what remains true if certain convexity or lower-semicontinuity assumptions are
dropped.

The notation and terminology of [13] have been changed somewhat to make an
easier introduction to the subject. Thus the concepts of "bifunction" and "convex
process" have been omitted, even though they are needed in the larger picture
to see how the results on optimization problems fit in with other aspects of duality
that have long been a mainstay in mathematical analysis. The duality theorem
for linear programming problems, for instance, turns out to be an analogue
of an algebraic identity relating a linear transformation and its adjoint. For more
on this point of view and its possible fertility for applications such as to mathe-
matical economics, see [24].

A number of general examples drawn from nonlinear (including nonconvex)
programming, approximation, stochastic programming, the calculus of variations
and optimal control, are discussed in tandem with the theory. These examples
are obviously not meant to cover in a representative manner all the possible
areas of application of conjugate duality, but rather to illustrate and motivate the

ix
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main lines of thought. They underline especially the fact that, as soon as one
admits stochastic or dynamic elements into a model, one is likely to arrive at a
problem in infinite dimensions. Moreover, such problems typically involve so-
called integral functionals (even in "discrete" models, since an infinite series can
be viewed as an integral over a discrete space of indices). For this reason, I have
devoted some of the theoretical discussion specifically to convex integral func-
tionals and their special properties.

Thanks are due to the Johns Hopkins University, the National Science Founda-
tion, and the Conference Board of Mathematical Sciences for sponsoring the
Regional Conference in June, 1973, which precipitated these notes. The par-
ticipants in the conference deserve no small credit for the final form of the material,
as it reflects many of their questions and observations. I am especially grateful
to Professor J. Elzinga of Johns Hopkins who, in addition to all his many duties
as organizer of the conference, managed in equally fine fashion to take on the
job of supervising the typing and personally proofreading and filling in the
symbols in the original version of these notes. I also want to thank the Air Force
Office of Scientific Research very much for its support of research which went
into these notes under Grant AFOSR-72-2269 and earlier.

Seattle

August 1973 R. TYRRELL ROCKAFELLAR



Conjugate Duality and Optimization

R. Tyrrell Rockafellar

1. The role of convexity and duality. In most situations involving optimiza-
tion there is a great deal of mathematical structure to work with. However, in
order to get to the fundamentals, it is convenient for us to begin by considering
only the following abstract optimization problem: minimize f ( x ) for x e C, where
C is a subset of a real linear space X, and f:C -> [ — 00, +00].

If we define (or redefine) / so that /(x) = +00 for x £ C, then minimizing /
over C is equivalent to minimizing the new / over all of X. Thus no generality
is lost in our abstract model if we restrict attention to the case where C — X.
This conceptual and notational simplification is one of the main reasons for
admitting extended-real-valued functions to the theory of optimization. However,
once the step is taken, many other technical advantages and insights are also
found to accrue. Functions having the value — oo as well as + oo arise in natural
ways too, as will be seen later.

The function

is convex as a subset of the linear space X x R. Then the effective domain of/,

is also a convex set, and minimizing / over X is equivalent to minimizing / over
dom/. In particular, if / is a real-valued function on a set C c X and we define
/(x) = + co for x £ C, then / is convex as an extended-real-valued function on X
if and only if (i) C i&convex, and (ii) / is convex relative to C in the classical sense
that the inequality

always holds. A convex function is proper if it is the extension in this way of a
real-valued function on a nonempty set C, i.e., if dom
for all x e X.

Convex optimization problems, that is, problems which can be expressed as
above with / convex, have many pleasant properties:

(a) Local versus global analysis. One does not have to contend computationally
or theoretically with isolated local minima or "stationary points" which do not
solve the overall problem.

is convex if its epigraph,

1



2 R. TYRRELL ROCKAFELLAR

(b) Optimality conditions. It is relatively easy to determine criteria for an
optimal solution which are not only necessary but sufficient. Even in the absence
of differentiability in the ordinary sense, convexity makes possible a thorough
treatment of such conditions in terms of one-sided directional derivatives and
"subgradients."

(c) Existence and uniqueness of solutions. The compactness of various sets
involved in existence theorems can often be assured more simply using the special
continuity and growth properties of convex functions. In some cases involving
integrals, convexity is even necessary for compactness. "Strict" convexity is often
an easily verified criterion for uniqueness.

(d) Convergence of algorithms. Many special facts are available in this context,
and convergence from an arbitrary starting point can often be guaranteed.
Algorithms can also be based on features, like duality, which are hardly present
in the nonconvex case.

(e) Duality. This subject at its fullest, depending in an essential way on con-
vexity, leads to an enrichment of all aspects of the analysis of optimization problems.

A concept which is extremely fruitful is that of an abstract optimization problem
depending on parameters: minimize F(x, u) over all xeX. The parameter vector
u ranges over a space U. For example, u might be time, or it might be a random
vector expressing uncertainty in the data defining the problem. Or u might simply
represent certain variables whose effect on the problem is of interest. Note that
the "essential constraints" in the abstract problem also depend in general on u,
in the sense that the effective domain of the function x -> F(x, u) depends on «.

Of particular importance in this situation is the study of the corresponding
optimal value function

Typically we are interested in the continuity or directional derivative properties
of q> at some point u. (In most cases we can take U to be another real linear space
and u = 0.) The continuity may be crucial to the stability of some algorithm.
The directional derivatives may be needed in a "sensitivity analysis" of marginal
values from an economic viewpoint. Here also convexity enters in strongly,
due to the following fact.

THEOREM 1. Let X and U be real linear spaces, and let F : X x U -» [— oo, + GO]
be convex. Then the function <p in (1.2) is also convex (but not necessarily proper,
even if F is proper).

Proof. Let E be the image of epi F under the projection (x, u, a) -»(u, a). Then

Since epi F is a convex set by definition, and convexity is preserved under pro-
jections, we know E is convex. The formula for epi cp then yields the fact that
epi (p is a convex set. Therefore, q> is a convex function.

Thus, in the case of an abstract convex optimization problem depending
convexly on parameters (i.e., with F(x, u) jointly convex in x and u), all the special



resu s n the continuity and differentiability of convex functions can be used
in the study of cp.

The theory of dual optimization problems, the main object of our attention
below, also involves the notion of a minimization problem depending on param-
eters, but in a different fashion. Basically, this theory is concerned with representing
a given minimization problem as "half" of a minimax problem whose saddle-
value exists. We proceed to describe this fundamental idea in some detail.

Let us start with a function of the form

where X and Y are arbitrary sets, and define

Consider the two optimization problems:

It is elementary that

and consequently,

If equality holds in (1.8), the common value is called the saddle-value of K. The
saddle-value exists in particular if there is a saddle-point of K, i.e., a pair (x, y)
such that

the saddle-value then being K(x, y). This is part of the following result.
THEOREM 2. A pair (x, JO satisfies the saddle-point condition (1.9) if and only if

x solves problem (1.5), y solves (1.6), and the saddle-value of K exists, i.e., one
has

Proof. We can rewrite (1.9) as the condition

The equivalence is then immediate from (1.8).
Because of Theorem 2, problems (1.5) and (1 .6) are said to be dual to each other.

Each represents "half" of the problem of finding a saddle-point for K. The latter
problem corresponds, of course, to a certain game :. player I chooses an element

CONJUGATE DUALITY AN  OPTIMIZATION 3



4 R. TYRRELL ROCKAFELLAR

of X, player II chooses n element of Y, the choices are revealed simultaneously,
and then there is a payoff of K(x, y) from I to II. Problems (1.5) and (1.6) are the
optimal strategy problems for players I and II, respectively.

Although classes of optimization problems dual to each other can be generated
in the above manner by considering various classes of functions K, and some
important examples of duality can be obtained this way, it is really the opposite
pattern of construction that is of greatest interest and potentiality in optimization.
Thus the fundamental question is this, starting from a problem of the form (1.5)
where/ is some extended-real-valued function on a space X, how can we introduce
a space Y and a "meaningful" function K on X x y so that (1.3) holds? Having
determined such a K, we have at once a dual problem given by (1.6) and (1.4),
along with a game-theoretic interpretation of the duality and a saddle-point
criterion for optimality (Theorem 2). For K to be "meaningful," there should be
some natural interpretation of K(x, y) in terms of the initial problem (1.5), and
K should belong to some class of functions for which the existence of saddle-
values is at least not beyond hope. For most purposes, one would also want K
to be fairly "concrete" and open to direct manipulation.

Further motivation for minimax representations of minimization problems
is found in computation. Suppose, starting with (1.5), we have constructed a
function K satisfying (1.3); then we have an expression of/as the "envelope"
of a collection of functions x -» K(x, y), y E Y. Let us consider the problem

as an optimization problem parametrized by y e Y. The corresponding optimal
value function, expressing the infimum as dependent on y, is the function g in
(1.4). Since (1.7) holds, we can think of (1.11) as a sort of "lower representative"
of problem (1.5), with

Consider now the case where, for some y € Y, one actually has

Then, in view of the inequality/(x) ^ K(x, y), every x minimizing/also minimizes
K( - , y ) . In other words, the solutions to (1.5) can be found among the solutions
to (1.11) for y = y. This fact could be significant for computation, for example,
if K(x, y) is easier to minimize than /(x) and attains its minimum at a unique
point. But how can a y satisfying (1.13), if any, be determined? This is easy to
answer from (1.8), observing that the right side of (1.13) is just g(y): one has (1.13)
if and only if y solves the dual problem (1.6) and the saddle-value of K exists.

Thus if/ and K are related by (1.3) and the saddle-value of K exists, we have a
dual approach to minimizing /: first we maximize g(y) to obtain y, and then we
minimize K(x, y) to obtain x. Of course, in practice this dual approach would
more likely be implemented in the following manner: given yk e Y, determine
x* by minimizing K(x,y*) to within some tolerance, and then construct yk+1
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(using local information about K at (xk, yk), say, and perhaps data from previous
iterations). The aim would be to execute this so that the sequence yk tends to a
point y maximizing g, while x* tends to a point x minimizing K(x, y). Note that
for this purpose an expression for g more "concrete" than (1.4) might not be
needed.

Naturally, many details must be investigated in  individual case to see whether
an effective algorithm can be built on the dual approach. However, the possible
rewards could be great, since it might be much easier to solve the problems (1.11)
than the original problem ^1-6), due to some "decomposition" property of K
or the fact that various constraints implicit in (1.6) (through allowing +00 as a
value of/) might not be present in (1.11).

At all events, it is clear that, for both theoretical and computational purposes,
we may want to explore for a given / many different "meaningful" f nctions
K such that (1.3) holds. Thus we do not want to think of a particular problem
(1.5) as having a fixed dual problem associated with it, however interesting or
traditional the association may be (e.g., linear programming). In fact, there is
potentially a great multiplicity of duals. The question is how to construct them
so as to obtain desired properties.

The theory of conjugate convex functio furnishes a fairly complete answer
to this question, at least in general terms. It establishes an essentially one-to-one
correspondence between representations (1.3), where K(x,y) is convex in x and
concave in y, and representations

where F:X x U -> [ — oo, +00] is convex, that is, embeddings of the given
problem (1.5) in a convexly parametrized family of convex problems:

Furthermore, the theory brings to light a remarkable ne by
demonstrating a close relationship (in fact a "dualism") between the properties
of the function g in the dual problem (1.6) which are important to maximization
and the properties of the optimal value function

which are involved in "sensitivity" analysis at u — 0. Through the study of this
relationship, one finds that the saddle-value of the function K in question "usually"
exists.

Since the principal theorems known about the existence of the saddle-value
of a function K require that K(x, y) be convex in x and concave in y, or almost
so, it is evident that this scheme is capable of generating most of the functions
K that are "meaningful" for the basic theory of dual problems. Representations
(1.14) with F convex are quite easy to obtain, provided of course that / itself is
convex. Diverse examples are given in the next section.
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Although the main results of conjugate function theory apply only to optimiza-
tion problems of convex type, there are many applications also to nonconvex
problems. Some of these concern the derivation of necessary conditions for
optimality. Others arise because, in the course of some algorithm, a nonconvex
problem is at each step approximated locally by a convex problem, perhaps as a
direction-finding mechanism for a method of descent. One nonconvex application
will be discussed in some detail below (Examples 3, 3', 3").

2. Examples of convex optimization problems. We begin by reviewing some
facts and notations convenient in formulating problems and verifying convexity.

Let X denote a real linear space. The indicator \j/c of a set C cr X is defined by

This is a convex function if and only if C is a convex set.
If f : X -+ [ — oo, +00] is convex, then for each a e [ — o c , +x] the l l sets

(x|/(x) ^ a} and (x|/(x) < a} are convex.
If/ is convex, then so are the functions g(x) = f(x + a) where a e X , h(x) = /(.x)

+ a, where ae R, and /c(x) — //(x), where /. > 0. Also, the function r(z) = f(Az)
is convex on a linear space Z if A :Z -» X is a linear transformation.

If /! and /2 are convex on X, then / = /, + /2 is convex, provided the con-
vention ( + 00) + (— oc) = +oc is used in the addition. (The other conventions
for handling + oc and — oo are all obvious.) However, this special convention
is risky in some contexts, particularly where one might get it mixed up with the
opposite convention ( + 00) + ( — 00) = ( — 00) needed for concave functions. (A
function g is concave if/ = — g is convex.) Therefore it is often wise to steer away
from situations where + oc and — oc would have to be added. This can be done
for example by arranging that only proper convex functions be added together,
as suffices for most purposes anyway.

Some optimization problems require the consideration of infinite or "con-
tinuous" sums of convex functions. These can be represented by an integral over
a measure space (S, Z, cr) with a nonnegative:

More ge rally, one is led to th tudy of integra f tional

of the form

where S/C is some linear space of functions x:S -*• X. Note that the functional
(2.2) can be regarded as the special case of (2.4) where 9C is the space of constant
functions.
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There are a number of technical questions associated with integral functional,
not the least of which is the question of when such a functional is well-defined.
We shall adopt the point of view that / in (2.4) is well-defined on tf if for each
function xeSC the function s -» h(x(s),s) is measurable. Then if there exists a
real-valued function a:S -»• R which is summable with respect to a (in the usual
sense) and satisfies y.(s) ^ h(x(s),s) almost everywhere, the integral (2.4) has
an unambiguous, classical value (finite or — DC), and this is what we assign to
/(x): if such a function a does not exist, we set /(x) = + x.

To get a better grip n this concept, we can make use of the fact that in applica-
tions X typically has a to logical structure and consequently a measurability
structure: the Borel sets. The integrand h:X x S-» [— x, + x] is said to be
measurable on X x S (relative to the Borel structure on X) if h is measurable with
respect to the a-algebra on X x S generated by the sets B x T, where B is a Borel
set in X, and TeZ. Then h(x(s),s) is indeed measurable in s whenever x(s) is
measurable in s, since the latter measurability implies that of the transformation

Integral functionals will be discussed further in §9. For present purposes,
we merely state an immediate consequence of these definitions regarding con-
vexity.

THEOREM 3. The integral functional I given by (2.4) is well-defined on £ in the
above sense if, relative to the Borel structure on X generated by some topology,
the integrand h:X x S -* [— x, +oc] is measurable and the functions x:S -> X
are all measurable. If in addition h is convex in the X argument, then I is a convex
function on 3C.

Another useful construction: if/!, • • • ,/„, are convex functions on X, then so
is

Similarly, if f:X x w-*[ — cc,+cc] is convex in the X argument, then the
function

is convex.
Example 1. (Nonlinear programming.) Let /0,/i ,-•-•• ,/m be real-valued convex

functions on a nonempty convex set C in the linear space X. The problem is to
minimize /0(x) over all xeC satisfying /.(x) ^0, / = 1, • • • , m. Abstract repre-
sentation : minimize / over X, where

There are many ways of introducing parameters "convexly." The "ordinary"
way is to define F(x,u) for u = (ul, • • • , um) e Rm by

Then F:X x Rm -*( - oo, + x] is convex and F(x,0); = /(x).
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Example 2. (Nonlinear programming.) The problem is the same as in Example 1
(same / too), but a more complete system of parameters is introduced. Let each
/ be expressed in the form

where /, is an qffine (linear-plus-constant) function on X, A{ is a linear transforma-
tion from X to another linear space Z,, /i, is a convex function on Z,, and a, e Zt.
For

define

Again F is convex with F(x, 0) = /(x). This scheme turns out to be particularly
useful in special cases like exponential programming (also called geometric
programming, although the latter term is now often used in a much wider sense),
or quadratically-constrained quadratic programming, where a representation
(2.9) is part of the basic structure of the problem. In exponential programming
one has

(the logarithm might be omitted), while in quadratic programming

(Analogues involving infinite-dimensional spaces Z, can also be formulated
easily.)

