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1. Introduction

The well known economic model of von Neumann, as generalized by
Gale, consists of a convex cone G in R'x R". Membership of (v,z) in G
is interpreted as meaning that the economic state represented by the vector
¥ can be transformed in a unit time period into the state represented by
z. The cone G can be regarded as the graph of a point-to-set mapping 7.

More than ten years ago, the author became interested in the idea
of studying such mappings 7' as generalizations of linear transformations
(whose graphs are certain subspaces, rather than general convex cones).
It turned out that analogues of surprisingly many things in linear algebra
could be developed, most of which seemed to have an economic interpreta-
tion. For example, the analogue of the formula 7(y) - p = y - T*(p), relating
a linear transformation with its adjoint, turned out to be an abstract form
of the duality theorem for linear programming problems. Similarly, the
study of inverse mappings corresponded to minimax theory, while “eigen-
values” corresponded to growth rates in the von Neumann models. Further-
more, all this could be extended to inhomogeneous models, where point-
to-set mappings were replaced by “convex bifunctions”. A very broad
duality theory of convex programming could thereby be obtained. In this
way, many diverse topics of importance in economics and optimization
theory could be incorporated into a coherent framework which might appro-
priately be called “convex algebra”.

The subject being so huge, and much of the supporting material on
convex functions not yet being available in the literature, only a special
portion of “convex algebra” was written up initially for publications by
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Rockafellar [1965, 1967]; this was in 1965. When the book Convex Ana-
lysis (Rockafellar [1969]) was written in 1967, a more general form of the
theory was presented. Many results, however, remain unpublished.

In the intervening years, the idea of studying point-to-set mappings
whose graphs are cones as analogues of linear transformations was hit
upon independently by Rubinov [1968], although from a more special point
of view. The ideas in Rockafellar [1965, 1967] and Rubinov [1968] were
subsequently developed by Rubinov in a series of papers by Rubinov
[1969a, 1969b, 1970], directed at economic applications. Most recently,
Rubinov and Makarov [1970] in their excellent joint paper have demon-
strated the power of this approachin the analysis of dynamic models,
growth rates, turnpike theorems and so forth. Many extensions of results
in Rockafellar [1967] are presented in Makarov and Rubinov [1970], as
well as, of course, many things not even treated in Rockafellar [1967].
(The book by Rockafellar [1969] was not available to Makarov and Rubinov
when their paper was written.) On the other hand, Makarov and Rubinov
[1970] do not try to convey the broader notions of “convex algebra” in a
gen ral setting, where more can still be said that is potentially of economic
interest.

The aim of this paper is to describe these broader notions, espectally as far
as they concern point-to-set mappings whose graphs are polyhedral convex
cones. Such mappings correspond to the original “finitely generated”
model of von Neumann. For this case we present a number of theorems
which have not previously appeared in print anywhere. In the last section,
some of the relationship with the more general theory of “convex bi-
functions” is indicated. Use is made of some new results in the calculus
of variations (Rockafellar [1971]) in discussing dynamic models over con-
tinuous time. These results should also find other economic applications.

A number of questions are raised which do not yet have answers.

2. Definition of a polyhedral convex process

R=call that a set C = R" is said to be polyhedral convex if it can be
expressed as the intersection of a finite collection of closed half-spaces,
or equivalently (according to a fundamental theorem), if there exist vectors

Ciy -oes Cssly, ..., d, such that C is the set of all vectors of the form
Aver+ oo FAes+pdi + L Fpd,
with 4, 2 0, w2 0, py+ ... +p, = 1. It is said to be a pelyhedral convex

cone, if in the first property the half-spaces have the origin on their boundary,
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or equivalently, if in the second property the u; and d, can be omitted.
(Thus by our definition, a polyhedral convex cone always contains the
origin.)

We define a polyhedral convex process T: R™ — R" to be a multifunction
(multivalued or set-valued mapping, or correspondence) whose graph

G(T) = {(r,2)| zeTO)} = R"xR*

is a polyhedral convex cone. Obviously every polyhedral convex cone G
In R™x R" is the graph of a polyhedral convex process T, where T(p) is the
set of all z such that (y,z) e G.

Example 1 (Von Neumann Model for Economy). Let 4 and B be matrices
of dimensions sxn, and define T: R" - R" by

T(») ={z|3xeR,,y=x4AeR’,z=xBe R},
L o +

Here R’ denotes the non-negative orthant. We do not assume that the matri-
ces A and B are non-negative. Thus activities of trade and disposal may
be represented, and there is no loss of generality in writing y = x4 and
z = xB, instead of y = x4 and z € xB. Observe that

3“1
G(T) = (RLXR) A {D (@, b)) e R, x> 0,
k=1 :

where @, and b, are the k-th rows of 4 and B. The two sets in the intersection
are polyhedral convex cones, and therefore G(T) is itself a polyhedral
convex cone. In other words, T'is a polyhedral convex process. It follows,
incidentally, that by choosing different set of vector pairs (ay, by) for k
=1, ..., r if necessary, with q; > 0 and &; > 0, we can get the expression

G = %@, B xie R, x> 0,
lk—l

This remains true, except for the non-negativity of (af, b)), if RY x R% is
replaced by an arbitrary polyhedral convex cone. In this way, one sees
that virtually every polyhedral convex process can be interpreted as repre-
senting a generalized von Neumann model. Then T(y) denotes the set of
states z (vectors whose components denote quantities of goods or resources)
that can be produced in a certain time period from the state y, The
pairs (ax, &) represent basic processes, and the coefficients X; intensities.

Example 2 (Linear Programming). Let 4 be an m x 1t matrix, and define
T: R — R" by

T() = {z] 22 0,4z < y}.
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Then T(y) is the set of feasible solutions to a standard linear programming
problem which depends on the parameter vector y. The vectors y
= (P15 s ¥m) and z = (zy, ..., 2,) satisfy ze T(y), if and only if they
satisfy a certain finite system of homogeneous linear inequalities:

_y;+>_4aszi €0 for i=1,..,m,

zpz) dor =l

Therefore, G(T) is a polyhedral convex cone, and T is a polyhedral convex
process.

Example 3 (Linear Algebra). Let T be a linear transformation from R™
to R, L.e. let H be an 5 x m matrix, and for each y € R™ let T(y) be the set
consisting of the single element Hy. (In fact we shall not distin guish between
a set containing a single element and the element itself, but simply write
T(y) = Hy.) The graph of T is then a subspace of R™x R", consisting
of the pairs (y, z) which satisfy a system of linear equations of the form

m
Z;;ﬁy,.uzj =0, j=1,..,n

In particular, since a subspace is a polyhedral convex cone, T'is a polyhedral
process.

This example is especially important as a mathematical guide to the
development of the general theory of polyhedral convex processes, because
it shows us what analogies to look for in the familiar context of linear
algebra.

