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DUAL PROBLEMS OF OPTIMAL CONTROL
R. Tyrrell Rockafellarx

The c¢lose connection between duality and convexity is
well known. It is no surprise, therefore, that the strong-
est properties of duality in optimal control are displayed
by problems which are especially "convex" in nature. Such
problems arise commonly in various situations, for example
economic applications, where duality may be interpreted
in terms of pricé behavior, They can also arise theoretic-
ally as local or global convexifications of more general
problems. The possible use of duality in the construction
of algorithms is another motivation for studying them.

In what follows, we indicate briefly some of the main
results that have been obtained for convex problems of
Bolza [1,2,3,4,5]. To simplify the discussion and to make
clearer the relationship with control problems as they are
usually formulated, we Timit ourselves here to the "autonom-
ous" case and choose a model in which the control variables
appear explicitly. Nevertheless we use the device of in-
corporating constraints into the cost functions by means of
infinite penalties, since this is not only very convenient
in theory, but essential if the basic ideas are not to be
obscured.

The model problem consists of minimizing

1
(1) Sof(xm,u(t))dt + 1(x(0),x(1))
over all the absolutely continuouﬁ arcs x:[0,1] + R" and
measurable functions w:[0,1] =+ R satisfying

(2) i(t) = Ax(t) + u(t) a.e.,
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where it is assumed that f ﬁnd [ are lower semicontinuous,
convex functions from R >R to (-=,+=], not identically
+ =, Note that f(x,u) 1s to be convex jointly in x and
u, rather than just convex in u, as would be a more common
assumption. The problem can be described in the context of
functional analysis as that of minimizing a certain Bolza
functional

1 :
(3 o0 = [ F0(0), x(e) - x(eMe + L0x(0)x(1)
over a Banach space (R consisting of all the absolutely
continuous functions x:[0,1] = R".

Since in a problem of minimization the points where the
cost function has the value += do not compete for the
optimum, our model contains implicit constraints on the
controls, states and endpoints. For almost every t, the
control vector u(t) should belong to the set U(x(t)),
where

(4) U(x) = {ueR" | f(x,u) < + =}

(implicit control region), and thus the state vector x(t)
should belong to the set

(5) X = {xeR" | Ju,f(x,u) < +=}.
The endpoint pair (x(0),x(1)) should belong to the set
(6) C = {(ag.a;)e R ><R"] l(ao,a]) < + o},
As an illustration, consider the problem of minimizing
(for some A > 0)
1 1 ?
A [ |x(t)|dt + ] |u(t)]“dt
4] 0

subject to X = AX + u, lul <1, x(0) = a and x(])st
(nonnegative orthant). This corresponds to

ax| + Jul® i (u] <1,

=+ if || > 1,

f(x,u)

_ . B n
l(ao,a1) =0 if aj=a and aeR],

2 n
+ = if 2 Za or a]¢R+.
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The example serves to emphasize that no differentiability is
assumed in the cost functions, even with respect to x. It
shows also that, although we speak formally of problems of
Bolza, other classes of problems, such as those of Lagrange,
are aptly covered by the same notation.

In working with + =, it is necessary to take a some-
what different approach than usual to a number of technical
questions concerning measurability, integrability, and so
forth. This is particularly true in the case,not dis-
cussed here, where f and A depend on t. Fortunately,
the theory of measurable multifunctiaons, as developed
extensively by Castaing and others, comes to our aid. At
the same time, convexity leads to many simplifications.
Thus it can be shown under our assumptions that the Bolza
functional ®: A +(- =,+ «] 1is not only well-defined and
convex, but lower semicontinucus in the weak (and strong)
topologies [1]. In fact, if the generalized Hamiltonian
function

Wi H(x,p) = sup {p-(Ax+u) - f(x,u)}

u
nowhere has the value + =, then 2 hnas the remarkable
property that its level sets

{xe@| 2(x) <o}, o real,

are (closed and) locally compact in the weak topology [3].
This can be used to deduce the existence of optimal arcs
in the control problem [4]. However, the existence also
follows from duality theorems stated below. Results on
necessary conditions for optimality also follow from the
duality theorems, s¢ that, for convex problems of Bolza,
the latter really play the central role.