Example 3. (Nonlinear programming.) Everything is the same as in Example 1,
but for a fixed 0 we define

where \u\ denotes the Euclidean norm. This alteration may seem pointless, but
we shall show that it leads to a dual problem with strikingly different properties.
Moreover, it opens up computational applications of duality in nonconvex pro-
gramming.

Example 4. (Nonlinear programming with infinitely many constraint ) The
problem is to minimize /0(x) over the set



where /0 is a real-valued convex function on the nonempty convex set C c X,
S is an arbitrary set, and h:X x S -* [ — oo, 4-00] is convex in the X argument.
The corresponding abstract convex optimization problem has

The parametrization analogous to Example 1 is to let U be a linear space of
functions u:S -*• R and define

Paramet could also be int uced more complicatedly, as in Example 2, say.
Example 5. (Chebyshev approximation.) Let fc;:[0,!]-»/? be continuous

for i = 0,1, • • • , m. The problem is to minimiz

over all possible coefficient vectors x = (xi, • • • , xm)eRm = X. Note that / is
a finite convex function which is not differentiable: this serves to emphasize the
fact that, even for the purpose of treating classical optimization problems, a
theory able to handle nondifferentiable functions is desirable. A "convex" param-
eterization may be introduced here by defining

Example 6. (Stochastic programming.) Let (S, E, a) be a probability space, let
h:X x S -> [ — oo, 4-00] be convex in the X argument, where X is some linear
topological space, and let C be a closed convex subset of X. We are interested in
the abstract optimization problem:

which we imagine as depending on s as a random element whose statistical distribu-
tion is known. The difficulty is that x must be chosen before s has been observed.
The problem really facing us is therefore that of minimizing the expectation

over all x e X. We assume h is measurable on X x S (relative to the Borel structure
on X), so is well-defined and convex by Theorem 3. If we set

CONJUGATE DUALITY AND OPTIMIZATION 9
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where U is some linear space of measurable function u :S -» A", then F is likewise
well-defined and convex, and F(x, 0) = f ( x ) .

Example 1. (Stochastic pro mming.) The problem is the same as in Example 6,
but we introduce the structure

where W is another linear topological space, and /J0 is of the form

Here D is a closed convex subset of W, and /; is a function defined on X x W x S
for / = 0, 1, • • • . m. The interpretation is that iv is a recourse that can be selected
after the random element s has been observed.

If the functions/- are convex in (x, vv), then the same is true of /J 0 , and therefore
/?(x. 5) is convex in x by Theorem 1. It is not obvious, however, what assumptions
on the functions f( imply that /? is measurable on X x S as needed for applying
Theorem 3. Certainly if every ff is measurable on X x W x S (relative to the
Borel structure on X x W), then the same is true of h0. But operation (2.21) is
questionable, as far as preserving measurability is concerned.

This is typical of the difficulties encountered in applications involving integral
functional. A lot of work frequently goes into establishing the measurability
of integrands defined in complicated ways. Fortunately there is extensive machinery
available for this purpose, much of it taking special advantage of convexity. But
trying to describe the details here would carry us too far from our main topic:
see [19] and the references given there.

For the case at hand, let it suffice to say that /? will be measurable on A' x S
if fi(x, w, s) is a finite convex function of (x. w) for each seS and a measurable
function of s for each (x, vv) e A x W, and if the spaces X and W are finite-dimen-
sional. (This can be demonstrated from results in [17].)

Now let U be a linear space of measurable functions

and set

where H(x, u s) is th imum of f0(x, vv, s) over all w e D satisfying

Our assumptions on the functions / j imply actually that H(x, u, s) is not only
convex as a function of (x, u} e X x Rm, but also measurable in (x, u, s) relative
to the Borel structure on A" x Rm. (Namely, let /(x, u, w, s) = /(x, H'. s) — w, for
/ = 1, • • • . m. and let /0(x, w, vv, s) = /0(x, vv. s). These functions are finite, con-
vex in (x. w. vv) and measurable in s, and when the construction (2.22), (2.21) is
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applied to them one gets H in place of h. Therefore H is measurable for the same
reason that h is under these assumptions.) It follows from Theorem 3 that the
functional

is well-defined and convex.
We thus have a different "convex parameterization" of the problem in Example

6. Of course, both types of parameterization could be introduced simultaneously.
Example 8. (Calculus of variations.) The problem is to minimize

over the linear space ,c/n[0,1] consisting of the absolutely continuous functions
x:[0, 1] -» R". {Here x denotes the derivative of x, which can be represented by a
measurable function whose values are uniquely determined except on a set of
measure zero.) The extended-real-valued functions L( • , • , t) and / on R" x R"
are assumed convex, and L is assumed measurable on R" x R" x [0,1] relative
to the Borel structure on R" x R" and the Lebesgue structure on [0, 1]. Then /
is well-defined and convex (Theorem 3). It deserves emphasis that this problem
may involve constraints, represented namely by allowing L and / to have the
value + oo. Thus, for instance, if / is the indicator of a point pair (c0, C j ) , that is,

the problem is equivalent to minimizing

over the class of all arcs x e J2/n[0, 1] satisfying the endpoint conditions x(0) = c0

and x(l) = cl.
A significant way to parameterize the problem "convexly," as it turns out, is

to set

where a ranges over R" and z ranges over the space J^°[0, 1] consisting of all the
essentially bounded, measurable functions from [0,1] to R".

This example could be generalized by replacing R" by some infinite-dimen-
sional space.

Example 9. (Optimal control.) The problem we consider is to minimize
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over all the functions x e jfu[Q, 1] and we J5f^[0,1] satisfying

Here A(t) is a matrix, and the functions /•( • , •, t) and /,- are finite and convex on
R" x Rn. We assume Lebesgue measurability with respect to t; it can be shown
that this yields all the measurability properties needed [21]. (No extra generality
would be gained in replacing the term w(t) in (2.29) by B(t)w(t).} Conditions (2.30)
can in part represent constraints purely on the states x(t) or purely on the controls
H<f).

The problem can be expressed in the form of Example 8 simply by setting

The same parameters as in Example 8 can then be introduced. However, for
purposes of illustration we indicate instead a different "convex" parameteriza-
tion:

if the conditions

are satisfied, but F(x, u) = + oo otherwise. The components of u are thus real-
valued functions ut of certain types on [0, 1] and real numbers u}.

Example 10. (Partial differential equations.) Let Q be a region in Rm with
boundary F. As a generalization of Example 8, we have the problem of minimizing

over (say) the space of all continuously differentiable functions x:Q -» R, where
L( •, •, t) is a convex function on R x R" for each t e Q, and / ( • , s) is a convex
function on Rn for each s e F. For instance, if
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we have the classical Dirichlet problem in which the integral
is minimized over the functions x which agree with the given function £ on the
boundary of Q. The solution to this problem solves an important partial differ-
ential equation. Many other instances can also be given where minimizing (2.36)
corresponds to solving a classical partial differential equation. This is due to the
fact that such equations in physical situations are often derived from variational
principles. It is no surprise, therefore, that the study of (2.36) in the general case
turns out to correspond to the analysis of a broad class of generalized partial
differential equations and the dual variational principles associated with them.

"Convex" parameterization can be effected in a manner parallel to Example 8:

where z:Q->/?" and a:T-> R" are summable functions. A model resembling
Example 9 can also be investigated. The functions x, instead of being real-valued,
can be allowed to have values in a suitable linear space X.

3. Conjugate convex functions in paired spaces. A notion fundamental to the
study of duality is that the linear functions on a given linear space can themselves
be regarded as elements of a linear space. In the finite-dimensional case, the
linear functions on R" can be identified with elements of Rn in terms of the usual
inner product: every linear function is of the form x -* x • v for some v e R".
The infinite-dimensional case is, of course, not so simple, because suitable "inner
products" are not always present. Furthermore, the class of linear functions one
is interested in may vary from problem to problem, depending on topological
considerations.

A convenient way of handling the general situation is the idea of paired spaces.
A pairing of two (real) linear spaces X and V is a (real-valued) bilinear form
< •, • > on X x V; the expression <x, r> thus behaves much like an inner product,
except that the x argument is restricted to X and v to K The pairing associates
with each veVa linear function

on X and with each x e X a linear function

on V. A topology on X is compatible with the pairing if it is a locally convex
topology such that the linear functions (3.1) are all continuous and every con-
tinuous linear function on X can be represented in this form for some v e V.
Compatible topologies on V are likewise the locally convex topologies such that
the continuous linear functions on V are the ones of form (3.2). When we say
that X and Fare paired spaces, we mean that a particular pairing has been singled
out, and X and V have been equipped with compatible topologies with respect to
the pairing.

dt
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For those concerned mainly with finite-dimensional aspects, the only example
which needs to be kept in mind is

A common infinite-dimensional exa ple occurs when X and V are linear spaces
of Revalued functions on a measure space (S, Z, a] and

Of course, X and V must be such that the function x -> x(s) • v(s) is (measurable
and) summable for every x e X and v e V. Sometimes the topologies to choose
are not altogether obvious. For instance, suppose that X = ^'(S, I, <r) and
V = JS?°°(S, S, a). The norm topology on X is compatible with the pairing (3.4),
as is the weak topology X possesses as a Banach space. The norm topology on
V is not compatible, since there generally exist continuous linear functions on
jS?°° which are norm-continuous but not representable through (3.4) by elements
of JS?1. However, the weak topology induced on 3?™ b J^1 is a compatible
topology on V.

Various topologies compatible with a given pairing always exist and can be
generated systematically. For the details we must defer to texts on functional
analysis [8].

Henceforth let X and V be paired spaces. The closed half-spaces in X are then
the various sets of the form (x|<x, u> ^ ft}, where /?e R, v e V, v ^ 0. It is a basic
theorem that a subset C of X is a closed convex set if and only if C can be expressed
as the intersection of a collection of such closed half-spaces. More generally, if
C is any subset of X, then the intersection of all the closed half-spaces containing
C is cl co C, where co C is h onvex hull of C and cl denotes topological closure.
This fact, exp ited in th c text of epigraph sets, leads as we shall see to the
idea of the function /* conjugate to a given function / on X, which is essentially a
description of the "nonvertical" closed half-spaces in X x R containing epi/.

It is noteworthy that, since the class of closed convex sets can be described
directly in terms of the pairing, it depends only on the pairing and not on the
particular compatible topology on X which has been selected.

Let f : X - + [ — oo, +00]. The convex hull co/ is the greatest convex function
^ /. Geometrically, the epigraph of co / is obtained from the convex hull of the
epigraph of/:

The function / is lower-semicontinuo (l.s.c.) if the set (x|/(x) ^ a} is closed
for all <y.eR. This is equivalent to the condition that epi/ be closed as a subset
of X x R. The l.s.c. hull Ics / is the greatest l.s.c. function ^ /. Thus
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or equivalently

Note that / is l.s.c. if and only if / = Isc /.
A slightly modified operation turns out to be even more useful in convex

analysis: we define the closure cl / of / by

We say /is closed iff = cl/, i.e., if/is an l.s.c. function nowhere having the value
— oc, or if/ is the constant function — x.

THEOREM 4. Let f:X-> [ — x , + x] be convex. Then Isc/ and cl/ are convex.
If Isc/ has a finite value at some point, then Isc / and f are proper, and cl / = Isc/.
Otherwise, Isc/ is of the form

In the latter event we still have df(x) = lsc/(x), unless x^c ldom/ ^ 0 (then
cl /(x) = - x but lsc/(x) = +00).

Proof. The convexity is obvious from (3.6) and (3.8). To obtain everything
else, we need only verify that if Isc/(x) = — x and

then lsc/(x) = — x. Let a and ft be arbitrary real numbers with a ^ lsc/(x).
The pairs (x, y.) and (x, ft] belong to the epigraph of Isc/, which is convex, and
hence so does (1 — A)(X, a) + /.(x, /?), 0 ^ A 52 1. In other words,

Since /? is arbitrary, we must have

Letting /. j 0, we see from the lower-semicontinuity of Isc/ that lsc/(x) = — x.
The conjugate of a function /: X -»• [ — oc, + x] is the function /* : V 

+ oc] defined by

In the same pattern, the conjugate of a function h: V — » [ — x, + x] is defined by

The biconjugate of /: X -> [ - oo, + x] is the conjugate /** of /*: V 
+ oc]:

The operation / -» /* is called the Fenchel transform.
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THEOREM 5. Let f:X-* [ — 00, +00] be arbitrary. Then the conjugate f* is a
closed convex function on V, and one has /** = cl co/. Similarly starting with a
function on V. In particular, the Fenchel transform induces a one-to-one corre-
spondence f -» h (where h = f* and f = h*) between the closed convex functions
on X and the closed convex functions on V.

Proof. By definition /* is the pointwise superemum of the collection of contin-
uous affine functions V ~* <x, y> — a, (x, a)e,epi/. From this it follows that /*
is convex and l.s.c., actually closed. We have (v, /?)eepi/* if and only if the
continuous affine function x -» <x, t>> — (3 satisfies

i.e., the epigraph of this affine function (a certain closed half-space in X x R of
"nonvertical" type) contains epi/. Thus epi/** is the intersection of all the
"nonvertical" closed half-spaces in X x R containing epi/. An elementary
argument, based on the characterization of closed convex sets mentioned above,
shows that this means /** = cl co/.

Some basic examples:
(a) For the indicator \\ic of a set C a X as in (2.1), ^* is the support function

ofC:

If C is a cone, then \j/* is in fact the indicator \l/c, where C* is the polar cone:

Of course, if C is a subspace we have

In this sense the polarity rrespondence for cones and the "orthogonality"
correspondence for subspaces may be regarded as special cases of the conjugacy
correspondence.

(b) In the finite-dimensional case of (3.3), let / be a finite, differentiable convex
function such that for each VE R" the equation V/(x) = i; has a unique solution
x e R". Denoting the solution by s(v), we have

The latter formula is said to define the Legendre transform, and /* is thus the
Legendre conjugate off. It can be shown that /* likewise is a finite, differentiable
convex function such that for each x e R" the equation V/*(u) = x has a unique
solution s*(x). (In fact V/*(u) = s(v), so that s*(x) = V/(x).) Therefore, / is in
turn the Legendre conjugate of/*. The Legendre transform can, to some extent,
be generalized to infinite-dimensional spaces X and to differentiable functions
given only on a subset of X [1, § 5], [13, § 26].

To illustrate (a) in the finite-dimensional case (3.3), we determine the con-
jugate of f(x) = Ixl (Euclidean norm). Since
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we have / = if/*, where C is the unit ball; therefore c. Another
example : if /is the indicator of the nonnegative orthant R"+ , then/* is the indicator
of the nonpositive orthant R"_ (the polar of R"+). An illustration of (b) is the case
where

with a € R", a € R, and the matrix Q symmetric and positive definite. Then

An example not quite subsumed by (b), but obtained by the same kind of direct
calculation, is

One has (using the convention 0 log 0 = 0)

and /** = /. (This will have applications to Example 2; cf. (2.13).)
It is fair to say that most of the "primary" examples of conjugate convex

functions follow from (a) or (b). But many other important examples can be
generated from these by means of various operations such as at the beginning
of § 2. The relationship between these operations and conjugacy will be discussed
in §9.

It is clear from the remarks about minimax problems and duality in § 1 that
concave functions will sometimes need to be treated on an equal footing with
convex functions. For concave g:X -* [ — oo, + oo], we define (not too ambi-
guously)

The upper-semicontinuous hull use g has

while the closure cl g is given by

To distinguish this operation from (3.8) when confusion might arise, we may
refer to it as upper closure, as opposed to lower closure. Note that the closed
concave functions are the constant functions + oo and — oo and the upper-semi-
continuous concave functions g which are proper (g(bc) < + oo for all x, and g(x)
> — oo for at least one x).
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So far, these definitions correspond to what happens if we pass to — g, apply
the definition in the convex case, then reconvert to concavity, multiplying by
— 1. However, we do not define the conjugate in this way as —/* for / = — g.
Rather we set

and this yields instead

We call this operation "taking the conjugate in the concave sense," as opposed
to the "convex sense." Usually it is apparent from the context which sense is
intended. The obvious analogues of Theorems 4 and 5 hold, with g** = cl g
for any concave function g.

