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1. Inhoduction

Thc \rell known ecolromic model of von Neumann, as generaliz€d by
Gale, consists of i cotrvex cone d in R x R'. Membership of (y, z) in G
is iDterprcted ;s nraning that tbe economic state rpresetrted by the vector
) can be fratrsformed in a unit time period into the state represented by
z, The cofle G can be lega ed as the graph of a point-to-set mapping 7.

More than ten yean ago, the author became interested in the idea
of studying such mappings T as geDeralizations of liDear transformations
($hose graphs are certain subspaces, rather than general convex cones).

It tu red out that analogues of surprjsingly many things in linear algebra
could bc developed, most of which seemed to hare an economic interpreia-
tiotr. For examplc, the analogue ofthe formula (t).p : ], 7*(p), relaaing
a linear transformatjon lrirh jls adjoini, turned out to be an abstract form
of tle duality theorem for linear pro$amrning problens. Similarly, the
study of invene mappings coiresponded to minimax theory, while "eigsn-
values" correspondcd to growth rates in thc von Neunann models. Fu(her-
more, all this colrld be extended to jnhomogeneous models, where point-
to-set mappings ere replaced by "convex bifunctions". A very broad
dualit], tbeory of co vex Fogramming could thereby be obtained. In this
wa-\', many dive6e topics of inportatrce in economics atrd optimization
theory could be incorporated into acohercnt frame*ork which might appro-
pdately be called "convex algebra".

The subject being so huge, and much of the supponing rnaterial on
convex functions not yet being amilable in the lilcrature, only a special
portion of "convex algebra" was written up initially for publications by

* This Gaeh vas suppo.ted in prt by GEot AFOSR-?2-2269.
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Rockafellar [1965, 1967]; this was in 1965. When the book Convex Ana-

lysis (Rochfellar [9o9]) was writien in 1967, a more general form of ttre
theory was Fesented. Many results, however, remain unpublished.

In the iniervening years, the idea of studying point-to-set mappings

whose graphs are cones as analogues of linear transformations was hit
upon independently by Rubinov 11968l, although from a more special point

ofview. The ideas in Rockafellar ll96s, 19671 and Rubinov [i968] were

subsequently developed by Rubirov in a series of papers by Rubinov

i1969a, 1969b, 19701, direcred at economic applications. Most recently,

Rubinov and Makarov [1970] itr their excellent.joint paper ha\,e demon-

strated the power of this approach in the analysis of dynamic models,

growth mtes, turnpike theorems and so forth. Many eritensions of results

h Rockdellar 119671are present€d in tr{akarov and Rubinov [1970], as

well as, of course, many ihings not even treated in Rockafellar 11967l.

CIhe book by Rockafellar [] 9691was lotavaiiabieto Makarov and Rubinov
when thejr pnper was wrilten.) On the other hand, Mak ov and Rubinov

[1970] do not try to convey tLe broader notions of "convex algebra" in a

gen ral settirg, whete more can still be said that js polentially ofeconomic
interest.

Theaim ofthis paperisto descdbe these broader notions, especially as far
as they concern pointto-set mappings whose graphs arc pobhedral cotvex
cones. Such mappings correspond to the original "finitely generated"

model of von Neumann. For this case rve pres€rt a number of theorems

which have not previously appearcd in print anywhere. In the last section,

some of the reiaiionship with the more Seneral theory of "convex bi-
functions" is indicated. Use is made oi some Dew results in lhe calculus

of variations (Rockafellar l197il) ir discussing dynamic models over con-

tiruous tine. These results should also find other economic applications.

A number of questions are raised wlich do not yet have answers.

2. Detnilion of a polyhedral cotr\e\ proce.\

R.call that a set C c R' is so'id to be Nblledtal .orle.ir if it can be

expressed as ihe iniersection of a finite collection of closed half-spaces,

or equivalenlly (according to a furdamental theorem), jf there exist vectors

cr, ..., cs, dt, ..., rI such that C is the set of all vectors of the form

)\q+ ... +)."c"+L\d,+... +u,d,,
with ).t ) 0, pt) 0, pL+ ... +p, : I . It is said to be a poryedrul co wx
core, if in the first property the half-spaces have the origitr on iheir bouDdary,
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or equivalently, if in rhe second property the pr and d! can be omitt€d.
(Thus by our deflnition, a polyhedral convex cone always cotrtains the
origitr.)

We defrne a Nlrhedral cowex process Ti R' - R, to be a mulrifuncrion
(multivalued or set'valued napping, or cotespondence) whose $aph' G(r): {o,z) z e 7-(i\ - R xR:
is a polyhedral convex cone. Obviously every polyhedral convex cone C
iD n' x X' is rhe graph of a polyhedral convex process Z, wherc 4.t ) is the
set of ali r such that (f, z\ e G.

trar?Z/e 1 (Von Neumann Modelfor Economy). L€tI and, be matrices
of dimensions -! x r, and deline 7: R' ' R" by

TCLj): {zllx e R"+,I : xAe R+,2: xBeR"+\.
Here Ridenotes the non-negative orthant. We do not assume thai the mairi-
ces I and I are non-negative. Thus acrivities of trade and disposal may
be rcpresented, and there is no loss of generality iD writing y : ,l and
-z : rr, instead oft > .il and ; < rr. Observe rhat

where d, and rk are the k-rh rows ofl and B. The rwo sers in tte intersection
are polyhedral convex cones, and rherefore c(Z) h itsef a polyhedral
converi cone. In other rvords, 7 is a polyhedral conv€x process. It follows.
incidentally, tlat by choosing differeDr ser of vector pairs (ai, blJ tor k:1,...,r'if necessary, wirhaL>0 andbl> O, we can ger the expression

,s..c(r\ - i)_.\;(a;.bJ jr,c R.a - 0j.

This remains true, except for rhe non-negalivity of (a;, ,;), if Xi x Ri is
rcplaced by an arbitrary polyhedral convcx cone. In tLis way, one sees
thai virtually evcry polyhedral convex process can be interprete.l as repre_
seniing a generalized von NelrmanD modet. Then 40) detrotes the set of
states z (!€ctors whose components denote quantities ofgoods o. resources)
lbat c-1 De prodLceo rn d cera:D time pe,iod lron rbe sLale ,,. Tbe
pairs ,a;.b;, reore)etrr bd,ic pro."*... unJ Lbe coefrlienrs x; inLen5ities.

Example 2 (Li!€at ProgrammiDg). Ler I be an ,? x, matrix, and defne
f: R'+R'by

'fa: {zl z>0,A2<y}.

c(7) : (RlxRi) 
^ {I-y,(d,, }i)l j,LeR,,r.i>0},
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Then (J) is the set of feasible solutions to a siandard linear pro$amming
problem which depends on the parameter vector l. The vectors .],:0,,...,]l.) a1\d z = (21,...,2") satisfy :e z()), if and only if they
satisly a certain flnite system of bomogeneous linear inequalities:

-);-La;,|'< 0 for ;- 1.....'r.
j=t

zj>0 fot j:1,...,n.
Therefore, G(7) is a polyhedral convex cone, and Zis a polyhedral convex

Example 3 (Lineat /Jge&a). Let T be a litrear transformation from R'
io R', i.e. let ,q be aD r x m mairix, atrd for each ./ € R- l€t ?C', be the set
consisting of the single element 11.),. (In fact we shali not distinguish between
a sei containing a single element and the element itself, but sjmply yrite
T(!): Hy.) The graph of r is then a subs?ace of R-xR,, oonsisring
of the pairs (r, z) vhich satisfy a system of linear equarions of the form

Lh tv.-?. - o. j - t.....n.

In particular, since a subspace is a polyhedral convex cone, Zis a polyhedral
process.