Example 4 (Inverse Process). Let T: R™ — R" be any polyhedral convex
process, and define T7-*: R" — R™ by

T z) = {y] ze T())}.

Obviously 7' is another polyhedral convex process, since its graph is
obtained just by reversing the pairs in the graph of T, and (T~ = T.
In the general economic interpretation in Example 1, T-1(z) is the set
of states y from which the state z can be produced.

Convex processes which are not necessarily polyhedral are defined as
multifunctions whose graphs are arbitrary convex cones in R”x R" con-
taining (0, 0). One may also consider inhomogeneous multifunctions whose
graphs are just convex sets, or objects still more general, called convex
bifunctions,
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These cases will be discussed later. However, our purpose at present
is to explain certain fundamental ideas, avoiding a prolonged battle with
technical complications. The context of polyhedral convex process is well
suited for this. The “polyhedral” property, as a kind of finiteness assump-
tion, ensures in particular that various sets remain closed under our
manipulations, so that peculiar behavior along boundaries does not arise.

3. Some clementary properties

It is easy to see that the following relations are equivalent to the property
of a multifunction T: R™ — R" that its graph be a convex cone containing
the origin:

T(y+y) = TM+T(),
T(iy) = AT(y) for 1>0,
0 e T(0).

It follows then that

¥ k)

Wi
T(; A ;E_f AT for I3 0.

Thus a polyhedral convex process is a multifunction satisfying these laws
as well as a certain condition about how it can be generated finitely.

For a polyhedral convex process 7: R™ — R", each of the sets 7(y)
is polybedral convex. Indeed, T(y) corresponds for fixed y to the intersection
of the polyhedral convex cone G(T') with the translated subspace of R™ x R"
consisting of the pairs of the form (y, z), z e R". The latter is in particular
a polyhedral convex set, and the intersection of two polyhedral convex
sets is polyhedral convex.

More generally, if C = R™ is any polyhedral convex set, then the set

T(C) = U{TO)| yeC}

is polyhedral convex. This set is obtained by intersecting G(7) with Cx R®
and then taking the image under the projection (y,z) — z. (The latter
operations preserve polyhedral convexity.) Applying this fact to the inverse
process T, one sees that, for any polyhedral convex set D < R”", the set
T-(D) = {y] T(») D # B}
is polyhedral convex. It is also true, but not as easy o prove, that the sets
(T yeC} and {3 T(y) = D}
are polyhedral convex.
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We define the effective domain D(T) and effective range R(T) by
D(T) = {y| T(y) # 9},
R(T)={zl 3y,ze T(»)}.

These sets are the projections of the polyhedral convex cone G(7) ¢ R™x R”
on R™ and R", respectively, and hence they are polyhedral convex cones.
Clearly

D(T™Y)=R(T) and R(T™Y) = D(T).

The set T(0) is also a polyhedral convex cone, corresponding to the
intersection of G(T') with {0} x R", Note that

T(y) = T(y+0) o T(3)+T7(0) for all y.

Thus T(0) gives “directions™ in which T(y) is unbounded. As a matter of fact,
for each y € D(T) we have the following property: the half-line {z+ /iw]|
4 = 0} is contained in T(y) for all z € T(3), if and only if w € 7(0). In other
words, 7'(0) is the so-called recession cone of T(y) for every y e D(T).
This property is easily derived by representing G(7') as an intersection
of closed half-spaces. It is well known that a closed convex set is bounded
if and only if it contains no half-lines. Thus the sets T(y) are all bounded
if and only if 7(0) = {0}.

Using the properties of T(0), we can demonstrate that if 7'is a polyhedral
convex process with D(T) = R™ and with the set T(y) bounded for some ¥,
then 7 must be a linear transformation. Namely, 7(0) must consist of just
the zero vector, since otherwise T(y) would contain a half-line. The relation

T +T(=y) = Ty—y) = T(O)

implies then that, for every y, T(y) consists of a single element, and T(—y)
= —T(y). The laws stated at the beginning of this section reduce now to

T(y+y) = T +T(),
T(Ay) = AT(y) forall 1,

and therefore T is a linear transformation.

The set 7-!(0) is also a polyhedral convex cone, and for each z € R(T)
it is, according to the above, the recession cone of the set 7-'(z). It can
also be characterized in terms of the growth properties of Titself: w e T-'(0)
if and only if T(y+w) o T(y) for every y.
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4. Algebraic operations of combinations

We now describe some operations, parallel to those in linear algebra,
for constructing new polyhedral convex processes from given ones.
Let T and 7’ be polyhedral convex processes from R™ to R". We define
T+T'by
(T+T)(») = TO+T'().

Thus (T+T") (») is the set of all sums z+2z" as z ranges over 7(y) and 2
ranges over T'(y). Similarly, for an arbitrary real number A we define
AT by
(AT) (y) = AT(y).
TueorFM 1: T4 7' and AT are again polyhedral convex processes.

Proof: The set G(T'+T’) may be constructed from G(7) and G(T") by
forming the following convex cones in R"xX R"x R'":

K= {(»,0,2)| (»,2) e G(T)},
K ={0,y,2)] (v/,2) e G(T")},
K” = {(J"; )", “")J }. = J"'}'

The set (K+K')n K" is another polyhedral convex cone, and its image
under the projection (y, »', w) = (¥, w) is G(T+T1"). Therefore G(T+T")
is a polyhedral convex cone. The proof for AT is simple, and we omit it.

This theorem implies that an arbitrary linear combination 2, T, + ...
... +4,T, of polyhedral convex processes is a polyhedral convex process.
For example, if T: R" — R" we can form T— 2/, where I is the identity
linear transformation, and study the cone (7—A/)~'(0). This consists
of the vectors y satisfying the “eigenvector” condition iy e T(y), which
is of obvious importance in the study of growth rates in the von Neumann
model.

Two further operations may be defined by

TAT)YP) =TWNT'(),
(Tv T)YO)=U{TW+T @) ut+u =y},
THEOREM 2: T A T'and T v T’ are again polyhedral convex processes.
In fact, they are the greatest lower bound and least upper bound, respec-

tively, of 7 and 7’ with respect to the natural partial ordering >, where
T, > T, means that T,(y) o T,(3) for every y.
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Proof: This is immediate from the relations G(T' A T') = G(T) n G(T")
and G(T v T) = G(I)+G(T).

An especially interesting operation is that of multiplication. Given
polyhedral convex processes T: R™ —» R" and S: R" = R we define
ST: R™ > R' by

(ST) (») = S(TM) = U{S@)| z e T(»)}.

TreorEM 3: ST is a polyhedral convex process.

