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Several recent algarithms for solving nonlincar programming problems with equality con-
straints have made use of an augmented “penalty™ Lagrangian function, where ferms invalving
squares of the constrain{ functions are added to the ordinary Lagrangian. In this paper, the
corresponding penalty Lagrangian for problems with incquality constraints is described, and its
relationship with the theory of duality is examined. In the convex case, the modified dual
problem consists of maximizing a differentiable concave function (indircctly defined) subject
le no constraints at all. It is shown that any maximizing sequence for the dual can be made (o
vield. in a general way, an asymptotically minimizing sequence for the primal which typically
converges at least as rapidly.

1. Introduction
One of the chief methods of solving a problem of the form

(P minimize fo(x) overx € X,

subject to f,{x)< 0, i=1,..,m,

is to introduce penalties so as to convert it into a scquence of uncon-
strained (or less constrained) problems, for instance:

m

minimize j"o (x)+tr E 9(,]"5(_)&‘))2 overx € X, (1.1)

i=1
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wherc r = oo,
Gy =max{0, ¢}, (1.2)

This might be regarded as a “primal” approach to getting rid of con-
straints, although certain connections with duality are known [3]. The
classical “dual” approach. based on the Kuhn—Tucker theory of Lau-
grange multipliers, replaces (P) by a sequence of problems of the form

m
minimize f,(x)+2 y,f,(x) overx€X, (1.3)
i=]

where the corresponding multiplier vectors 3 constitute a maximizing
sequencc for the ordinary dual problem (see problem (D) in Section 2).

The first approach suffers from well-known numerical instabilities
as r— +e. The sccond approach, on the other hand, while of impot-
tance in the decomposition of large-scale problems having separable
functions f;, is limited intrinsically to the convex case, and it involves
dual constraints which can sometimes be awkward to handle: besides
the linear constraints y;> 0, the multipliers must be chosen so that the
minimum in (1.3) exists. at least if the theoretical minimization step is
not replaced by something more complicated. Thus the reduction to
unconstrained optimization is not really complete. Furthermore, there
is the difficulty that, unless fy is strictly convex, the x sequence gener-
ated by solving the sequence of problems (1.3) is not necessarily a
minimizing sequence for the primal problem.

In the case of equality constraints, it has been observed that some of
these difficulties can be obviated by a combined approach, where one
solves a sequence of problems of the form

it m

minimize f,(x) +r 2 fi (v)* + 25 v f{x) overxe X,
' i=1

i=]

Often a minimizing sequence for the primal can be generated in this
way without passing to ever larger values of r. This idea is due indepen-
dently to Hestenes [9, 10|, and Powell [16]; see also [8]. The Lagran-
gian expression in (1.4) was also introduced some years ago by Arrow
and Solew [1], but in a different algorithmic context, where differen-
tial equations were used to locate saddle points. In the latter approach,
in effect, x and the multiplicrs are modified continuously, rather than
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alternately. Related ideas of Fletcher [4, 5], stemming from Powell’s
work, involve substituting certain continuous functions of x for the
multipliers in (1.4), so that the sequence is coalesced into a single un-
constrained problem replacing the constrained primal. Intermediate
methods, where at each stage only one step or cycle of an algorithm for
unconstrained problems is applied to (1.4) before the multipliers arc
changed in some way, have been cxplored computationally by Miele
and associates [12, 13, 14, 15]. Theoretical questions about the latter
methods remain largely unanswered. howcever.

Powell and Fletcher note the desirability of extending their algo-
rithms to cover inequality constraints. They speak of doing this essen-
tially by first determining (somehow) which constraints are active and
then proceeding as if onc had equality constraints. Arrow and Solow
treated inequalities by introducing nonnegative slack variables to con-
vert them into cquations. Thus, in their somewhat different context,
certain linear inequality constraints are represented in the choice of the
set X.

Nonc of these authors has discussed the role that convexity might
play, or the implications that this could have for various algorithms.
The present paper is devoted mainly to such questions, partly on the
grounds that a thorough understanding of the convex case is fundamen-
tal for the treatment of inequality-constrained problems. Applications
to nonconvex problems will be described elsewhere.

2. The penalty Lagrangian

A natural generalization of (1.4) to constraints f,(x) < 0 might be to
replace the term f( (x)* by 8(f; (x))*. This would 11‘1dced preserve con-
vexity, if present. In effect, one would be using the ordinary Lagrangian
approach to solve (P), but with the objective fu(x) replaced by
fox) + rzi, 00, (x))%, which has the same values on the set of feasible
solutions. Tha,re would be a definite drawback, however: the moditied
objective function would generally have discontinuous second Qerva-
tives at an optimal solution, even if the functions f; were highly differ-
entiable. This would lead to unnecessary computational difficulties.
Note also that the nonnegativity constraints on the dual variables y;
would still be present.

