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DUAL PRoBLEI'IS 0F 0PTII'4AL CoNTR0t

R. Tyrrel I Rockafel I ar*

The close conrection between duality and convexjty is
well knoi4n. It is no surprise, therefore, that the strong-
est properties of dLraljty in optimal control are displayed
by problems \,rhich are especially 'convex" in nature. Such
problens arise commonly in various situations, for example
economic appljcatiofs, \rhere duality may be jnterpreted
in ternrs of pricd behavior. They can also arise theoretic-
ally as local or global convexifications of more general
problems. The possible use of duality if the construction
of algorithrns is another motivatjon for studying them.

In r,{hat follo!,rs, we indicate brieflv some of the main
-ec,l!s tha' ldve bea' ob..t.eo 'or con16' proole r, ol
Bolza [1,2,3,4,5]. To simpljfy the discussion and to make
clearer the relationship !rjth control problerns as they are
Lrsually formulated, ,re ljmit ourselves here to the "autonom-
ousrrcase and choose a model in vrhich the control variables
appear explicitly. Nevertheless we use the device of in-
corporatjfg constraints jnto the cost functions by means of
infinite penaltjes, since thjs is not only very convenient
in theory, but essential if the basjc ideas are not to be
ob s cu red.
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The model problem consists of

f(x(t) ,Lr(t))dt + I

conti nuous
: [0,1] - Rr

(2) x(t) = Ax(t) + u(t)

mj nj fii zi ng

(x(0),x(l ))
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yrere it is assJTeo rlaL- I 4no I a"e loder ser'co,tri"LoJs,
co.ve .lLLions f"on PIr..P" Lo (--,e]. oL oe.lLiLdlly

-+ 

-. Note thai f(x,u) is to be convex jointly in x and
u, rather than just convex in u, as would be a more conmor
assumption. The problem can be described in the context of
functional afalysjs as that of mjrirnizing a certain Bolza
furcti onal

(3) o(x) = (t) , ;(t) - Ax(t)dr + 1(x(o) ,x(r ) )

a":15'11t1'fl"it ar r the absolLrtelv

Sjnce jn a problen of mirinization the pojnts where lhe
cost functior has the value r- do not compete for the
optimLrm, our nodel contains implicit constraints on the
controls, states and endpoints, For almost every t, the
control vector u(t) should belong to the set U(x(t)),

(4) u(x) = {uERn lf(x,u) . +-1

over a Banach s
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=nx+u, lul it, x(0) =a
orthart). Thi s corresponds to

(implicit control region), and thus the state vector x(t)
should belong to the set

(5) x = {x'Rn lJu,f(x,u) < +-}.

The endpoint pair (x(0) ,x(l)) should belong to the set

(6) c = {(ao,at)e an><nnl l(ao,a,) . + -}.

. As an illustration, cofsider the problem of minjmizing
(for some l>0)

subject to x
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TECHNIOUES OF OPTJMlZATION

The exanple serves to enphasize that no differentiability is
assumed in the cost functions, even with respect to x. It
shows also that, altho!gh vle speak forrnally of problelns of
Bolza, other classes of problems, such as those of Lagrange,
d.e dptl/ co,ered b/ rhe sa € notoL'on.

ln workr'ng Vlith + -, it is necessary to take a some-
VJhat different approach than usual to a number of technical
questions concerning measurability, jntegrability, and so
forth. Thr's is particLrlariy true jn the case,not djs-
cussed herej l"/here f and A depend on t. Foriunately,
the theory of measurable nultifunctions, as developed
extensively by Castaing and others, conles to our aid. At
the same tinre, convexity leads to nany simplifications.
Thus it can be shown under our assumptions that the Bolza
functjofal O: A.(- -,+ -l is not only \iell-defined and
convex, but lol,ier serl]icoftjnuous in the \'ieak (and strong)
topologies []1. In fact, if the generalized Hamiltofian

17) H(x,p) = sup {p.(Ax+u) - f(x,u)i

are (closed and) locally compact in the weak topology [3].
This can be used to deduce the existence of optimal arcs
in the control problem [4]. Hoviever, the exjslence also
follolvs from duality theorens stated below. Results on
necessary conditiofs for optinality also follovJ from the
dualjty theorems, so that, for convex problems of Bolza,
the latter really play the central role.

DLrality is obtained by passing to the convex functions
f* and l* conj!gate to f and I , or rather to slightly
modified forirs of these functions. l,le define the dual cost
functionsgandmby

nowhere has the value + -, then
property that its l€vel sets

o has the remarkab I e

{xEAI 0(x) 1.1l,

g(p,w) - f*(w,p)
= sup iv/.x + p.u - f(x,u)1,

(8)

,1)5



(9) nr(b.,bt ) = l*(b0,-bt)
:-sJp oo.oo - ot.bl - l(ao.dtJ..