This exarnple is especially important as a mathematical guide to th€
developmeni of the gereral iheory ofpolyhedral corvex processes, because
it shows us what analogies to look for in tl.re familiai context of linear
algebra.

Exanple 4 (In\e$ePtocess). Let 7: n, + X'be any potyhedral convex
process, and define 7-1: i - R. by

:r 1@ : {r) zer(i}_
Obviously 7-1 is another polyheclral convex proc€ssJ since iis graph is
obtained just by reversing the pairs in ttre graph of f, and (T-1) 1 - T.
In the general economic interpretation in Example t, Z r(z) is the set
ol.rdre. r froo. *bich rne srdte - can be producea.

Convex prbcesses \\,hjch arc ot necessaibj pob,hetbal are denned as
multilunctions whose graphs arc arbitrary convex cones in R.x-R con-
taining (0, 0). One may atso consider inhomogeneous nulrjfuncrions whose
gmphs arc just convex sets, or objects still more gerlel?l, cal1ed convex
bifunctions.
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Ttrese cases will be discussed laier- However, oul puryose at present

is to explain certain fundament.l ideas, avoiding a prolonged battle wilh
technical complications. The context of polyhedral convex process is well
suit€d for this. The "polyhedral" ptoperty, as a kind of finiteness assump-

tion, ensues in particular that various sets remain closed under oui
manipulations, so tlat peculiaf behavior along boundaries does not alise.

l. Somc ckmctrt$y properlies

It is easy to see that the fo owing relations are equivalent to the property

ol a multifunclion Z: R- + ,ry that its graph be a cotrvex cone conraining
ihe oigin: r(r ,, - r{i+:ro),

T(.1],) - |T(j, for ,1 > 0,

0 € 40).
Tt follows th6n that

rt L),.,1 \ ). n),., for , 0.

Thus a polyhedml convex process is a multifunction satisfying these laws
as well as a ceftain conditior about how it can be generated finitely.

For a pollhedral conlex process Ti R + R, each of the sets Z(.l)
is poly}edral conrex.Indeed, f(r) corresponds for fixed ], to the intersection
ofrhe polyhedral convex cone C(f) \rith tle transialed subspace of -R'x R'
consisling of ihe pajrs of the form ("r, ,), z e.R'. The la1ler is in parlicular
a polyhedral convex set, and the inlersectjon of tlvo polyhedral convex
sets is pollhedral convex.

More generally, if C - n' is any polyhedral conver set, ihen tle set

I(c) = U{ro)l rec}
is pol,vhedral convex. This set js obtained by inlersecring G(7) \ ith Cx R'
and then laking tbe image under the projection (),")+:. (The latter
operations preserve pollhedral convexiiy.) Appiling thjs fact to the inverse
proc€ss 7 I, one sees that, for any pol]hedral convex set , c -R', the set

r '(D) : ly) r(i ^D + {J\

is polyhedral convex. It is also rtue, blrt not as casy to ptove, that the sets

a {4})l / € c} and

are polyhedral convex.
{r) rt - D}
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We deiDe the effative donain D(n 
^nd. 

elfective tange R(T) by

D(r) - {y] rO) * a\,
R(7)=lzlly,zeT(i\.

These sets are ttre projections of the polyhedral convex cone C(f) c Rh x lP
on R'and.R', resp€ctively, and hence they are polyhedral convex coDes.

Clearly

D(Tir: R@) and R(r-) = r(").
The set f(0) is also a polyhcdral convex cone, coffesponding to the

intersection of G(r) with {0} x,R". Note that

70) = ro'+0) - r0,) +?'(0) for au }.,

Thus I(0) gjves "directions" in yrhich I(_y) is unbounded. As a matter offact,
for each ,' e r(7) \re have the follo*'ing property: the hal ine {z+ 2pl
; > 0) is contained in f(), for all z e (]r, ifand only if r', € (0).In other
words, f(0) is the so-called recession cone of fcr) for every],€r(I).
This property is easily dcrived by rcpresentinS 6(t) as an intersection

of closed half-spaces. It is well known that a closed convcx set is bouhded
if and only il it contains no halfJines. Thus the sets Z(1.) are all bouDded
if and only if r(0) - {0}.

Using the properties of I(0), we can demonstrate that if 7is a polyhedral

convex process ryith D(7) = X' and with the set I(/) bounded for some t,
tben f must be a linear tmnsformalion. Namely, f10) must coDsist of just

the zerc vector, since oth€Nise (J,) would contain a halfline. The rclalion

TU)+:r(-y) - :rO y) = :r(0)

implies thcn that, for every t, z(]) consists of a single element, and f( - ))
= - TCr, . The laws stat€d at the beginn ing of this section reduce now to

7-(y +r') = TO)+T(r),

I(lr) - zll(r) for all 1,

and therefore 7 is a linear transformation.

The set l-t(o) is also a polyhedral convex cone, and for eacb z e R(f)
it is, according to thc above, the recession conc of the s€t /-r(r). It can
also be chrraclerized iD tcrms ofthe growth propcrries of Iitsclf: 

', 
€ I-'(0)

if and only il r0'+}1,) = rO, for everl j,.



4. Algebralc operatlons of combinations

We now describe some opemtiotrs, palallel to those in linear algebra,

for constructing new polyhedral convex processes fiom given ones.

Let 7 and I' be polyhedral convex processes frorn R' to Rr. We define

T+T'by
(r+7")(t): r(r\+r'A).

Thus (I+f) 0,) is the set of all sums z+.2' as r ranges over fO) and r'
ranges over f'Cr'). Similarly, for an arbilrary leal numbd X rve define
'n:r by

Q.r) o) = tro).
THrolrM 1: T+T' and 1T are again polyhedral convcx processes.

Prooft The set G(T+T ) mAy be constructeC lrom C(r) and G(7') by
formirg thc following convex cones id RnxRnxR':

K: {(Y,0, z\l ()' z) € c(I)}'
K' : {(0, )", z')l (y', z'} e G(r')J ,

(" : {()' r', x)l I = }'}
Tle set (K+na) ^ K" is anothe! polyhedral codvex cone, and its imagc
under tbe projection (r,'r]', n) - (r, v) is c(I+T'). Thcrefore d(f+l')
is a polyhcdral convex con€. The proof for 2I is simple, and we oEit it.

This thcorem implies that an arbitrary linear combination it 7l + ,..
,.. +,i,I. of polyhcdral convex processes is a polybedral conlex proccss.
For example, if I: R" - lR" wc can form T ).1, wherc 1is the identily
linear transformation, and sllldy ihe cone (I-2l) r(0). Tbis consists
of the vectors J, satisfying the "eigenvector" condjtion ,7,, € I(.r,), which
is of obvious importaoce in thc study of growth rates in the von NeumaDn
model.

Two further operations Bay be d€fned by

(I 
^ 

7') (.)') = IO')^ r'6),
C v r') O) = U {r0r)+r'(r1')l ,+/ = }}.

THEoRTM 2: f 
^ 

f'and I v I'are again polyhcdral convex proccsses.

Io fact, they are the greatest lo\\'er bound and l€ast upper bouDd, respec-

tively, of f and f with respect to the narural panial ordering -, where
I, - fr means that rr(]) 5I1(l) for elery J.
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P/rolr This is immediate from the rclations G(Z ^ r) = c(D a G(.r,)
and G(I v ?') : G(r)+G(r').

An especially interesting operation is that of nulriptjcation. civen
polyhedral convex processes 7: R'+ -R" and .S: X'e R. we define
S7: R' ' R' by

(sr)0): s(r(r)) = u{sk)t :e(r)}.
THEoRETT 3: Sl is .r polyhedral convex process.

