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AUGMENTED LAGRANGE MULTIPLIER FI-INCTIONS AND
DUALITY IN NONCOIWEX PROGRAMMING+

R. TYRRELL ROCKAFELLARt

Abstract. If a nonlinear programming problem is analyzed in terms of its ordinary Lagrangian

function, there is usually a duality gap, unless the objective and constraint functions are conYex. It is
shown here that the gap can be removed by passing to an augmented Lagrangian which involves

quadratic penaltyJike terms. The modified dual problem then consists of maximizing a concave

function of the Lagrange multipliers and an additional variabld, which is a penalty parameter. In
contrast to the classical case, the multipliers corresponding tb inequality constraints in the primal

are not constrained a priori to be nonnegative in the dual. If the maximum in the dual problem is

attained (and conditions implying this are given), optimal solutions to the primal can be represented

in terms of global saddle points of the augmented Lagrangian. This suggests possible improvements

of existing penalty methods for computing solutions.

1. Introduction. Letf6,-fr,...-f^be real-valued functions defined on a set

S c Rn. We shall be concerned with the nonlinear programming problem:

minimize fo$) over all x e S satisfying
(P)

l(x)<0 fori:1,"',ffi.
The ordin ary Lagrangian function associated with problem (P) is

(1.1) Lo$,y\:,fo(x) + ytfr@) + "' -r y^f^(x) for(x'y)es x R!,
and this corresponds to the dual problem:

maximize So0\ over all y € Ri, where
(Do)

It is well known that

(1.2)

go0): i:l't'tx'Y)'
the optimal values in these two problems satisfy

inf (P) > sup (Do),

but equality cannot be expected to hold, aside from freakish cases, unless S and

the functions , are convex. The discrepancy in (1.2) is termed a "duality gap".

In recent years a number of authors have addressed the question of whether
this duality gap in nonconvex programming could be eliminated by changing the

Lagrangian function. Such a change might also be of benefit computationally in
some situations, even in convex programming, where the plurality of useful

Lagrangians and dual problems has been known for some time. Computational
considerations in nonconvex problems with equality constraints have led in par-

ticular to algorithms based on an augmented Lagrangian in which "penalty"
terms of theform rfr(x\',i:1,... , ffi,are addedto L6(x,y);cf. Arrowand Solow

[2], Bertsekas [3], Buys [4], Fletcher [6], [7], [8], Haarhoff and Buys [9], Hestenes

[10],KortandBertsekas[11],Lill[12],Mieleetal.[14],U51,[16],[17],Poljak[30],

* Received by the editors March 5,1973, and in revised form August30,1973.

t Department of Mathematics, University of Washington, Seattle, Washington 98195. This work

was supported in part by the Air Force Office of Scientific Research under Grant AFOSR-72-2269.



AUGMENTED LAGRANGE MULTIPLIER FUNCTIONS

Tripathi and Narendra 1251, and Wierzbicki 127),128),129): For the inequality-
constrained problem (P), the simple terms rf,(x)t are not suitable, and the analogous
augmented Lagrangian (suggested in [21] and investigated by Buys in his thesis [4])
turns out to be

L(x,y,r) : /.(x) + i fr,max {l(x), -yil2r} + , max2 {f,(*), -y,l2r})
( 1.3)

where T : R

(1.4)

We have demonstrated in U3] that in the convex case this augmented
Lagrangian is not only a natural choice but has a number of strong properties
not possessed by the ordinary Lagrangian Le. In [14], we have derived some

consequences of these properties for the multiplier method of Hestenes and
Powell. It is the purpose of the present paper to develop general properties of
L in the nonconvex case, especially with regard to duality.

Arrow, Gould and Howe [1, Thm. 2] have already shown that if x is an
isolated local solution to (P) satisfying the standard second order sufficiency
conditions for optimality with strict complementarity, the Lagrange multiplier
vector being y, and if r is sufficiently large, then there is a neighborhood N of x
in S such that
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: fo/;x) * r,l {Ut6\,yilr\ forxes, (y,r)eT,

x (0, * oo) and

,lr(o,fr): [max2 {0',2u + B} - p']14

_!"8*u2 ifa2 -P12,-l-p'h ire( -plz.

(1.s)
T.tf 

q", r, l) : L(x, y, r\ : t?l t(t, !,1),

with the minimum in (1.5) attained uniquely at i. This saddle-point theorem is

strengthened below (Corollary 6.1) in three ways: by extending the maximum in
(1.5) to the maximum of I\*,y,r) over all (y,r)eT (thus in particular removing
the constraint y > 0), by deleting the strict complementarity assumption, and
(under the hypothesis that x is the unique globally optimal solution to (P) "in
the strong sense") by extending the minimum in (1.5) to the minimum over all
x e S. Introducing the ordinary perturbations associated with (P), we also give

necessary and sufficient conditions in terms of stability for the existence of a

global saddle point (X, r, r) of L with respect to S x T and more generally

characterize the case where at least the global "inf sup" and "sup inf " of L are
equal.