We adopt instead the following generalization of (2.1):
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minimize L (x,¥) overx€& X, (2.2

where m
L, y) =10+ (/AN 2[00y, + f,x)P —p2] . (2.3)

i=1

Thus the expression ré?(ff(.x'))z +yf{x), y; 2 0, corresponding to the
approach of the preceding paragraph, is altered to

(/AN 100y, + 2rf,(x)? =y} =
] rff(.x)z +r fx) i f(0) = —y{.;’Qr,

= | (2.4)
] 5[4 if f.(x)< -y, {2r,
with 1o restriction placed on the sign of y,.

The function L, on XX R™ will be called the penalty Lagrangian
associated with problem (P) and the (positive) parameter value r. Iis
virtues, despite its peculiar appearance, will be apparent below. In
particular, limiting ourselves for present purposes to the convex case,
we shall demonstrate that an asymptotically minimizing sequence for
(P) with reasonable convergence properties can be generated by attack-
ing a sequence of subproblems (2.2) for arbitrary fixed », without
necessarily moving more than a part of the way toward the solution of
each subproblem. The subproblems are likely to be tractable, in the
sense that the gradient of L (x, y) with respect to x can be expressed
simply in terms of the gradients of the functions f, if, for example, X is
a region in R"” on which every f; is differentiable. Second derivatives are
likely to be better behaved in this case than in the alternative one
mentioned above, as will be seen in Section 5.

The penalty Lagrangian L was introduced by the author in [21],
where some of its properties were mentioned without proof. Recently,
Arrow, Gould and Howe [2] have studied its saddle point properties in
the absence of convexity, but under the restriction that y, > 0. This
restriction is not made here.

The formula for L, is not as mysterious as it might seem. It can be
derived by representing inequality constraints as equations in the man-
ner of Arrow and Solow [1]. Namely, if we regard (P) as the problem
of minimizing fo(x) subject to fi(x)+z,=0 for i=1,.., m, where
(x, z) € XX R, the corresponding problem (1.4) consists of minimiz-
ing
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m el

F0) +r 20 (fte) 22+ 20 v, ([lx) + 2) (2.5)
i=1 i=1

over (¥, z) € X X R7'. The minimization in z can be carried out explicit-
Iy, and the residual problem is then (2.2). This derivation, since it ap-
pears to do violence to possible convexity properties of the constraint
functions, hardly suggests the strong propertics which L, turns out to
have for convex programming.

Of course. in problems with mixed inequality and equality con-
straints, the equations can be expressed as pairs of incqualities, or terms
like those in (1.4) can be included in (2.2). This generalization is ele-
mentary, and so to keep the notation simpler we do not carry it out
explicitly in the present discussion.

3. Convexity properties and duality

Henceforth we assume that X is a (nonempty) convex subset of a
real linear space E, and that the functions f; : X» R,i=0,1, ..., m, are
convex., We observe that

lim L (x, y) = Lo(x_. 3) forallxe X, ye R™, (3.1)
Fi0

where Lr] is the ordinary Lagrangian associated with (P):

qu(xj_} + 202, £(x) if y=0, i)
LyCx.y) =] =
1 - if ¥20 =y, .0,

According to the perturbational theory of duality (cf. [19]). L corre-
sponds to the embedding of (P) in the class of problems where for each
U= (U, U, )€ R™ the function [, is perturbed to f, — u;, i =1, ..., m.
The following result shows that, for »> 0, L, too is a Lagrangian in the
sense of the theory, and that it arises in the same way, except that f; is
simultancously perturbed to f; + rlui?.

Theorem 3.1. Forany r= 0, one has

L (x,y) =min{E(x,u]+i-pincR"}, x€X, (3.3)
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where F, is the convex function on X X R™ defined by

m
[fﬂ(x) +r E uf il u; > fix), i= | SO 1
F(x,u) :l i=1

+oo otherwisc.
Therefore L (x, y) is convex Y inx € Xand concaveiny €Y.

Proof. The first assertion is simple to verify. In fact, it corresponds
to the obscrvation at the cnd of Section 2, with u, =z, + f{x). The
socond assertion then follows from gencral duality theory, cf. [19]:
indeed. the partial conjugate of a convex function is alwuys a saddle
function [19, Theorem 33.1].