P/orl: To construct G(sI) from C(t ar]d G(4, we fomr rhe fo oyins
polyhedral corcs in -R"'xR"xR"xn':

r: {0,:,0,0) (r,4 e cq\,
K' : {(0 , 0 , z' , N)t G', ,') € G(s)} ,

K" = {r,,,2,A z _ z j.
The set (J(+,(')^,(" js then a polyhedral convea cone, and its image
under the projection b),2,2',\,)- O,v) is G(sZ). Hence c(sr) is a
polyhedral convex cone.

For a polyhedral convex process 7: R, + -R,,, we can use this operation
of muitiplication to fonn po$'ers 7r. In the general von Neumann model.
frl ) rra) be in,erp ered c, tbe ser of <li|e. ol the !conomy $bcb car be
produced in k time pcriods.

The operations of addition and mxltiplication reduce to thc usual ones
of linear algebra, if ih€ mlltifunctions are lirear rransformations. However,
they do not satisfy laws as po$,erful as those oftinear algebra. In parricular,
the "distributive 1aw" is weakened to a pair of,,distdburive inequalities,,.

s(rr +r,) - sr1+57,,
(s, +s.)z c s, r+s,7.

This is a serious obstacle !o translating many classical results, in a formal
algebraic rnanner, into the theory of polyhedral convex processes. Or ihe
other hand, il will be seen that some fundamental ]a$s inlolving rhe adjoint
and inveme operations can be translaied. These laws lhen become char-eed
with a new and deeper meaning, far bcyond rvhat they had in tinear algebra-

5. Th€ adjoint operrtion and orientafions

The pola/ of a polyhedmt convex cone ,( c Rk is the set

r": fr e Rrl V, E,(, ',.r < 0].
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It is well kno{r that ,(o is anoiher polyhedral con\'ex conc whose polar is
ir tum ,(; tlus ,(oo: ](.

Introducing a sljght modificalion jnlo the polarirv operation, we obtain
a duality correspondence for conlex processes. Let Z: R'* R' be any
polyhedral convex process. We define lhe adjoi t process f*: R"+ R'by

r,( :{,r)) tt> z p. zErO),Vrl.
Obviously we have

G(r.) : lQ, d G q, p) e cQ)oj .

Since tle polar cone G(7)0 is polyhedlal, 7 is another potyhedral conrex

If 7 is actually a linear transformation, then G(7) is a linear subspace
of R-xl?', so that lrhen the polar is taken the inequality can be replaced
by equality. Thus 7 turns out to be the usual adjoint linear rransformarion,
corresponding to the transpose matrix. This example sho\4s that rhe adjoinr
operation G a natural generalization of the one in linear algebra. It also
explains \\hy rve do not simply take the polar of G(Z), bur nake a change
of sign in one arguinent.

In the von Neumann economic model. where 7 transforms states of
goods, 7+ should be interpreted as transforming states of pdces. It assigns
to each price \ector p for outputs the price vectors 4 for inputs rvhich have
tle follo$ing property: no matter how the goods are translbrmed, the toral
input \,alue will be at least as much as rhe total output vatue. In other
words, I* is a pricnrg or accounting mechanism which attribures value to
lhe factors of production.

We want lhe law (7*)*: 7 to hold, but \rhen I€ apply ihe prccedine
definition of adjoint to f* we run inlo a difrcultyi the inequalit,v in rhe
definition is in an awkward directior. The question is raised ofwherher we
should consider t\ro.lifferent adjoint opcralions, depending on the direction
ofthe inequaiity, lvith rules about when to apply rvhich one. There is a better
$ay of handling this dificulty, where each process is assigned an "orienta-
tion", indicating how the adjoint operation is to manifest itself. These

orientations turn oul to be usefui i; orher respects as ve1l, and they assume

a richer character as the rheory progresses.

We ;magine a polyiedrat converi process r as having been assigned
eilher a "maximizing orientation" or a "minimizing orientation". Ofcourse,
there is nothing intrinsic in Iwhich determines which orientation to assign,
any morc then ihere js an intrinsic left-handedness or right-hand€dness to
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a mathematical model of space. Here we simply have a convenient mathe-

marical device for keeping hack ofthe siers in certain formulas. Nevedhe-

less, in applications it is usually clear what tie orientation should he-

For instance, as will be even more apparent later, it is natural to consider

a proiluction process as max_oriented and a pricing process as min-oriented

The above definition of I* corresponds to T matorie ted. Il T Is mi1'

ohenterl, we def\ne 7* insiead witt the opposite inequalitv. In either case,

we provide ?* with the orientation opposite to that of r. Thus the adjoint

opemtion assigns to each oiented process another orie ted F{ocess. ln
thls !vay, $e obtaiD from the polarity 1aw ldo: X for polyhedul convex

cones the desircd law
T*+: T.

The inverse operation must also norv be brought inio a relationship

witl orientations. We regad it, like the adjoirt operation, as orientation-

/ef€r$ns. Then we bave the iule

tr-) '- (f rr''

The latter proc€ss is again from.R'to,R', a;d it has the same orientation

as 7.
All the other algebmic operations are regarded as orientation'prcsen'ing

(except scalar multiplication by a negalive number), and we only use them

to combine processes whose odentation is the same ln oih€r words, the

sum of two max-oriented proc€sses is taken to be max-odenied. etc There

is then a remarkable result:

THEoREL 4: The adjoint operation obe]s lhe laws:

(:r, +7.)+ = Tf +T\, (sz)*- 7+s*,

Q\ ^ r)i: rl v ri, Q1 \t r)":ri ^ri'
(|TJ+ - '"1'* for i' > 0'

P/oot In a formal way, this can be established by applving the polaritv

operation to the convex cones used in the constructions ofthe graphs in the

preceding section. However, this procedure,even ifsatisfactory from a math_

emaiical point of view, is rather mysiifying. The real explanation of the

relations will not be seen until later, afler support functjons are introduced

Theorem 4 yields further rules for processes 7: ,e- -R", sucb as

(11*= (r-)r,

(r- llf: r* Lt.
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These will take on significance below in tle discussion of models of eco-

nomic growth over discreie time.
The polarity rel.rtionship belween the cones c(r) and G(7*) yields po-

lariiy relationships among donain and mnge conei eic. For example,
supposing that I is max-oriented, it is easy to check that the polar of
,(I*) is r(0), and hence ,(7+) is in txrn ihe polar of I(0). In this way \ve

determine the following reiations, where the double arrow means that the
cones are polar to each other (for 7 trlax-oriented):

u(0) d r(zf, ,(I) 6 -I*(0),
R(1)e (7)-1(0), i(7) e z-1(0).

6. Support lunctions and dual programning problems

The linear hansformations f: Rn + R' co espond classicaily to bili-
rear real-valued functions ,( on R'x R', and this conesponderce can be
used for th€ delinjtion of the adjoint transformation:

x(t, p\ : T(.y). p : y :r*@).

For polyhedral convex processes! there is a similar correspondence, and
it has aD astonishing property. The analogous forrnula relating I and Z*
is an abstract form ofthe duality theorem for linear programming problems.

Let 7: RnJ R'be a max-orierted polyhednl convex process. For each

I e R' and I e P, we define

<r(y), p> - <p, rO)> : supfu . z I i E (1)].
(If l were min-oriented, the supremum would be replaced by infimum.)
Herethe supremum is qr byconvenlionif 7(1,) : O. Snice I(I) js a poly-
hedral convex set and the function z-p ,- is linear, the supremum is
lhe optimal value in an drsract |ikear prcgrunni,g prohlem, and if finlre it
is attained at some point ?. If T(i + g, then the recession cone of r0)
is 7(0), so that the supremxm is +d), unless p < 0 for all € I(0).
Conversely, if p. <0forall ne7(0),ihentle suprcmum is not +or.
This can be shown directly from the prop rti€s of recession cones of poly-
hedral convex sets, but it is also immediate from the rheorem below. Thus,
recalling fiom ihe end of the last section that the polar of r(0) is D(I*),

finite number it reD(r),peD(r+),
jr yeD(r), p + D(7'+),

if t t D(TJ.
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we call the function K(t , p) : <T(y) , p> rhe suppott function of T.