These results correspond to a detailed study of the following dual problem
in place of (De):

maximize g(y,r) over all (y,r) e T, where
(D) 

s(y,r): i:j L(x, y,r) < + oo.

Of course, the optimal value in (D) is by definition

sup(D) : suP inf L(x,Y,r).
(y,r)eT xeS

I

(1.6)
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On the other hand, the optimal value in (P) satisfies

(1.7)

inasmuch as

(1.8)

(1.e)

Thus the relation

(1.10)

inf (P) : inf sup L(x,y,r),
xeS (y,r)eT

sup L(x, y, r) : {'rtt"l(),r)eT ( * oO

if x is feasible,

if x is not feasible.

The latter is immediate from the fact that

t0 ifa<0,
'r:F /(. ,f) 

: 
t * * if a > o.

inf (P) 2 sup (D)

holds, and minimax theorems for L are equivalent to duality theorems asserting
the equality and attainment of the optimal values in (1.10). (For related work on
duality since this paper was submitted for publication, see Mangasarian [13],
Pollatschek [18] and Rockafellar 1241.)

For notational simplicity, only inequality constraints are treated in this
paper. However, the same results apply with only the obvious changes if explicit
equality constraints are also allowed (the corresponding terms nlt(f,(x),y,lr) in
(1.3) being replacedby y,f,(x\ + rft(x)2). The routine alterations in the proofs are
left to the reader.

Except for Theorem 6, which requires second order differentiability of the
functions ft, the results remain valid if S is a subset of an arbitrary topological
real vector space.

2. The nature of the dual problem. Let p:R -+ [-oo, +oo] be the ordinary
perturbation function (min-value function) associated with (P), that is,

(2.1) p(u\ : inf F(x , u),,

where for each (x,u) e S x R':
if f,(x) 3 u,for i : 1,..., ffi,

otherwise.

ifyeR[,
ifyt'Rl .

(2.2)

Then

(2.3)

(2.4)

F(x,u\ --{ 
f't*l

t *oo

inf {r(x ,u) + y-u\: {rott'';ueR^ [ - oO

j!!^{n@* y u}:{:g ;i;;,ff
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AUGMENTED LAGRANGE MULTIPLIER FUNCTIONS 27I

More generally, it is elementary to calculate that

Ux, y,r) : ,i.* {r(", u) + y' u * rlul'} ' for all (y, r) e T,

s(v,r\:,iSL {p@) + v'u + rlul'} for all (v,r\eT'

In order that (2.3) and (2.4) can be regarded as instances of (2.5) and (2.6), we

adopt the convention that

L(x, y,o) : 
{ 

t:':'' 
lli *.i;,

fgo0) ifyeR!,
g(y, u) : {' l-oo ify(R\.

This extends the definition of L(x,',')and g to cl T.

Ttmonnu l. The functions L(x,y,,r\ and g(y,r) are concaue and upper semi'

continuousin(y,r)e cl T: R x Rl* andnondecreasinginreR\,nowhere *m.
Furthermore,whenel)err > s Z 0onehas

g(y,r) 2 max {g(r, s) - ly - zl2l+@ - t)}.

(2.7)

(2.8)

(2.e)

Proof. The first assertion is implied by (2.5) and (2.6), since the pointwise
inflmum of a collection of affine functions of (y, r) which are nondecreasing in r is
an upper semicontinuous, concave function which is nondecreasing in r. For any
(y, r) and (2, s) satisfying r > s 2 0, we have from (2.6) that

g(y,r\:,tXl {ilu) + z'u * slul2 + (y - z)'u * (r - s)lul2}

=,tql {il"\ 
* z'u + slul2} *,inf {(y - z)'u * (r - s)lal2}

: g(z,s) - ly - zl2l4(r - s),

and this yields (2.9).The maximum (instead of supremum) in (2.9) is valid because

g(. , s) is an upper semicontinuous concave function nowhere having the value

* oo and hence in particular is majorized by at least one affine function. (Thus

the function of z being maximized is upper semicontinuous; its level sets are

bounded because it is majorized by a negative definite quadratic function of z.)

Remark.In the convex case (i.e., where S and the functionsJ are all convex),

Itrx, y,r) is convex in x and relation (2.9) holds as an equation [13]. Then for
every r > 0 the function g(. , r) has the same maximum and even the same maxi-
mizing set as g(. ,0), since in the formula

s(v,r) : y3I {se,q - 0 - zl2 l4r)

the bracketed expression is maximized jointly in y and z if and only if y maximizes

g(. ,0) and z: y. In other words, in the convex case a pair (y, r) with i > 0 is an

optimal solution to the dual problem (D) if and only if y is an optimal solution
to the ordinary dual (D6). In the nonconvex case this is no longer true, although
the monotonicity of g(y, r) in r still implies that if (t, r) is an optimal solution to
(D) and r ) f , then (y, r) is also an optimal solution to (D).

ht-
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CoRonanv 1.1 . There is an ro, 0 S ro { * oo, such that g(y,r) is finite for
allyeR if ro<-r ( *oo, whereasg(y,r) - -oo foratly€R. if 0<r1to.