4. Dual problems and Lagrangians. Following the pattern explained earlier,
we take as the "primal" problem an abstract optimization problem of the form

(P) minimize /overX,

where A' is a linear space, and we suppose that a representation

has been specified, where U is another linear space. Everything below depends
on the particular choice of U and F. To express duality, we take X to be paired
with a space V and U to be paired with a space Y. In applications, the choice of
these pairings may also have a big effect. Of main interest are the cases where
F(x, M) is a closed convex function of u e U for each x e X, or more restrictively,
a closed convex function of x and u jointly. (The second property implies the
first.)

We define the Lagrangian function K on X x Y by

Thus the function y -> K(x, y) is the conjugate in the concave sense of the function
u -» — F(x, u). If the latter function is closed concave, the conjugacy is reciprocal
(Theorem 5 in the concave case), i.e., the function u -> — F(x, u} is the conjugate
in the concave sense of the function y -»• K(x, y). Thus

The definition of the Lagrangian K is motivated by Example 1 in § 2, which
yields (with F(x, u) closed convex in u):
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THEOREM 6. The Lagrangian K(x,y) is closed concave in ye Yfor each xeX,
and if F(x, u) is closed convex in u one has

Conversely, if K is any extended-real-valued function on X x Y such that (4.5)
holds, and if K(x, y) is closed concave in y, then K is the Lagrangian associated
with a uniquely determined representation (4.1) having F(x, u) closed convex in u,
namely F given by the formula in (4.3).

Furthermore, assuming F(x, u) is closed convex in u, one has K(x, y) convex in
x if and only if F(x, u) is convex jointly in x and u.

Proof. Except for the last assertion, everything follows via Theorem 5, formula
(4.5) being the case of (4.3) with u = 0. If K(x, y) is convex in x, the function

is convex in x for each y e Y, and hence, as the pointwise supremum of a collection
of such functions by (4.3), F(x, u) is convex in (x, u). On the other hand, if F is
convex the function

is convex; since the function x -* K(x, y) is the infimum of this in u, it too is convex
(Theorem 1).

In view of (4.5), we define the dual problem to (P) (relative to the representation
(4.1)) as

where

The next result is perhaps the central theorem about dual problems. It relates g
to the optimal value function

which, as we recall from Theorem 1, is convex in u if F is convex in (x, u).
THEOREM 7. The function g in (D) is closed concave. In fact, taking conjugates

in the concave sense we have g = ( — <p)*, and hence — g* = cl co (p. Thus

In particular, if F(x, u) is convex in (x, u) we have -g* = cl (p, and indeed

whereas

(D) maximize g over y,
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except in the case where 0 ̂  cl dom cp ^ 0 arid the function Isc <p is nowhere
finite-valued. (In the exceptional case, the limit in (4.10) is + oc, as are the quantities
(4.9), but g(y) = — oo, so that the supremum in (4.10) is — oc.)

Proof. We have by definition

and the rest is immediate from Theorem 4 and Theorem 5.
The importance of Theorem 7 is that it transforms the question of whether

and the related question of whether the saddle-value of the Lagrangian K exists,
into the question of whether the optimal value function q> satisfies

In the convex case, i.e., F(x, u) convex in (x, u), the latter question reduces essen-
tially to whether

At all events, (4.12) is conceptually more open to direct analysis than (4.11),
because everything can be viewed in terms of the geometry of epigraphs, their
convex hulls and closures. The heart of "conjugate" duality is this geometric
outlook, combined with notions and terminology from analysis.

It is relatively easy in the convex case to formulate conditions guaranteeing
(4.13) and consequently (4.12). (This is not to say that the conditions are always
easy to verify in applications.) The convex case will be treated in detail below.
Nevertheless, it should be realized that the convexity of F(x, u) in (x u) is not an
absolute prerequisite for (4.12) to hold. While it is highly unlikely without this
convexity for <p to be a convex function (only a couple of special instances are
known), one may still be able to arrange for (4.12) in some nonconvex problems
(P) through a careful choice of the representation (4.12). In this way, ".nonconvex"
applications of conjugate duality may be obtained; see Example 3' in §5 and
Example 3" in § 8.

We have shown how to pass from a problem (P) to a "meaningful" dual problem
(D) by means of a representation (4.1). But for the duality to be truly symmetric
the process should be reversible. Thus there should be a representation

which similarly generates, as the dual for (D), the original problem (P).
The natural representation to investigate, in view of (4.3), (4.5), and (4.6), is
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this does at least satisfy (4.14). Since (D) is a maximization problem, the optimal
value function we associate with G is

Substituting (4.2) into (4.15), we see that

where F* is the conjugate of F (in the convex sense) with respect to the natural
pairing induced between X x U and V x Y:

THEOREM 7'. The function G is concave and closed, while 7 is concave. If F is
closed convex (jointly in x and «), we have in parallel with (4.17):

Then, taking conjugates in the convex sense yields /= ( — 7)*, and hence —f*
— cl y. Thus, while on the one hand

we also have, assuming F is closed convex,

the only exception to the latter being when 0 £ cl dom y ^ 0 and use y is nowhere
finite-valued. (In the exceptional case, the limit in (4.20) is — oc, as are the quantities
(4.19), but f(x) = + ac, so that the infimum in (4.20) is + oc.)

Proof. Theorem 5 yields from (4.17) the fact that G is concave and closed,
and

This implies (4.18) when F is closed convex. The concavity of 7 follows from the
concavity of G by Theorem 1. Setting u = 0 in (4.18) gives us

and hence/* = ( — 7)** = cl( — 7), since — 7 is convex. Thus —/* = cl 7, implying

Everything else follows from Theorem 4.
COROLLARY 7'A. // F is convex and closed, the relations (4.10) and (4.20) both

hold, except in the degenerate case where all of the following properties are present:
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the limit in (4.10) is — oo, 0^c ldom<p (implying the infimum in (4.10) is +00),
Isc cp(u) = — oc /or a// u e cl dom q>, the limit in (4.20) is + oo, 0 ̂  cl dom 7 (implying
the supremum in (4.20) is — oo), and use 7(1?) = + oo /or a// y e cl dom 7.

Proof. This results from combining Theorems 1 and 1'.
The degenerate case described in Corollary 7'A is indeed possible. An example

may be obtained from Example 1 in the case of an inconsistent linear programming
problem whose dual is also inconsistent.

We conclude this section with some remarks on the nature of the Lagrangian
functions K furnished by Theorem 6 and their role in general minimax theory.

Starting from the representation (4.14) of the maximization problem (D), it
is natural to define in analogy with (4.2) a corresponding dual Lagrangian K by

Inasmuch as G(y, v) is closed concave in (y, v) (Theorem 7'), we have K(x, y)
closed convex in x and concave in y (parallel version of Theorem 6) and

(Theorem 5 applied to (4.22)). In particular (setting v = 0 in (4.23)):

On the other hand, suppose F is closed convex. We can combine (4.22) with
(4.18) to obtain

Thus K gives rise to the same problems (P) and (D) that K does, and even the
same representations (4.1) and (4.14).

What then is the relationship between K and the function /C, which according
to Theorem 6 is convex in x and closed concave in y? This is answered in a simple
way using Theorem 5: formulas (4.22) and (4.15) tell us

while (4.25) and (4.2) tell us

However, we cannot hope to have K = K, except in unusual cases.
For example, assume in Example 1 that the set C is closed and the functions

/ are all l.s.c. on C. Then F(x, u) is closed convex in (x, u). As we have noted, the
corresponding Lagrangian K is given by (4.4). Instead of K = K, we have from

and therefore
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In this case the discrepancy between K and K is "trivial," but other examples
are known where, even in finite-dimensional spaces, the two functions can differ
at special points where both are finite-valued, or where one is finite and the other
infinite. In infinite-dimensional spaces, the relationship can be quite complicated.

The details of the relationship can be found in [13], [16]. The point we wish to
make here is that the continuity properties of Lagrangian functions are not so
elementary. One must be careful in theoretical developments not to make some
arbitrary restriction for mathematical convenience (such as assuming K(x, y) is
l.s.c. in x and u.s.c. in >'), because the effect on the class of representations (4.1)
and (4.14) may be disagreeable, or hard to trace.

Another point is that different convex-concave functions can correspond to
essentially the same minimax problem and dual problems (P) and (D). They
therefore must be lumped together in a nontrivial way into equivalence classes.
This idea is especially important in infinite-dimensional applications, since the
"equivalence" may get rid of what otherwise seem to be troublesome technical
ambiguities in how to express the Lagrangian.

A final remark is that virtually every reasonable minimax problem of "convex-
concave" type corresponds to some Lagrangian K and hence to a dual pair
of problems (P) and (D) in the relationships above. To illustrate without getting
into too many technicalities, suppose for instance that K0 is a real-valued function
on C x D c: X x 7, where C and D are nonempty closed convex sets, K0(x, y)
is l.s.c. in x e C and u.s.c. in y e D. Define

Then the minimax problem for K on X x Y is equivalent to the one for KQ on
C x D. Moreover K is closed concave in y and convex in x, and hence by Theorem 6
it is the Lagrangian corresponding to the F defined by (4.3) (and / defined by
(4.1) or (4.5)). The lower-semicontinuity of K0(x, y) in x actually implies via (4.3)
that F is closed convex. Theorems 7 and 7' are therefore both applicable to the
minimax problem.

Thus "convex-concave" minimax theory is essentially equivalent to the theory
of dual optimization problems, as presented here. For more on this see Example
13 in §8.

5. Examples of duality schemes. The duality scheme in § 4 will now be dis-
cussed in terms of the examples in § 2 and other general models. The treatment of
Examples 6-10 is postponed however until § 10, since it requires the results in
§ 9 concerning integral functionals. Some of the examples below will be analyzed
further in § 8.

Example \'. (Nonlinear programming.) Since the Lagrangian K for Example 1
is given by (4.4), the dual objective function is
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Thus the condition y ^ 0 is an implicit constraint in (D). But there may be other
implicit constraints, since the infimum could be — oo for some values of y, ^ 0.
There are many special cases of interest where g and these implicit constraints
can be determined more explicitly, but to illustrate the ideas it will be enough to
see what happens in the linear programming case

with C = X. Then we may calculate the whole function G from (4.15): if y ^ 0
we have G(i\ y) = — x, while if v ̂  0, then

The dual problem is therefore the linear programming problem that one would
expect:

Moreover the dual optimal value function y gives the maximum as a function of
a vector v e V replacing the 0 in the equation constraint.

It is not hard to see in this setting why the classical duality theorem for linear
programming problems is valid. Assuming for simplicity that X = R" — V\ one
notes that the epigraph of the function F can be described as the intersection of a
finite collection of half-spaces (the epigraph of /0 and the "vertical half-spaces"
corresponding to the conditions /j(x) — u, ^ 0), i.e., it is a polyhedral convex set.
The epigraph of <p is obtained from the epigraph of F through the projection
(x, M, a) ->• («, a). But the projected image of a polyhedral convex set is polyhedral,
hence closed [13, § 19]. Therefore q> is l.s.c., and we have (p(Q) = cl co <p(0) unless
Q^domq> and <p is identically — oc on dom <p. Similarly, y is a "polyhedral"
concave function, so that y(0) = cl y(0) unless 0 £ dom y and y is identically + oo
on dom g. In particular, the optimal values in (P) and (D) are equal, if the problems
are not both "inconsistent."

Example 2'. (Nonlinear programming.) We consider the parameteric representa-
tion function F of Example 2 of § 2 in the more explicit form where /,(x) = <x, b,>
+ /?,. Let Z, be paired with W{. Direct calculation from (4.2) yields for
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the Lagrangian expression

This is linear in x. Taking the supremum in .\ and using the identity </4,oc, w,>
= (x, A*wty, where A^: Wt -» X is the adjoint of At. we see that the dual problem

What is especially interesting about this dual is that the constraints are linear,
except for possible implicit constraints describing the effective domains of the
conjugate functions h$ and ()',-/',•)*• In a number of important cases, for instance
in quadratic or exponential programming (formulas (2.12) and (2.13) respectively,
see also (3.17H3.20)), we are able to calculate the conjugates explicitly and deter-
mine that the effective domains are elementary polyhedral convex sets, or "essen-
tially" so. In these cases (D) is essentially a linearly constrained problem, even though
(P) is nonlinearly constrained. Special properties of the functions /;, then lead
to the result that, if (P) has a feasible solution, the dual optimal value function /. is
closed concave, and hence in particular the optimal values in (P) and (D) coincide
[20]. For more examples in this vein, see [27].

Example 3'. (Nonconvex programming.) We consider the problem of Examples
1 and 3 in § 2, but without the assumption that the functions ft are convex. The
representation functions F in the two examples are still closed convex in u: we
denote the one in (2.8) by F and the one in (2.14) by Fr. The corresponding optimal
value functions satisfy

One sees geometrically by way of epigraphs that, while q> may be far from satisfy-
ing (4.12), cpr may satisfy it for r sufficiently large, thereby yielding a "nonconvex"
duality theorem. We shall return to this possibility in more specific terms in
Example 3" in § 8.

The Lagrangian Kr associated with Fr for r > 0 is easily calculated right from
(4.2), and it turns out to be

amounts to
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where

Notice the absence of any nonnegativity condition on v, like the one in (4.4).
Example 4'. (Nonlinear programming with generalized constraints.) To modify

the model in Example 4 of § 2 slightly, let U denote a linear space in which a
certain nonempty convex cone Q has been singled out as the "nonpositive orthant"
for a partial ordering, and consider the problem

(P) minimize /

where C e X is convex, f0:C -» R is convex, and where O:C —>• U is convex in
the sense that

We suppose U is paired with a space Y in such a way that Q is closed. Selecting
the parametric representation

which is convex in (x,«), closed in u, we obtain from (4.2) the Lagrangian

where Q* is the polar of Q. Thus, similar to Example 1' above, the dual consists of
maximizing

If for instance the set C is compact and the functions /0 and <I> are continuous,
it is simple to prove that the (convex) optimal value function q> is lower-semi-
continuous and proper, implying the optimal values in (P) and (D) coincide. Deeper
results of this sort, involving weaker conditions of compactness, will be established
in §7 (see parts (d) and (e) of Theorem 18' in conjunction with Theorem 17').
Other results use generalizations of the Slater condition; see Example 4" in § 8.

Infinite linear programming is covered by this example. In other specific
cases, one might approach the model along the lines of Examples 2, 2'. The idea
in Examples 3, 3', can also lead to something.

Example 11. (Fenchel duality.) This is a useful general model for many applica-
tions involving linear operators. The primal problem is of the form

(P) minimize

where h is a proper convex function on X, k is a proper concave function on U,
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and A: X -» U is a linear operator. We take

Then F is convex, and the corresponding convex-concave Lagrangian is

In terms of the adjoint linear transformation A*: Y -» K, we obtain

and the dual problem

(D) maximize

Elementary choices of the functions h and k turn these problems into familiar
ones in linear programming, quadratic programming, etc.

The definition of the adjoint A* can involve some subtleties in infinite dimen-
sions, particularly if, as often happens when dealing with differential operators,
one wants to encompass transformations A that are only densely defined. If A is
everywhere-defined and continuous, the relation

furnishes the definition of A*: for each yeY, the continuous linear functional
x -» </4x, >>> corresponds to an element veV, and this v is what is denoted by
A*y. To ensure that v is uniquely determined, it is necessary to assume the pairing
has the property that

This property can always be arranged, if needed, by identifying as equivalent
any elements of V which induce the same linear functional on X. The companion
property,

is required in showing that the adjoint A** is in turn well-defined and coincides
with A. Hence we always assume both properties (5.18) and (5.19) tacitly in any
discussion of adjoints.

If the linear transformation A is not everywhere-defined or continuous, a
suitable A* still exists, provided that the domain of definition dom A is a dense
subspace of X and the set

is closed in X x U. Namely, for each ye Y the linear functional x -* </4x, y>
on dom A may or may not be continuous. If it is, there exists (by the density of
dom A) a unique v e V such that </lx, y> = <x, u> for all x e dom A; we denote
this v by A*y and say that ye dom A*. It can be shown that then dom A* is a
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dense subspace of Y, the transformation A*: dom A* —» V is linear, and graph
A* is closed in Y x V. Moreover, the adjoint A** in the sense of the same defini-
tion satisfies A** = A. (This all follows easily through consideration of the
annihilator spaces (graph A}L and (graph /4)xi.)