Obsc e that f is completely de@nined by (, since f(/,p) gives for
each li and ? the supporting half'space, if any, to the (clos€d) codvex set

fcr) in tlc dircction of1. Specifically,

T(!) = \tl peN,p.r<Rjt,p\j.

Thus we have a one-to'oDe correspondence between the class of (ma-'(_

oriented) polyhedral convex processes from R' to n' and a certain clasi

of extended-real-valued functions on Rrx R'. Tlis gercralizes tbe classical

correspondeffe for linear transfotmations, since if 7 is linear (hence single-

valu€d) $,e have (7:(S'\, D = r0\'p.
Holv can the functions ,K \vhich arise this way be charrctcrized? For

cach such ]( there is a cone CxD, such thal l< is 6!ite on Cx, but infinite
(in a fi(ed Eanner) elsewhere. Moreover, for elemcnts ol Cxrwehave the

following propenies, which a.e easily seen from tbe definilion of r and

thc basic laws for convex processesi

K(!, p +t') < K(y, !)+ K(y, p'),

K(!+t', D> K(r, p) + K(r', p),

R(Xy,p\ - ).KO,D: r0, r./) for ,. > 0.

Thus ,(0., p) is a positively homogeneous, convex lunction of p € , for
fixed,y e C, and a posltively homogeneous, concave futrction of.], e C for
fixed I € r. A further fact, not so apparent, is tiat X is continuous relative
to Cxr, which of course is a closed set. Conversely, if,a( has all tbese
properties, and f is defined as i the preceding paragraph, it cao t'e sholvn
that ?is a con!€x process with closed $aph, such that (rO),/) = fOJ, p).
The Foof is contlined in Rockafellar 9l. Wedonotknowho| ro for-
Dulate (neatly) the Foperty of 1( which corresponds to f being polyhedral.

For the adjoint ld of a max.orieDted polyhedral convex Focess f, we
have by definition

0,r*QD = (T*(D,D = inr{q.yl qer*(p)\.

This again denotes the optimal value in aD abstmct lincar proglammirg
problem. By reasoning similar to the abo\,e, we sec that

finite number if reD(T), peD{T*),
a ifttD(r), p€D(Ta),

+co il pdD(T*).
i,7:.(p\) =
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can ir be tue that (I(r), p) and (r,, I+(1)) are the same? Tbese quantities

c€rtainly do not agree if ) d r(") and | + D(T+\, but they a$ee in a1l

oiber cases. This is ahe abrtract form of the duali\ theorcm fot linear lto'
grantning problensi

TrroR v 5: Ileirber J, - Dr? I oru q D{7 l. one ha\

<I-(tr), p> = o,r*Q))>.
In the exceptional case, the two quantities are oppositeiy idnite.

Ptoof, Si1\ce f is polyhedml, we can represetrt it jn terms of an r x ,?r

matrix I and an .! x , matrix -B:

d(7):{( ,rB)l reR1}'
T(), : {xB x>o' xA: r}.

Then, calculating ftom the delinitions, we have

cQ\ : {Q, 4t1 \d x e R"+, x(BP - Aq) > 01!

so that
T.(D : Iq Aq < Bp\.

Jhus ue h.ve ,^r fired veclors J and ,' - Br:

(I(t),?) : sup{} /l x > 0, xA - r},
{,,'t:+(p)> :inr{q r Aq<r}.

These extrema belong to a pair of linear programmirg problems dual to each

other in the usual sense, and hence they are equal unless opposilely ini-
nite. (The latter happens in the case where neither problem has a feasible

solLrioE.)
Note ihat this proof shows the eEli|alence of Theorem 5 and the duality

tteorem for litrear programming, since we could also start from arbitrary

mrrrice. t "trd B ?Dd u"e Il'em lo defiDe I.
From Theorcm 5 and the lacx that proc€sses can be characterized in

terms of their support functions, w€ can see "$'hy" ihe law (4+fr)*
: fi+Zt is valid. EvidenilY,

D(7, +r) : DQ) ^ D(.rz')'

and for .), in this set we have

(,\Ti T )\])),p - ruptP r? +,,1 :,. f'lr.
: (r'(rr,?) +(r"O), r).

The law follows by passing to adjoints on both sides of this equation
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The larv (ST)*- t*S* is morc complicated. Fofinilly, $,e $'outd lile
to argue that

(szo'), r) = <rO), s*(r)) - (r, r*s-(r)),
and herce fas* must agree with (SZ)*. However, lhe middle "inner prod-
uct" in this chain is undefined; it invovcs two polyhedral convex sets
(J,) and St(/) in .R". ls therc a reasonable way to deiine it so that the a!gu-
ment works! Wc shall sho* in the next section that tbere is.

7. Mitrlmax theory atrd the jnyerse ope.adon

Let I: X'+ R' be a max-oriented polyhedral convex process. Then f-1:
R" - X' is by our convention a min-odented polyhedral convex process,

so that

Q, r-1@) = inf {q' yl 1 e r-1(z)},

<(T-\rt'(q), z> = sup{p zl pe(r-')*(s)},
whe.e (I-r)*= (f*)-1. Tlese llao extreBra agree, uDless oppositely ini-
nite, according to Theorem 5. It js not hard to see that they catr be ex-
pressed in terms of I by

(q, r-t(z)) : infsup{q.)'+p.z- <r(r), p>l,

<€-)*(d,z> - stpinrlq't+p z- (T(,0,D\,

whete (fO),1) can be Gplaced equivalently by <),, Z*(rr)). By syn1El€try
we theD have, since (f-l)_r = f,

(r(J), p) : supinf{q.)+p z-(q, r-1(?))},

(J,, Ta(p)) = infsup{q. r+p z-<q,r-1(z)>},

ubere 4. r -'(r)) cao bc rep,aced by \(f*)- ,(4).:).
In the g€neral hnguage of co €x amlysis, ftis is afl example ol an

equivaiencc class of concave-conve{ functions of Cy,?) aDd an equivalence
class of concave-coDvex functions of ({, z) wbich arc conjugare to esch
oth€r (see Rockafeliar {19691). From thc minimax formulss, we find tlat,
just as tle adjoint operatior for polyhedral convex processes corresponds
lo the duality theory for liDear pro$amming, the inverse operatjon corrc-
sponds to the rEinimax theory Gaddle-point charActerization of optimal
solutions), hdeed, one reed only substitute the formulas for (fO),p) and
(J,, a*@)) into Theorcm 5.
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As an illustration, let us retun to Example 2, with T max.oriented

of the form
r0) -14 z>0,A2 <y\.

It is clear that

r-,p.,:\atr>.e4
and consaquently

if z>0,
ir z + 0,

I qAz if q>O,z>0.
(q,r-ttz' = l-:c ir a1o.'>0,

f +cc rf zlo.
From this it is easy to determinc the process (f-')* = (1'*)' aDd hence I+.