Duality is obtained by passing to the convex functions
f* and 1* conjugate to f and U, or rather to slightly
modified forms of these functions. We define the dual cost
functions g and m by

(8) g{p,w) = f*(w,p)
= sup {W.x + p.u - F(x,u)l,
X,U
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1l

* .
(9) mlbg,by) = 1¥(bg,-by)
= sup {a5:bg - a;*by - l(ao,al)}.
a-,a
Then g and m ﬁreoa Lin Tower semicontinuous, convex
functions from R'><R" to (- =,+ =], not identically
+ o, Furthermore, f and ! may be recovered in turn as

the duals of g and m:

f(x,u) = supfu-p + x-w - g(p,w)},
P W
= sup {a,+by - a;+b, - m(bn,bq)}.
bO’b1 g0 171 071

The dual control problem is taken to be that of minimiz-
ing

1
(10) foﬂmw,mwa+m@wﬁpun
over all the absolutely continuouﬁ arcs p:[0,1] -+ R" and
measurable functions w:[0,1] - R" satisfying

(1) p(t) = -A*p(t) + w(t) a.e.,

where A* 1is the transpose of the matrix A, In view of
the symmetric relationship between f and g, and between
[ and m, the problem which is dual to the dual problem
is the primal (i.e. original) problem. The dual, like the
primal, contains implicit constraints on the controls w(t),
states p(t) and endpoint pair (p(0),p(1)). It can be
regarded as the problem of minimizing the lower semicontinu-
ous, convex Bolza functional

1
20 o(p) = | a(p(e), p(t) + Amp())st + n(p(0) (1)

over the Banach space Q.

In the example given earlier, one calculates easily
from (8) and (9) that the dual problem consists of
minimizing

]
[ otip(t) 2at + a-p(0)

subject to ﬁ = -A*p + w, |Ww| <2 and p(1)erR"

i where
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52/4 if s <2,

n

B(s)

=g - | it s » 4,

The definitions of the Bolza functionals imply that
the inequality

o(x) + ¥(p) >0

is valid, and consequently that
(13) [inf in primal] > - [inf in dual].

A fundamental question in duality theory is whether, or
rather under what conditions, equality holds in (13).

It usually happens that, when equality can be established,
one obtains by the same argument the existence of a mini-
mizing arc for @ or ¥, so that "inf" can be replaced

by "min" in one of the two problems. In general, the study
of (13) involves the convex functionals on {* conjugate
to ¢ and ¥, and these can be described in terms of the
behavior of the control problems with respect to certain
perturbations of the data [1]. To obtain sharper results,
which proceed from "readily verifiable" assumptions on the
functions f and 1 and the matrix A, an argument based
on the separation of convex sets has been devised [3].
This argument is made complicated by thE fact that the
convex sets belong to the space {{* > R°. One must show,
despite the underlying nonreflexivity, that thezseparating
hyperplane corﬁesponds to an element of (L ><R, rather
than (AL** == R",

The main duality theorems depend on finiteness assump-
tions on the Hamiltonian function (7) and attainability
assumptions on the contrel systems. An endpoint pair
(x(0),x(1)) 1is said to be attainable for the primal
problem if it arises from an arc satisfying (2? and

u(t) e ulx(t))  a.e.,

where U(x(t)) 1is the implicit contrg] region in (4). The
set of all such pairs is convex in R »>CR’, The attain-
ability condition is said to be satisfied if the relative
interior of this set meets the relative interior of the
convex set of all feasible endpoint pairs, that is, the
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set C in (6).

DUALITY THEOREM 1[3]. 1If the primal problem satisfies
the attainability contion and H(x,p) > -= everywhere (in
other words, there are no real state constraints on x),
-one has

(14) Linf in primal] = -[min in dual],

DUALITY THEOREM 2[3]. 1If the dual problem satisfies
the attainability condition and H(x,p) < += everywhere
(a growth condition of Nagumo-Tonelli type on the function
u - f(x,u)), one has

(15) [min in primal] = -[inf in dual].