Of course in the case just described, where A or A* may not be everywhere
defined, it is necessary to modify formulas (5.14) to

Then (5.15) becomes in turn

obey the closure relations (4.27) and (4.28) and thus form an example of convex-
concave functions equivalent to each other in the sense alluded to towards the
end of § 4. Without awareness of this, the possible differences between (5.25) and
(5.26) could be a source of perplexity.

The Fenchel duality model can easily be generalized to problems of the form

(P') minimize q(x,Ax) overall xedom/l ,

where q is a convex function on X x U, by setting

One then has

As a matter of fact, the two functions

It is interesting to observe that the dual Lagrangian in this situation is

and we have
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where

and

The dual problem is thus:

(D') maximize — q*( — A*y,y) overall yedomA*.

We remark that problem (P') can be viewed as one of minimizing a convex
function q over a certain subspace of the linear space A' x 17, namely over the
graph of A. In the same light, (D') consists of maximizing — q* over the "ortho-
gonal" subspace (graph A)^. The next example explores this idea in more direct
terms.

Example 12. (Complementary duality.) As an abstract model, let us consider a
problem of the form

(P0) minimize F(z) subject to ze X (subspace) c Z,

where F:Z -* [—00, +00] and the subspace X is closed. (Z is a linear space
paired with a linear space W.) Suppose (as is certainly true if Z is finite-dimensional
or a Hilbert space) that there is a closed subspace U of Z complementary to X,
i.e., such that each ze Z can be represented uniquely as a sum x + u, where x £ X
and u e U depend continuously on z. Then Z can be identified with X x t/, and
the problem (P0) can be rewritten as

or in other words,
(P)

But this is precisely our general model with parameters.
The "annihilator" subspaces Y = X± and V = UL in W are likewise com-

plementary to each other, so that W can be identified with U x Y: for z = (x, u)
and w = (v, y) we have

Regarding X as paired with F, and U as paired with Y, the dual associated with
(P)is

(D)

where

But this can be written also as

(D0) maximize — F*(w) subject to weJV1 c W.
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Thus the dual of minimizing a function F over a subspace X is to minimize
F* over X*-. Moreover, this is a description valid for all our dual pairs of problems
(P) and (D), since they can always be reformulated as (P0) and (D0) by setting
Z = X x l / a n d W = F x y (identifying X with X x {0}, etc.). However, it
is not as effective as a basic scheme for the theory of duality for several reasons.
It does not lead unambiguously to a Lagrangian function and associated minimax
problem (with corresponding optimality conditions and game-theoretic inter-
pretation of duality), because these depend on the particular choice of U. Nor
does it provide as natural a setting for the study of optimal value functions like
(p and 7, which turn out to be so important. The complementary subspace formula-
tion can also be a conceptual stumbling block in applications where there is no
obvious subspace at hand (such as Example 1). However, it is often useful in
theoretical analysis for its simplicity.

Incidentally, one can always pass from (P0) to (D0) in terms of Fenchel duality,
without relying on the existence of a subspace complementary to X. Taking
the linear transformation A in Example 11 to be the identity (identifying the
spaces in question), we get dual pairs of problems of the general type

(P t) minimize h(z) — k(z), z e Z ,

(Di) maximize k*(w) — h*(w), we W,

where Z and W are paired spaces. (These are the original problems introduced
by Fenchel in the finite-dimensional case—the starting point of conjugate duality.)
If we now set h = F and k = —\l/x (indicator), where X is a subspace of Z, we get
the (concave) conjugate k* = —1/^.1., and tnus (Po) an^ (D0)- An immediate
generalization is to take X to be a cone: then X1 is replaced by the polar cone X*.

This discussion demonstrates that all the schemes, Fenchel duality, comple-
mentary duality, the original Fenchel duality, and the "parametric" conjugate
duality presented in these notes, are capable of generating the same pairs of dual
problems. The differences lie in flexibility in application, richness of results and
interpretations, and potential relevance in the analysis of nonconvex problems.

6. Continuity and derivatives of convex functions. We have seen that the study
of the minimum and maximum in a dual pair of problems and of the existence
of the saddle-value in a minimax problem can be reduced very broadly to questions
about the continuity properties of certain convex and concave functions at the
origin. It happens also that the study of solutions to such problems is intimately
connected with the differentiability properties of the same functions. In this
section we review the basic results of convex analysis concerning continuity and
differentiability, in preparation for their application.

Throughout, we assume that U and Y are paired spaces, and that ip: U -»[ — co,
+ oo] is an arbitrary function. We denote the topological interior of a set C c U
by int C and define
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For convex sets C, we have int C = core C under any one of the following con-
ditions: (a) int C ^ 0, (b) U — R", (c) C is closed and U is a Banach space (or
"barrelled" space) in the compatible topology in question [8].

THEOREM 8. The two conditions
(i) <p is (finitely) bounded on a neighborhood of some point of U,

(ii) intepi</> =£ 0,
are equivalent and imply int dom (p =£ 0. If tp is convex, they imply ip is continuous
on core dom (p = int dom (p.

Proof. See [11], for example.
COROLLARY 8A. If U = R" and (p is convex, then (p is continuous on core dom (p

= int dom <p. In particular, every finite convex function on R" is closed.
Proof. If u € core dom (p, we can find points a1, • • • , am in dom (p such that the

set N = int co {al, • • • , am] contains ii. Choose a real number a such that a 
for / = 1, • • • , m. The pairs (a{, a) all belong to epi cp, which is convex, and hence
so do all the pairs (u, a) for u € N. Thus <p is bounded above by a on N.

COROLLARY 8B. // U is a Banach space (or barrelled space) and <p is convex and
l.s.c. (or closed), then (p is continuous on core dom q> = int dom (p.

Proof. Let u e core dom (p and (p(u) < a < +00. Let C = [u\q>(u] f$ a}. Then
C is closed convex and u e C. An elementary argument, invoking the properties
of convex functions along the line segments, shows in fact that u e core C and
hence ii e int C. Thus <p is bounded above on a neighborhood of u.

A subset D of Y is said to be bounded if every continuous linear functional on
Y has a finite upper bound on D, i.e., if the support function

satisfies «Aj5(w) < +00 for all ue U. In the finite-dimensional case (U = R" = Y,
<u, y> = u - y ) closed bounded sets are compact, but the infinite-dimensional
situation is subtler. It is not always true even that closed bounded subsets of Y
are compact relative to the weak topology induced on Y by the pairing with U
(that is, the coarsest topology under which the linear functions y -* <«, y> are
continuous, a topology known always to be compatible with the pairing).

Another concept becomes useful: D is said to be equicontinuous if the support
function i//£ is not just < + oo everywhere, but actually bounded above on some
neighborhood of the origin in U. (In view of Theorem 8, this condition is equivalent
to i/^ being continuous on U.) The "equicontinuity" refers to the family of linear
functionals <• , )>> on U corresponding to elements yeD. One might prefer,
instead of this standard terminology, to speak of D being fully bounded (in relation
to the topology assigned to U).

An important theorem in functional analysis asserts that if D is closed, equi-
continuous and convex, then D is indeed compact relative to the weak topology
induced on Y by 17.

Incidentally, boundedness of D alone is sufficient to imply that ^£ *s bounded
above on all equicontinuous subsets of U (the latter being defined analogously).

Of course, in the finite-dimensional case "boundedness" and "equicontinuity"
are equivalent, as are "compactness" and "weak compactness."
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THEOREM 9. Let h be any dosed convex function on Y other than the constant
function — oc (for instance h = </>*, unless q> = +00). Let Dbea nonempty bounded
subset of Y. Then

If in addition D is closed, convex and equicontinuous, the infimum is attained at
some point of D.

Proof. There exists u such that

(Theorem 5). Let a be a real number, a ^ //*(«). Then

and hence the infimum (6.3) is bounded below by

To prove the second assertion, we denote the infimum (6.3) by /?, assuming for
nontriviality that /? < -f oc, and we observe that the sets

are nonempty, closed, convex and equicontinuous. Hence they are compact in
the weak topology induced on Y by U. Since a nest of nonempty compact sets
has a nonempty intersection, it follows that the set {y e D\h(y) ^ $} is nonempty.

A word of caution: it is not true in the infinite-dimensional case that even a
continuous (finite) convex function is necessarily bounded above on bounded
sets. Counterexamples exist already for Hilbert spaces.

The next result expresses a duality between the preceding concepts of con-
tinuity and boundedness. An obvious application is to the situation in Theorem 7,
where for the convex optimal value function <p, one has q>*(y) = —g( — y), and g
is the concave function being maximized in (D). Similarly the situation in Theorem
7', where for the concave optimal value function y associated with (D) we have
(-y)*-/-

THEOREM 10. (a) // 0 e core dom <p, then the level sets

are bounded. Conversely, if one of these level sets for f3 > inf cp* is bounded, then
Oecoredom<p**.

(b) // <p is (finitely) bounded above on a neighborhood of 0, then the level sets
(6.5) are all equicontinuous (also closed, convex, and hence compact in the weak
topology induced on Y by U). Conversely, if one of these level sets for ft > inf (p*
is equicontinuous, then 0 e core dom cp** and (p** is continuous at 0.

(c) In the finite-dimensional case with cp convex, one has 0 e core dom <p if and
only if: the level sets (6.5) are all compact, and either one of them is nonempty or
<p(0) < +00. Moreover, the level sets are all compact if any one of them is non-
empty and does not include a half-line.
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Proof. See, for example, [11], [2], [1, Theorem 2].
For closed convex functions 9, "if and only if" versions of (a) and (b) in Theorem

11 can be stated, since (p** = (p.
We turn now to differentiability properties. Suppose q> is convex and u is a

point at which (p is finite. Then for arbitrary u' e U the difference quotient

makes sense. This expression is convex as a function of u' for fixed A, and one
can show easily from convexity that it is also nondecreasing as a function of A > 0
for fixed u. Therefore the directional derivative

is well-defined (possibly — oo or +00), the limit being the same as the infimum
over all X > 0. Moreover (p'(u; u') is convex in u and satisfies

If the limit (6.7) depends continuously on u and exists in the two-sided sense
(for A -> 0), i.e.,

then (p'(u; u') is a continuous linear function of u and hence corresponds to some
ye Y. This y is called the gradient of (p at u and denoted by V(p(w); one then has

The existence of V<p(u) entails u e core dom tp.
While gradients do not always exist, the directional derivatives above can

nevertheless be characterized in terms of a more general notion. If <p is a convex
function finite at u, an element y € y is called a subgradient of <p at u if

or equivalently (since the limit in (6.7) is the same as the infimum over A > 0) if

The latter condition can better be written as

and this makes sense when <p(u) is not finite, even when q> is not convex. Therefore
(6.12) is adopted as the definition of y being a subgradient at u in the general case;
the set of all such elements y is denoted by d(p(u). Geometrically, when <p(u) is
finite, (6.12) says that the epigraph of the affine function

is a supporting half-space to the epigraph of <p at the point (w, cp(u)).
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It must be emphasized that the definitions of "gradient" and "subgradient"
depend on the choice of the pairing of U with a space Y. This is a potential source
of confusion in some infinite-dimensional applications, where different pairings
may be equally suitable or needed for different purposes.

The subgradient set d(p(u))may be nonempty, but it is always closed and convex
in Y. Indeed, (6.12) defines dcp(u) as the set of points y satisfying a certain system
of (continuous) linear inequalities, i.e., as the intersection of a collection of closed
half-spaces.

THEOREM 11. Let q> be convex, and let u be a point where cp is finite.
(a) If (p is continuous at u, then d(p(u) is nonempty and bounded (in fact equi-

continuous, hence weakly compact), and

(b) More generally, the conjugate of the convex function &(u) = (p'(u: u') is the
indicator of the set d<p(u), and hence the support function of dcp(u) (which is the
conjugate of this indicator) is cl 9:

(c) In particular, if <p satisfies one of the equivalent conditions (i) or (ii) in Theorem
8 and u' is such that

then 9 is continuous at u', and cp(u', u') can be written in place of cl 0(u') in (6.14).
Proof. The first assertion in (b) is easily verified by direct computation using

(6.8) and the defining condition (6.11) for y e dcp(u). One then invokes Theorem 5.
Next, (c) is obtained from Theorem 8 and the fact that

Then (a) follows, at least with "sup," because (6.15) is fulfilled for every u''; more-
over, q>'(u; u') is everywhere continuous in u'. Thus dq>(u) is a set whose support
function is continuous everywhere, i.e., d(p(u) is equicontinuous. Since d<p(u) is
also closed and convex, it is weakly compact. If d<p(u) were empty, its support
function would be identically — oo, contrary to <p'(u\ 0) = 0. Thus the supremum
in (6.13) is indeed attained.

How are d<p* and dq>** related to dq>? Definition (6.12) of "subgradient" gives
us

where

by the definition of <p*. Dually,
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where

by the definition of </>**. Since (<p**)* = (<p*)** = cp* (Theorem 5, <p* being closed),
we also have

These relations and the inequality q>**(u) ^ q>(u] yield the following theorem.
THEOREM 12. If for a particular ue U one has d<p(u) ^ 0, then <p(u) = q>**(u).

Moreover, if <p(u) = (p**(u), then dcp(u) — d(p**(u) and

COROLLARY 12A. // <p = <p**, then the multifunction dtp: u -> dcp(u) is the inverse
of the multifunction d(p*:y -» dq>*(y), in the sense that

Theorem 5 will be of greatest interest to us in the case where u = 0. Then

while by definition (6.12) applied to <p*,

Thus, we have the following corollary.
COROLLARY 12B. // <p(0) = <p**(0), as is true in particular if d(p(0) ^ 0, then

Next we describe refinements of (6.25) showing that the actual differentiability
of cp at 0 is closely connected with the convergence of minimizing sequences for
(/>*, that is, sequences yk in Y, k = 1, 2, • • • , with

Example. Let us determine the subgradients of the indicator ^c of a nonempty
convex set C c: 17. By definition, the relation y e S^c(u) means that

or in other words that

The elements y satisfying this are said to be normal (in the sense of convex analysis)
to C at u, and they form a closed convex cone. Thus dij/c(u) is the normal cone
to C at M. (This cone is taken to be the empty set if u $ C, whereas it degenerates
to {0} if u e int C.)

if and only if
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We can use this fact and Corollary 12A to characterize also the subgradients
of the support function

when D is a nonempty closed convex subset of Y. Since ^£* = ^D, we have

Therefore <9^£(") consists of the points j; € D (if any) such that « is normal to D
at y. An important special case is i/^ a norm on 17, D being the unit ball for the
dual norm.

Recall that in the finite-dimensional case the function <p is said to be differ-
entiable at u if cp(u) is finite and not only does the gradient Vq>(u) exist, i.e., a vector
y such that

but also: the difference quotients in (6.31), as functions of w', converge uniformly
on every bounded set.

In the infinite-dimensional case, this property is called strong (or Frechet)
differentiability. However, there are other concepts of differentiability which
are sometimes more relevant. These correspond to substituting other classes of
sets for the bounded sets in the uniformity requirement. In particular, we shall
simply say that (p is differentiate (in relation to the designated topology on Y \ ) if
the convergence of the difference quotients is uniform on all equicontinuous sets
of U. This reduces then to the standard concept in finite dimensions.

THEOREM 13. Let q> be convex and, on a neighborhood o/O, lower-semicontinuous.
(a) cp is differentiate at 0 with V<p(0) = y, if and only if y has the property that

every minimizing sequence for q>* converges to y.
(b) The gradient V<p(0) exists and equals y, if and only if y has the property

that every minimizing sequence for (p* converges to y in the weak topology induced
on YbyU.

(c) The properties in (a) (and (b)) imply that y is the unique element of dcp(Q),
and in the finite-dimensional case of U = Rn = Y they are actually equivalent to
the latter. This is true even without the hypothesis of lower-semicontinuity.