T*(p): tq q> 0, a*q> pl,
where l* is the transpose mahix. Theorem 5 asseris that

sttp{p. zl z>0, Ar<yl:inflq.)t q> 0, A*s < p\,
which is one ofthe usual forms ofthe duality theorem for linear program-
ming. The fornulas for (r(]), p) and C,, I*(p)) in terrns of (4, r-1(z))
express tbe extlemum as the miDimax of

L(q, z) - q.y+p.z-q.Az
rclattue to q > 0 ard : > 0. This is the standard minimax iheorem in linear
progradming.

A d€epcr minimax theory, still "poiyhedral" incharacter, may be built on
a generalized notion of inner product (C,r), where C and D are sets,

As $ith processes, let us imagine subsets of R'*hich cquipped with either
a "maximizing orientation" or a "minimizing orienlation". If C and D are
both max-oriented, we define

(C, r): sup{z pl zeC,peDJ.

Anaiogously if both are min-oriented. If C is max-oriented and D is min-
oriented, there are the two possible qxantilies

sup{inf{" /l peD\zeC\.
inf{sup{z.pi z e cllp E D\.

If these are equal, we denotc the common value by (C, r). Otherwjse
(C, D) is undefined. According to the minimax theorem of Wolfe, if C and
, are polyhedral coDvex seas, (C, r) is defined unlcss the "supinf" and
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the "infsup" are opposiiely iDfinite. (And then a saddle-point exists.) Thus
iD particular, <C, D) is al*ays defined if C and , are roncmpty polyhedral

convex sets, one of which is bounded.

In the special case wbere D consists of a single eleEeDt p, we simply
write (C, p), etc. As a function ofp, this is called the suppottJwltion ol lhe
(odented) set C. All this agrees wjth our earlier tcrminology and notation
for processes, if we interprex images I()) under a max-oriented process as

being max-oriented, and so o!.
Usirg the above definitioo one can prove a gcDeralization of Theorem 5 :

the equatioD

<T(C\, D> = <C, r4@\>

holds, if the left side js delined and not -.o, or if thc ight side is defircd
and not +co. Here 7 is any max-odented polyhedral convex p.ocess, C js

a Bax-ori€nt€d polyhedrai convex set, atrd D is a min-oriented polyhedral

This result justifies in particular the "inner product" argxment fot the
proof of (S?-)* = f+ S*. lt may be intcrpreted as a duality tLeoren for poly-
hedral convex prograDming problems:

sup{(z,r)i r-r(z) meets C} = inf{(c,q)l (r+) 1(4)meetsD}.

The saddle-point theorem for these problems involves the convex-concave

function
L(q, z) : <c, q> +<z, D> -<q, r-'G)>.

8. Optimizing trajectori$ ltl discretc tide

Wc consider now i! more detail the case of& polyhedral convex process

f lrom,R'to ,R". For such a process, a sequence of powers can be formed r

7, f', 73, ..., and quesiions arise concerung the behavior of tbis sequehce.

Here, as already pointed out, Zr(,) ca! be interFeted as the set of states

into l'hich a stat€ I can be bansformed in lc units of time. If Trcpresents
the trAnsformation of goods, the adjoint sequence T*, Ta', T*', ..., can
!e interpreted in telms of the transformafion of prices. For economjc
models of production, there arc natural restrictions xhich may be placed

on f, and these witl be described in the next seclion. However, lor the time
being we deal with an arbitrary 7, taken to be a"\-oriented. Thc advantage
of this approach technically is th4t it prcseryes ih€ symmetry betwe€D ?
and I*, rnakjng it obvious that each deirition and result is also valid in
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By z hajectott for I* from a to ,, we shall mean a llnite sequence

)0,11,. ,lrsuchthatlo:a.lL-b, and -r'r € rctr J forl:1, ,,t.
Thus, by deliniiion, a hajectory for 7r from a to , erdsts if and only if
, € Ir(a). Traiectorjes for T+e are defined in the same way. Iflo, p1, ...,1r
is such a trajectory, then

lo PL > ll PL-1 > .. > lL Po.

This general inequality js inmediate from the fact that .l:, e ror J and

pLer+@t ) fora t. (Recall rhe delidtior of 7*.) The chain ofinequalities
represents a sort of one-sided law ofconservatior ofvalue, in th€ economic

setting.
We shall say that the tajeciory ,o , jtir , . .. , l,r for TL is an optimizitlg

talrtrry if there exlsts a trajectory ?0, pr, ...,pl for ?*i such ihatlo + 0

and
la.pk:11'pt'1:'.:}k'pd.

Then t, isfor l: i,..., /. apoinl of 1-1,, 1) for which the ma".limum ofthe
linear function 1-y p1 , is attained. ln other words, lJo,']J,,...,1Jr
aises by soiving a c€rtain sequence of optimization problems.

We shalt say that -vo,.t 1, ..., '},i is a rt/iclr optimizing $ajectory if , i^
additioq a trajectory po, ?1 ..., /r can be found such that .Ir js the unique
poirt of T(r,, ,) for which the maximum of tle linear function J + -f ?r I
is attained. TheD tlere can be no oiher trajectory for 7r wilh the same end

points. Such a trajectory can be interpreled econonically as the unique

response ofproductio! to a succession of pric€ states.

Optimizirg trajectories Zo, pr 1 ..., pr correspord similarly to a sequence

of minimization problems, the linear function? ' ? l'-r being minimized

over the set t+(pr,) to get pr. Obviously, if ]o, )1, ...,.t 1 is an optimizing
trajectory for l"l with to + 0 , ar\d po , p 1 , . . . , px is the associated trajectory

for T+r, then the latier is optimizing, and rie rctsa.

The following theorems characterize the points attainable by optimizing
traiectories for 7r. Analogous results hold for Zi'r.

THEoREM 6. Let I: ]R + R" be any polyhedral convex process. There

exists aD optimjzing trajectory for ft from the point d to the point,, ifand
only if b belongs to the boundary of (a). Moreover, then every trajectory
for fi from /] to , is optimizing.

Ptooft If ,o,)\,...,yt is an optimizing trajectory from l] to , then
b e fk@), aad for ceriain vectors po * 0 and pi E Z*rG'o) we have a./a
: b 10. Since T+k : Tk*, the ineqnalrty a. pk > j . po is valid for all
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l, e Tr(d). Thus ihe nonzero liftar funcrion]) + .r .to aitains its maximum
oier l(d) at 6, implying that , is a boundaiy point. Convenety, tet b be
any boundary point of l(a), and le! .l:0 , tl , ... , J,r be ary trajectory for
Tk frcm a to b. Since l(a) is convex, there is a supporting hlperplane to
?r(d) at b. Thus there is a c + 0 such rhat the iinear function r, + r. e
allains its ma\imum o\er f{{ar al b. Thcr. appi)jng fFeorem 5, re i-ve

b c: <rk(d), c> : <a,f-@> = \a,r*t1r.
Hence ttrere enists / e Z*r(c) such tlat a. d : , . c. Choosjng any trajecrory
po,Z1, ..., ?r from c io 4 we have

a d : yo. pk> h. pFt> ... > rk. po : b c.

The equality of the first and iast terms in rhe chain implies equaiity thlough_
out, so that .lo,lir, ..., )r is an oplimizing strategy.

TrroRrv '. Ler I: R'.. R" be any pollbeArat coD\e\ proce.s. tflhere
exists a strictl), optimizing strategy for ?' from d to ,, then , js an exrreme
ponrt of l(a).

Ptoof: ll ro,:,,,,.. ,tL is a strictly optimizing trajectory from a to ,,
then, as we have seen in the preceding proof, , maximizes the linear function
),+.l po over the polyhedral conv€x set fr(l'). The addirional property
now of the trajectory ?0,1,, ...,?r is that li tuiquely maximizes the linear
function .). + J) 

.4 , over I0,, 1).Thisimpliesthat,if],6,li,...,,riisany
trajectory for Zi starting from .1, aDd different from lio,_l,1, ..., /r, at least
ore ofthe inequaiities in the chair

y6'pt> ti pt, 1> ...> yt pa

must be strict. Thereforc , is tle unique point of l(a) for which the linear
function.], - ,r '?o attains its maximum, so that, musr be an extreme point.