The dual attainability condition on endpoint pairs
(p(0),p(1)) can be expressed equivalently as a growth
condition on the Bolza functional & in the primal problem

[3].

The fact that the attainment of the infimum in the dual
problem seems to require the absence of state constraints
in the primal problem can be explained from the role that
dual optimal arcs have in the statement of necessary
conditions for the primal, as seen below. It is known
that, when state constraints are present, the necessary
conditions ought to involve jumps in the costate vector

(t). However, an optimal arc for the dual problem is
by definition absolutely continuous. This suggests that,
in order to obtain a better duality theory in the case of
state constraints, one should pass to a generalized dual
problem where the arcs p are allowed to be discontinuous.
The idea has been worked out in [4] for a large class of
problems in which, roughly speaking, the effects of the
state constraints on x can be kept separate from the
effects of the other constraints. The dual problem then
consists of minimizing an extended Bolza functional, not
over (X, but over a BaHach space'fa consisting of all the
functions p:[0,1] » R* of bounded variation.
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Nevertheless, the theory is still incomplete, since it
does not cover many problems, encountered for example in
economics, where the effects of the state constraints cannot
be kept separate. Also, it would seem desirable ultimately,
at least for the sake of symmetry, to formulate the primal,
as well as the dual, in terms of functions of bounded
variation, deriving continuity properties of the optimizing
arcs in a given case from the necessary conditions for
optimality.

We conclude by describing the necessary conditions that
correspond to the situation in Theorem 1. These depend on
the fact that the Hamiltonian H(x,p) 1s not only convex
in p, as follows immediately from the definition (7),
but also concave in x. The latter property is a consequence
(indeed, virtually an equivalent form) of our assumption
that f(x,u) is convex jointly in x and wu. Recall that
in dealing with convex functions one can replace the usual
notion of differentiability, that of a tangent hyperplane
to the graph of the function, by the notion of a supporting
ggpePDWane to the epigraph of a function. Spec1f1ca1ly, if

is an extended real-valued, convex function on , We
define a subgradient of ¢ at z to be a vector y such
that the inequality

) > qxz) +y(2 - 2)

holds for all z' aR . The set of such subgradients is
denoted by an . Subgradients of concave fundtions are
defined analogous]y, with the opposite inequality. Applying
this idea to H(x,p) as a function of x and p separate-
Ty, we obtain a generalized Hamiltonian system of differen-
tial equations:

(16) Xe BBH(x,p) and - ﬁs E&H(x,p) a.e.

Subgradients can also be used to formulate a generalized
transversality condition:

(17) (-p(0),p(1) e dL(x(0),x(1)).

We refer to (16) and (17) as the fundamental optimality
conditions for a convex problem of Bolza. Of course, in
particular cases the many theorems available for the
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calculation of subgradients can be used to express these
conditions in a less abstract manner [1]. The main result
is the following:

THEOREM 3. Let the assumptions of Theorem 1 be
satisfied. Then, in order that an arc x e Q) be optimal
for the primal problem, it is necessary and sufficient
that there exist an arc p e CL for which conditions (16)
and (17) are satisfied. Such an arc p 1is optimal for the
dual problem,

The generalized Hamiltonian system is quite amenable to
study, despite its "multivaluedness", For example, under
the assumption that H dis finite, it has been shown that
local solutions exist, and along such solutions the value
of H s constant [2]. The behavior 6f the system near
a saddle-point of H (in the minimax sense) has also been
investigated and shown to be relevant to certain optimal
control problems where [0,1] 1s replaced by an infinite
time interval [5].

Theorem 3 has been extended in [4] to a class of problems
with state constraints through an appropriate definition of
what is meant by the Hamiltonian condition (16) in the case
where p s not absolutely continuous, but merely of
bounded variation.
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