Proof. See [1], [13].
A useful criterion for differentiability of (p at a point u is the following: q> is

convex, and there exists a function <p0 (not necessarily convex) such that <p0(w')
^ <p(u') for all u', (p0(u) — (p(u), and <p0 is differentiate at u: then V<p(u) = Vq>0(u).
(This can be argued from the definition of differentiability and the fact that (p'0(u; u)
^ (p\u\u'} for all w', which by convexity implies equality for all u and hence
V(p0(u)ed(p(u).).)

Convergence conditions of the type in Theorem 13 are known as rotundity
properties of q>* at the point y. They are closely related to strict convexity, which
likewise plays a role dual to differentiability but in a more global sense. In the
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finite-dimensional case, for example, if <p is a finite convex function such that
(p* is also finite everywhere, the global differentiability of q> is equivalent to the
strict convexity of q>*. There are various generalizations of this to infinite-dimen-
sional spaces or functions that are not finite everywhere [1, § 5], [13, § 26]. These
are involved in the study of the Legendre transformation mentioned in § 3.

Incidentally, the continuity properties of the gradient function V<p: u -* Vcp(u)
are greatly simplified when q> is convex [1, §4], [13, §25]. In fact, V<p is always
continuous as a function from the set {u\V(p(u))  exists} to the space Y endowed
with the weak topology induced by U (which is just the ordinary topology on R"
in the finite-dimensional case). If V<p is defined on a neighborhood of w, it is con-
tinuous at u (with respect to the designated topology on Y) if and only if cp is
differentiable at u (in relation to the same topology).

The subgradient multifunction

has many interesting properties. The following facts will not be needed later in
these notes, but we mention them anyway.

A multifunction T:U -+ Y is called a monotone operator if

It is a cyclically monotone operator if

It is a maximal monotone operator if it is monotone and its graph

is not properly included in the graph of any other monotone operator ; similarly
maximal cyclically monotone operator.

THEOREM 14. Suppose U is a Banach space (in the designated '''compatible"
topology). In order that a multifunction T: U -» Y be of the form T — dq> for some
closed proper convex function <p, it is necessary and sufficient that T be a maximal
cyclically monotone operator. Then cp is unique up to an additive constant, and T
is also a maximal monotone operator.

If in addition U = Y = H, where H is a Hilbert space and <u, y> is the inner
product in H, the mapping (u, y) -> u + y is a homeomorphism of G(d<p) onto H.

Proof. See [15], [13, §24], [10].
The last assertion says that the graph of dq> for q> closed, proper, convex is

geometrically very much like the graph of a continuous mapping; for example,
in the case of U = Y = R" it is an ^-dimensional set without "gaps" or "edges."

The theorem also characterizes a class of maximal monotone operators T
such that solving the "equation" 0 e T(u) is equivalent to minimizing a convex
function <p (since cp attains its minimum at u if and only if 0 € dq>(u)) . The study
of such "equations" has assumed some importance in recent years in connection
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with partial differential equations, and it is easy to see why. In Example 10, for
instance, if the precise formulation is effected in such a way that the convex
function / is closed and proper on a Banach space, then df is a maximal monotone
operator. The elements x minimizing / can be interpreted as the solutions to some
generalized partial differential equation, as already remarked. For more on
monotone operators and partial differential equations, see [2].

Theorem 14 also has some significance in axiomatics, for example, in mathe-
matical economics, where one wants to deduce that certain correspondences
can be interpreted as resulting from an "optimality principle."

7. Solutions to optimization problems. Returning to the notation of § 4 (with
/, F, (p, K, g, G, }•)»we employ the theory of continuity and subgradients of convex
functions to derive the existence of solutions to problems (P) and (D) and to
characterize them in terms of directional derivatives of the optimal value functions
(p and y.

The optimal values in (P) and (D) are denoted by inf(P) (or inf/) and sup(D)
(or sup g). We say that x solves (P) if x minimizes / (globally) on X. Note that by
the definition of df:

If / is not identically -f oo, this entails xedom/. The elements of dom/ are
called the feasible solutions to (P), since in applications they satisfy the explicit
or implicit constraints that are present (cf. Example 1 and others). The situation
where / is identically + oo is interpreted as meaning that the constraints in (P)
are inconsistent. In terms of optimal values, this is signalled by the equation
inf(P) = +00. Certainly there is no interest in minimizing the constant function
-1- oo, so it may seem odd that in this case the terminology just adopted has us say
that every point of A' solves (P), when such points are not even feasible solutions!
However, this is a matter of technical convenience in the statement of theorems.
In cases of expository hardship, we can say that an element x solves (P) properly
when we want to indicate that x is also feasible, i.e., that inf (P) < + oo. It is not
desirable to eliminate the case inf (P) = + oo in some a priori fashion, since the
more general results, in placing conditions on inf(P), provide us in fact with
important information on whether the constraints in (P) are consistent or in-
consistent.

We say similarly that y solves (D) if y maximizes the concave function g over Y.
This is equivalent to 0 e d( — g)(y). However, for notational elegance and symmetry
we prefer to introduce for concave functions the concepts parallel to those for
convex functions. Thus for instance we define it e dg(y) to mean that

It will be clear from the context when this definition is intended, rather than the
previous one (for example, the concave functions g, G, y of K(x, •) are involved).
One can speak of "subgradients in the concave sense," if necessary. The results
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in § 6 all carry over with only the obvious changes of sign and directions of in-
equalities. At any rate, we are enabled to say that

Subgradient notation is also useful in connection with the Lagrangian function
K. We define (r, u) e cK(.\, y) to mean that v e dxK(\, y) and u e cyK(x, y), that is,

Of course, the subgradient conditions (7.1), (7.2) and (7.3) have little content
at this stage and appear as trivial consequences of the definitions. What will give
them the content are the results to be discussed in § 9 on how to calculate the
subgradients of particular functions using various structural properties. After
all, even the classical result of the calculus that the directive of a function must
vanish, as a necessary condition for a minimum or maximum, would be largely
"tautological," without all the rules such as for calculating the derivative of a sum
of two functions.

In anticipation of the later developments, we dub the relation (0, 0)6 c/C(x, y)
the (abstract) Kuhn-Tucker condition for (P) (associated with the particular choice
of F in the representation (4.1)). While the saddle-point criterion for optimally
has a game-theoretic quality, the Kuhn-Tucker condition involves the "vanishing"
of a certain multifunction which in specific cases can hopefully be described in
considerable detail. We shall see that in Example 1 the abstract Kuhn-Tucker
condition does yield the classical conditions of Kuhn and Tucker. In Example 8
it yields variants of the Euler-Lagrange condition and transversality condition of
the calculus of variations, and so forth.

The initial theorem of this section summarizes in the new terminology the in-
formation already gained in Theorems 2, 7 and 7' about the possible equality of
the optimal values in (P) and (D).

THEOREM 15. The implications

hold among the following conditions :
(a) inf(P) = sup(D):
(b) (?(0) = clco<p(0):
(c) the saddle-value of the Lagrangian K exists :
(d) y(0) = elm-

Assuming F(x, u) is closed convex in u, one has the equivalence of (a), (b) and (c).
Assuming F(x, u) is closed convex in (x, w), one has the equivalence of (a), (b), (c)
and(d).

Thus
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Furthermore, the implication (e) =>(f) holds for the following conditions, with
actual equivalence if F(x, u) is closed convex in u:

(e) x solves (P), y solves (D), and inf (P) = sup (D):
(f) the pair (x, y) satisfies the Kuhn-Tucker condition.
Proof. Let F be the function on X x U obtained by taking the closure of the

convex hull of the function it -» F(u, x) for each x. Consider the problems: (P)
minimize /(x) = F(x, 0) over all x e X, (P) minimize /(x) = F**(x, 0) over all
x 6 X, in terms of the duality corresponding to the indicated parametric repre-
sentations. It is evident that (P) and (P) yield the same (D), g, G and y as (P), and
furthermore (P) yields the same Lagrangian K as (P). Using the inequality F ^ F
^ F, we obtain from Theorems 7 and 7' (applied also to F and F in place of F)
the relations

On the other hand, we have

from Theorem 6 (applied to F) and the definition of g. The desired implications
are obvious from this and the definition of "saddle-value" and "saddle-point."

COROLLARY 15 A. Suppose it is known that inf (P) = sup (D), where the supremum
is attained. Then x solves (P) if and only if there exists y such that (x, y) satisfies
the Kuhn-Tucker condition.

The next theorem provides the basis for applying the theory of directional
derivatives of convex functions to the study of solutions to (D). Condition (c)
in the theorem, as will be recalled from § 1, is fundamental to dual methods of
solving (P) using K.

THEOREM 16. The following conditions on an element y of Y are equivalent:
(a) y solves (D), and sup(D) = inf (P);
(b) -yed(p(0);
(c) in fK(x ,y )= inf / (x ) .

xeX xeX

Proof. Recalling from Theorem 7 that — g(y) = </>*( —y) and sup(D) = — <p**(0),
we can rewrite (a) as

The equivalence of (a) and (b) is then asserted by Corollary 12B. The equivalence
of (a) and (c) is clear from rewriting (c) as g(y) = inf (P)(cf. (4.6)), since g(y) ̂  inf(P)
for all y.

COROLLARY 16A. Assuming the quantity cp(0) = inf (P) is finite and F is convex
(so that q> is convex), we have the equivalence of:

(a) inf (P) = sup (D), and there exists at least one y solving (D);
(b) lim infu ,_M (p'(0; u) is finite for at least one ueU.
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Proof. This is immediate from Theorem 11 (b) (and Theorem 4, applied to the
convex function 6(u) = <p'(0; u)).

By virtue of the equivalence of (a) and (b) in Theorem 16, we obtain in terms of
the directional derivatives <p'(Q; u) an even fuller description of the vectors y
solving (D). We shall not try to list all the details, but limit ourselves to the choicest
case, where (p is actually convex and continuous at 0.

THEOREM 17. Suppose F is convex, and q> (also convex under this assumption) is
bounded above on a neighborhood of 0. Then

(a) inf (P) = sup (D), and there exists at least one y solving (D).
(b) In fact, for every real fi the set {y\g(y) ^ /?} is closed, bounded and convex,

actually equicontinuous and hence weakly compact (i.e., in the weak topology in-
duced on Y by U). Thus every maximizing sequence for (D) has weak cluster points,
and every such cluster point y solves (D).

(c) Assuming of course that the optimal values w,(a) are not — oo (so that <p(0)
is finite), we have

(d) A vector y solves (D) uniquely if and only if y = — Vcp(0'), i.e.,

and in this event every maximizing sequence for (D) converges weakly to y.
(e) The maximizing sequences for (D) all actually converge in the designated

topology on Y, if and only if (p is differentiate at 0 (in relation to that topology).
Proof. We know from Theorem 8 that (p is continuous at 0, with <p(Q) < + oo.

If <p(0) = — oo, then dcp(0) = Y, (p* = +00, and since g(y) = — <p*( — y) (Theorem
7) everything is trivial (Theorem 16). Therefore assume (p(0) is finite. Then (a) and
(c) are asserted by Theorem 11 (a), in conjunction with Theorem 16. Theorem
10 (b) gives us (b), while Theorem 13 gives (d) and (e).

An interesting generalization of Theorem 17 (c) to the nonconvex case may be
found in [4, § 7].

To complete the chain of ideas, we now furnish some convenient criteria for
the hypothesis of Theorem 17 to be satisfied. Note that these criteria, used with
Corollary 15A (cf. (a) of Theorem 17), are capable of yielding a vast array of
"Kuhn-Tucker theorems" which characterize the solutions to various convex
optimization problems. Criteria (c) and (e) have not appeared in any general form
previously in the literature.

THEOREM 18. Assuming F is convex, each of the following conditions is sufficient
for the convex function <p to be bounded above on a neighborhood of 0 and hence
continuous at 0.

(a) There is an x e X such that the function u ->• F(u, x) is bounded above on a
neighborhood of 0. (Or more generally, the function u -> F(u, 6(u)) is bounded above
on a neighborhood of 0 for some mapping 9.)

(b) U = R" = Y, and 0 e core dom (p.
(c) U and V are both Banach spaces (in the designated '''compatible" topologies!),

F is closed and 0 e core dom <p.
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(d) U = Rn = y, and at least one of the level sets {y\g(y) ^ jS} is nonempty and
bounded.

(e) F is closed, and there exist a neighborhood N of 0 in V and a number f$ such
that the set

is nonempty and equicontinuous.
Proof. The sufficiency of (a) is obvious from the definition (4.7) of <p, while

that of (b) and (d) follows from Corollary 8A and Theorem 10 (c) (using — g(y)
— <P*( — y))- In verifying the sufficiency of (c) and (e), we investigate for an arbitrary
convex neighborhood N of 0 in V the nature of the function

Of course gN is concave, since G is concave: apply Theorem 1 to the convex
function

We claim next that

To prove this, fix any UQ e 17 and consider the problem (P°) of minimizing /°
over X, where

Here F° is again convex and closed, and the duality theory of § 4 may be invoked.
The corresponding dual problem (D0) has (by direct calculation from the defini-
tions)

and consequently

Inasmuch as (p°(u) = q>(u0 + u), we know from Corollary 7'A that the two rela-
tions

Furthermore,

using the fact that
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hold, if (p(uQ) ^ +ao (as implied by w0 e dom <p) or if y°(0) > — oo (as implied by
sup(D)> -oo, i.e., G(y, 0) > — oo for at least one y). Thus (7.9) is true as claimed.
Notice from (7.14) that if MO is a point with <p(«0) finite, then the supremum — g#("o)
must also be finite, at least if N is chosen sufficientlysmall.

We are now in a position to establish (e). Under this condition, it is true in
particular that the level set |.y|gO>) ^ /?} is nonempty and bounded, where we
choose $ to be any number satisfying /? < /? < sup (D). Since g is a closed concave
function we may conclude (Theorems 9 and 7) that

Hence there must exist at least one u0 with <p(t/0) finite, so that, as just observed,
we can assume — g$ is finite somewhere. Then g£ is a closed proper concave
function, implying g£* = uscgN. The level set (y|gw(y) ^ /?} is equicontinuous
by hypothesis, with

and the latter inequality gives us

Therefore g** has a nonempty, equicontinuous level set. It follows from Theorem
10(c) that the convex function — (g$*)* = — gjj is bounded above in some neighbor-
hood of 0. Then <p is bounded above in the same neighborhood due to (7.9), and this
is what we set out to prove.

Finally, we attack (c). We can assume N = {v\ \\v\\ ^ e) for some e > 0. Then
from (7.8) and the inequality

which is a consequence of (4.17), we have

Thus

But — g£ is a closed convex function on a Banach space 17, so — g$ is continuous
on core dom ( —gjv) by virtue of Corollary 8B. Hence — g% is continuous on
core dom <p by (7.18). Since (7.9) holds, we conclude that cp is bounded above on
some neighborhood of 0 if 0 e core dom q>.

An important advantage of the symmetry inherent in conjugate duality is that
dual versions of the preceding results can be added to the repertory with no
extra effort.
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THEOREM 16'. // F is convex and closed, the following conditions on an element
x of X are equivalent:

(a) x solves (P), and inf (P) = sup (D);
(b) -xedy(O);
(c) supK(x,)0 = supg(.y).

ye? yeY
COROLLARY 16'A. Assuming the quantity y(0) = sup (D) is finite and F is convex

and closed, we have the equivalence of:
(a) inf (P) = sup (D), and there exists at least one x solving (P);
(b) lim sup y'(0; v') is finite for at least one veV.

v'-'v
THEOREM 17'. Suppose F is convex and closed and y is bounded below on some

neighborhood of 0. Then
(a) inf (P) = sup (D), and there exists at least one x solving (P).
(b) In fact, for every real a the set (x|/(x) ^ a} is closed, bounded and convex,

actually equicontinuous and hence weakly compact (i.e., in the weak topology in-
duced on X by V). Thus every minimizing sequence for (P) has weak cluster points,
and every such cluster point x solves (P).

(c) Assuming of course that the optimal values in (a) are not + oo (so that y(0)
is finite), we have

(d) A vector x solves (P) uniquely if and only if x = — Vy(0), i.e.,

and in this event every minimizing sequence for (P) converges weakly to x.
(e) The minimizing sequences in (d) all converge in the designated topology on

X, if and only if y is differentiable at 0 in relation to that topology.
THEOREM 18'. Assuming F is convex and closed, each of the following conditions

is sufficient for the concave function y to be bounded below on a neighborhood of
0 and hence continuous atO.