The dual of (P) corresponding to L, is

. S . A
(D,) maximize g, (v) = inf L (x.y) over allp e R™.
xeX

Theorem 3.2. For every r > 0, the function g, is concave and satisfies

g,(v) = max {g,(z ) —(1/4r) | z — yI12} . (3.5)
7:_R7

Thus the dual problems (D)) all have the same optimal solutions and
supremum as the ordinary a‘ual(D ). Moreover (asmmmgg“ ), ¥,
is everywhere finite and con rzmeoush differentiable on R™. Sp eczf:cah’) 1
if for a given v the infimum defining g,(y) happens to be attained at a

point x (not necessarily unique). then
3g,(v)iey; = 8L, (x,»)fay; (3.6)

=[0(y; +2rf,(x)) — -y [2r = max {—y,{2r, f,(x)} .
Proof. Let
Qg

(w) = inf F (u.x), r=0. 3.7
p,(u) inf Ju X (3.7)

Thus p, is the “perturbation” function corresponding to the class of
pelturbatmns of (P) giving rise to L, and (D,). It is a convex function,
since I, is convex. Indeed,

p, =py+2rq, where q(u)=1 lul? . (3.8)
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gD LGy < LG, y)+ (' =y) VL (x, »)
=800+ =y) V,L,(x. ) (3.15)

for all »'€ R™. This says that V),Lr(__\*,y)e 8g,(¥), and therefore
v,L.(x,y) = Vg (y) as claimed.

Corollary 3.3. The function g, unless it is identically —e, satisfies
Jor all y and "

g+ =») Vg, () =g, (V)
28,00+ —y)vg, ) —(1/4r) ¥ -y . (3.16)

Proof. The first inequality is immediate from concavity. For the
second inequality, we note from (3.5) the existence, for any given y, of
a quadratic function of the form

-

h(y") =g (z) = (1/4p) ¥ - z2|*

satisfying 2(y) = g (v), while h(»")< g,(»") for all y', The two properties
imply v h(y) = Vg (y). But since £ is quadratic, we have

Y)Y =h)+ G =y VhG) - (1/48) Iy =31 .

Thus #(3") equals the expression on the right side of (2.3).

In view of Theorem 3.2, we shall in the rest of this paper refer simply
to dual optimal solutions and the dual optimal value, since these are
independent of ». Note that a dual optimal solution is necessarily a no#-
negative vector, since g,(y) = —eo if y 2 0. (By convention, dual opti-
mal solutions are not said to exist when the functions g, are all iden-
tically —eo.) The dual optimal value is, of course. generally less than or
equal to the primal optimal value (i.e., the infimum in (P)). If they are
equal, we say (P) is normal.

A Kuhn—Tucker vector for (P) relative to the Lagrangian L, is avec-
tor ¥ such that

—eo < inf L (x,7) =inf in (P). (3.17)
xEX

This condition on ¥ is known to hold if and only if ¥ is an optimal
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Substituting (3.3) into the definition of g, we therefore have
g, ()= inf {p, ) +uy}=-pi-y). (258)
ue R

A basic formula for the conjugate of a sum of convex functions [19,
Theorem 16.4] vields

—pH(—y) = —(p, *+ 219)* (=¥) = ~(pE T g*2r) (=)

= —min {p'o*(——z) +2rg*((y—2){2r)} (3.10)

z=RM
and consequently, since g* = g.
g.(r)= n'lal;(m{go(z) —2rg((y—2)/21)} , (3.11)
which is the same as (3.5). In particular, g, is finite everywhere if
& # o=, and hence the subgradient set ag,(y) is always nonempty. If
w € 9g,(v), that is.

g <g, () +w-('—y) forally’'e R™, (3.12)

then for the point z at which the maximum in (3.5) is attained (unique
by strict concavity) we have also

gy(z) — (1/4n) iz—y'1* <

(3.13)
<.g,(2)— (1/4r) |z—y|? +w-(3'—3) forally' € R™ |
in other words,
(1/4r) 1z—y'12 +wy' = (1/4r) 1z—212 +wy (3.14)

forall y'€ R™ |

implying w = (z—»)/2r. Thus 3g,(y) consists of a single vector for each
v, and we may conclude, since g, is concave, that this vector is the
gradient [19, Theorem 25.1] and depends continuously on y [19,
Theorem 25.5]. Now suppose the infimum defining g, (3} is attained at
a certain x: L (x,y) =g, (v). Since L, 1s concave as well as diffcrentiable
in the second argument, we have
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§US L,y )<L, p)+ (' =p) N, L,(x,»)
=g PV =V L (K, V) (3.15)

for all '€ R™. This says that \-"y.LJ,(x_.y)e 8g,(v), and therefore
v},fJ,(x, ¥) = ¥g,(¥) as claimed.

Corollary 3.3, The function 8, unless it is identically —e=, satisfies
Jor all y and v":

g+ (' -1) Vg () =g ()
> 8,() + 0 —») Ve, — (14 ' —yI? . (3.16)

Proof. The first inequality is immediate from concavity. For the
second inequality, we note from (3.5) the existence, for any given y, of
a quadratic function of the form

W'y =g,(2) — (1/4) y' — 22

satisfying 2(y) = g (y), while 2(y") < g,(v') for all p'. The two properties
imply v A(y) = Vg (). But since /2 is quadratic, we have

Ry DV =h()+ ' —y»vVa) - (1jdr) (y' =y .