Proof: To construct G(ST) from G(S) and G(T), we form the following
polyhedral cones in R"x R"x R"x R":

K= {(y,2,0,0) (y,2) € G(T)},
= {(0,0,2,w)| (,w)eG(S)},
K" ={(y,z,z,w)| z =2'}.

The set (K+K')n K" is then a polyhedral convex cone, and its image
under the projection (y,z, 2, w) - (y,w) is G(ST). Hence G(ST) is a
polyhedral convex cone,

For a polyhedral convex process T: R"— R", we can use this operation
of multiplication to form powers 7% In the general von Neumann model,
T*(y) may be interpreted as the set of states of the cconomy which can be
produced in & time periods.

The operations of addition and multiplication reduce to the usual ones
of linear algebra, if the multifunctions are linear transformations, However,
they do not satisfy laws as powerful as those of linear algebra. In particular,
the “distributive law” is weakened to a pair of “distributive inequalities”,

S(Tl +T2) i | ST]_ +ST2,
(S, +8,)T = S, T+S,T

This is a serious obstacle to translating many classical results, in a formal
algebraic manner, into the theory of polyhedral convex processes. On the
other hand, it will be seen that some fundamental laws involving the adjoint
and inverse operations can be translated. These laws then become charged
with a new and deeper meaning, far beyond what they had in linear algebra,

5. The adjoint operation and orientations

The polar of a polyhedral convex cone K = R* is the set
K={weR| VYyeK,w-y<0}.
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It is well known that K° is another polyhedral convex cone whose polar is
in turn K; thus X%%= K.

Introducing a slight medification into the polarity operation, we obtain
a duality correspondence for convex processes. Let T: R" — R" be any
polyhedral convex process. We define the adjoint process T%: R"— R™ by

T*(p) ={ql y-¢>z'p, zeT(), Vy}.
Obviously we have
G(T*) = {(r, 9| (—q,p) e G(T)°}.
Since the polar cone G(T)° is polyhedral, T is another polyhedral convex
process.

If T is actually a linear transformation, then G(T) is a linear subspace
of R™x R", so that when the polar is taken the inequality can be replaced
by equality. Thus T turns out to be the usual adjoint linear transformation,
corresponding to the transpose matrix. This example shows that the adjoint
operation is a natural generalization of the one in linear algebra. It also
explains why we do not simply take the polar of G(T), but make a change
of sign in one argument.

In the von Neumann economic model, where T transforms states of
goods, T should be interpreted as transforming states of prices. It assigns
to each price vector p for outputs the price vectors ¢ for inputs which have
the following property: no matter how the goods are transformed, the total
input vajue will be at least as much as the total output value. In other
words, T is a pricing or accounting mechanism which attributes value to
the factors of production.

We want the law (7*)*= T to hold, but when we apply the preceding
definition of adjoint to 7% we run into a difficulty: the inequality in the
definition is in an awkward direction. The question is raised of whether we
should consider two different adjoint operations, depending on the direction
of the inequality, with rules about when to apply which one. There is a better
way of handling this difficulty, where each process is assigned an “orienta-
tion”, indicating how the adjoint operation is to manifest itself. These
orientations turn out to be useful in other respects as well, and they assume
a richer character as the theory progresses.

We imagine a polyhedral convex process T as having been assigned
either a “maximizing orientation” or a “minimizing orientation”. Of course,
there is nothing intrinsic in T which determines which orientation to assign,
any more then there is an intrinsic left-handedness or right-handedness to
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a mathematical model of space. Here we simply have a convenient mathe-
matical device for keeping track of the signs in certain formulas. Neverthe-
less, in applications it is usually clear what the orientation should be.
For instance, as will be even more apparent later, it is natural to consider
a production process as max-oriented and a pricing process as min-oriented.

The above definition of T* corresponds to T max-oriented. If T is min-
oriented, we define T* instead with the opposite inequality. In either case,
we provide 7% with the orientation opposite to that of 7. Thus the adjoint
operation assigns to each oriented process another oriented process. In
this way, we obtain from the polarity law K°°= X for polyhedral convex
cones the desired law

PR
The inverse operation must also now be brought into a relationship

with orientations. We regard it, like the adjoint operation, as orientation-
reversing. Then we have the rule

@Ht= (%

The latter process is again from R" to R” and it has the same orientation
as T.

All the other algebraic operations are regarded as orientation-preserving
(except scalar multiplication by a negative number), and we only use them
to combine processes whose orientation is the same. In other words, the
sum of two max-oriented processes is taken to be max-oriented, etc. There
is then a remarkable result:

TueoreM 4: The adjoint operation obeys the laws:
(Ti+To)*= TH+TY, (ST)*=T*S*,
(T, A To*=THv T%,  (Ty v T)*=T1 A T4,
(A)*= AT* for 4=0.

Proof: In a formal way, this can be established by applying the polarity
operation to the convex cones used in the constructions of the graphs in the
preceding section. However, this procedure, even if satisfactory from a math-
ematical point of view, is rather mystifying. The real explanation of the

relations will not be seen until later, after support functions are introduced.
Theorem 4 yields further rules for processes T: R"— R", such as

(5% = (T
(T—Aly*= T*—Al.
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These will take on significance below in the discussion of models of eco-
nomic growth over discrete time.

The polarity relationship between the cones G(7) and G(T™) yields po-
larity relationships among domain and range cones, etc. For example,
supposing that T is max-oriented, it is easy to check that the polar of
D(T%) is T(0), and hence D(T*) is in turn the polar of 7(0). In this way we
determine the following relations, where the double arrow means that the
cones are polar to each other (for T max-oriented):

T(0) « D(T*), D(T) « —T*(0),
R(T) = (T*7'(0), R(T*) < —T-10).

6. Support functions and duwal programming problems

The linear transformations 7: R™ — R" correspond classically to bili-
near real-valued functions X on R™x R", and this correspondence can be
used for the definition of the adjoint transformation:

K(y.p)=TQ) p =y T*0p).
For polyhedral convex processes, there is a similar correspondence, and
it has an astonishing property. The analogous formula relating 7 and 7%
is an abstract form of the duality theorem for linear programming problems.

Let 7: R™— R" be a max-oriented polyhedral convex process. For each
y e R" and p € R", we define

(T, p> =<p, TG = sup{p-z| ze T(»)}.

(If T were min-oriented, the supremum would be replaced by infimum.)
Here the supremum is — oo by convention if 7(y) = . Since T(y) is a poly-
hedral convex set and the function z — p-z is linear, the supremum is
the optimal value in an abstract linear programming problem, and if finite it
is attained at some point z. If T(y) # &, then the recession cone of T(y)
is T(0), so that the supremum is +oc, unless p-w < 0 for all w e T(0).
Conversely, if p-w< 0 for all we T(0), then the supremum is not +o0,
This can be shown directly from the prop rties of recession cones of poly-
hedral convex sets, but it is also immediate from the theorem below. Thus,
recalling from the end of the last section that the polar of T(0)is D(T*),
we see that

Jﬁnite number if yeD(T),pe D(T*),

KIT().p> = | +© if yeD(T), p¢ (T,
] — 0 if  pé& D).