(a) There is ayeY such that the function v -»• G(y, v) is bounded below on a
neighborhood of 0.

(b) X = Rm = V,andOe core dom y.
(c) U and Vare both Banach spaces (in the designated "compatible" topologies),

and 0 € core dom y.
(d) X = Rm = V, and at least one of the level sets (x|/(x) ^ a) is nonempty

and bounded.
(e) There exist a neighborhood N of 0 in U and a number a such that the set

is nonempty and equicontinuous.
Since the choice of the compatible topology on V is at our discretion in most

applications, we usually want to choose it as strong as possible, so as to increase
the chances of y being continuous at 0. It happens that there is always a unique
strongest topology meeting our compatibility requirement. This is the Mackey
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topology on V induced by the pairing with X, which can be defined as the coarsest
topology on V such that all the support functions if/* of weakly compact convex
sets C in X are continuous [8]. It has by definition the property that every convex
set whose closure is weakly compact is equicontinuous, and this fact can be used
in Theorem 18'.

COROLLARY 18'A. Suppose that F is convex and closed, and that condition (e)
of Theorem 18' holds, but with equicontinuity replaced by the assumption that the
closure of the set in question is weakly compact. Then y is bounded around 0 relative
to the Mackey topology on V, and hence the conclusions of Theorem 17' are valid
if interpreted in that topology.

Proof. The only question in need of attention is whether the set (7.21) might
also have to be assumed convex, inasmuch as the assertion preceding the corollary
referred just to convex sets. However, the assumption can be omitted, because
if the property holds for a given N it also holds for an arbitrary smaller N which
can be taken to be convex. When N it convex, the set (7.21) is convex, because it
is the image of the convex set

under the projection (x, u) -»• x.
The Mackey topology induced on U by Y can be used similarly in Theorems 17

and 18.

8. Some applications.
Example I". (Convex programming.) We continue with Examples 1 of § 2 and

1' of § 5 under the assumption that the convex set C is closed (^ 0) and the convex
functions ff are l.s.c. Then F is closed, convex and proper. Since

it is clear that

The sufficient condition (a) of Theorem 18 is equivalent to the so-called Slater
condition:

Under the Slater condition, therefore, all the properties of Theorem 17 are present.
Then, for example, in the case of a unique dual solution y we have an inter-

pretation of the Lagrange multipliers corresponding to a saddle-point of K as
derivatives:

The subdifferential form of the Kuhn-Tucker condition will be discussed in § 10.
It is easy to see that the Slater condition is equivalent to having Oe core dom (p.
For the properties in Theorem 17' all to hold, we have from Corollary 18'A
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the sufficient condition that for some E > 0 and a > inf (P), the set

is equicontinuous in X. If X = R", this can according to Theorem 18' (d) be
weakened to the condition that for some real number a the set

is nonempty and bounded.
Corollary 16A leads to a very complete characterization of the existence of

an optimal multiplier vector y in the case where inf (P) is finite. One uses the fact
that a convex function on Rm whose l.s.c. hull has the value — oo somewhere
must itself have the value — oo somewhere [13, § 7]. The existence thus fails if and
only if there is a vector u yielding the directional derivative (p'(0; u) = — oo.

Example 3". (Nonconvex programming.) With the functions ft not necessarily
convex, as in Example 3', let us assume that q>(u) (given by (8.1)) is actually twice-
continuously-differentiable on a neighborhood of u = 0 in Rm, as well as globally
bounded below on Rm. While these conditions would be virtually impossible to
arrange in advance, they turn out to be satisfied very commonly in applications:
namely, where X = R", (P) has a unique solution at a point x e int C, the functions
f{ are twice-continuously-differentiable, and certain second-order sufficient con-
ditions for a minimum (involving a Lagrange multiplier vector y) are satisfied.
(To get the boundedness, C could be replaced by a bounded subset, if necessary.)
At any rate, under these assumptions, if r is sufficiently large the function

will be strictly convex on a neighborhood of u = 0, since the matrix of second
partial derivatives will be positive-definite. If r is chosen still larger, it can be
seen (and here is where the boundedness assumption on <p comes in) that the
nonconvex portions of <p will eventually be "pushed out of the way" to the extent
that

Thus for r sufficiently large we shall have

inf(P) = sup(DP),

(Dr) being the corresponding dual problem expressible through the general
formula (4.6) in terms of the Lagrangian Kr in (5.8). Moreover, (Dr) has a unique
optimal solution:

The hypothesis of Theorem 16 is satisfied in particular; thus an element x solves
(P) if and only if (x, y) satisfies the abstract Kuhn-Tucker condition, i.e., is a
global saddle-point of Kr. The latter implies the usual Kuhn-Tucker conditions
(see § 10), assuming the functions f{ are suitably differentiable. Thus y turns out
to be the optimal Lagrange multiplier vector in the ordinary sense.
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The potential existence of a global saddle-point (x, y) of Kr can be exploited
computationally by algorithms based on the dual approach. Such algorithms
resemble penalty methods, except that the "penalty parameter" r need not tend
to + oo. More refined criteria for the existence of a saddle-point are also known.
However, we must forego the details here; see [23].

Example 4". (Convex programming with generalized constraints.) The duality
results may be applied to the model of Example 4' of § 4, where the optimal value
function is

Much as in the convex programming case above, the effective domain of q> con-
sists of the values of the parameter vector u such that the perturbed constraint
system is consistent:

Assuming as before the convexity of C, f0 and the "epigraph"

we have the convexity of the representation function F and consequently the
convexity of (p.

It is obvious that condition (a) of Theorem 18, sufficient for the strongest
duality results, is satisfied if:

This is the natural generalization of the Slater condition. In particular (8.12)
implies that inf(P) = sup(D), with the supremum attained. In other words,
under assumption (8.12) there is a strong form of the "Kuhn-Tucker theorem":
a point x solves (P) if and only if for some y e Q* the pair (x, y) is a saddle-point
of the Lagrangian function K (given explicitly in Example 4').

Unfortunately, for many infinite-dimensional applications condition (8.12) is
of no use at all, since the cone Q of interest has no points in its core, much less
points in its interior. This is the state of affairs, for instance, if U = Jzf2[0,1] and
Q consists of the functions u such that u(t) ^ 0 almost everywhere; then core Q
= 0.

Of course, special properties in a given problem might still enable one to establish
by some different argument that q> is bounded above on a neighborhood of 0.
Then Theorem 17 could be invoked directly and the same Kuhn-Tucker theorem
obtained. However, for general purposes another possibility remains: a substitute
for the Slater condition based on criterion (c) in Theorem 18. This requires that
U be a Banach space, with Y identifiable algebraically with the dual of U through
the pairing, and perhaps more restrictively, that X be paired with a Banach space V
in such a way as to be identifiable as the dual of V. To ensure that the representa-
tion function F be closed as well as convex, the sets C and epi O can be assumed
to be closed and /0 lower-semicontinuous. (If C is not closed, the lower-semi-
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continuity of the + oo extension of/0 from C to all of X would suffice. The closed-
ness of epi $ implies that of the cone Q and expresses a sort of lower-semicon-
tinuity of <I>.) The generalized Slater condition in these circumstances, 0 e core dom <p,
amounts to the following:

Under this condition and the preceding Banach space and closedness assump-
tions, therefore, the desired Kuhn-Tucker theorem is again valid. This is a new
result which has not been published elsewhere.

Of course, one can get the existence of the saddle-value of the Lagrangian,
although not a Kuhn-Tucker theorem, from a boundedness condition corre-
sponding to (e) of Theorem 18'.

The technical difficulties connected with generalizing the Slater condition
point up one of the deficiencies of the "generalized constraint" model with a
cone Q and mapping <X>, namely that <I> must have values in the space U over
which the perturbations range. Looking back at the original Example 4, where
O(x) = h(x, •) (a function on the index space S), it is not so clear that this is desirable.
For example, when S is a compact topological space it may be useful in some
cases to restrict the parameter functions u to lie in the Banach space of con-
tinuous functions, even though h(x, s) is not everywhere continuous in s. The
latter approach leads to results in certain problems in stochastic programming
and optimal control (involving piecewise continuous recourse functions or
controls, for instance) where the cone model seems to fail, or at least be unduly
awkward.

Example 5'. (Chebyshev approximation.) The situation in Example 5 is well
understood, but let us see how it can be placed in the framework of the duality
theory. The parametric representation

requires us to pair the space U = #[0, 1] with a suitable space Y. The natural
choice is to let Y be the space of Borel measures y on [0, 1], the pairing being

For compatible topologies, one can take the norm topology on U and the weak
topology on Y (the latter corresponding to the so-called weak* topology on the
dual of U). The Lagrangian may then be calculated using the fact that the con-
jugate of the uniform norm || • || on [0,1] is the indicator of the unit ball B for
the dual norm
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One obtains

The optimal value function cp gives the distance of h0 + u from the subspace
of <^[0,1] generated by the functions ft,, • • • , hm. Trivially cp is finite and con-
tinuous (this also follows from condition (a) of Theorem 18), and therefore the
properties of Theorem 17 are in force. On the other hand condition (d) of Theorem
18' is satisfied, so that the properties of Theorem 17' hold as well.

The dual problem can be calculated explicitly:

maximize over all Borel measures 

(D)

satisfying

The dual optimal value function y ( v l , • • • , vm) gives the maximum under the
perturbed constraints

Thus the uniqueness of the coefficients x, in the best approximation corresponds
to the differentiability of this function y at v = 0.

The dual problem here resembles an important moment problem in statistics
(testing of hypotheses):

Our symmetric duality scheme allows us to explore this further. Introducing
the parameters vt as in (8.18) and the corresponding function G0, we can use the
formula (4.18) to calculate a primal representation function F0 and hence a primal
problem (P0) paired with (D0). This yields

Thus (P0) (corresponding to u = 0) consists of finding the coefficients x1? • • • , xm

such that the maximum of the function h0 — X j J i j — • • • — xmhm is as low as
possible.

Obviously the interval [0,1] can be replaced by other compact spaces. Different
kinds of moment problems can likewise be treated in this format.

and

maximize over all probability measures

satisfying

(D0)
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For an analysis of the Kuhn-Tucker conditions for the Chebyshev problem
and its generalizations, and their relationship with well-known optimality condi-
tions in approximation, see [5], [7], [9],

Example 11'. (Fenchel duality.) The scheme in Example 11 in § 5 has

while dually

(8.23) dom y = dom h* - A* dom k*.

Here A is a densely defined linear operator whose graph is closed, and A* is the
adjoint operator (see Example 11). Furthermore, h and k are proper convex
functions, so the convexity needed in Theorem 18 is present. The Kuhn-Tucker
condition, calculated from formula (5.15) for K, is

The simplest criterion for strong duality which can be obtained is the one
corresponding to (a) of Theorem 18:

,„ jt., there exists x e (dom h) n (dom A) such that k is bounded above
in a neighborhood of Ax.

Alternatively, if U and V are Banach spaces in their "compatible" topologies,
and if h and k are closed, the condition

suffices for the conclusions of Theorem 17.
Dual forms of conditions (8.25) and (8.26), in terms of h*, k* and A*, yield

under the closedness assumptions on h and k the properties in Theorem 17'.
The boundedness conditions ensuring inf (P) = max (D) or min (P) = sup (D) can
also be made quite explicit for the model.

Especially useful is the case where X = U, V — Y, A is the identity, and
k = —\l/c, the convex set C being a cone. Working out the results in this case is
a good exercise.

Example 13. (Minimax theory.) Let K be an extended real-valued function on
X x Y. We are interested in conditions on K which imply the existence of a
saddle-point, or at least the saddle-value. Although other approaches are possible
(slightly more general in some respects but more restrictive in others), we limit
attention to the case where X and Y are linear spaces paired as above with linear
spaces U and V respectively, K(x, y) is convex in x and concave in y, and the
semicontinuity property

is satisfied. In (8.27), clx denotes the operation of lower closure applied to K(x, y)
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as a function of x for each y, while cly denotes the operation of upper closure
applied to K(x, y) as a function of y for each x. The class of minimax problems
covered by these assumptions is considerably broader than might be thought, as
explained at the end of § 4.

Property (8.27) is satisfied if K is the Lagrangian corresponding to a function
F which is closed convex; see (4.27) and (4.28). Conversely, if K is a convex-
concave function satisfying (8.27) then in particular K(x, y) is closed concave in y,
and hence K is the Lagrangian corresponding to a convex function F, namely,
F given by the formula in (4.3) (Theorem 6). In fact, this function F is also closed.
(The function K = clx K satisfies (4.22) as a consequence of (4.15), but it also
satisfies (4.25) by (4.3), because cl^ = K; combining these two formulas with
(4.17), one sees that F = F**.)

Thus our assumptions exactly describe the minimax problems associated with
dual problems of the general form (P) and (D) for which F(x, u) is closed convex
in x and u jointly. Corresponding minimax theorems can be derived from Theorems
15, 17, 17' and the conditions in Theorems 18 and 18'. For this purpose one can
make direct use of the formulas

To illustrate, the condition:

there exist xe X and a. e R such that the set {y\K(x, y) > a} is
nonempty and equicontmuous,

implies via (8.28) and Theorem 10 (b) that (for the same x) the function u -> F(x, u)
is bounded above on a neighborhood of 0. Invoking Theorems 18 (a) and 17 (a),
we see therefore that (8.32) implies

Similarly, it can be shown that the condition:

, . there exist yeY and ft e R such th 
nonempty and equicontinuous

implies

If both (8.32) and (8.34) hold, a saddle-point (x, y) exists.
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Obviously (8.32) holds in particular if the set

is nonempty and equicontinuous, while (8.34) holds in particular if the set

is nonempty and equicontinuous.
Note that if K is of the form (4.30) discussed at the end of § 4, then the sets C

and D in (4.30) coincide with the C and £> in (8.36) and (8.37). Thus, for example,
under the assumptions preceding (4.30) one has

if D is equicontinuous, while

if C is equicontinuous.
Since the choice of the compatible topologies on X and Y is arbitrary, we can

just as well choose them to be the Mackey topologies (see the end of § 7). Thus
"equicontinuous" can be replaced by "weakly compact" in all the minimax
theorems just stated.

For more discussion of minimax theorems and references, see [16].

9. Calculating conjugates and subgradients; integral functionals. In many situa-
tions it is important to have expressions for the conjugate and subgradients of a
convex function h which has been constructed from other convex functions whose
properties are better known. For example, h might be a sum (finite or infinite)
of differentiable convex functions and indicators of certain elementary convex
sets. Various conditions sufficient for this or that formula to be valid have been
established in the literature (e.g., [6], [13]). Here, however, we take a more general
approach in showing how the formulas can be regarded as instances of the duality
relations and Kuhn-Tucker conditions studied in the preceding sections. This
illuminates the nature of the formulas more clearly and yields, by way of the
duality theory, a more comprehensive list of sufficient conditions.

The essential idea is this. Given a convex function h on X and an element
v€ V (V paired with X], we seek to characterize in some useful way the value
h*(v) and the elements x such that v e dh(x). We therefore investigate the problem

(P

The optimal value in this problem is — h*(v), and its optimal solutions are precisely
the elements x satisfying vedh(x). Introducing a parameter vector u in some
fashion, we obtain a Lagrangian function Xs and a dual problem (De). Then the
relation
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if valid, provides a formula

Furthermore, in circumstances where the supremum in (Dc) is sure to be attained,
we obtain from Corollary ISA the characterization that v€dh(x) if and only if
there exists y such that

A very fundamental case, appropriate for a beginning, is that of

where k is a proper convex function on a certain locally convex space U (paired
with a space 7), and the transformation A is linear. The question is how to express
h* and dh in terms of k*, dk and the adjoint transformation A*: Y-> V (where as
always V is paired with X). We assume only that A and A* are densely defined
and have closed graphs (cf. Example 11 in § 5); if x £ dom A, we interpret h(x) as
+ oc in (9.4).

Fixing v e V, we define the (convex) function Fc on X x U by

Then

that is, we have a "convex parameterization" of problem (P^) as desired. The
Lagrangian is

The Kuhn-Tucker condition (9.3) therefore reduces to

Furthermore,

The dual problem (Dc) is thus:

We note finally that the optimal value function is
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and consequently,

(9.12) dom (PIJ = range A — dom k.