The converse of Th€orem 7 is not valid without further restrictions,
bui what these restrictions should be is an open qu€stion. Herc are two
examples which illustrate difr culties.

Counterexample 1. For 1= fu1,1,) en,, define

^. l{r-e',2') =1 -yt. z, < 'IJ il yr .,0.1:-0Itt) - \O rn aU otber coses.

Then , = (1, 1) is an extrerne poiDr of Z2(d), where a - (1, 0). However
the only hajectory for 71 from d to , is _fo = a, !1 - a, !2: 6, and 1,,
is not an extreme point of l(-},o). Thus this traj€ctory caD not be strictly
optimizing.



Coffitetexamtlte 2. Fot y e Rt , define

Thenb:0isanextrenepointofll(a): t0, 11, where a - 1.Ifyq,-r1,1,
is an optinizing ttajectory from a to, with associated /o,pr,p,, then
po<0and

a p2: 11 pt: b po:0.
In palticular this impliespr < 0, sincerr.?, : (r(4), p,) and r(a) : 10, 11.

Otr the other hand, lve have

:r*@) : {ql q>0,q>p},
atrd therefore

p, e Z*(po) : [0, +co).

Ttus pr : 0, and the maximum of the function -| + r pr over r(d) is

trot attained u quely at ']rj .

Despite these counterexampies, some kind of conrerse of Theorcm
7 ought to be true, and il would be interesting to know what it is.

9. "Eig€nrrlue" theory

In the study ofthe von Neumann model in Example 1, much attention is
devoted to the veclors I and numbers ,1 with rhe property that ,U e r0,).
These correspond to staies of the economy whiclr are self-reproducing in
a certain sense, and they are closely related lo the potenlial growth rate of

The most natural assumptions on 7 in this economic context are that

(1) ,("): Ri and R(O < Ri,
(2) 7(0) = [0], i.e. all the sets I(_r) a.: bounded.

(7 is a polyhedral convex process, max'oriented.) The properiies of 7*
which are equivaleDt to these are:

0l r+(0) = Ri and (7*)-1(0) r -Ri,
(2*\ D(r*) : R".

The non-negativity of the vector pairs (1, z) in the graph of 7 corresponds
to the notion that the components ofthes€ vectors tepresenl rnateial quan-
tities. Models can be imagined in which "debrs" in such quantities are tem-
poBrily allowed, so that negative numbers occur, but this is pafily just
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- l{,.R'l 0< z<r,} jf y> 0,
t\Yt: \O lf y f 0.
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a matter ofhow tbe unit time period is conceived- There docs not sccm ro
be any aclual loss of generality in assuming that, although debts of ihis
type may be jncurred witbin the time period, even just after the begindng
or just before the end, they musl all be made up in tbe same time period.
In olher {ords, the time period represents an accounting interval at the
end of whicb one again looks only at the real (physicll) disposition of rhe
material quantities.

The assumptioD that ,(7) is all of ii, notjusr a part ofil, means that
every possible stale, consisdng of a configuation of material qua tjries,
has some successor siate. The successor state n€ed not be obtained only
through "production", but also through such activiries ss "storage',,
"decay", 'disposal", c1c, It is hard to conceir'e ofa model wh€re, on the
contrary, there are states -r.> 0 with no possible succcsso$, so that ..the

world must come !o an €nd".
The assumption that 10): {0} rnea$ siniply that material quantities

can not be created from nothing. The fact that tiis implies the boundcdness
of f0,) follows from tie fact llat Z(l) is for each I € r(7) a nonempty
polyhedral convex set $ith r€cession cone 40).

Virtually al1 the study of rhe retation ,1/ e f(])) frofl an economic poinr
of view has been under, not only tle preceding assumprions (except for
polyhedral convexity), bul also thc following, rvhich is much nore opcn io
question:

This says that free disposal is possible of quatrtities in surplus. Dimculiies
adsc as soon as we think of the disposal as a physical process applicd ro
material qudntiliesr sincesucha process night h ale to cohpete forresources,
and at the very least it would &quirc time proportional to the amount
of tnaterial to be "annihilated". Without free disposal, on the other hand,
tlerc is thc complication that some products may b€ undesimble, so that
negative prices may play an essential role.

A process r satisfyirg (l), (2) snd (3) is a "monotone process ofcoocave
type" in the seffe ol Rockafcllar u9691. We lhatl notaddress ourselves here
to lhe "eigenvalue" properlies of such processes of more lamiliar type, but
describe inslead some results rvhich hold for polyhedral convex processes

i{ gencral.

Let f: -R"J R" be an arbitrary polyhedral convex process, and let ,. be
an srbitrary rcal number. The set of all vec:ors I' satisfying ,iJ e I(1,) is
tlen a certain polyhedral convex cone in .R", namely ihe cone (f- 24_r(0).
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If I is actually a linear transfornation, this conc is {0} for all bui a finite
set of values ol 2, *here it is a rontrilial subspace. Ho$'.!cr, jr gereral

thcre will be many values of ;for which the cone (f- ;1) r(0) is nonirivi-
al; and inleresi cente.s mo.e on tle queslion of whethcr, for €ertain more

special lallres of i,, rhis cone undergoes ljome ibrupt change. ln this con-

necrion lve hale a strong result, whose proof must be oinitted for lack

THEoR$r 8: I-et I: R'-.R"beanypolyhcdral convex process and 1et B
b. the unit bali of R". Then the n1appillg ,. + (T- )l) r(0) n ,8 is upper
semicontinuous everywhere, and it is lorver semicontinuous except at
a finite number ofvalucs,tr1, ...,,1 (maybe nonc).

The exceptional lumbers 2, may be called the critical whrcs 6t T.lf T
is a linear lransformation, they are prccisely lhe eigenvalues of Z But if ?
is trot a linear transformation, the number ofsuch values js not neccssadly
bounded by the dimension r, and ir may be arbitrary high. One can distin-
guish betrleen "right" critical lalues, 'leff'critical values and "two-sided'
critical ralues, dcpending on rhe kind of djscontinuiiy. Are the critical
values for f* thc same?

Motilaied by the stondard cconomic rcsults, we crn define ,l to be a,r

equilibiunt lalu€ fo. I if there exist \"ectors ] and ]? such that il. e rO),
).]) e T+ A)) , and .t' p + 0 . The general economic caning of ilris is not
so clear in the case \Ihere r' p < 0, for example. Ho*€vcr, at least the
following can be shownr every equilibrium value is a critical value. Tlus f
has only finitel) manl equilibrium lalues (dDybe none). Again, this number
need l1ot be bounded by the dimension r. The po]yhedral con\€xity ol I
is essetrtial here, as in Theorem 8.

Still another class of special ralues of 2 can be investigated. Let us deline
). to bc a lteudo-.i&envlre of f if there exists a sector l' + 0 such that i.l'
is an extre,nc point of f(-r). If 7 is a lincar transfolnation, the pseudo-

eigenvalues a.e prccisely the ejgenvalues of I' It can be shorvn $at an

arbilrary polyhedml con\'ex process 7 has only firitely many pseudo-

eigenlalues, but clrrytling elsc about thcse lalues, inc]uililrg their rela-
tiotrship ro criticsl values and equilibrium v8lues, renains a mystery.