362 R. T. ROCKAFELLAR

We call the function K(y, p) = {T(¥), p> the support function of T.

Observe that T is completely determined by X, since K(y, p) gives for
each y and p the supporting half-space, if any, to the (closed) convex set
T(») in the direction of p. Specifically,

T(y) = {z| peR", p-z< K(y,p)}-

Thus we have a one-to-one correspondence between the class of (max-
oriented) polyhedral convex processes from R™ to R" and a certain class
of extended-real-valued functions on R™x R®. This generalizes the classical
correspondence for linear transformations, since if T is linear (hence single-
valued) we have {T(y),p> = T(») " p.

How can the functions K which arise this way be characterized? For
each such K there is a cone C x D, such that X is finite on C x D but infinite
(in a fixed manner) elsewhere. Moreover, for elements of C x D we have the
following properties, which are easily seen from the definition of K and
the basic laws for convex processes:

K(y,p+p) < K(y,p)+K(», p"),
K(y+y,p)z Ky, p)+K(, p),
K(iy, p) = AK(y, p) = K(p, Ap) for A > 0.

Thus K(y,p) is a positively homogeneous, convex function of p e D for
fixed y e C, and a positively homogeneous, concave function of y € C for
fixed p e D. A further fact, not so apparent, is that X is continuous relative
to Cx D, which of course is a closed set. Conversely, if X has all these
properties, and T is defined as in the preceding paragraph, it can be shown
that T is a convex process with closed graph, such that (T(»), p> = K(y, p).
The proof is contained in Rockafellar [1969]. We do not know how to for-
mulate (neatly) the property of K which corresponds to T being polyhedral.

For the adjoint 7% of a max-oriented polyhedral convex process T, we
have by definition

(y, T*(p)) = {T*(p), y> = inf{q- y| g€ T*(p)}.

This again denotes the optimal value in an abstract linear programming
problem. By reasoning similar to the above, we see that

finite number  if y e D(T), p e D(T*),
s THp)) = | —» if y ¢ D(T), p e D(T),
+ if p & D(T™),
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Can it be true that (T(»), p) and {y, T*(p)) are the same? These quantities
certainly do not agree if y ¢ D(T) and p ¢ D(T*), but they agree in all
other cases. This is the abstract form of the duality theorem for linear pro-
gramming problems:

Tueorem 5: If either y € D(T) or p € D(T*), one has

<T(J')sp> = (¥, T‘ﬁ(f})>
In the exceptional case, the two quantities are oppositely infinite.

Proof: Since T'is polyhedral, we can represent it in terms of an sxm

matrix 4 and an s X 7 matrix B:

G(T) = {(x4, xB)| x € R%},

T(y) = {xB| x 20, x4 = y}.
Then, calculating from the definitions, we have

G(T*) = {(p, @)l VY x€ R, x(Bp—Aq) > 0}
so that
T*(p) = {4 Aq < Bp}.
Thus we have for fixed vectors y and r = Bp:
(TG, p> = sup{x-r| x = 0, x4 = y},

(p, TH(p)y = inf{g- y| Ag <r}.
These extrema belong to a pair of linear programming problems dual to each
other in the usual sense, and hence they are equal unless oppositely infi-
nite. (The latter happens in the case where neither problem has a feasible
solution.)

Note that this proof shows the equivalence of Theorem 5 and the duality
theorem for linear programming, since we could also start from arbitrary
matrices 4 and B and use them to define T.

From Theorem 5 and the fact that processes can be characterized in
terms of their support functions, we can see “why” the law (T +T%)*
= TFLT¥ is valid. Evidently,

D(T, +T,) = D(Ty) n D(T3),
and for p in this set we have

UT + 1)), py = sup {p* (z:+22)| z € Ti(»)}
(T (), 2>+ (1) P -

The law follows by passing to adjoints on both sides of this equation.

Il
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The law (ST)*= 7*S* is more complicated. Formally, we would like
to argue that

(ST(y), r> =<TQ), S*¢D =<y, T*S*(r)),

and hence 7*S* must agree with (S7)*. However, the middle “inner prod-
uct” in this chain is undefined; it invoves two polyhedral convex sets
T(y) and S*(r) in R". Is there a reasonable way to define it so that the argu-
ment works? We shall show in the next section that there is,

7. Minimax theory and the inverse operation

Let T: R™— R" be a max-oriented polyhedral convex process, Then 7-1:
R" — R™ is by our convention a min-oriented polyhedral convex process,
so that

g, T7'(z)) = inf{q-y| ye T(2)},
{T=1)*(q), z>) = sup{p- z| pe(T~")*(g)},
where (71)*= (T*)~'. These two exfrema agree, unless oppositely infi-
nite, according to Theorem 5. It is not hard to see that they can be ex-
pressed in terms of T by

<, T~ = infsup{g- y+p - 2= <T0), P},
(T9%(@): 2> = supinf{g - y+p - 2= <T0), PO},

where {T(y), p) can be replaced equivalently by <y, T*(p)>. By symmetry
we then have, since (T~1)~'= T,

TG).p>=anpinfig: y4p- 240, Tl
<y, T*(p)) = i:Lfsup{q:Hp +2—4q, T (@)},

where (g, T7'(z)) can be replaced by {(T*)"'(q), z).

In the general language of convex analysis, this is an example of an
equivalence class of concave-convex functions of (v, p) and an equivalence
class of concave-convex functions of (g, z) which are conjugate to each
other (see Rockafellar [1969]). From the minimax formulas, we find that,
just as the adjoint operation for polyhedral convex processes corresponds
to the duality theory for linear programming, the inverse operation corre-
sponds to the minimax theory (saddle-point characterization of optimal
solutions). Indeed, one need only substitute the formulas for {T(y), p) and
{y, T*(p)y into Theorem 5.
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As an illustration, let us return to Example 2, with 7 max-oriented
of the form
T(y) ={zl z2 0, 4z < y}.
It is clear that
T1(z) — {{m- > Az} _lf za
9] if z2

and consequently
gdz if g=0,z2
(g T @ =- if ¢30,z>0,
+o if z20.
From this it is easy to determine the process (7~1)*= (7*)~! and hence T*.
We obtain
T*(p) = {q| ¢ = 0, 4*q > p},
where 4* is the transpose matrix, Theorem 5 asserts that
sup{p-z| 220, Az< y} =inf{g-y| 4> 0, 4*¢ < p},
which is one of the usual forms of the duality theorem for linear program-

ming. The formulas for {(T(y), p) and {y, T*(p)) in terms of (g, T-1(2)>
express the extremum as the minimax of

L(g,2) =q y+p - z—q- Az

relative to ¢ > 0 and z > 0. This is the standard minimax theorem in linear
programming.