If <p0 is bounded above on a neighborhood of 0, formulas of the kind we want
for h* and dh can be obtained from Theorem 17 (a) and Corollary 15A. The
sufficient conditions in Theorem 18 provide the following.

THEOREM 19. Let h(x) = k(Ax), where k is a proper convex function on U, and
A: X -*• U is a densely defined linear transformation with closed graph (h(x) inh
terpreted as + oo for x $ dom A). The two formulas

are valid, provided that any one of the following conditions is fulfilled:
(a) There exists an x £ dom A such that the function k is bounded above on a

neighborhood of Ax. (Or more generally, there is a continuous 6: U -» range A such
that the function u -> k(9(u) — u} is bounded above on a neighborhood ofQ.)

(b) U = R* = Y, and 0 e core (range A - dom k).
(c) U and V are both Banach spaces (in the designated "compatible" topologies),

k is closed and 0 e core (range A — dom k).
(d) U = R" — Y, and for some veV and real number a the set [y\A*y = v,

k*(y) ^ a) is nonempty and bounded.
(e) k is closed, and for some open set M in V and some real number a, the set

is nonempty and equicontinuous.
Remark. The condition 0 € core (range A — dom k) is satisfied in particular if

the range of A meets core (dom k).
Proof. Fixing an arbitrary veV, we find that conditions (a), (b) and (c) of

Theorem 18 follow, for the problems above, from (a), (b) and (c) of the present
theorem. But the latter are independent of v. Therefore, if one of them holds,
we have cp^ bounded above on a neighborhood of 0 for all v. Hence from Theorem
17 and Corollary 15A we also have

and the characterization

if and only if (9.8) holds for some y.

Before discussing (d) and (e), we demonstrate that the properties just men-
tioned furnish the desired conclusion. Of course (9.14) is identical to formula (ii).
On the other hand, since Axedk*(y] if and only if y edk**(Ay) (Corollary 12A
applied to (p = /c*), we can write (9.15) as
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(The notation /4*S, where S is a subset of 7, denotes the set of all ,4*v such that
ye S n dom A*.) To get (ii), we must show dk** can be replaced by dk in (9.16).
Recall from Theorem 12 that dk**(Ax) = dk(Ax) if dk(Ax) f 0 or if *(/tx)
= /c**(/ljc). It will be enough therefore to show that if dh(x) ± 0, then h(x) — h0(x),

Observe that the property of (p0 being bounded above on a neighborhood of 0
is not lost if k is replaced by /c**, inasmuch as k** ^ k. Thus, in the situation being
considered, formula (9.14) holds also with k replaced by k**. In other words, we
have

But k*** = k*. This shows, therefore, that f i j = h*. Hence, h ^ h0 ^ /i£*- If
dh(x) ^ 0, then /i(x) = /i**(x) by Theorem 12. Thus if dh(x) ^ 0, we do have
h(x) = Ji0(x) as required.

We turn now to condition (d). The boundedness property here is equivalent to
condition (d) of Theorem 18 for the problem (Ps). Thus if this property holds for
some y, we may conclude that (p$ is bounded above on a neighborhood of 0.
But this implies condition (b) of the present theorem, thus reverting everything
to the case already analyzed.

We shall show finally that condition (e) implies for any v the existence of a
neighborhood N of 0 in V such that the set

is nonempty and equicontinuous. This property says that condition (e) of
Theorem 18 is satisfied for (Pr), so this argument will complete the proof.

Since the set (9.13) is nonempty, we can select y0 and v0 such that

Since M is open, there exists an open convex neighborhood M0 of 0 in V such
that v0 + M0 c M. Choose Ae(0,1] sufficiently small that v — r0e(l/A)M0 ,
and set

Then N is a neighborhood of 0, and the set (9.19) is nonempty (it contains y0).
Denote (9.19) by C and (9.13) by B. Our goal is to prove now that C is equi-
continuous. For each ye C, we have A*ye(l/X)M0 + v0 by (9.21), so that

The vector A_y + (1 — A)y0, which again belongs to the subspace dom A*, there-
for satisfies

where
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It also satisfies

Thus for each yeC we have Ay + (1 — A)yQ in B. In other words,

Since B is equicontinuous, and equicontinuity of sets is preserved under transla-
tion and scalar multiplication, this relation implies C is equicontinuous.

Remark 1. Part (ii) of Theorem 19 implies that, under any one of the conditions
(aHe) the function A*k* on V defined by

is a closed convex function, moreover with the infimum always attained. This
result can also be stated in a more direct way, reversing the dual roles of the
elements. Thus let q be a closed proper convex function on X and consider the
function

on U. A sufficient condition for Aq to be a closed proper convex function, more-
over with the infimum always attained, is according to (a) of Theorem 19 that
there exists yedom A* such that q* is bounded above on a neighborhood of A*y.
Other sufficient conditions follow similarly from (b), (c), (d) and (e).

Remark 2. Theorem 18' similarly yields sufficient conditions for the equation
min (Pe) = sup (D0) to be valid, and hence the formula

However, the conditions depend on the particular v, except in unusual cir-
cumstances, and they do not provide much useful information about dh.

Next we treat the important case of the conjugate and subgradient of a sum of
convex functions. Our approach is to represent this as a special case of Theorem
19.

THEOREM 20. Let h(x) = /}(x) + • • • + /m(x), where ff is a proper convex function
on X , i = 1, • • • , m. The two formulas

are valid, provided that any one of the following conditions is fulfilled:
(a) There exists anxedom^ in a neighborhood of which the functions /2, ••• , f m .

are all bounded above. (The role of fv could be played by any one of the functions.}
(b) X = R" = VandOe core W, where

(c) X is a reflexive Banach space (in the designated "compatible" topology),
the functions ft are closed, and 0 e core W, where W is as in (b).
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(d) X = R" = V, and for some v and real a the set

is nonempty and bounded.
(e) The functions f{ are closed, and for some open set M in V the set

is nonempty and equicontinuous.
Proof. Let U = X x • • • x X (m times) in the natural pairing with

and for u = (xl, • • • , xm) set

Then A is a continuous linear transformation with

while k is a proper convex function with

It remains only to apply Theorem 19. In particular, to get (a) here, let 9(u)
= (x + X j , • • • , x + x,) for u = ( X j , • • • , xm) in (a) of Theorem 19, so that

Remark. The operation described by formula (ii) of Theorem 20 (forming a
new function by taking the indicated infimum for each v) is called inf-convolution
of the functions /*. Notationally: h* =• f*         /m- ^n more direct terms,
the inf-convolute /i            /« is defined by

This is convex if every /) is convex. It is easy to verify that even without the hypothesis
of convexity, one has

The operations  and ar
conjugates. Sufficient conditions for /t          fm to be a closed convex function,
with the infimum in its definition always attained, can be derived from the con-
ditions in Theorem 20 by duality.

Examples. 1. Let k be a proper convex function on X, and consider the problem
of minimizing k over a nonempty convex subset C. Let h(x) = k(x) 4- t//c(x),
where \l/c is the indicator of C. The problem is the same as minimizing h over X,
and its solutions are thus the points x such that Qedh(x). Theorem 20 gives
sufficient conditions for the latter relation to be expressible as

This condition means there is an element y normal to C at x such that — y is a
subgradient of k at x. (See the example in § 6 following Corollary 12B.)

Define

are thus dual to each other with respect to taking
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2. To see that condition (c) of Theorem 20 definitely yields something not
covered by condition (a), let X = j£?2[0,1] = V and let fl and /2 be arbitrary
closed proper convex functions such that dom fl = dom/2 = =£?+. (Here Jz? + is
the "nonnegative orthant," consisting of the functions which are nonnegative
almost everywhere.) Then

so W is the whole of y2 x y2. The core condition is thus satisfied, and formulas
(i) and (ii) are therefore valid. But there is no question of/, or/2 being bounded
above anywhere, because core <£\ = 0.

We return now to the integral functionals

considered in Theorem 3 in § 2. Results about their conjugates and subgradients
will in particular enable us to generalize Theorem 20 to certain infinite or "con-
tinuous" sums of convex functions (Theorem 23). As earlier, 3C denotes a linear
space of measurable functions x:S -* X. We shall assume that X is a separable
Banach space, the case of X — R" being of particular interest. (A Banach space is
said to be separable if it has a countable dense subset.)

Let * denote a linear space of measurable functions v :S -*• V, where Fis paired
with X and thus identifiable algebraically with the dual of X as a Banach space.
There is a natural pairing of 3C with i/r\ namely

provided that the integrand in (9.32) (which is certainly measurable) is in fact
summable for every x e 3C and v e V. This summability will be assumed.

We are interested in calculating the conjugate of the integral functional / with
respect to the pairing (9.32). We have by definition,

In approaching the supremum, we would like, for each s, to choose x(s) so that
the quantity <x(s), u(s)> — h(x(s),s) is as high as possible. If the functions in 3C
are such that the values x(s) can be specified with enough "independence," we
can hope to continue the calculation by equality with

where h*(-, s) is the conjugate of h(•, s) for each s e S. But this also hinges on the
latter integral being well-defined. The measurability of h does not obviously
imply that of h* without some restrictions.
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The space 3C is said to be decomposable if, whenever T is a subset of S of finite
measure and x0 :T—* X is a measurable function whose range is bounded, then
for every x e 3C the function

also belongs to 3C. For example, 3C is decomposable if 3C = yp
x(S, S, cr), the space

of all measurable functions x :S -* X satisfying

On the other hand, if S has a topological structure and the functions in 3C are all
continuous, then 9C is typically not decomposable.

Recall that the measure space (5,1, a) is said to be complete if every subset of
a measurable set of measure zero is itself measurable. It is totally sigma-finite if
S is the union of countably many sets of finite measure.

THEOREM 21. Let the integrand h be measurable on X x S (relative to the Borel
structure on X), where the Banach space X is separable and the measure space
(S, I, a) is complete and totally sigma-finite. Assume that h is lower-semicontinuous
in the X argument, /(.x) < +00 for at least one xeSC in (9.31), where 3C is de-
composable. Then:

(a) The conjugate integrand h* is measurable on V x S (relative to the Borel
structure on V), and the conjugate of I with respect to the pairing (9.32) is

(b) In particular, the latter integral is well-defined and convex on V, and it is
lower-semicontinuous with respect to the weak topology on i^ induced by 3C.

(c) An element vei^ belongs to dl(x) if and only if v(s)edh(x(s),s) for almost
every s, where dh(x(s), s) is the set of subgradients of h(-,s) at the point x(s) e X.

(d) // in addition X is reflexive, V is decomposable, and I*(v) < + oo for at least
one v e if in (9.36), one has

Proof. A proof of (a) can be found in [19]. Assertions (b) and (d) follow from
(a) via Theorem 5. As for (c), this is immediate from (9.36) and the following
relations (see (6.16) and (6.17)): I*(v) ^ <x, y> — I(v), with equality if and only if
t; e dl(x), and similarly

with equality if and only if
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Although Theorem 21 applies only to decomposable function spaces 9C, some
results are also known in other cases. For instance if S is a compact space and 3C
is the space of all continuous Rn-valued functions on 5, there is a natural pairing
of 3C with the space T^" of all R"-valued regular Borel measures on 5:

The conjugate of an integral functional like / with respect to this pairing can be
calculated under certain additional assumptions on h.

As one might expect, if the measure v is absolutely continuous with respect
to the underlying (regular Borel) measure a and therefore expressible by a density
function dv/da e &l

Rn(S, Z, cr), we get

It is not obvious, however, what I*(v) ought to be when v is a singular measure
(i.e., concentrated in a set of ^-measure 0). The answer turns out to be that then

where 6 is an arbitrary nonnegative (regular Borel) measure with respect to which
the /?"-valued measure v is absolutely continuous, and j ( - , s) is for each se S the
so-called recession function [13] associated with the convex function /i*(-,s).
In the general case, where v is the sum of an absolutely continuous component
and a singular component, I*(v) is the sum of the integrals in (9.39) and (9.40)
applied to the two components separately. For the details, see [18].

This fact is interesting for many optimization problems, because it indicates
the natural way of extending an integral functional on  = Z£^(S, E, a) to a
functional on the larger Banach space consisting of all /^-valued measures on S,
the elements of  being identified with the measures for which they are the
density functions. The general measures can be regarded as ideal limits of sequences
in        which otherwise would have no limit.

In minimization problems somehow involving an integral functional on 
and these are very common, it may be possible by passing to the extended func-
tional to arrange the existence of a generalized solution where otherwise no solu-
tion would exist. Similarly, it may be possible to obtain a generalized solution
to a dual problem and thereby a generalized Kuhn-Tucker condition which is
not only sufficient but necessary for optimality.

A powerful device for calculating the conjugate of / in the case of nondecom-
posable spaces SC is to identify 3C with a subspace of some Jz?£-(S, Z, a] and / with
the restriction to 3C of an integral functional /'. (The space X' may differ from X.)
One then has /(x) = J'(Ax), where A is the embedding mapping, and Theorem 19
map be applied. This depends, of course, on being able to produce the continuity
or boundedness properties specified in the hypothesis of Theorem 19.
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The following theorem provides some criteria which are useful in this respect.
However, some of the more general results that are known entail that SC be
identified with a subspace of some =^J-(S, I., a) which is in turn paired, not with
HfytS, Z, a), but a large space—its Banach dual. We cannot discuss the technical
complications here; see [18], [19].

THEOREM 22. Let the integrand h be measurable on X x S (relative to the Borel
structure on X), where the Banach space X is separable and reflexive, and the
measure space (S, Z, a] is complete and totally sigma-finite. Assume that h is lower-
semicontinuous and convex in the X argument and that h(s, x(s)) is summable in s
for every x e Jz?£(S, Z, ff), where 1 ̂  p ^ oo. Then:

(a) The integral functional I(x) = Js /i(x(s), s)0(ds) is well-defined, finite, convex
and everywhere continuous on ^PX(S, Z, <r). The continuity is not only with respect
to the norm, but also in the Mackey topology induced on ^^(S, Z, a) by yq

v(S, Z, a)
under the pairing (9.32), where (l/p) + (l/q) = 1. (The two topologies coincide,
except for p = oo, q — 1.)

(b) The conjugate functional on ̂ f\ (S, Z, a) is

This convex integral functional has in fact the property that for every x e «S?£(S, £, ff)
and every aeR the set

is equicontinuous and hence weakly compact.
(c) For .xej!zf£(S, Z, cr), the condition that vedh(x(s),s) almost everywhere

implies v e <^(S, E, a), and it is equivalent to v e dl(x).
Remark. The summability property assumed in the theorem is implied for

1 ^ p < oo by the growth condition

where a is a positive number and b a summable function. Taking conjugates on
both sides of (9.42), one can express the growth condition dually as

If p = oo and X = R" = V, it can be shown that the summability property, and
indeed all the properties assumed for h, are implied by the following: /i(x, s) is a
finite convex function of x e R" for each seS and a summable (measurable)
function of s e S for each x e R" [18].

Proof. Certainly I is well-defined, finite and convex (Theorem 3). The formula
for /* is valid by Theorem 21. Part (c) follows from (a) and Theorem 21 (c).

We now show that / is lower-semicontinuous in the norm topology. Suppose
not. Then there is an element x, a sequence (xk)j?= l converging to x and a number
a, such that
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Since ||xk — x|| -+ 0, we can assume (passing to a subsequence if necessary) that

(This is trivial for p = oo, while for p < oo it follows from the fact that the func-
tions s -» ||xt(s) - x(s)||p converge to 0 as elements of     . As is well-known,
every convergent sequence in  has a subsequence converging pointwise almost
everywhere.) But (9.45) implies by Fatou's lemma and the lower-semicontinuity
of/i(-,s)that

This contradicts (9.44) and establishes the lower-semicontinuity of /.
Since / is finite, convex and lower-semicontinuous, and &x(S, Z, a) is a Banach

space, we may conclude that / is continuous (Corollary 8B).
For p < oo, standard theorems of functional analysis assert that the norm

topology on &\ is compatible with the pairing (9.32) with J^, and that the norm
topology coincides with the induced Mackey topology. Applying Theorem 10 to
q>(x) — I(x + x), we see that the conjugate function q>*(v) = I*(v) — <x, y> has
equicontinuous, weakly compact level sets for every x, as claimed in (b).