Almost nothing is kno$n about the role of such "eigenvalue" considcra-
lions in determining ihe behalior of the sequetrce I, f':, 73,..., other than
inthe lincarcase orthe 'traditional" economic case. One would beespecially
interested to have some geDeralization of turnpike iheory, relating "eigcn-
valuei' to the optimizing tmjectories considered in the prcceding section.
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10, Dynanical mod€Is itr coDtinuous tlmc

In economic models involving transfotmatiors over discrete iime (tvith

constaDt t€chnolog),), the set of states z into which a given state ) can be

transformed in /. units of time is I*(-r.), v,,here 7r is the Z-th power of a
certain convcx process f - fr. What is the natural analogue of this for

Lei us denote by 7(')(.rJ lhe set ofstates inlo wlichl can be transformed
in i units of time, where r is an arbitrary donnegative real number. Thed
the folloving law, resembling the rule for manipulating integral powers,

should hold I

T\l+d) T6Tk) (= ror() for all z > 0,o 2 0.1

This follows from the fact that everything produced in z+ o units of timc
corresponds to somethiDg produced in i units of time which is then trans-
formed fu.ther in s additional units of timc. Thus the natural dynamical
model in €oDtinuous time consists of a one-parurneter senigroup of coti\tcx
processes, i,e. a homomorphism 7 + f") fron1 the semigroup ofnonrcga-
tive rcal numb€rs undcr addition to the s€miexoup ol convex processes

under multiplication.
We haYe puposely omhted the word "polyhedral" hcre, since it is by

no means clear whether ahis is appropiate for "continuous" models. Such
models necessarily involve topological limits of various sorts, atrd these
are unlikely to preserve th€ propetty tlrat a process is "finit€ly generated".
A more rcasoDable context h that ofthc algebra ot closed conex processex,

i.e. multifun€tions whose Faphs are arbitrary nodempty closed convex
cones Gee Rockafellar [1969]). For economic analysis, assumptions like
(l) and (2) (or even (3)) in the last section may be called for. As a
mathematicni simplification, itmight beassumed that the scmigroup cotrsists

of polyhedral convex processes, so that a number of bothersome lechnical
questions concerning domajns, closurcs and adjoiDts may be avoided.
Holv€ver, the advantages of this quickly begin io wear thin.

It is one thing to speak of a semigroup of conv€x processes and anoiher
lo know whether such semigroups even exist. The folio{ing heuristic idea
is therefore valuable in suggesting a simpl€ tray in vhich many such semi-
groups may be generated.

Let us consider an €conomic model iD ilhich transformations over
continuous tiqle are described in t€rfls ofthe insta.laneous mtes ofchange
wbich are fc6sible. Specilically, let 5: R'+ X' be a convex process wiib



the interpretation: : = (:1, ..-, :") belongs to S()), where y : (.rr, ...,l/),
jf and only if it is possible in the stale ,r to arrange production so that the
i-th good is being produced at the (inslantaneous) rate of :i units per udt
of time. We can then get somelhirg correspondiDg approximately to
I(r)(JJo) as follows. Divide the time interval [0, "] into k subintervah
of len81h 

"/&. 
Over the first subinterval, we can transform,1! itrto approxi.

mately 1,1 : ]Jo+(z/k)zr, where .-, js some eiement of S(JD. Over the
second subitrterval, r'e can transform J , into approximately 1,, = h +
+(r/&)2,, \\,here -zr € S(j,,), and so for$. Note that

Thus, over the sequence of /c subinterrals covering a total of z units of time,
we can apiroxinately transform _r'o into elemeDts of the set

(1+ Gir)s)r0.J.
This indicates the possible definition

r ,- tim(/, (, iJs)' =.'
as a way to genemre a oDe-parameter semigroup from S. The linit could
be taken perhaps in lh€ scnse of the convergencc of the graphs of thc
processes, as subsets of -Rr x-Rr. lt would be valuable to krow whethcr
this approach can be formalized, The process S \rould be the "infinjtesimal
generator" of the semigroup, aod in some sense it ought to be true that

_r, € (1+ (?/k)s) (r,Fr), l: 1,..., i.

s = {- r,', u,

An impo(ant conre$e quesdon rvould also need to be askedr what con'
ditions on semigoup {Tt'r, t > 0} imply tlat it ariscs in such a way from
a "rate" process ,s?

Observe that, even in the most ordinary economic setting, one \rould
not want !o impose lhe rcstrictior that R(S) c Ri, althoush the assump'
tion ,(S) = Xi remains reasonable. The assumption that th€ set S(r) is
bounded fo. each JJ secms completely appropriale economically, since
arbitrarily large inslantaneous rates of change are not physically possible.

It should be remarked, however, tlatjust such unbounded rat€s are implicit
jn the continuous analogue of models with "fre€ disposal".

While the approach desc bed above has not been worked out, arother
approach is available which can indeed be shown to generate a semigroup
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from s This approach js bas€d oD rcwly establisheC results on problems

of convex type in tie calculus of varjations.

TITEoRIM 9. Let Si ,R'-,R" be a closed convex process with S(0)

={0}.Foreachz>0andd6R", let ?(t(.r) denote the set of alr€R'
such that there exists an absolutely continuous curve J(t), 0 < t < r,
with l(0) = a, )(z) = b, ana -i,(t) e S(-rO) almost elerywhere (i = d)/d).
Then r(o is a closed coavex process with fG)(0) : {0}, and the s€nigroup
identity

T\t+d) : I'G'Ttd)

k satisfied. Furlhermore, iaking S and Z('r to be max-oriented, the adjoint
processes f(')+ likewise satisfy the semigroup identity, and tley catr be
described as follolvs. One has de fo+(c) ifand oDly if, for evcry 6 > 0,
there exists an absolutely continuous curve 2(r), 01t< z, such tbat
lp(o)-cl < e, )lp(r)-dl<E, and i(t) e S'N(t) almost ever]'where,

This is an eas-v consequerce of Corolary 2 to Theorcm I in Rockafellar

Il97ll.
Results in this arc4 of the calculus of variations which have not yet

been published yield a strotrger characterization of the adjoint semigroup.
Assuming that ,(t - Ri, we have /e roD(c) if and only if there is
a curle l(l), 0 < I < i, of bounded \'arialion, such that,'(0) : ., p(r)
= d, t(1)es*(p(,)) alrnost everywher€, and the'\ingular" part ofp h non-
decreasing. The latter rneans that if we ryritc t(r) : po(l) +p,(r), vhere po

is absolulely continuous and /1(/):0 alnost e\€rywhere, then pr(t)
< p, (r') in the sense of the orderjng cone ,Ri for i < ,'. In particulsr, then,
if /"r, ' has a jump aL t E r. qc musr hdve p\rr I - ,"\L).

These facis can be used to genenlize to continuous timc models the
chamcterizalion of optimizing stratcgies givcn in Section 8.

Even though Theorem 9 shows horv to genemle certain senigroups
of convex processes, it says nothing about the re!€$al of this procedure,

that is, how to get S from /t.
Of course generalizalions are possible to thc case of technologies which,

at least in a limited sensc, are ablc to change in time. Such models have
been teated in terms of conlex processes by Makarov and RubiDov

!9701. There is always the difrcuhy in such rnodels, however, that the
kind of cbange one is the most interested jn, unexpectcd change through
the discovcry of new methods of production and even new goods and
products, is the hardest to represcnt mathematically.



11. Inhomoqeneous models

As a gencralization of lhe notion ofa convex process, one may consider

mullifunctions f slch that the graph G(I) is a convex set in i" - lR",

but not nccessarily a convex cone. Some things may bc proved aboul such

mLrltifunctions, but most of ihe duality theory falls away, or at least fails

to take on a symmetric form. The reason is tbat, while dualiry correspond-

ences for defining nalu.al adjoints exht in the class of convex cones

(pola ty) and in the class of convex funcdons (conjugacy), there is no such

appropriate eorrespondence lor the class of general convcx sets, The

analogous corcspondence there associates $ith a coovex set, not aoother
set, but a convex function, its so-called support function.