A deeper minimax theory, still “polyhedral” in character, may be built on
a generalized notion of inner product (C, D), where C and D are sets.
As with processes, let us imagine subsets of R" which equipped with either
a “maximizing orientation” or a “minimizing orientation™. If C and D are
both max-oriented, we define

(C,D) = sup{z-p| ze C, pe D}.
Analogously if both are min-oriented. If C is max-oriented and D is min-
oriented, there are the two possible quantities
sup{inf{z- p| p e D}|z € C},
inf{sup{z- p| z e C}|p e D}.
If these are equal, we denote the common value by (C, D). Otherwise

{C, D) is undefined. According to the minimax theorem of Wolfe, if C and
D are polyhedral convex sets, (C, D) is defined unless the “supinf” and
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the “infsup” are oppositely infinite. (And then a saddle-point exists,) Thus
in particular, {C, D) is always defined if C and D are nonempty polyhedral
convex sets, one of which is bounded.

In the special case where D consists of a single element p, we simply
write {C, p), etc, As a function of p, this is called the support fimetion of the
(oriented) set C. All this agrees with our earlier terminology and notation
for processes, if we interpret images 7(y) under a max-oriented process as
being max-oriented, and so on.

Using the above definition one can prove a generalization of Theorem 5:
the equation

(T(C), Dy = {C, T*(D))

holds, if the left side is defined and not — o, or if the right side is defined
and not +co0. Here 7" is any max-oriented polyhedral convex process, C is
a max-oriented polyhedral convex set, and D is a min-oriented polyhedral
convex set.

This result justifies in particular the “inner product™ argument for the
proof of (ST)*= T*S*. It may be interpreted as a duality theorem for poly-
hedral convex programming problems:

sup{<z, D)| T~*(z) meets C} = inf{{C, ¢>| (T*)"*(g) meets D}.

The saddle-point theorem for these problems involves the convex-concave
function
L(g,z) = C, @ +{z, D)—<q, T~ (2)).

8. Optimizing trajectories in discrete time

We consider now in more detail the case of a polyhedral convex process
T from R" to R". For such a process, a sequence of powers can be formed:
T, T2, T3, ..., and questions arise concerning the behavior of this sequence.
Here, as already pointed out, T*(y) can be interpreted as the set of states
into which a state » can be transformed in k units of time. If T represents
the transformation of goods, the adjoint sequence 7%, T2, T#3, ..., can
be interpreted in terms of the transformation of prices. For economic
models of production, there are natural restrictions which may be placed
on T, and these will be described in the next section. However, for the time
being we deal with an arbitrary T, taken to be max-oriented. The advantage
of this approach technically is that it preserves the symmetry between T
and T*, making it obvious that each definition and result is also valid in
a dual form,



CONVEX ALGEBRA AND DUALITY 367

By a frajectory for T* from @ to b, we shall mean a finite sequence
Yos Viseeos i Such that yo = @, o = b, and y, e T(p;_y) fori=1, ..., k.
Thus, by definition, a trajectory for T* from a to & exists if and only if
b € T"(a). Trajectories for T** are defined in the same way. If po, py, ..., P&
is such a trajectory, then

Yo Pu ZF Vi P12 0 2 Vi Do

This general inequality 1s immediate from the fact that y; e 7(y;,—;) and
pi € T*(p;—,) for all i. (Recall the definition of 7%.) The chain of inequalities
represents a sort of one-sided law of conservation of value, in the economic
setting.

We shall say that the trajectory o, ¥1, ..., ¥ for T* is an optimizing
trajectory if there exists a trajectory po, Py, ..., Py for T%¥ such that p, # 0
and

Yol =V "1 = . = V' Pa-
Then y;isfori = 1, ..., k a point of T(y;—,) for which the maximum of the
linear function y — y-pp_, is attained. In other words, yg, Vi, ..., )%
arises by solving a certain sequence of optimization problems.

We shall say that v, )1, ..., ¥ 18 a strictly optimizing trajectory if, in
addition, a trajectory po, pi ..., Px can be found such that y; is the unique
point of T(y.;) for which the maximum of the linear function yp — y- pyy
is attained. Then there can be no other trajectory for T* with the same end
points. Such a trajectory can be interpreted economically as the unique
response of production to a succession of price states.

Optimizing trajectories pg, P1, ..., P correspond similarly to a sequence
of minimization problems, the linear function p — p - y;—; being minimized
over the set T#(p,—;) to get p;. Obviously, if yg, ¥y, ..., ¥ is an optimizing
trajectory for T* with v, # 0, and pg, 1, --.. o IS the associated trajectory
for T#* then the latter is optimizing, and vice versa.

The following theorems characterize the points attainable by optimizing
trajectories for T*. Analogous results hold for 7%,

THEOREM 6. Let T: R"— R" be any polyhedral convex process. There
exists an optimizing trajectory for T* from the point « to the point b, if and
only if & belongs to the boundary of T(a). Moreover, then every trajectory
for T* from a to b is optimizing.

Proof: If y4, ¥y, ...,y 18 an optimizing trajectory from a to & then
b e T*(a), and for certain vectors p, # 0 and p, € T*%(p,) we have a- p;
=b-p,. Since T** = T** the inequality a* px = y- po is valid for all



368 R. T. ROCKAFELLAR

» € T*(a). Thus the nonzero linear function y — y - p, attains its maximum
over T%(a) at b, implying that & is a boundary point. Conversely, let b be
any boundary point of T%(a), and let y,, y,, ..., yx be any trajectory for
T* from a to b. Since T*(a) is convex, there is a supporting hyperplane to
T*(a) at b. Thus there is a ¢ # 0 such that the linear function y—=y-e
attains its maximum over 7*(a) at b. Then, applying Theorem 5, we have

bc=(T"@),c) = {a, T*()) = <a, T*(c)).

Hence there exists d € T##(c) such that a* d = b - ¢c. Choosing any trajectory
PosPis .., Pr from ¢ to d, we have

ad=Yo P2 Y P12 .. 2w pe=0b"c.

The equality of the first and last terms in the chain implies equality through-
out, so that y,, y,, ..., )4 is an optimizing strategy.

THEOREM 7. Let 7: R"— R" be any polyhedral convex process. If there
exists a strictly optimizing strategy for T* from a to b, then & is an extreme
point of T*(a).