-he 9 anc r t.eua!l'. loher ser:con'in-0,s, conve,f,--ljons ',0-l o"'<o' !o (-.,--r, nor idenLj-olly
+ -. Furtheraore, f and I may be recovercd in turn as
the duals of g and m;

. The dual control problenr is taken to be that of mjnjmjz-
lng

.t(l0J I f(o{r). d(c)dr - 1(p(oJ, p(t)),0

ove' al I Lhe ab.olure_J -on'inJoLl dr-, p:_0.1] . R' a10
reos,rable lun_t'ons h:L0.ll .P" saL sfying

(ll) p(t) = -n*p(t) * '(t) a.e.,

where A* is the trafspose of the matrix A. In view of
tl'e sJr ner.ic reldtiorsr ip Delweel f a.d 9, d.d oerwee.
! 9'd l. the probler h"ch i' o-al lo ll'e ou. proDle ris tne pri dl (i.e. o.igi-dl orooleq. T,e ajdl , ti.e trepl. dl . contains :r pl:Lir LorsLrdin., on Lne corLrols l,vrrr.
s.dLes prt) ana elapoinL pair (p(01.p(ll), IL -an be '
regarded os Lhe orobler of r' iniz rg L1e lo er :e-li-ortinu-
ous r convex Bolza functjonal

,t(12t ,lo7 = \ g1o1-) . o(t) + A*D\rJ)aL +.r\p(0,,p t))
'0

over the Banach spa." d..

I' t.e e/a rple giren earl'e.. one cdjc-lates easily
f.o-l (8) .no 9t t;t Lhe dral proble, cons;\ts o.
mtntm'lztng

,.1

J e( lo(rJ ,dr d.o(01
_0

subiect to p - -A*p + !v, i\al < I and p(1)eRf, where

f(x,u) = sup{u.p + x.w

l(ao. a, ) =,sul taO.bO

"o'"1

- s(P,w)],

- at.bt - nr(bo,bt)].



e(s ) = s2lq

=s-l
if s < 2,

if s > 2.

The definitions of the Bolza f!nctionals imply that
the inequality

. o(x) + Y(p) > 0

'is valid, and consequently that

(13 ) [inf in primal] > - [irf if dual]

A fundamental question in duality theory is whether, or
rather under \,!hat conditions, equaljty holds in (13).
It usually happens that, whef equaljty car be established,
one obtains by the same argument the existence of a mini-
mizing arc for o or v, so that 'inf" can be replaced
by ,1n''. o"e ol !Le lko proolens, l.l aeneral, tLe sL,o/
oi t,'J 'nvol/es rhe -o ve^ .un,Lio'als on d.- ',orj.qar-e'
to o and v, and ihese can be described in terms of ihe
behavior of the control problems with respect to certain
perturbations of the data lll. To obtain sharper results,
hhich p o-eed'-or -'reddil/ ve.if'able' ossu.]DL ors on rhe
'rncrio': ' dnd L and -'e rdL'i) A. dn dr9r,rcnt based
on the separation of convex sets has been devised [3].
.his o'q-re_t i, noae Lo,p icareo oJ the lacr rL ar r're
conve/ sets oe o q to I e space A'>. Pt. 0.e r,sr snow,
desDite ihe -'oe.lrj 9 on.ef.e,, /'Ll. .ha- rle.,eoard-inq
h/pe.p are .or5".oo ai Lo d.L e_e'€4t of 4xRz. rotner 

-

than 61r" * t' .

The nrajn duality theorems depend on finiteness assunp-
tions on the llamjltorian functior (7) and attainabjlity
assumptions on the control systems. An endpoint pair
'x(0).r t\) .. so'c Lo be qt!q-:qqlg "or rhe p.indl
p"oDle . il - a-,ses l.o "r "rc ;atisty.rq (2) ano

u (t) e ;(x(t ) )

'.r'e.e .l)'t') is +he 'np-ic'L conrrg- eg'o' - (4).1re
,e! of all .JL( p.irs is co \e^ I q X R The attail-
ability corditjon is said to be satisfied if the rdla-iive
TnEiior-orth-iiset meets the rel ati ve i rteri or of the
convex set of all feasible endpojnt pairs, that is, the
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set ii (6)

DUALITY THE0REirl l[3]. If the primal problem satisfies
the attainabiljty contion and H(x,p) > -- everyr'Jhere (in
other liords, there are no real state constraints on x) ,
one has

'lr'l L,nf ir pr'..-.1 = -[ in i du.lJ.

DUALITY THE0REII 2[3]. lf the dual problen satjsfjes
t ts e . t l a i n d o ' l i L . LordjLio oo l(/,p .- e/erJlyr''te.e
'a aaoL\tL condiT'o' or \aaLro-,onel l' -ype on rrle t,.lcrion
- -f',.,)'. 

ore ro.

(15) lmin in prinal] = -[inf in dual].

-re d,ol a-.a_..oil_1, -onoit'on on endoo'.t pa .,
o(0 ,p(_r, -an oe e p eised eo,ivalenL./ os d gro*14

cordjtion on the Bolza fLrnctional 0 in the prifial problem
tsl.