Proof. This is obvious from (2.9), according to which g(y,r) > -oo if there
exists some s e [0, r) and z e R^ such that g(2, s) > - oo.

In view of the fact that g(y,r) is nondecreasing in r, Corollary 1.1 says there
are no real constraints at all in (D), even implicit ones. This is in contrast to the
situation for (Do), where the feasibility condition So(y) > - oo requires the satis-
faction of y ) 0, as well as other possible constraints. (It is not always possible
a priori to specify for (D) an r such that r ) ro, although, for example, one has
/o : 0 iflo is bounded below on S. In this connectibn, see the remarks preceding
Theorem 2 in the next section.)

Conolrnnv 1.2. For euery ! e R , one has

(2.10) lim g(y , r) : sup g : sup (D).
r+*o T

Proof. Given any (z,s)e Tand e > 0, one has g(y, r)Zgk,s) - e for all r
sufficiently large by (2.9).

The last result brings out the close relationship between the dual (D) and
penalty methods for solving (P). By definition, we have

(2.tr)

and consequently

(2.12)

L(x,0,r\:fs(x) +r I max2 {0,1(r)},

g(0, r) : max2

The limit of the infimum (2.12) ?S r -+ * oo is the optimal value sup (D), according
to Corollary 1.2. Thus the relationship between sup (D) and inf (P) is of funda-
mental importance for the penalty method in which (2.12) is calcula.ted for a
sequence of r values tending to + oo. Note that if we fix any y e R' and minimize
L(. , y, r), instead of L( . ,0,r), for a sequence of r values tending to * oo, the limit
of the infima is still sup(D) by Corollary 1.2. This procedure can be regarded as
a modified penalty method. Still more broadly, one can try to solve (P) by mini-
mizing L(',y,r) for a sequence of vectors (y, r)eT such that g(y,r) -+ sup(D). If
the sequence can be generated in such a manner that the r values remain bounded,
there is the advantage that the numerical instabilities associated with minimizing
(2.11\ for ever-larger values of r could be avoided. The results below demarcate
the region of validity and potential effectiveness of such algorithms, from a
theoretical point of view. Theorem 6 indicates that indeed, penalty methods can
be constructed which are capable of solving "most" problems without l, --+ * oo.

3. Solving (P) in the asymptotic sense. We say that (P) Satisfies the quadratic
growth condition if there is an r ) 0 such that the expression (2.11) is bounded
below as a function of x e S. This certainly holds if /e is bounded below on S,

and in particular if S is compact and fs lower semicontinuous. In general, since

to,f(r))li:l{r't'' *' ,t,
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by (2.6) and the definition of g we have

(3.1) inf (x,0,r): g(0,r) : inf {p(u) * rlul2},
xeS ueRm'
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condition holds if and only if there exist real numbers

p(u)Z q - rlul2 forall ueR^.

the quadratic growth
rZ0andqsuchthat
(3.2\

The condition is therefore equivalent also to the relation

liP ri P@)llul' = ' tu'

Observe that the 16 in Corollary 1.1 is the infimum of all the numbers r 2 0

for which the quadratic growth condition holds, since it is the infimum of all the
numbers r 2 b such that g(0, r) > - co. Thus (P) satisfies the condition if and only
if g is not identically - oo on T, or, in other words, if and only if (D) has "feasible
solutions". This also shows that the quadratic growth condition is equivalent to
the seemingly more general condition that for some y € R' (not necessarily -I : 0)

and some r ) 0, the infimum of L(x, y, r) over all x e S is not - oo.

Trnonru 2. lf (P) satisfies the quadratic growth condition, one has

- oo < suP (D) : lim inf P(u)
(3.3)

< P(0) : inf (P).

If (P) does not satisfy the quadratic growth condition, one /rcs sup (D) : - oo.

Proof . The preceding remark makes clear that sup (D) : - co if and only
if the quadratic growth condition fails to be satisfied. Assume henceforth that the
condition is satisfied; thus (3.2) holds for a certain Q and l. From (3.1) we see that

g(0, r) S lim inf p(u) for all r ) 0.

Taking the limit as r -+ * oo and iri*Ort* Corollary 1.2, weobtain

sup (D) < lim inf p(a).

opposite inequality, and thereby complete the proof of the
now an arbitrary real number q such that

Choose e sufficiently small that
we have

q < lim inf p(u).

p(u) Z q whenever lul < e. For r sufficiently large,

q-rlulT <4-Flul' if lul > e

(with Q and i as above), and therefore

q - rlul2 < p(u) for all u.

a S ,11l {p(") + rlulz}: s(0, r) < sup (D).