Proof: If yo, ¥y, ..., ¥x 18 a strictly optimizing trajectory from a to 4,
then, as we have seen in the preceding proof, b maximizes the linear function
¥ = ¥y po over the polyhedral convex set T%(a). The additional property
now of the trajectory pg, py, ..., py is that y; uniquely maximizes the linear
function y — y - py—; over T(y;—;). This implies that, if yg, y1, ..., y¢ is any
trajectory for T* starting from a, and different from yg, 3y, ..., ¢, at least
one of the inequalities in the chain

Yo' Pk Z Y1 Pi-1 Z oo 2 Ji" Do
must be strict. Therefore 5 is the unique point of T%(a) for which the linear
function y — y - p, attains its maximum, so that » must be an extreme point.

The converse of Theorem 7 is not valid without further restrictions,
but what these restrictions should be is an open question. Here are two
examples which illustrate difficulties.

Counterexample 1. For y = (3%, y*) € R?, define

{z=(2) 2 =y, |22 <y} if >0, =0
T(y) = P

Then b = (1, 1) is an extreme point of T2(a), where a = (1, 0). However
the only trajectory for T2 from a to b is y, = a, y; = a, y, = b, and y,
is not an extreme point of T(y,). Thus this trajectory can not be strictly
optimizing,

in all other cases.
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Counterexample 2. For y € R!, define

{zeR|0<gz<y} if »>20,

G} if yEO0.

Then b = 0is an extreme point of 72(¢) = [0, 1], wherea = 1. If yq, ¥y, 2

is an optimizing trajectory from a to & with associated pg, py, pa, then
Po < 0and

T(y) = {

a:py =y1°py =b-py=0.
In particular this implies p, < 0, since y, - p, = {T(a), p;» and T(a) = [0, 1].
On the other hand, we have

T*(p) = {qgl ¢= 0, g = p},
and therefore

P1 € T#(po) = [0, +o0).
Thus p, = 0, and the maximum of the function y — y- p, over T(aq) is
not attained uniquely at .

Despite these counterexamples, some kind of converse of Theorem
7 ought to be true, and it would be interesting to know what it is.

9. “Eigenvalue” theory

In the study of the von Neumann model in Example 1, much attention is
devoted to the vectors y and numbers A with the property that iy e T(y).
These correspond to states of the economy which are self-reproducing in

a certain sense, and they are closely related to the potential growth rate of
the economy.

The most natural assumptions on T in this economic context are that
(1) D(T) = R and R(T) = R",
(2) T(0) = {0}, i.e. all the sets T(y) ars bounded.
(T is a polyhedral convex process, max-oriented.} The properties of T*
which are equivalent to these are:
(1*) T*(0) = R% and (7%)7*(0) > —RY,
(2*) D(T*) = R".
The non-negativity of the vector pairs (y, z) in the graph of T corresponds
to the notion that the components of these vectors represent material quan-

tities. Models can be imagined in which “debts” in such quantities are tem-
porarily allowed, so that negative numbers occur, but this is partly just
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a matter of how the unit time period is conceived. There does not seem to
be any actual loss of generality in assuming that, although debts of this
type may be incurred within the time period, even just after the beginning
or just before the end, they must all be made up in the same time period.
In other words, the time period represents an accounting interval at the
end of which one again looks only at the real (physical) disposition of the
material quantities.

The assumption that D(T)is all of R, not just a part of it, means that
every possible state, consisting of a configuration of material quantities,
has some successor state. The successor state need not be obtained only
through “production”, but also through such activities as “storage”,
“decay”, “disposal”, ete. It is hard to conceive of a model where, on the
contrary, there are states p = 0 with no possible successors, so that “the
world must come to an end”.

The assumption that 7(0) = {0} means simply that material quantities
can not be created from nothing. The fact that this implies the boundedness
of T(y) follows from the fact that T(y) is for each y € D(T) a nonempty
polyhedral convex set with recession cone T(0).

Virtually all the study of the relation Ay € T(y) from an economic point
of view has been under, not only the preceding assumptions (except for
polyhedral convexity), but also the following, which is much more open to
question:

B)IfzeT(y), y=zy, z= 2’20, then z’e T(y').

This says that free disposal is possible of quantities in surplus. Difficulties
arise as soon as we think of the disposal as a physical process applied to
material quantities, since such a process might have to compete for resources,
and at the very least it would require time proportional to the amount
of material to be “annihilated”. Without free disposal, on the other hand,
there is the complication that some products may be undesirable, so that
negative prices may play an essential role.

A process T satisfying (1), (2) and (3) is a “monotone process of concave
type” in the sense of Rockafellar [1969]. We shall not address ourselves here
to the “eigenvalue™ properties of such processes of more familiar type, but
describe instead some results which hold for polyhedral convex processes
in general.

Let 7: R"— R" be an arbitrary polyhedral convex process, and let 4 be
an arbitrary real number. The set of all vectors y satisfying iy e T(p) is
then a certain polyhedral convex cone in R", namely the cone (7— AI)~(0).
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If T is actually a linear transformation, this cone is {0} for all but a finite
set of values of 7, where it is a nontrivial subspace. Howcver, in general
there will be many values of A for which the cone (7— 4/)~!(0) is nontrivi-
al; and interest centers more on the question of whether, for certain more
special values of 4, this cone undergoes some abrupt change. In this con-
nection we have a strong result, whose proof must be omitted for lack
of space.

TueoreM 8: Let 7: R" — R" be any polyhedral convex process and let B
be the unit ball of R", Then the mapping A — (T'—AI)~*(0) n B is upper
semicontinuous everywhere, and it is lower semicontinuous except at
a finite number of values 4,, ..., 4,, (maybe none).

The exceptional numbers Z; may be called the critical values of T. If T
is a linear transformation, they are precisely the eigenvalues of 7. But if T
is not a linear transformation, the number of such values is not necessarily
bounded by the dimension #, and it may be arbitrary high. One can distin-
guish between “right” critical values, “left” critical values and “two-sided”
critical values, depending on the kind of discontinuity. Are the critical
values for T* the same?

Motivated by the standard economic results, we can define 4 to be an
equilibrium value for T if there exist vectors y and p such that iy € T(y),
Ap e T#(p), and y-p # 0. The general economic meaning of this is not
so clear in the case where y-p < 0, for example. However, at least the
following can be shown: every equilibrium value is a critical value. Thus T
has only finitely many equilibrium values (maybe none). Again, this number
need not be bounded by the dimension n. The polyhedral convexity of T
is essential here, as in Theorem 8.

Still another class of special values of 2 can be investigated. Let us define
A to be a pseudo-eigenvalue of T if there exists a vector y # 0 such that iy
is an extreme point of 7(y). If T is a linear transformation, the pseudo-
eigenvalues are precisely the eigenvalues of 7. It can be shown that an
arbitrary polyhedral convex process 7 has only finitely many pseudo-
eigenvalues, but everything else about these values, including their rela-
tionship to critical values and equilibrium values, remains a mystery.