Thus 2(y') equals the expression on the right side of (2.3).

In view of Theorem 3.2. we shall in the rest of this paper refer simply
to dual optimal solutions and the dual optimal value, since these are
independent of r. Note that a dual optimal solution is necessarily a non-
negative vector, since g,(y) = — if y 2 0. (By convention, dual opti-
mal solutions are not said to exist when the functions g, are all iden-
tically —e=.) The dual optimal value is, of course, generally less than or
equal to the primal optimal value (i.e., the infimum in (P)). If they are
equal, we say (P) is normal,

A Kuhn—Tucker vector for (P) relative to the Lagrangian L, is a vec-
tor 3 such that

—eo < inf L (x, ) =inf in (P). (3.17)
xeX

This condition on 7 is known to hold if and only if ¥ is an optimal
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solution to (D,) and (P) is normal [19, p. 317-318]. It follows that
this concept is likewise independent of r. Moreover, a pair (¥, )) is a
saddle point for L if and only if ¥ is an optimal solution to (P) and ¥ is
a Kuhn—Tucker vector [19.p.319]. Summarizing, we therefore can
state:

Corollarv 3.4. Relative to the Lagrangians L. r 2 0, one has the same
Kuhn—Tucker vectors and saddle points. Thus (%, 7) is a saddle point af
L, if and only if the ordinary Kuhn—Tucker conditions are satisfied.

i) 7,20, f{x)<0, p,f(x)=0 fori=1, .., n;

(ii) ¥ minimizes f, + ZTL ¥, f, over X.

Conditions for normality and the existence of Kuhn—Tucker vectors
are given for example in [6, 7, 11, 12, 18, 19, 20]. In particular, nor-
mality holds if a Kuhn—Tucker vector exists, or if the following com-
pactness condition is satisfied (in some locally convex topology): X is
closed, every fz. is lower semicontinuous, and the sct

xeX f(x)<a Jix)< e, v [ (X) < €}

is (weakly) compact for somc real « greater than the infimum in (P)
and some e > 0. A Kuhn—Tucker vector exists if, say, there is a strictly
feasible solution to (P) (i.e., the Slater condition is satisfied) and the
infimum in (P) is not -eo; this can be weakened when some of the
constraints are linear.

Corollary 3.4 emphasizes properties which L, for > 0 has in com-
mon with the ordinary Lagrangian L. The next result, however, gives a
strong property whose well-known. absence for L has been a serious
impediment to computational approaches based on duality.

Theorem 3.5. Assume that (P) is normal, and that 7 is an arbitrary
dual optimal solution. Let »> 0. Then X is an optimal solution to (P)
if and only if X minimizes L (x,¥) overallx € X.

Proof. The hypothesis implies that ¥ is a Kuhn—Tucker vector, as
remarked above. Hence ¥ is an optimal solution to (P) if and only if
(x, ¥) is a saddle point of L . Certainly, the latter implies that ¥ mini-
mizes L (-, ) over X, so the “only if”* part of the theorem is true. For
the other part, we observe from Theorem 3.2 that if ¥ minimizes
L.(-, ¥)over X, we have v, L,z 7)=vg,(¥)=0.Thus ¥ maximizes the
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(concave) function L (%, ¥) over all y € R™. This shows that (¥, ¥) isa
saddle point of £ . and consequently, ¥ is an optimal solution.

The reason why the characterization in Theorem 3.5 [ails for r=10
is that the set of points where LU{_-‘ ¥) attains its minimum may include
besides the optimal solutions to (P). various points which are not even
feasible.

4. Compulational reduction to unconstrained optimization

Theorems 3.2 and 3.5 vield a dual method of computation of opti-
mal solutions to (P). which may be stated as follows in its ideal form,
assuming that (P} possesses an optimal solution and a Kuhn Tucker
vector (see above). Fixing r> 0. we somchow determine one of the
points ¥ at which the continuously differentiable concave function g,
attains its maximum over R" (no constraints). Next, we determine any
point ¥ minimizing the convex function L,(+, ¥) over X. (This is a nice
kind of unconstrained problem if, for example. X = R" and the [unc-
tions f; arc differentiable.) Then ¥ is an optimal solution to (P), and ¥
is 4 vector of multipliers satisfying, together with ¥, the Kuhn—Tucker
conditions.

The essential difficulty in this idcal scheme is the fact that. compu-
tationally speaking, the maximization and minimization cannot be
carried out exactly. But if 3 and X are dctermined only approximately
as described, can we be sure that X is “approximatelv™ an optimal
solution to (P)?

Another complication arises because the function g, to be maximized
Is not expressed as “directly” as might be desired. While it is true we
can calculate g,(») and vg () for any ¥ by dctermining an x which
minimizes L (+, ) over X (cf. Theorem 3.2), this is not a “‘cheap”
operation. It precludes the application to g, of an algorithm which
requires extremely many cvaluations, for example, in order to maximize
g, along a linc segment. Furthermore, we are again fuced with our
inability to determine a minimizing x (or even the minimum value)
exactly.