The fact that the attainment of the infimLrm in the dLrat
problem seems to require the absence of state constrajnts
in ihe primal problem can be explained fron the role that
dLral optinral arcs have in the statement of necessary
conditjons for the priRtal , as seen below. It is known
that, when state constfajnts are present! the necessary
condir'o4s o,q t !o:4vo,ve j- ps 'n -ne vo)ro-e .e-Toroltl, o,,re,er. a oo. .ol o"c ;or !1e o,dl p,oblen is
by defjnitjon absolutely contjnuous. This suggests that,
in order to obtain a betier duality theory in ahe case of
state constraints, one should pass to a generalized dLral
problen !,lhere the arcs p are alloiJed to be djscontjnLrous.
The idea has been worked out in [4] for a large class of
problems in which, roughly speakjng, the effects of the
state constraints on x can be kept separate frofi the
effects of the other constraints. The dual Drobleii then
Lons :rs o- f ni n ri ng a- e/ lendeo-Bo llc f.n( ( o. o l , 10 r
oJer (J. DLr ove. d B.r.c soace 1t -oniis'in9 or o_. .ne
tunLt'oi) p:-0,11 - q of boL.oea /a.'dt'oi:

.1ts



TECHN OUES OF OPTIMIZAT ON

Neve.tl-eless, rhe !leo.J is sti,l i-conD'ete! r,nce i1
does not cover many problens, encountered for example if
economics, where the effects of the state constrainls cannot
be kept separate. Also, it would seem desirable ultimately,
at least for the sake of symmetry! to fornrulate the primal ,
as !.tell as the dual , jn tenns of functions of boLrnded
varjation, derivinq continuity prcperties of the optinizing
arcs in a given case from the necessary conditions for
optimality.

I'Je conclude by describjng the necessary condjtions that
coa.erpo.o to rhe sit..-iol i1 Tneore0l -l^ese deoend o'
rhe Fo-- r.ldr t'F ho' lro_ia' t(,<,p) 's nor o'ly -onve^
in p, as fol I ovrs immedialely from the definition (7),
but also concave in x. The latter property is a consequence
(indeed, virtLrally an equivalent fonn) of our assurnption
that f(x,u) is cofvex joiftly ir x and u. Recall that
in dealjng wjth convex functions ofe can replace the usual
notion of differentjability, that of a tangent hyperpl ane
to the graph of the function, by the notion of a supporting
'yperp ane ro -he epiq'apn of d lLnL.io'. SpeL'-iLdllj. .T
Cp 's .n e' tended -eal-valued, L01ve, -u'c'_on ol P", 

''r'edefine a suboradient of CD at
thdt the i nequal i ty

z to be a v-actor y slrch

(D(z),CX.z)+v(z'-z)

holds for all z'eRn. The set of such subgradr'ents js
ce'rotec b/ a(p(2,. 5JoqradienLJ ot colcave f-4or'ons o'e
oe-.ed andlodo.sl). h -h rhe oppo\iLe 'leq.a.i!y. Aop yi.q
this idea to H(x,p) as a functior of x and p separate-
ly, \,/e obtain a generalized Harniltonian system of differen-
ti al equati ons :

' o) 4t ".pt ."0 - o a^ ( .Pr a e.

S!bgradierts can also be used to fonnLrlate a generalized
trans versal j ty condi ti on:

(17 ) (-p (o) ,p(t ) e )t(x(o) ,x(l ) )

l,le refer to (16) and (17) as the fLrndan€ntal Splfllli ty
conditions for a convex problen of Bolza. 0f colrse, in
parti-aiil ar cases the many theoren6 avajlable for the



calculation of subgradients can be used to express these
condirions i- d _ess 

aDsrraci ra-ne' Il], - e ra'. resul L

is the fol I owi ng:

THEoREI4 3. Let the assumptiors of Theoren I be
satisfjed, Then, in order that an arc x e d be optimal
lo' the or'rol probler , it is recessar) and )r'liLie-r
rhdl !.ere e\'sr or arc p A fut,.r'iL condil'ors \16/d'a'17) "-e,dt'sf eo. Ju( a't arc p is op-in.l -o' r.le
dual probl em.

The generalized HaFtjltonian system is quite ameirable to
study, despite jts multivaluedness'. For example, Lrnder
the assumption that H is fifite, it has beer shown that
local solutions exist, and alorg such solutions the valueof H js constant [2]. The behavior df the system near
a saddle-point of H (jn the rninimax sense) his also been
investigated and shown to be relevart to certain optimal
control problems where [0,1] js replaced by an jnfinjte
time i nterval [5].

Theoren 3 has been extended jn [4] to a class of probleits
\,vith state constraints through an appropriate definition of
!vhat is nreant by the Hamjltoniaf condition (16) jn the case
where p is not absolLrtely continuoLrs, but mercly of
bounded vari ation.
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