Almost nothing is known about the role of such “eigenvalue” considera-
tions in determining the behavior of the sequence T, T2, T7,..., other than
in the linear case or the “traditional” economic case. One would be especially
interested to have some generalization of turnpike theory, relating “eigen-
values” to the optimizing trajectories considered in the preceding section.
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10. Dynamical models in continuous time

In economic models involving transformations over discrete time (with
constant technology), the set of states z into which a given state y can be
transformed in k units of time is T*(y), where T* is the k-th power of a
certain convex process T = T, What is the natural analogue of this for
continuous time?

Let us denote by 7™(y) the set of states into which y can be transformed
in T units of time, where 7 is an arbitrary nonnegative real number. Then
the following law, resembling the rule for manipulating integral powers,
should hold:

TEte) — T T (: T(U)T(rJ) for all T 0: o= 04

This follows from the fact that everything produced in 7+ ¢ units of time
corresponds to something produced in 7 units of time which is then trans-
formed further in ¢ additional units of time. Thus the natural dynamical
model in continuous time consists of a one-parameter semigroup of convex
processes, i.e. a homomorphism 7 — 7' from the semigroup of nonnega-
tive real numbers under addition to the semigroup of convex processes
under multiplication.

We have purposely omitted the word “polyhedral™ here, since it is by
no means clear whether this is appropriate for “continuous” models. Such
models necessarily involve topological limits of various sorts, and these
are unlikely to preserve the property that a process is “finitely generated”.
A more reasonable context is that of the algebra of closed convex processes,
i.e. multifunctions whose graphs are arbitrary nonempty closed convex
cones (see Rockafellar [1969]). For economic analysis, assumptions like
(1) and (2) (or even (3)) in the last section may be called for. As a
mathematical simplification, it might be assumed that the semigroup consists
of polyhedral convex processes, so that a number of bothersome technical
questions concerning domains, closures and adjoints may be avoided.
However, the advantages of this quickly begin to wear thin.

It is one thing to speak of a semigroup of convex processes and another
to know whether such semigroups even exist. The following heuristic idea
is therefore valuable in suggesting a simple way in which many such semi-
groups may be generated.

Let us consider an economic model in which transformations over
continuous time are described in terms of the instantaneous rates of change
which are feasible. Specifically, let S: R* — R" be a convex process with
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the interpretation: z = (z%, ..., z") belongs to S(y), where y = (3%, ..., "),
if and only if it is possible in the state y to arrange production so that the
i-th good is being produced at the (instantaneous) rate of z' units per unit
of time. We can then get something corresponding approximately to
T(z)(yo) as follows. Divide the time interval [0, 7] into k subintervals
of length 7/k. Over the first subinterval, we can transform y into approxi-
mately 3, = yo+(v/k)z,, where z, is some element of S(y). Over the
second subinterval, we can transform y, into approximately y, = y, +
+(1/k)z,, where z, € S(y,), and so forth. Note that

J’fe(f+('f/k}s)(.1’r~1)s i=1,..k.

Thus, over the sequence of k subintervals covering a total of 7 units of time,
we can approximately transform y, into elements of the set

I+ (=/l)S)¥(yo)-
This indicates the possible definition

TO = Im(I+(z/k)S) = 5
P

as a way to generate a one-parameter semigroup from S. The limit could
be taken perhaps in the sense of the convergence of the graphs of the
processes, as subsets of R"x R". It would be valuable to know whether
this approach can be formalized. The process § would be the “infinitesimal
generator” of the semigroup, and in some sense it ought to be true that

_ 4 =
S—_d'!.'T at 7 =0.

An important converse question would also need to be asked: what con-
ditions on semigroup {7, z > 0} imply that it arises in such a way from
a “rate” process S?

Observe that, even in the most ordinary economic setting, one would
not want to impose the restriction that R(S) = R%, although the assump-
tion D(S) = R’ remains reasonable. The assumption that the set S(3) is
bounded for each y secms completely appropriate economically, since
arbitrarily large instantaneous rates of change are not physically possible.
It should be remarked, however, that just such unbounded rates are implicit
in the continuous analogue of models with “free disposal”.

While the approach described above has not been worked out, another
approach is available which can indeed be shown to generate a semigroup
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from S. This approach is based on newly established results on problems
of convex type in the calculus of variations.

Tarorem 9. Let S: R — R" be a closed convex process with S(0)
= {0}. For each 7 > 0 and a € R", let T™(a) denote the set of all b e R"
such that there exists an absolutely continuous curve y(f), 0< < 7,
with 3(0) = a, y(7) = b, and }(1) € S(¥(1)) almost everywhere ( = dy/dt).
Then T™ is a closed convex process with 7™(0) = {0}, and the semigroup
identity

TE+o — TE T

is satisfied. Furthermore, taking S and 7™ to be max-oriented, the adjoint
processes 7'"* likewise satisfy the semigroup identity, and they can be
described as follows. One has d € 7™*(c) if and only if, for every ¢ > 0,
there exists an absoclutely continuous curve p(¢), 0 < ¢ < 7, such that
llp(O)=c|| < &, |Ip(v)—d|| < &, and p(r) € S*(¢) almost everywhere,

This is an easy consequence of Corollary 2 to Theorem 1 in Rockafellar
[1971].

Results in this area of the calculus of variations which have not yet
been published yield a stronger characterization of the adjoint semigroup.
Assuming that D(S) = R%, we have d e T'*(¢) if and only if there is
a curve p(t), 0 < 7 < 7, of bounded variation, such that p(0) = ¢, p(7)
=d, p(t)eS*(p(r)) almost everywhere, and the “singular” part of p is non-
decreasing. The latter means that if we write p(r) = po(f) +p,(¢), where p,
is absolutely continuous and p,(r) = 0 almost everywhere, then p,(r)
< p,(t') in the sense of the ordering cone R’} for r < ¢'. In particular, then,
if p(r) has a jump at 7 = ¢, we must have p(r.) = p(t.).

These facts can be used to generalize to continuous time models the
characterization of optimizing stratcgies given in Section 8.

Even though Theorem 9 shows how to generate certain semigroups
of convex processes, it says nothing about the reversal of this procedure,
that is, how to get S from T,

Of course generalizations are possible to the case of technologies which,
at least in a limited sensc, are able to change in time. Such models have
been treated in terms of convex processes by Makarov and Rubinov
[1970]. There is always the difficulty in such models, however, that the
kind of change one is the most interested in, unexpected change through
the discovery of new methods of production and even new goods and
products, is the hardest to represent mathematically.
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11. Inhomogeneous models

As a generalization of the notion of a convex process, one may consider
multifunctions 7' such that the graph G(T) is a convex set in R" — R",
but not necessarily a convex cone. Some things may be proved about such
multifunctions, but most of the duality theory falls away, or at least fails
to take on a symmetric form. The reason is that, while duality correspond-
ences for defining natural adjoints exist in the class of convex cones
(polarity) and in the class of convex functions (conjugacy), there is no such
appropriate eorrespondence for the class of general convex sets. The
analogous correspondence there associates with a convex set, not another
set, but a convex function, its so-called support function.