For p = oo, the rest of the proof is too complicated to be furnished here. It is
given in [18, Theorem 2] for X = R" = V. The general case is a straightforward
extension of the same argument, making use of the decomposition theorem of
[6, Appendix I].

As an application of Theorem 22, we state a version of Theorem 20 for infinite
sums of convex functions.

THEOREM 23. Let

where X is a separable reflexive Banach space, the measure space (S, Z, a) is complete
and totally sigma-finite, and h is measurable on X x S (relative to the Borel structure
onX) and convex in the X argument. Assume that h(x(s), s) is summable in s whenever
x(s) is a bounded measurable function of s. Then:

(a) J is a finite, continuous, convex function with J(x) < + oo everywhere.
(b) For each x e X one has

or in other words, vedJ(x) if and only if there exists a measurable function w with
w(s) e dh(x,s)for almost every s (implying w eJ$^(S,E,<5)), such that
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(c) The conjugate of J on V is given by

Remarks. If X = R" = K, the summability condition is implied by the assump-
tion that h(x, s) is summable in s for each fixed x e X. Note that the operation
(9.49) is a sort of infinite infimal convolution of the convex functions h*(-, s).

Proof. We follow the same pattern as in Theorem 20. Let A: X -> Jz?£ be the
linear transformation which assigns to each x e X the constant function s -*• x.
Then we have J = /(/lx), where / is given by (9.31). The adjoint A*:^\, -> V
assigns to each function w the element (9.48). To obtain the desired conclusion
from Theorem 19, it is enough to know that 7 is continuous everywhere in the
Mackey topology induced on & £ by Z£ \. But this is asserted by Theorem 22.

Some versions of Theorem 23 are known which do not require h(x, s) to be
finite everywhere in x, but they are more complicated. For these and many other
general results on the calculation of conjugates, we refer to [6], [13].

Only one further fact is needed for the applications we want to discuss. In this
result, our notation as usual has the space U paired with a space Y, as well as
X with V.

THEOREM 24. (a) Suppose that

where F(x, u) is convex in (x, u) (extended-real-valued). Let tie U be such that the
infimum for <p(u) is attained, and let x denote any one of the elements in X at which
it is attained. Then the subgradients of the convex function (p at u are given by

(b) Suppose that

where K(x, y) is convex in x, concave in y (extended-real-valued), and cly c\x K = K.
Suppose there exist xe X and a e R such that the set {y\K(x, y) > a} is nonempty
and equicontinuous. Then the subgradients of the convex function f are given by

where M(x) is the set of elements (if any) for which the supremum in (9.52) is attained.
Proof, (a) We have (p(u) — F(x, u), and hence the subgradient inequality

is equivalent to

But the latter says (0, y)

63



64 R. TYRRELL ROCKAFELLAR

(b) As explained in Example 13 in §8, our assumptions imply that K is the
Lagrangian for a dual pair of problems (P) and (D) with F closed convex, and
moreover with

This equation is the same as inf(P) = max(D). In particular then, we have by
Corollary 15A that 0 e df(x) if and only if there exists y with (0,0) e dK(x, y), or
in other words, QedxK(x, y) and yeM(x). More generally, applying the same
argument to the function

where JCD(x, y) = K(x, y) — <x, u> , we see that v e df(x) if and only if there exists
y e M(x) with

Remark. Theorem 24 (b) can be applied to the more general case of

where S is a compact Hausdorff space, h(x, s) is proper convex in x, and cls clx h
= h. Let 7 denote the space of all (real-valued) regular Borel measures on S and
define

where F = (ye Y\y ^ 0, y(S) = 1}. It can be shown that the hypotheses of Theorem
24 (b) are fulfilled (with U = C(S)). One obtains in this way the result that v e df(x)
if and only if there exists a probability measure y e P such that

and such that the support of y is contained in the subset of 5 where the maximum
in (9.54) is attained. To analyze (9.56) further, one can use Theorem 23 or one of
its generalizations (see [6]).

10. More applications. The results in § 9 enable us to analyze further the Kuhn-
Tucker conditions and dual problems in our earlier examples, particularly those
involving integral functionals.

Example I'". (Convex programming.) Assume for simplicity, that C = X. Thus
the functions /, are everywhere finite and convex, and

where y = ( y l , • • • , ym) e Rm. We can use Theorem 20 in § 9 to translate the
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abstract Kuhn-Tucker condition (0, 0) e dK(x, y) into a more explicit and familiar
form. Writing

where -k(y) = /0(x) + ylfl(x] + • • • + ymfm(x) and P is the nonnegative
orthant in Rm, we see from the example following Theorem 20 that the condition
0 e dyK(x, y) holds if and only if the vector

On the other hand, for y e P we have

by Theorem 20, assuming for example that f{ is a continuous function for
i = 1, • • • , m (as follows from Corollary 8 A if X = jR"). Moreover, for ft ^ 0
and ff finite one has trivially the relation

The abstract Kuhn-Tucker condition is therefore equivalent to conditions
(10.2) and (10.5), assuming /) is continuous for i = 1, • • • , m. If/ is differentiate,
(10.5) reduces of course to

Example 6. (Stochastic programming.) The given problem is

and the chosen representation involves

where h is measurable on X x S (relative to the Borel structure on X) and convex
in the X argument, and C is a nonempty closed subset of X. In order to apply
the theory of integral functionals in § 9 at its fullest, we shall assume X is a separable,
reflexive Banach space (whose dual is identifiable with V under the pairing
<x, y», and

where the measure space is complete and has, of course, a(S) = 1. (In the pairing

Formula (10.3) thus allows us to write the condition 0 e BxK(x, y) as

is normal to P at y. This means that
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between U and 7, we take the norm topology on Y, but the Mackey topology
on U; see the end of § 7.) We shall assume further that h(x, s) is finite and lower-
semicontinuous in .v for all s, and h(u(s),s) is summable in 5 for every ueU.
(If X = /?", the latter assumption can be weakened to the summability of /j(x, s)
in 5 for each x e X.)

These assumptions imply via Theorem 22 that F is a closed convex function
on X x t/, and indeed F(x, u) is finite and continuous in u in the Mackey topology
for each x.

The Lagrangian function can be calculated as

This yields in turn

(D)

The continuity property of F is sufficient according to Theorem 18 (a) for all
the conclusions of Theorem 17 to hold. In particular, we have

the maximum being attained at y if and only if — v e <3<p(0) (Theorem 16).
To gain an interpretation of such vectors y, let us investigate the significance of

the relations

which are equivalent to the Kuhn-Tucker saddle-point condition (Theorem 15).
We can write (10.1 1) as

which is to say

The dual problem is thus:
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or more specifically in this case: x e C and in addition

for all x e X and u e &x such that x — u(s) e C for almost every s.
Consider the following modified problem, where y(s) is a "price vector" depend-

ing on the random element s. We must still choose x before s is observed, but
after the observation we have the recourse of altering x to any more advantageous
value w(s) e C based on our knowledge of 5. In doing this we incur the cost h(w(s), s),
but also pay the amount <x - w<s),y(s)>, which represents the cost of alteration.
The condition above requires x and the price structure s -* y(s) to be such that
under these circumstances, no matter what value of 5 is observed, it will turn out
that no a posteriori alteration of x will be advantageous. In other words, the
function y is an "equilibrium price structure" which exactly reflects in the economic
sense the disadvantage of having to choose x without complete information
about s.

The Kuhn-Tucker condition in subgradient form is comprised of the two
relations 0 e dxK(x, y) and 0 e cyK(x, y), the first of which reduces to:

(see the example in §6 after Corollary 12B). Note that the integral gives the
"expected price vector" in the interpretation above. Using the identity

According to Corollary 12A and Theorem 22, this is equivalent to having
xech*(y(s),s) for almost every 5, as well as to having

The Kuhn-Tucker condition for our problems can therefore be expressed as
(10.14) and (10.17).

In computing a solution to (P), it may be helpful to know the subgradients of
the function J. According to Theorem 23, the subgradients of J at x are the
"expected price vectors"

corresponding to "price systems" y which satisfy y(s) e dh(x, s) almost everywhere.

we can write the second relation as x e d H ( y ) . where x is regarded as a constant
function, an element of ̂ ", and
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In particular, if x is such that the gradient V/i(x, s) exists for almost every s, then
VJ(x) also exists and

The expectation (10.18) can in some applications be calculated approximately
by sampling the random variable s.

For more about such ideas in stochastic programming, see [26] and the refer-
ences given there.

Example 1'. (Stochastic programming.) For simplicity, we shall make the
assumptions listed in Example 7 in § 2, namely that X — R" = V, W = Rd,
/i(x, w, s) is finite, convex in (x, w) and measurable in s, / = 0,1, • • • , m. Then, as
already remarked, the integrand //(x, M, s) in (2.23) is measurable in (x,«, s) and
convex in (x, u}. For the sake of the theorems in § 9 on integral functionals, we
also want the probability space (S, Z, cr) complete and H(x, u, s) lower-semicon-
tinuous in x. A convenient assumption ensuring lower-semicontinuity is that the
set D be compact (the functions /) being continuous in view of Corollary 8A and
the preceding assumptions).

We shall also suppose in fact that /0(x, w, s) is summable in s for each (x, w),
while ft(x, w, s) for i = 1, • • • , m is bounded in s for each (x, w). Let U = J^^S, Z, a)
and Y = ^l

Rm(S, 1, a) in the natural pairing (with the norm topology on Y and
the weak or Mackey topology, say, on U). Then the convex functional

has the property that for every x e C there exists w e U with F(x, u) < +00. Using
this, we can apply Theorem 21 to calculate the Lagrangian function:

where qx(u, s) = — H(x, u, s) and q* is the conjugate in the concave sense. More-
over,
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where the inner infimum is

we can state that

This formula leads to the conclusion that F(x, u) is a closed proper convex
function of (x, u) e X x 17, so that the duality theory in § 4 and § 7 can be invoked
symmetrically. To see this, observe first that the integral in (10.24) is — oo unless
y ^ 0 (i.e., y(s) ^ 0 almost every where). On the other hand, if y ^ 0, then /c(x, y(s), s)
is summable in s ; this can be demonstrated from the compactness of D and our
assumptions on the functions ft, but we omit the details. It follows that the integral
in (10.24) is continuous as a function of x e R" if y ^ 0 (Theorem 23 and the remark
after it). From (10.20) and part (c) of Theorem 21, we have

The bracketed expression is for each y ^ 0 in  a closed proper convex function
of (x, u). We see then that F, as the supremum of a collection of such functions,
is closed convex and nowhere — oo. Since we already know F ^ + oo, we conclude
F is actually proper.

An explicit form of the subgradient relations in the Kuhn-Tucker condition
can be obtained by a fancy calculation employing both parts of Theorem 24 as
well as many of the other results in § 9. We only state the outcome : x e R" and
ye  satisfy the Kuhn-Tucker condition if and only if there exist functions
p £  vv e  and r e       such that the following relations all hold :

-r(s) is normal to D at the point w(s) e D

almost everywhere ;

Therefore, setting

almost everywhere;

almost everywhere;



These relations are thus sufficient for x to solve the primal problem and y to solve
the dual.

But are the relations necessary? Can every x solving (P) be characterized this
way? A positive answer to this hinges on being able to show that inf (P) = max (D).
If C is bounded, say, we do have min (P) = sup (D) by Theorem 17' and criterion
(d) of Theorem 18'. However, it seems unlikely that inf(P) = max(D) can be
established by any of the criteria in Theorem 18. The difficulty is that the optimal
value function cp on U =  can hardly be expected to be bounded above
around 0 in the Mackey topology (or any other topology compatible with the
pairing with y = J^m), due to the compactness of D and the nature of integral
functional.

The fact that the sufficient conditions (10.26H 10.29) may not be necessary
for optimally can also be seen heuristically. Much in the pattern of Example 6',
one can interpret y,(s) as a "price" associated with the constraint /,(x, w, s) ̂  0.
The existence of a .y of the type described means that an "equilibrium price struc-
ture" is possible which distributes the economic effects of the constraints over a
subset of S of positive measure. However, there may be only certain crucial
values of the random variable s for which the induced constraint on x:

is "tight," and these may form a set of measure 0 with respect to a. The effects of
such a constraint cannot be reflected by a function y, i.e., by a measure on S of
the form

The way out of this difficulty is apparently to generalize the dual problem by
admitting measures // which are not just of the form (10.31), but may have singu-
larities with respect to a. This returns us to the ideas raised in § 9 after Theorem 21:
one can try to work instead with U as the space of all continuous jR^-valued
functions on S (the latter assumed to have a compact topological structure) and
Y as the space of JRm-valued measures on S.

Example 8'. (Calculus of variations.) The problem is

and we have represented it parametrically by

where xe X = j^,[0, 1] and u = (z,a)e U = J^n°°[0, 1] x R". For the sake of the
theory of integral functional, it is assumed that L is measurable on R" x Rn x [0, 1]
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relative to the Borel structure on R" x R" and the Lebesgue structure on [0,1],
and that the functions / and L( •, •, t) are l.s.c. convex on R" x R" and nowhere
- oo. Let X be paired with V = &?[0,1] x R" by

and let U be paired with Y =jtfn[Q, 1] similarly,

The norm topology is taken on V and U and the induced weak topology on X
and 7.

Consider the integral functional

Assume / ^ +00. Pairing the decomposable space <£~£ x 5f\ with <£\ x y^
by

we can employ Theorem 21 to calculate the conjugate of /, obtaining

This fact enables us to determine an expression for the dual problem (D) in terms
of the conjugates L* and /*. Specifically, we have

Remarkably, this has the same form as (P) and even the same sort of parametric
representation.

The duality between these two problems (P) and (D) has been studied extensively
(see [21], [22] and the references given there). It turns out that the Kuhn-Tucker
condition can be expressed as the two conditions

The dual problem is thus
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The first of these can also be written in so-called Hamiltonian form:

where H (the Hamiltonian function) is defined by

Note that H(x, y, t) is concave in x and convex in y, since L(x, r, t) is convex in
(x, r) (Theorem 6).

Although these conditions can be shown to be necessary as well as sufficient
for optimality in many important cases, one runs into difficulties similar to those
in Example 7 when state constraints on x(t) are implicitly present. This may be
gotten around by generalizing the dual problem (and Kuhn-Tucker condition)
so as to allow for functions y which are not necessarily absolutely continuous,
but only of bounded variation [22].

Example 9'. (Optimal control.) Taking U = &% x Rr paired with Y = ̂  x Rr,
we obtain under broad measurability and summability assumptions resembling
those in Example 7' that

if yf(s] ^ 0 a.e. and y} ̂  0, while otherwise K(x, y) = — oc. For fixed y, the problem
of minimizing K(x, y) in x thus has the character of Example 8' and can be analyzed
in those terms. Moreover, since /C(x, y) is finite in X for y ^ 0 the latter problem
is free of implicit constraints.

The idea can be used in a dual approach to solving the control problem, as
explained in a more general context in § 1. The basic pattern is that, given yk E Y
with yk ^ 0 we minimize the expression (10.42) with respect to x to obtain xk;
then yk is somehow altered to a new element yk+l as suggested by the information
which has been computed. One aims to have xk and yk converge respectively to
an x solving (P) and a y with the properties in Theorem 16.

If essential "state constraints" are present among (or induced by) the constraints
ff(x,w,t) ^ 0, the set-up is not adequate for duality theorems of the sharpest
sort. Again it is necessary to generalize the dual problem and Lagrangian function
to admit "singular" elements; cf. Examples 7' and 8'.

Example 10'. (Partial differential equations.) This problem is too complicated
technically for us to treat here. But the following heuristic comment may be
illuminating. If the pattern of Example 8' is pursued, one obtains as part of the
Kuhn-Tucker condition a generalization of the Hamiltonian equations (10.40)
in the form



CONJUGATE DUALITY AND OPTIMIZATION 73

where again H is related to L by (10.41). This can be regarded as a generalized
partial differential "equation." Associated with it is a generalized boundary
condition expressed by the part of the Kuhn-Tucker condition corresponding to
the function /.

For instance, if L is given by (2.37), we have H(x, y, t) = ^|y|2, so that (10.43)
reduces to the classical equation

with y = grad x.
The notions we have discussed above, about extending problems to include

"ideal" or "singular" elements as suggested specifically by the theory of integral
functionals, are also relevant to such problems involving partial differential
equations.

For a rigorous treatment of this class of problems in terms of convexity and
duality, see [3].
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