ActuaUy, multifunctions whose graphs arc arbitrary convex sels are

no! so greal iLn advance in generality over convex proccsses as rnight be

thougbt. ln economics, thcy usually arjse because rectors of goods are

expressed iB reduced uoirs. for itr\lance qulnlilies per capita or per shtr-
dard unit of labour, rather than in physicAl units. In lhis eveni, homo-
geneity is resiored simply by re-introduciug whaiever v4riable was used in
tle reduction to ratios.

From the purely mathematical standpoint, tfus conlcrsior to the homo-
gencous case can als.ays be carried out s follows. (There may be other
wsys as we1l.) Cilcn a multifunction 7: R"'-' R'whosc graph is a conrex

set, we dcfine i;
{: : (.., 

")l 
zo:Io,:e-,or6,6r,))} if )'o >0,

{r: (0,0)} if }o - 0,

O if Jo<0-
i6 = ir:"., =

(We mieht waDt to pass instead to the multifunction whose graph is the

closure of G(I).) lt is easy lo check rhat f is a convcx^proccss, i.c. C(f)
js a convex cone, and that ' e I(1, if anci only if (1, z) € f(l,l). Moreorer,
iI.R'= n', tajectories for Ir from a to b correspoDd presisely to ltajcc-
tories for ir from 2 : 0, a) ro ? : (l, r), and so forth. fn $is $ay, practi-
cally every question about f can be translated into something about f,
to which the "homogeneous" thcory can be appli€d.

Nevertheless, thcre are somc cases where thc con\ersionjust desc bed

is not convenient. In these cases, if duality is at all of interest, lve propose

that, to achieve symmetry, onc should inovc conceptually in the opposite
direction. Convcx subsets of R'x R" should be identified nith iheir indi-
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cators, certair convex functions. One should work in tbe context then

of so-called cotrvex "bifunctions", for which a natural analogue of the
algebra of conv€x processes is av4iisble.

To explain the idea of a bifunction, let us congider an economic model

of ihe familiar sort where one has a convex subset d of,RhxR'and a

function ,r(], z) defined fot (t, z) e G. Here d may be intc.preted as usual

as the graph oi a multifunction f which t.ansforms statcs / into states r.
On the other hand, l?(], z) may bc interprcted as the ,1/r0, associaled with
z when; is obtaioed fromy; in tlis €vent it is natural to assume a is concavc.
An alternative itrterFetation is that r(r, z) is the corl ofz when z is obtained
from.),; then should be convex.

Looking at this model from a slighdy difierent angle, paraliel to the
notion of "multifunction", we may conceive ofit in terms of a mapping F
which assigns to edch ]j e R'', not a set, but the pair consistirg ol the set

f0, and the function .- + tlCD, z) on 4'r. This is rvhat r€ meatr by a
"bifunction". For lechnicRl purposcs, it is convenient to represent the pair
(rCrj, (r, .)) ty a singlc lunction which is extended"realvalued namely,
(assuming ,l is convex) the futrction of z li'hich has the value 

'r(]l 
z) if

,ef0),but +@if z4T(y). (If 
'l 

is concave, +co is replaced by -oo.)
This function on e, which is assigded to the vector l' €,R', is denoted
bv &.

This leads us to the g€neral definitionthata crnr?x bilnction F: Rk + Rr
is a napping which assigds to each ] e n' a function l./ on 1V iD such
a w4y that the value (4r) (z) is convex as a function of / and z joinrly.
Coacave bifunctions a.e delined analogously.

A convex process ?=: ,R'+ X" may be idetrtified with a certain cotri'ex
bifuncrion 4 lts indicator, defined by (F.r) (:) : 0 if z e 1-(r), (Fy) (z\

= +a it z 4T(t).
An example of convex bifunctioD in convex programmiag is tle follow"

ing.Letfti R'- Rr be 4 convex function for I = 0, i,...,m, and for
I = O:1, . , Jr € R' define

^ lftr't il l,(:\. )t for i- 1.....r?.
'- t Ir lnall otber cases,

The! F.l, is the essential objective function in the probl€m of minimizing
/o(z) subject to the constraints l(z) < r,, i = 1,...,n.

Adjoints of convex bilunctions are defined by means of the corjrgdrJ,
cofiespondelc€ for convex functions, We can not describe the theory
of conjugacy here, but ttre fuil details, including everyt-hing we atc men-
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tioning about bifunciions, may be found in Rockafellar 119691. The basjc
idea is that, iflis a convex function on R', tbe fuocrion/* on R'defined by

f+e,) = $plz.p-flz)\ zeR"l

is.llcd the confugate of/. It is anotler convex fu[ction, and under mild
assumptions on / thc conjugare of f* is in turn t

fG) = sup\z' r -f.@)l p e R'J

If /is the indicatot of a convex cone, then /'i is the indicator of the polar

For a convcx bifunction F: R'' - Rr, the adjoint f+: R' + R'r is defined
by

(i"*,,) (q) : inf{(&) k)- z.p+}.s\.

(If Fis a concave bifunction, infis replaced by sup.) Then F* is a concare
bifunction, and under mild assumptions ,F** = -C. If F is the indicator
of a coDvex process f, then F* is the indicator of the adjoint process f+.
(Max-oriented processes are associated with convex indicator bifonctions,
xoin-oriented processes with concave indicalor bifunctions.) In this s€nse,

the adjoitrt operation for bifunctjo$ geoeralizes the one for convex pro.

The "inner product" theory is generalized bl deflnitrg for a convex
bifunction F

(Fr, , p) : slrp {r . p - (-Er') G)} = (Fr)'(r') .

(For a concave bifuncrion, sup is replaced by id.) If F is the indicator
of a conlex proc€ss ?, we have (FJ,,?) = (f0),2). Under mild as-

sumptions, it is true that

1F:',D : 0' F*p).
-ftDs is lhe ahstruct d ality theorent for convex programmri& It equates the

supremum of an extended-real-valued concave function on lv with the
iDilmum of a certain extended-real-valued corvex function on rR'.

As a firnctioD of l and ?, (al, p) is concave-convex. Moreover, it can
be showtr in a precise ray that essenlially every concave-convex futrction
otr R'ox.R' corresponds in this way to a convex bifunction ,F: R'- n".
By considering the concave-convex function corresponding to the inverse
bifirnction F-1, where

(r-';) (I) = - (4, (.-),
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ore obtains thc Lagrange muhiplier lheory of convex programming, and in
fact rhe mos! general mininra\ theory for games of concave-con\€x type.

Operations for coDvex processes may also be generalized io bifunctions.
we mentior onlg one: multiplication. If F: ,R'- lV and G: tr J nr
are convex bifunctions, we deline 6-F: X" - R' by

(Gn) 0,) : inf{(i"r) (:)r(G:) (L)}.

It can be shown that GF is anoih€r convex bifunctioD, and usuauy"
(c4* : Fc*. For lc: Rl - R, porvers Fk may be considered, and

these arc actuallyjust uhat one sludies (jn eilect) in marly of the economic
models alluded lo at lhe beginning of this section. One-paranrete. scmi-
groups of bifunctions satisfling

for ?>0,d>0,
also assumc an inportance, These correspond lo general ;'convex" problems

io the calculus ofvariations of the t,v_pe invesligiied in Rackaiclhr [97]1.
Tie possible imp)ications of all lhis ncw theory of bifunctions lor eco-

nomics are )et lo bc worked out.
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