To establish the
theorem, consider

(3.4)

But then
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Since q was any real number satisfying (3.4),this shows that

sup (D) ) lim inf p(u),
u*O

lim inf p(u)
u+O

in Theorem 2 is the asymptotic optimal ualue in (P).It can also be described as the
minimum of

lim sup fo,;lu)k-m

and we are done.
The quantity

(3.5)

(3.6)

(3.7)

over all asymptotically feasible sequences (xo)f,=, for (P): that is, sequences in S

satisfying

lim supl(xft) S 0 for i : 1,..., ffi.
k*o

Indeed, according to the definition of p, (3.5) is the lowest possible limit achievable
by any sequence (oco)f= 1 such that there exist uk e R* and xk e S with ttk -- 0,

f,(*o) 3 u! for i : I, . . ., ffi, and fo(xk) 3 uo.

Let us call a sequence ("0)F 1 asymptotically minimizing for (P) if it is asymp-
totically feasible and yields the minimum possible value for (3.6). We can then
obtain from Theorem 2 a result which shows how any procedure for solving (D)
can be used to solve (P) in the sense of constructing an asymptotically minimizing
sequence. (A similar result involving more detailed estimates in the convex case
has been demonstrated in 1221.)

Tmonslu 3. Let (yo,rn)f=1be a sequence such that fo;r some 6 > 0 one has
(yk,rr,-d)eTand

lim g(yk,rr, - 6) - sup (D) < * oo.
&+ co

L(xo , lk , rr) 3 inf L(r, yo , ru) + ao,
s

where dr,+ 0. Then ("&)fl , is asymptotically feasible and

(3.10)

If in addition (yu)f;-,
sequence for (P).

Proof . From (3.9) and (3.8) we have

(3.1 1) L(xo, lk,r*) 3 g(yo,rr) + a* 5 sup(D) + dk < +oo.

In particular, sup (D) is finite. On the other hand, (2.5) and (2.2) imply

(3.8)

LetxkeSsatisfy

(3.e)

(3.r2)

where

(3.13)

lim infyf lro>-0 fori:1,... ,ffi.

is bounded, then (ro)fl= r is an asymptotically minimizing

L(xu , lk , rr) : fo@k) + yo . uk + rulukl2 ,

u! : max{ft(*o), -y!lLrr,\ for r : 1, "' , ffi.

t
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Therefore, using (2.1) and (2.6),

L(xo, !k, r r) 2 p(uo) + yk . uk + (ro - 6)luol, + 6lukl2
(3.14)

2 g(yo , rr, - 6\ + 6lukl2 .

We combine (3.14) with (3.11) to obtain

(3.15) Sluol'< sup(D) - g(!k,rr, - d) + dr --+ 0.

Thus ttk - 0, and this establishes in view of (3.13) that (3.7) and (3.10) hold. Next
we argue from (3.11) and (3.I4) that

(3.16) 
otf1 

t(ro, !k,r*): suP (D).

If the yk sequence is bounded, then (3.12\ and the fact that uk -.0 give us

JT f'tr*) 
: suP (D).

But sup (D), since it is finite, is the asymptotic optimal value in (P) by Theorem2.
This completes the proof.

The need for the boundedness of (yo)f,=, in Theorem 3, even in the convex
case, is illustrated by the following counterexample.

Example 1. Define/6, fr, frfor x : (xr, x2, x3)e R3 by/r(x) : xt,fr(x) : Xl,
fr(x) : xz.Let

S : {x e R3lxry * xzyz - x3 < 0 for all (y, ,yr)e C},

where

C : {y eR2lyr S 0,y1 * 2yz S 0}.

Note that S is a closed convex cone which can also be expressed as

S - {xe R3lx, > Q(xr,xz)},
where @ is the support function of C:

Q(xr,xz) : sup {x1y1 * xzyzl(yr,yr)e C}

( xll2x, if x, S 0 and xz ) 0,
I:{0 ifxr20,xr)0,
I

{. + oo otherwise.

The function @ is nonincreasing in x1 and xr, so obviously

p(ut,uz): Q(ur,ur) for all Ltt,tt2

It can be shown, incidentally, from this fact and formula (2.6) by means of ele-
mentary results about conjugate functions, that

g(y, r) : -(ll4r) dist2 (- y, C).

All we really need to know at the moment, however, is that g(y,r) < 0 everywhere
and

(3.17) g(y,r): (llr)g(y,I) for r > 0.
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These relations follow from (2.6) because p(0) : 0 and p(ulr) : p(u)lr. Let

uu : (-k- r,k-t), xk : (_ k-',k-t,k\,
ro = l, yk : -Yp(uu) - 2uo : (kz + zk'r ,Ol2)k4 - 2k-\.

Then if yk and rkare substituted into (2.6), the minimum is attained uniquely at
uk, indicating that

g(yk,r,,) : -lukl2 - 0 : suP (D).

Hence also g(yft, rr, - 6) --+ Sup (D) bV Q.l7), if 0 < d < 1. On the other hand, the
minimum in(2.1) for tt : uk is attained uniquely at xk. Thus xe uniquely minimizes '
L(. ,!k,ro) over S (cf. (2.5), and all the assumptions in Theorem 3 are satisfied
except for the boundedness of (yo)fl=r. But fo$o): k- *oo, so that (xft)p=r is

certainly not an asymptotically minimizing sequence for (P).
Two corollaries of Theorem 3 may now be stated.