However, this situation is not so hopeless as might be thought.
Suppose for a given y that we have an x € X and an a > 0 such that x
minimizes L (-, ¥) over X to within @, that is,
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L(x,y)—g0)<a. (4.1)

Then generalizing slightly the argument at the end of the proof of
Theorem 3.2, we see that the affine function

R = L(x, )+ (V' =3) ¥, L{x, V) (4.2)
satisfics ‘

g < L(x,y)<h(y') forally eR™, (4.3)

gL, y)=hy)<g () ta. (4.4)

(In particular, v L(x, v) is a so-called a-subgradient of g, at y.) What
is needed is an algorithm to maximize g, which efficiently uses informa-
tion of just this type, taking advantage of such theoretical properties as
follow from Theorems 3.1 and 3.2.

A cutting plane algorithm could be used, for instance, but other
procedures which take advantage of the “curvature” of the functions
L (x,+) which majorize g, are also possible. A procedure corresponding
to a generalization of a method of Hestenes and Powell will be de-
scribed elsewhere [21]. In this paper. we focus attention not on a
particular algorithm, but on the general way that a method based on
such information can be used to solve (P).

By a maximizing sequence for the dual problem (D)), we shall mean
of course a sequence 131 in R such that gr(yk) - supg,. A sequence
{xk} in X will be called asymptotically feasible tor (P) if

lim sup{f!.(xk)} <0, i=1,...,m. (4.5)

k=

The infimum of the quantity limsup,_ {fn (xk )} over all such
sequences is the asympiotic optimal value in (P), and an asymptotically
feasible sequence {x*1 for which this infimum is attained is an asymp-
totically minimizing sequence for (P). As is well known, the asymptotic
optimal value in (P) equals the dual optimal value if the latter is not —,
or if there exist asymptotically feasible sequences at all (e.g., [7,11,19]).
Thus, in particular, if (P) is normal and possesses feasible solutions, a
sequence {x,} in X is asymptotically minimizing if and only if (4.5)
holds and

lim f,,(x*) = optimal value in (P). (4.6)

k—ro
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If, morc specifically, {P) satisfics the compactness condition sufficient
for normality, which was mentioned following Corollary 3.4, it is ob-
vious that an asymptotically minimizing sequence {x, » must be relative-
lv (weakly) compact, with all of its (weak) cluster points actually opti-
mal solutions to (P).

Theorem 4.1. Suppose, the asymptotic optimal value in (P) is finite.

2 . P - .

Ler {¥"} be a bounded maximizing sequence for (D), r> 0, and for
each k, let x* € X satisfy

LG5, y8) —inf L (-, v%) =L (%, %) — g, 0F) < e, (4T)

where o tends to 0. Then (x*1 is an asymptatically minimizing
sequence for (P).

The prootf of Theorem 4.1 involves the following estimates.
Lemma 4.2. r| VgrU"{‘)!z < (supg,) g(0v,).
Proof. From Corollary 3.3, we have
sup g, > max {g,(v*) + ('~ ¥")- Vg () — (1/4n) Iy'= %17

reR
=g (»*) + max {u-Vgr(_yk) — (1{4n)ul?} ,

ue RM
and the latter maximum turns out to be 7| Vg}(’_vk)l2 ;
Lemma 4.3. Condition (4.7) implies

1V, L5, ) = Ve, 0MIE < oy

Proof. Using Corollary 3.3 and the convexity of Lr(_xk,-), we have
for every w £ R™

LOF, 5+ w=25)- v, L(F 00 > L w) > g (w)

> g,00F) + (w—y5)vg %) — (1/4r)w — 42 |
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and hence

L5 %) —g,0F) 2 sup u (g,00%) — 9 Lk, 0%)) — (147) jui?

neRM

=rivg, (3*y - VJ_,Lr(xk, Y42 . (4.8)
Prooj of Theorem 4.1. Theorem 3.1 asserts that

L (x* v)= min {F (vc Wty +rul*y . (4.9)

d usR™M

where F, is given by (3.4) for r=0. For y =% the minimum is
attained at a unique point which we shall denote by «*. We thus have

L werF S, by Wby k)2 forally eR™, (4.10)

¥

where equality holds when v = ¥ . This implies
= v L(xF 5, (4.11)

and therefore ¥ — 0 by Lemmas 4.2 and 4.3. Since by hypothesis

lim L (x*,3%) = lim g,0%) = supg, , (4.12)

Lses v

while the sequence {v¥} is bounded, we see that

lim Fy(x*, u*) = lim {L (<% %) — o 3% — 7123
ko= e
= dual optimal value. (4.13)

In view of the dehmt:on of F, and the remarks preceding the theorem,
this mcans that {x*} is an asymptotically minimizing sequence,
The next result sharpem a special case of Theorem 4.1.