Actually, multifunctions whose graphs are arbitrary convex sets are
not so great an advance in generality over convex processes as might be
thought. In economics, they usually arise because vectors of goods are
expressed in reduced units, for instance quantities per capita or per stan-
dard unit of labour, rather than in physical units. In this event, homo-
geneity is restored simply by re-introducing whatever variable was used in
the reduction to ratios.

From the purely mathematical standpoint, this conversion to the homo-
gencous case can always be carried out as follows. (There may be other
ways as well.) Given a multifunction 7: R" — R" whose graph is a convex

set, we define T3 R™! — R'1 by

[ = Gordl 20 =002 €30 T03 ) T 30>,
@) vUi y) {% == (Ol 0)} ' if Yo = 09
% i g L0,

(We might want to pass instead to the mulufunctlnn whose graph is the
closure of G(T) ) It is easy to check that T is a convex _process, 1€ G([)
is a convex cone, and that z € T(yp) if and only if (1, 2) € T(1, ¥). Moreover,
if R™ = R", trajectories for 7% from a to b correspond presisely to trajec-
tories for 7* from & = (1,a) to b = (1,b),and so forth. In this way, practi-
cally every question about T can be translated into something about T,
to which the “homogeneous™ theory can be applied.

Nevertheless, there are some cases where the conversion just described
is not convenient. In these cases, if duality is at all of interest, we propose
that, to achieve symmetry, one should move conceptually in the opposite
direction. Convex subsets of R™x R" should be identified with their indi-
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cators, certain convex functions. One should work in the context then
of so-called convex “bifunctions”, for which a natural analogue of the
algebra of convex processes is available.

To explain the idea of a bifunction, let us consider an economic model
of the familiar sort where one has a convex subset G of R"x R" and a
function u(y, z) defined for (», z) € G. Here G may be interpreted as usual
as the graph of a multifunction T which transforms states y into states z.
On the other hand, u(y, z) may be interpreted as the wutifity associated with
z when z is obtained from y; in this event it is natural to assume u is concave.
An alternative interpretation is that u(y, z) is the cost of z when z is obtained
from y; then u should be convex.

Looking at this model from a slightly different angle, parallel to the
notion of “multifunction”, we may conceive of it in terms of a mapping F
which assigns to each y € R™, not a set, but the pair consisting of the set
T(y) and the function z — u(y, z) on T(y). This is what we mean by a
“bifunction”. For technical purposes, it is convenient to represent the pair
(T(»), u(y, *)) by a single function which is extended-real-valued namely,
(assuming u is convex) the function of z which has the value u(y, z) if
ze T(y), but +o0 if z ¢ T(y). (If u is concave, + o0 is replaced by —o0.)
This function on R”, which is assigned to the vector y € R™, is denoted
by Fy.

This leads us to the general definition that a convex bifunction F: R™ — R"
is a mapping which assigns to each y € R™ a function Fy on R" in such
a way that the value (Fy) (z) is convex as a function of y and z jointly.
Concave bifunctions are defined analogously.

A convex process T: R™ — R" may be identified with a certain convex
bifunction F, its indicator, defined by (Fy) (z) = 0 if z e T(»), (Fy) (2)
= 4o ifz¢ T(y).

An example of convex bifunction in convex programming is the follow-
ing. Let f;: R* — R! be a convex function for / = 0,1,...,m, and for
Y= (¥1s...s Vm) € R™ define

fo@ if fiddsy for i=1,..,m,
+oo  in all other cases.

(Fy) @) = {

Then Fy is the essential objective function in the problem of minimizing
JSo(2) subject to the constraints f;(z) < 3, i = 1. ..., m.

Adjoints of convex bifunctions are defined by means of the conjugacy
correspondence for convex functions. We can not describe the theory
of conjugacy here, but the full details, including everything we are men-



CONVEX ALGEBRA AND DUALITY 377

tioning about bifunctions, may be found in Rockafellar [1969], The basic
idea is that, if f'is a convex function on R", the function f* on R" defined by

f*(p) = sup{z: p—f(2)| ze R"}

is called the comjugate of f. It is another convex function, and under mild
assumptions on f the conjugate of f* is in turn f:

f(2) = sup{z- p—f*(p)| p e R"}.

If /' is the indicator of a convex cone, then f* is the indicator of the polar
cone.
For a convex bifunction F: R — R", the adjoint F*: R" — R™ is defined
by
(Fp) (@) = nf{(Fy) ()22 43" g}

(If F is a concave bifunction, inf is replaced by sup.) Then F* is a concave
bifunction. and under mild assumptions F** = F, If F is the indicator
of a convex process 7, then F* is the indicator of the adjoint process 7%,
(Max-oriented processes are associated with convex indicator bifunctions,
min-oriented processes with concave indicator bifunctions.) In this sense,
the adjoint operation for bifunctions generalizes the one for convex pro-
cesses.

The “inner product” theory is generalized by defining for a convex
bifunction F

{Fy, ) = 8up {z-p=(Fy) A} = E)*(p)-

(For a concave bifunction, sup is replaced by inf)) If F is the indicator
of a convex process T, we have {Fy, p) = {T(y), p>. Under mild as-
sumptions, it is true that

KEy,p> =<y, F*p). .
This is the abstract duality theorem for convex programming. It equates the
supremum of an extended-real-valued concave function on R" with the
infimum of a certain extended-real-valued convex function on R™.

As a function of y and p, {Fy, p) is concave-convex. Moreover, it can
be shown in a precise way that essentially every concave-convex function
on R"x R" corresponds in this way to a convex bifunction F: R™ —» R",
By considering the concave-convex function corresponding to the inverse
bifunction F~!, where

(F-12) () = — () (),
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one obtains the Lagrange multiplier theory of convex programming, and in
fact the most general minimax theory for games of concave-convex type.

Operations for convex processes may also be generalized to bifunctions.
We mention only one: multiplication. If F: R" - R" and G: R" - K"
are convex bifunctions, we define GF: R"™ — R" by

(GEy) (w) = inf{(Fy) (2) +(G2) (w)}.

It can be shown that GF is another convex bifunction, and “usually”
(GF)* = F*G*, For F: R" —» R", powers F* may be considered, and
these are actually just what one studies (in effect) in many of the economic
models alluded to at the beginning of this section. One-parameter semi-
groups of bifunctions satisfying

Fe+o) — FOOE for 720,020,

also assume an importance. These correspond to general “convex” problems
in the calculus of variations of the type investigaced in Rockafellar [1971].

The possible implications of all this new theory of bifunctions for eco-
nomics are yet to be worked out.
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