CoRonenv 3.1 . Assume the asymptotic optimql ualue in (P) is not * oo. Fix
any y e R'. Let xk satisfy

(3.18) L(*0, !,rr) S inl 4x, y,ro) + uu,

where rr, + * q and dk - 0. Then(xo)F , is an asymptotically minimizing sequence

for (P)

Proof. With yk = y, we have (3.8) by Corollary 1.2 so that the conclusions
of Theorem 3 are justified.

Conolrenv 3.2. Let (y,t) be such that for some d > 0 one has (r,l - 6\eT
and

(3.19) -oo < g(r,r - 6) : sup(D).

Let(xk\f,=, be a minimizing sequence in S for the function U',y,r). Then t > 0,

and (xk)f,=, is an asymptotically minimizing sequence for (P). Moreouer, if i is a
point at which the minimum of L(.,r,7) ouer S is attained, then x is actually an

optimal solution ro (P).
Proof. Take (yo,ro) = (r,l) in Theorem 3. For the final assertion of the

corollary, take xk = x.
Theorem 3 makes clear the computational relevance of the questions of

when sup (D) equals inf (P) and when sup (D) is attained. These questions are

answered in the next section in terms of the stability of (P)

4. Duality theorems and stabitity. Problem (P) will be called (lower) stable

of degree k (where k is a nonnegative integer) if there is an open neighborhood U
of the origin in R' and a function n:(J -+ R of class C& such that

(4.1) p(u) Z n(u\ for all ue (J, with p(0) : z(0).

This implies of course that inf (P) is finite.
Stability of degree 0 is equivalent to the property that

(4.2\ p(0) : lim inf p(u) (finite)

i)



7

AUGMENTED LAGRANGE MULTIPLIER FUNCTIONS 277

The necessity of @.2) is evident. On the other hand, If (4.2) holds, then the non-
increasing function

g(s) : inf P(u)' s 2'0,
lrl<"

satisfies g(s) --' g(0) as s --+ 0. Choose e > 0 small enough that g(e) > - oo, and
define the function 0e on [0, el2] as follows: gs(0) : 0(0), |o@lU + 1)) : 0(efi)
for positive integers j,0e interpolated linearly over the intervals lel$ + I),eljl.
Then 06 is continuous and go S 0. The definition of stability of degree 0 is therefore
satisfied by n(u) : Oo(lul).

Theorem 2 therefore gives us the following
Trnonnu 4. Suppose that (P\ satisfies the quadratic growth condition. In order

that the duality relation

(4.3) inf (P) : sup (D)

hold, or equiualently

(4.4) inf sup L(x, y , r) : slp inf L(x , !, r),

it is necessary and sufficient that (P) be stable of degree 0.

Various conditions are known which guarantee stability of degree 0, i.e.,
(4.2).The most basic perhaps is the following : S is closed, the functions f are all
lower semicontinuous, and for some ueintRf and a > inf(P) the set

(4.5) {x e Sl/.(x) S a, fr(") 3 ur, ... ,f*(x) < u^}

is compact. (This is evident from the characterization of (3.5) in terms of asymp-
totically minimizing sequences.) In the convex case, the Slater condition and its
variants suffice 1201, l24l

Stability of degree 1 is a generalization of the stability condition in convex
programming that p be subdifferentiable at u :0. As a matter of fact, in the
convex case stability of degree 1 implies stability of all higher orders. In the
absence of convexity, however, stability of degree 2 plays an essential role.

THBonru 5. Suppose that (P) satisfies the quadratic growth condition. ln order
that the duality relation

(4.6)

hold, or equiualently,

(4.7)

it is necessary and sfficient that (P) be stable of ilegree 2. Indeed, (r,7) is an optimal
solution ro (D) for some t > 0 if and only if , : -Vz(0) for some function n as
in the definition of stability of degree 2.

Proof . Clearly (a.6) is equivalent to the existence of (t, f) e T such that

(4.8) inf (P) S S0,l) > -oo,
since inf (P) 2 sup (D) in general, while sup (D) > - oo by Theorem 2. Using
(2.6), we can write (a.8) in the form

inf (P) : max (D)

inf sup L(x,y,r) : mfxinf L(x,!,r),

i

i

I

(4.e) - oo < p(0) < p(u) + y.u + llul2 for all ue R*.
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If this is fulfilled, then d0) is finite and the condition for (P) to be stable of degree

2 is satisfied with
n(u) :p(0) - y. u - rlul', (J : R^.

Here ,: -Vz(g).
Assume now conversely that the stability condition is satisfied for a certain

n and U. Then z(0) - p(0) (finite). Define , : -Vz(O), and choose e > 0 small
enough that lul < e implies u€ U. Since n is of class C2,there is an rr ) 0 such
that

(4.10) z.Y2n(u)z 2 -2rrlzl2 for all ze'R^ if lal < e.

Then

(4.11) n(u) > p(0) - y.u - rrlul' if lul < e. .