Theorem 4.4. Suppose that (P) has a strictly feasible solution (Slater
condition), and that the optimal value in (P) is finite. Let {yk I be any
maximizing sequence for (D,), r> 0. and let x* and a, satisfy (4.7),
where o, ~ 0. Then {x*1 s asymptotically minimizing, and there exists

a sequence (X%} of feasible solutions to (P) such that 3% — x* = 0and
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khm fox*)= Lhm fxk)=u, (4.14)
where [ is both the optimal mi’ue and the asymptotic optimal value
in (P). Moreover, the sequence (3%} is bounded, and all ofits cluster
points are Kuhn—Tucker vectors for (P).

Proof. The condition that (P) have a strictly feasible solution is
cquivalent to the condition that p, (u) < +ee for all i in some neighbor-
hood of 0, where p, is the (convex) perturbation function given by
(3.7). The optimal value in (P) is p,(0). Thus our hypothesis implics p,
is a proper convex function which is finite in a neighborhood of 0. It
then follows from the conjugacy relation (3.9) that the level sets
Vi g,(0) = o} are all LOI‘ndet and max g, = p,(0) [19, Corollary 14.221].
Thus (P) is normal, is bounded, and every cluster point of {1
being an optimal solutton to (D,). is a Kuhn—Tucker vector for (P). Thc
boundedness of {1*7 allows us to conclude from Theorem 4.1 that {x*}
is asymptotically mmmuzmg. It remains only to construct feasible solu-
tions x* to (P) such that the left equality of (4.14) holds. For this we
employ a standard device, cf. [3, p. 107]. Let X be a strictly feasible
solution and define

=1 -a)xb+NxeX,

where
0(/(x*))

B(f,(x*)) — £,(%)

Oahk= max { <1.

Then fori=1, ..., m we have
[ <A -2 (D) + 0 )
< (1 =2\ 0(f,(x*)) + 0 (%)
= 0(f,(x) = N [0¢,(:F)) = ;)] < 0

so that X* is feasible. Furthermore, A, —~ 0, so that
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lim sup £, (¥%) < lim [(1 =X, £ (%) + X, £ ()]

b= fr— o

= u < liminf £, (x%) .

fr o

This completes the proof.

5. Second derivatives and rates of convergence

In this section it is supposed that X C R", and that the functions f'i
are continuously twice differentiable in a neighborhood of a certain
point ¥ € int X which is an optimal solution to (P). We denote by
y=(¥,, ... y,) amultiplier vector satisfying with ¥ the Kuhn- Tucker
conditions. We¢ assume that ¥ and y also satisfy the extra conditions
which are well known to be sufficient, if we were dealing with the non-
convex case, for an isolated local constrained minimum at x [3, p. 30]:

(i) y,#0forie {, where 7 is the set of indices { such that f,(¥) = 0.

(ii) The vectors Vft. (¥), i € I, are lincarly indepcndent.

(iii) z-H(x, )z > 0 for every nonzero z € R satisfying z+ Vf,(x)=0
for all i € I, where

H(x, 3 = V20 + 20y, VIR0 . (5.1)
) icf

(The inequality z+H(x, y)z > 0 holds at all events for all x, y and z, due
to the convexity of the functions f;.)

These assumptions imply, of course, by convexity that ¥ is the
unigue optimal solution to (P), and that ¥ (being the only Kuhn—Tucker
lems (D,). Our aim is to use the second derivative information to
analyze the speed of convergence to ¥ and ¥ inherent in the scheme of
Theorem 4.1.

Theorem 5.1. Under the assumptions above, there exist for arbitrary
F>0 and 8> 0 numbers € >0 and o> 0 such that for all y and x
sarisfving

supg, —g, ) <€, (5.2)

Lx,y)—infl (-, y)<a, (5.3)
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the following properties hold:

Dy—7 =8, |lx—x < fand x € int X;

(i) L,(x, y) is continuously twice differentiable with respect to x and
¥, in fact

L0600 = £y + Lo Lyif 00+ Ay G071 - (1/40) Z 7 (5.4)
i it

where [ is the index sel corresponding to the active constraints at X as
above;

(iil) the Hessian matrix V)%Lr(x,}‘) is positive definite;

(1¥) the convex function L (. y) attains its minimum over X at a
unigue point ) whose coordinates are continuousty differentiable
functions of v satisfving

[_V;%Lr‘f(}")nJ")_IVI}(E(_}-‘)) ifiel,
IO iFign (5.9

(v) g,(») is twice continuously differentiable, and the Hessian matrix
Vggr(_y) is negative definite and Satisfies

we Vzgr(y_)} r= A IwW] Filr(é(y), W AW = (1275 2 u-'?‘ ,
i it
. s ) (5.6)
where the matrix A(y) is defined by
AG)w =20 w V() . (5.7)
=1
Proof, We observe first that (5.4) does hold in some neighborhood of
(X, ¥), because of the complementary slackness conditions. Passing to
a smaller necighborhood if necessary to ensure differentiability, we thus
obtain the formulas