This follows from the fact that for h(t): n(tu),0 S r { 1, one has

h(t\ :h(o) + J' [r',t 
. I h"k\ dt]at,

where 
h"(r) : u'Yzn(tu)u'

Since (P) satisfies the quadratic growth condition, there exist numbers q and r
such that (3.2) holds. We can choose 12 > 0 so that

(4.12) q - rlul2 > p(0) - ,-u - rrlul2 if lul > e.

Then (4.12) and (3.2) imply
p(u) Z p(0) - y.u - rzlul2 rf lul 2-.e,

while (4.11) and (4.1) imply

p(u) > p(0) - y-u - rrlult if lul < e.

Taking r: rnox {rr,rr}, we have (4.9), and hence equivalently (4.6) as already
noted.

Conolleny 5.1. Suppose (P) satisfies the quadratic growth condition and is
stable of degree 0. Then (D) has an optimal solution if and only if (P) is stable of
degree 2.

Proof. This is obtained by combining Theorem 5 with Theorem 2.

Conolr.c.nv 5.2. Suppose (P\ satisfies the quadratic growth condition and is

stable of degree 2. In order that x e S be an optimal solution ro (P) , it is necessary

and sufficient that there exist (r,l)eT such that

(4.13) L(x,!,r) > L(x,r,r\ Z L(x,y,r) for all xe S, (y,r\eT-

Moreouer,, this condition is satisfied by (y,r) if and only if (y,r\ is an optimal solution

ro (D).
Proof . The saddle-point condition (4.13) is equivalent by virtue of (1.8) and

(1.10) to x being a feasible solution to (P) such that

(4.14) ,fo(t : min(P) : max(D) : g(r,r),

in which case the common value in (a.la) is L(x, y, f).
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Remark. If there exist xeS and (y,f)e T satisfying (4.13), and therefore
(4.14), then (P) must satisfy the quadratic growth condition (cf. remark preceding
Theorem 2) and hence be stable of degree 2 (Theorem 5). Compare also with
Corollary 3.2.

Corollary 5.2 may be regarded as a generalization of the Kuhn-Tucker
theorem in convex programming. Qualitatively, we may expect that most prob-
lems encountered in practice will be stable of degree 2, so that the result will be
applicable. But, as in the case of "constraint qualifications" and other familiar
conditions in the theory of nonlinear programming, it is hard to give verifiable
criteria directly in terms of the constraint functioirs (rather than an unknown
optimal solution) which imply such stability. Of course, convexity plus some
form of the Slater condition is sufficient. In the next section we investigate the
nonconvex case further in terms of the local conditions which are usually satisfied
by optimal solutions to (P).

It should be emphasized that the saddle-point relation (a.13) does yield the
usual differential Kuhn-Tucker conditions if x e int S and the functions fi are
differentiable at x. Indeed, (4.13\ implies

AL(4.15) 0: 
=(r,r,r): 

rl?X {f,(x), -y,l2t} fori: t,...,ffi,
oli

0 : V,L(x,r,l): V/o(t) + max {0, y, + 2rf,(x)}Vl(t)
(4.16)

: V/o(t) +

or in other words,

[yr + 2rmax{ft(x), -rtl2t}]Vf{x),

f,(I) 3 0, yi ) 0, y,f,(i) : 0 for i : 1,..., w,

Yfo6) + rLvflx) + ... + t^vf^(t):0.

At all events, the vectors y involved in Theorem 5 and its corollaries can be
interpreted in terms of "equilibrium prices" for perturbations of (P). As seen at
the beginning of the proof of Theorem 5, a pair (y, r) e T satisfies

mI
i= 1

I
i= 1

(4.r7)

(4.18)

if and only if
(4.te)

inf (P) - sup(D) : s(r,r)

p(u\ + y.u * rlul2

is minimizedin u when u:0. Let us imagine an "economic" situation where we
are allowed to perturb (P) bv replacing the constraint functions f,by f,- u,,so
as to obtain perhaps a lower minimum "costo' value p(u),but the cost associated
with the perturbation vector tt: (ur,... ,u^) is y.u * rlul2. The expression in
(4.I9) gives the resulting total cost associated with the perturbed problem. Thus
(4.19) describes the "equilibrium" where the costs are such that no advantage is
to be gained from perturbation, and we are "content with (P) as it is." In particular,
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(4.20)

(s.4)
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we would have (assuming p(0) finite):
n(iu) - p(0) n

-Y'u ( lim inf l# for all u.
,lJO A

As is well known, such a global "equilibrium" cannot be achieved with I : 0

unless, at the very least, p coincides at 0 with its convexification, a property which
is very unlikely in nonconvex programming.

5. Local criterion for stability of degree 2. We consider now an x which is
an optimal solution to (P) and show that, if certain'conditions slightly stronger

thcrr those usually necessary for optimality are satisfied at -, (P) must be stable

of degree 2. In doing this, we extend a result of Arrow, Gould and Howe [1], as

described in the Introduction.
The point i is said to be the unique optimal solution ro (P) in the strong sense

if every asymptotically minimizing sequence for (P) converges to f. This con-
dition is milder than it might seem. For example, assuming the functions f, are
lower semicontinuous, it is satisfied if S is replaced by any compact subset in
which x is the only locally optimal solution to (P).