VL (x, ) = V() + 20 7+ 20,(00) V() (5.8)
22 VAL (x, )z = 22 H(x, )z + 2r L[z V£, ()] %, (5.9)
=

with H(x, ¥) as in (5.1). It is clear from (5.9) and our assumption (iii)
at the beginning of this section that ?ilr(,\", ¥) 1s positive definite when
(x, ¥)=(%, ¥), hence by continuity it is also positive definite for all
(x, ¥) in some neighborhood of (¥, ¥) lying within the neighborhood
already considered. The implicit function theorem therefore allows us
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to solve the equation Vv _L.(x, ¥) = 0 for x in terms of ¥, at least locally
around 7. Denoting the solution by £(¥). we have

V.L(E().»)=0, (5.10)

where (5.5) holds. In particular, since £(y) is continuous in y and
() = %, the matrix vV L AE(), ¥) 1s positive definite for y sufficiently
near ¥, and hence t‘m, convex function L (+, ¥) attains its minimum
over X uniquely at £(). Summarizing then, we have shown the exis-
tence of a neighborhood of (¥, ¥) on which properties (ii), (iii) and (iv)
hold. We can choose this neighborhood to imply (i) and to be for the
form UxX V, where U is a compact convex neighborhood of X.

Now since Lr(-, ¥) is a continuous function attaining its minimum
value g,(¥) uniquely at X, there is an a > 0 such that

min{L, (x, ): x € bdry U} > g tea. (5.11)

By the continuity of L, and g,, the same inequality must hold if ¥ is
replaced by any y € ¥, where V, isa certain neighborhood of ¥ in V.
The convexity of L (x,v) inx ﬂlbll implies that

{x: Lx,y)<g(¥)ta}C U ifyel,. (5.2}

We now observe that, since g, is a continuous concave function attain-
ing its maximum uniquely at ¥, there is an e > 0 such that (5.2) implies
reVlv, (19, Theorem 27.2]. Thus we have found € and & such that (1),
(i), (111) and (iv) hold when x and y satisfy (5.2) and {5.3). To con-
clude the proof, it remains only to note that (v) follows from (ii1) and
(iv), using the relation

Ve 0= VL EECD )y (5.13)
which is valid by Theorem 3.2.

Corollary 5.2. Under the assumptions at the beginning of this sec-
tion, if sequences . %1 and {ag ;are generated as in Theorem 4.1
one has

limx¥ =%, limy*=7. (5.14)

k—e k==
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Moreover, there exist positive constants a, b, b,, ¢, and ¢, such that
the following estimates hold for all indices k sufficiently large (with &(y)
as defined in Theorem 5.1):
alx* —E0F)* < o, (5.15)
b =T, < 1EGF) — R < byl¥ -7, (5.16)
7 5
where |ylf =Z,_,¥7 .and
) Ik ~71% < g,(y) — g,(}f’") < C‘zl.}-‘k =2 ; (5.17)
Proof. For any €> 0 and a> 0, we eventually have gr(_\'kjk SUpE; —€
and Lr(.\"". %) < inf L% y¥) + . The first assertion is therefore valid,
because of the arbitrariness of g in Theorem 5.1. The cstimates arc ob-

vious from the differential information in the theorem.

Corollary 5.3. Suppose in Corollary 5.2 that the numbers a,, satisfy
for some g > 0.

o, < qlsupg, —g,(v*)1 forali sufficiently large k. (5.18)
Then there is a constant s > 0 such that
Ixk — x| < stvk — 3| for all sufficiently large k. (5.19)
Prooj. Using the estimates in Corollary 1, we have
alx* — E0F)12 < qlg,(7) — 8,001 < cyql* 712 (5.20)
and consequently
Xk —x) < 1xF = EOF)1 + 1E0F) — x|
< l(eyq/a)? + b, 1% — 7. (5.21)
Remarks. These results show that when the scheme in Theorem 4.1 is
applied to a “twice differentiable’ problem (P). one can typically ex-

pect {y¥} to converge to a Kuhn—Tucker vector ¥ and ix*} to con-
verge to an optimal solution ¥, moreover with the convergence of (xk3
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“at least as rapid” as the convergence of {y*3, provided only that the
numbers a«, decreasc fast enough. Thus, whatever algorithm one applies
to generate a maximizing sequence for the dual problem (D,), one can
hope to generate correspondingly good convergence toward a solution
of (P). Naturally, this does not exclude the possibility that, by generat-
ing *1 and {x*7 by a special method, even sharper convergence
properties of {x*1 might be guaranteed than would follow just from the
properties of {ykjL

We emphasize again that these results carry over in the obvious way
if (affine) equality constraints arc explicitly introduced into the model.