The following conditions are well known to be sufficient (and "almost
necessary") for x to be an isolated locally optimal solution to (P) (cf. [5, p. 30]):

(a) S contains an open neighborhood N6 of x on which the functions f are

all of class C2 ;

(b) there is a vector y e R such that the Kuhn-Tucker conditions (4.17) and
(4. t8) hold;

(c) for the Hessian matrix

(5. 1) H : Y2fo(t) + ytY'fr(x) + .'. + ,^v'f*(x) :'v!rr1x,y1

and the index sets

(5.2\ 1o - {i + }lft1.j):0,!i > 0}, It: {i + }lft(:):0,li - 0},

one has z- Hz > 0 for every nonzero z e R^ such that

(5.3) z'Yf,(x):g forallielo and z'Yft6)<0 forallielt.

These will be referred to as the standard (second order) sufficiency conditions.

TnnonsM 6. Suppose (P) satisfies the quadratic growth condition. Let x be the

unique optimal solution fo (P) in the strong sense, and assume that x satisfies the

standard sufficiency conditions with y as the uector of multipliers. Then (P) ts stable

of degree 2, and for all r sufficiently large the pair (y, r) fs an optimal solution ro (D).

Proof . Let N c S denote a neighborhood of x, the nature of which will be

specified later, and define

po@) : inf {,fo(x)lx e N and ft(x\ < ui,i : 1, "', m}.

Since x is the unique optimal solution to (P) in the strong sense, there exists

e > 0 such that xe N whenever xe S, f,(x)< e for i: lo"',ffi, and/r(x) <"fo(t)
* e. Then

(5.s) p(u) : po@) for all u e (l 6,
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where

(5.6) (Jo: {ueR lu,S efor i: l,... ,mand,p(u) <p(0) + e}.

Suppose we can construct a function z of class C2 on an open neighborhood U,
of the origin in R' such that

(5.7) po@) > n(u) for all ue (J r, with po(0) : z(0).

We will then have

(5.8) p(u) > n(u) for all ue Us fl U, with p(0) : iT(O),

so that the definition of stability of degree 2 will be satisfied with

(5.9) U - {ue(Jrln(u)< n(0) * e and uil Efori: 7,...,m}.
(If ue U but u#Uo, we have ilu)> p(0) + s: ft(0) * e and hence du)> n(u).)
If also Vz(0) : - !, then (y, i) is an optimal solution to (D) for all I sufficiently
large by Theorem 5 and the monotonicity of g(y,r\ in r. Thus the proof of the
theorem is reduced to the construction of N, Ur andn satisfying (5.7), such that
z is of class C2 on U , and Vn(O) : - r.

It will be enough actually to show the existence of N such that, for some
r>0,
(5.10) L(x,y,i)> L(x,t,r)-fo@) forallxeN.
Indeed, this will imply from (2.5) that

fo(:r"):11,[ L(x,y,t): 
i:,{,t$L {rt",u) + y.u + rlul'}

(5.11) : in_f inf {f(", u) + y.u * rlul'}
ueR- xeN

: 
,t?L {po(u) + ,'u + rlul2}.

Since po(0) : fo@), we will then have

(5.12) po@) > po(0) - r.u - rlul2 for all ue R .

In other words, the desired properties will hold for n(u) : po(O) - y .u - flult
and U t: R'.

Let 1o and 1, be the index sets in (5.2),and let

(5.13) 12 : {i + Dlf{x) < 0}.

Let Ne be the neighborhood of x in the standard sufficiency conditions. For all
r > 0, define

(s.14) N,(r) - No Q.{xll(x) > - y,l2r}.Q,{xll(") < 0}.

Then Nr(r) is an open neighborhood of i, and for all x e N1(r) we have

(s.15) Ux, y,r) : fs(x) + I ly,f,(x) + rf{x)21+ r I 0(f,(x))' ,
Io iell

where

(5.16) 0(a) : max {4,0}.
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Observe that L(i,!,r\ : fo@), and by the Kuhn-Tucker conditions

(5.17) V,L(x,l,r):Vfo(x) + Itrv/(t):0.
ielo

We shall show next that in fact

(5.18) L(x,y,r): fs(x) + h(x - x) + rk(x - t) + o(lx - Xl'),

where h(z) : z' Hz and

(5.1e) k(z):L@.Yf,(x))', + I^(z.Yf,(x))',>0.
iel6 iel r

Since by (5.17)

(s.20) fo@)+ I y,f,(x) : fo$) + h(x- t) + o(lx - xl2),
. iels

and since (for l(f) : g;

(5.21) f,(*)' : ((x - x). Yf,(x)\t + o(lx - xl'),

we need only prove that the expansion

(5.22') 0(f,(x\)' : g((x - t). Vf,(x))' + o(lx - xl'\

is valid when f,(x) :0. This amounts to establishing that

(5.23)0:liml(ft(x+tz\\2-0(tz'vf'('\\2
rlo *

uniformly in z e B, where
B:{z€R'llzl:l}.