References

[1] K.1, Arrow and R.M. Solow, “Gradient methods for constrained maxima, with weakened
assumptions”, in: Studies in linear and nonlinear programming, Lds, K. Arrow, L. Hur-
wicz and H. Uzawa (Stanford Univ, Press, Stanford, Calif., 1958).

[2] K.J. Arrow, 2], Gould and S.M. Howe, A gencral saddle point result for constrained
optimization”, Institute of Statistics Mimeo Series No. 774, Dept. of Statistics, Univ. of
North Carolina, Chapel Hill, N.C., (1971).

[3] AV, Flacco and G.P, McCormick, Nownlinear Progranuning. Sequential Unconstrained
Minimization Technigues (Wiley, New York, 1968).

4] R. Fletcher, “A class of methads for nonlinear programming with termination and con-
vergence properties”, in: Jnreger and nonlinear programming, Ed. J. Abadie (North-
Holland, Amsterdam, 19700 pp. 157-175.

[8] R. Fletcher and Shirley A. Lill. "A class of methods for nonlinear programming, [1; Comi-
putational experience”, in: Nonlinear progranuming, Eds. J.B. Rosen, O.L. Mangasarian
and K. Ritter {Academic Press, New York, 1971) pp. 67-92.

[6] E.G. Golshtein, The Theory of Duality in Mathematical Progranuming and its Applications,
Nauka (1971) (in Russian).

[7] E.G. Golshtein, Theory of Convex Programming, AMS Translation Series (1972).

[&] P.C. Haarhoff and I.D. Buys, “A new method for the optimization of 4 nonlinear function
siubject to nonlinear constraints’’, Compurer Journal 13 (1970) 178184,

[9] M.R. Hestenes, “Multiplicr and gradient methods”, in: Computing methods in optimiza-
tion problems - 2, Eds. L.A. Zadeh, L.W. Neunstadt, A.V. Balakrishnan (Academic Press,
New Yotk, 1969) pp. 143-164.

[10] M.R. Hestenes, “Multiplicr and gradient methods™, Journal of Optimization Theory and
Applications 4 (1969) 303-320.

[11] I.L. Joly and P.-J. Laurent, “Stabilily and duality in convex minimizationproblems”,
Revue Frangaise d'Informatique et de Recherche Opérationelle R-2 (1971) 3-42.

[12] P.J. Laurent, Approximation et Optimisation (Hermann, Paris, 1972).

[13] A. Miele, E.E, Cragg, R.R. Iver and A V. Levy, “Use of the augmented penalty function in
mathematical programming problems, part 1", Journal of Optimization Theory and Apph-
cations 8 (1971) 1153-130.

[14] A. Micle, E.E. Cragz and A.V. Levy, "“Use of the anugmented penalty function in mathema-
tical programming problems”, part 1L, Jowrnal of Optimization Theory and Applications 8
(1971) 131-153.



A dual approach to solving nonlinear programining problems 373

[15] A. Micle, P.E. Moseley and E.L. Cragg, “A modification of the method of multipliers for
mathematical programming problems”, in: Techrigues of oprimization, Ed. AV. Bula-
krishnan (Academic Press, New York, 1972) pp. 247260,

[L6] A Micle, P.E. Moseley, AV, Levy and G.M. Coggins, “On the method of multipliers for
mathematical programming prablems”, fournal of Optimization Theory and Applications
1001972 1-33.

[17] M.J.D. Pawell, “A method for noniinear consiraints in minimization problems”, in: Opti-
mization, Ld. R. Fleicher {Academic Press, New York, 1969) pp. 283298,

[18] R.T. Rockafellar, “Convex functions and duality in optimization problems and dvnam-
ics”, in: Mathematical systems theory and economics, 1, Eds, HW. Kuhn and G.P. Szegd
(Springer, Berlin, 1969) pp. 117 -141.

[19] R.T. Rockafellar, Convex Analysis (Princeton Univ. Press, Princeton, N.J., 1970).

(20] R.T. Rockafellar, “*Ordinary convex programs without a duality gap”, Journal of Optimi-
zation Theory and Applications 7 (1971) 143148,

[21] R.T. Ruckafellar, “New applications of duality in convex programming™, written version
of talk presented at the Seventh International Sympaosium on Mathematical Programming,
The Hague, 1970, and elsewhere; in: Proceedings of the fourth conference on probability
theory, Brasav, Romania, 1971 (Editura Academici Republicii Socialiste Romania,
Bucharest, 1973) pp. 73--81.

[22] R.T. Rockalellar, “The multiplier method of Hestenes and Powell applied to convex pro-
gramming”, Journal of Optimization Theory and Applications 12 (6) (1973).



	app1
	app2