But the latter is obvious from the continuity of 0 and the fact that the difference
quotient in (5.23) can be rewritten as

O(ft(x + tz)lt)2 - 0(t . Yf,(x))' : 0(2. Yft(x) + w(tz))2 - 0(r. Yft(x))',

where ,r{tr)-- 0 uniformly in z eB as r | 0.
We now demonstrate the existence of r > 0 and d > 0 with

(5.24) h(z) + vk(z\ >- 26 for all z e B.

Let Bo : {z e Blh(z) 
= 

0}. According to part (c) of the sufficiency conditions, if
k(z) : 0, i.e., (5.3) holds, we have h(z) > 0. Thus k(z) > 0 for all z eBs, implying
that the quotient -h(z\lk(z) is well-defined and bounded above as a function of
z e Bs. Choose any 7 > 0 such that

r > -h(z)lk(z) for all zeBo.

Then h(z) + rk(z) > 0 for all z e Be; the same inequality also holds trivially for
zeB\86, because there h(t)> 0 and k(z)> 0. Thus h + rk is a positive, con-
tinuous function on the compact set B, and (5.24) is valid for some d > 0 as 

=

claimed. Of course (5.24) implies

(5.25) h(z) + rkQ) > 26lz12 for all z e R*,

because h and k are both positively homogeneous of degree 2.
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It remains only to combine (5.25) with (5.18). There exists by (5.18) a neigh-
borhood l{ of x, N c Nr(t), such that

(s.26) L(x,y,r) >,fo(r) + h(x - r) + rk(x - r) - dlx - xl'

for all x e l{. Using (5.25), we obtain

(5.27) L(x, y,D Z foE) + 6(x - x)' for all x e N.

Thus (5.10) holds for N andl, and the proof of Theorem 6 is complete.
Conorl-lnv 6.1. Under the assumptions in Theorem 6, the global saddle-point

condition (4.13) holds for all I sufficiently large.
Proof . The proof is immediate from Corollary 5.2.

We conclude this section with a counterexample demonstrating the need for
the second order condition in the hypothesis of Theorem 6.

Example 2. Here all the assumptions in Theorem 6 are satisfied, except for a

slight weakening of part (c) of the sufficiency conditions, and (P) is stable of
degree 1. But (P) is not stable of degree 2. The problem consists of minimizing

fo6r,xz):4xr(x2-\+x!
over S: {x : (xr ,xz)€R'l-1 S x, 3 1} subject to

0 > "ft(xt ,xz) : Xr.

The minimum of /s(x r, xz) in x, for fixed x, is -4x, - 3*l'', attained only
at xr: -xlt3, and this minimum is a strictly decreasing function of x, as long
as xr > -1. Thus x: (0,0) is the unique optimal solution to (P) in the strong
sense. The quadratic growth condition is satisfied, because /r is bounded below
on S. Furthermore, the Kuhn-Tucker conditions hold at x with !r :4 and with
the gradients V/r(x) and Vr(t) nonzero (thus one has "strict complementarity"
in(4.17\,and moreover "the gradients of the active constraints at x form a linearly
independent set"). Although the Hessian matrix .F/ of the function (x) : 

"fo(x)* !tfr@) at x does not have the positive definiteness property required in (c)

of the sufficiency conditions, it is true at least that /(x * z) > /(x) for every nonzero
z such that (5.3) holds (i.e., z.Vr(I) * 0). However,

p(u) - -4u, - 3u|t for ur e [- 1, 1].

The function p is continuously differentiable around u, :0, but it does not
majorize near 0 any function z of class C2 such that z(0) : p(0) : 0. Thus (P) is
stable of degree 1 but not of degree 2.

Remark. We have already noted towards the end of $4 that, if (x,r,l) is a
saddle point of L and the functionsf are differentiable at x (and xeintS), then
x and y satisfy the Kuhn-Tucker conditions. In fact, if every ftis twice-differentiable
at x, then the standard second order necessary conditions [5, p. 25f are satisfied,
i.e., besides the Kuhn-Tucker conditions one has condition (c) at the beginning
of this section, but with the inequality z. Hz > 0 weakened to z. Hz 2 0. This is
true because (5.15) holds (with r in place of r) for all x in some neighborhood of
x, so that the right side of (5.15) must have a local minimum at x : x. From (5.21)
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and (5.22), it is clear that the latter implies

(5.28)

for all z satisfying (5.3), and this derivative equals z. Hz.
Thus for twice-differentiable functions fi and S open, the situation can be

summarized as follows. If (x,y,r) is a saddle point of L for some r > 0, then I
and y satisfy the standard second order necessary conditions for optimality, and x
is (globally\ optimal. On the other hand, if x and y satisfy the standard second order
sufficient conditions and x is the unique (globally) optimal solution in the strong
sense, and the quadratic growth condition is satisfied, then (x,r,r) is a saddle point
ofLforsomel>0.
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