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Abstract. In Lagrange problems of the calculus of variations
where the Lagrangian L(w, &), not nccessarily differentiable, is
convex jointly in x and &, optimal arcs can be characterized in
terms of a generalized Hamiltonian differential equation, where the
IMamiltonian H(x, p) is concave in x and convex in p. In this paper,
the Hamiltonian system 1s studied in a neighborhood of a minimax
saddle point of /4. It is shown under a strict concavity-convexity
assumption on I that the point acts much like a saddle point in
the sense of differential equations. At the same time, results arc
obtained for problems in which the Lagrange integral is minimized
over an infinite interval. These results are motivated by questions
in theoretical cconomics.

1. Introduction

Let L: R* X R" — (— o, 0] be convex, lower semicontinuous,
and not identically — s0. An absolutely continuous, R#-valued function x
defined over a real interval [ is said to be an optimal are for the Lagrangian
L if, for every bounded subinterval [¢, , ;] C J, the integral

[ L), 2(0) at (1)

“in

is not + oo and is minimized with respect to the class of all absolutely
continuous, R*-valued functions over [#, , #;] having the same values at
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t; and #; as x. Such arcs have been studied by convexity methods in
Refs. [-3 in terms of the generalized ITamiltonian equation

(—p(t), $(2)) € EHL(x(0), p(2))  ace, 2)
where H is defined on R? » R" by
H(x, p) = sup{p - v — L{x,v) | v R"}, (3)

The extended - real-valued Hamiltonian H is concave in x and convex in p,
by virtue of the convexity of L (Ref. 4, p. 351). The set ¢H(x, p) consists
of the vector pairs (e, ) € R? x R" such that

H(x, p') 22 H{x,p) |- (p" — p) - © forall p'eR", (4)
H(x',p) < H{x,p) - (&' — x) - o for all x" e R®, (3)

It has been shown in Ref. 1, p. 213, that, if x and p are absolutely
continuous, ”-valued functions defined over an interval [ and satisfying
(2), then « is an optimal arc for L, and moreover p is an optimal arc for
the dual Lagrangian M, where

M(p,w) =sup{w " x +p v—Lx o) | (xv)e R x R}
= sup{e - x — I{x, p) | x = R, (6)

Under stronger assumptions, it is known that an optimal arc x must
satisfy (2) for some p (Ref. 3, Corollary 1 to Theorem 1). Theorems
have also been established concerning the existence and regularity
properties of solutions (x(t), (f)) to (2), as a generalized ordinary
differential equation (Ref. 2). These results allow L and H to depend on 1.

In the present paper, where only the autonomous case is considered,
the aim is to analyze the behavior of the Hamiltonian system (2) in the
neighborhood of a saddle point of the concave-convex Hamiltonian H.
We denote such a saddle point by (&, p); thus, (&, p) is by definition
a point of " x R such that

(0,0) & &H(x, ). (7

We assume that H is stricily concave-convex in a neighborhood of
(%, p). In other words, there exist convex neighborhoods U of x and 7 of
p such that [/, restricted to U x T/, is finite, strictly concave in x, and
strictly convex in p. This implies in particular that (&, p) is the unique
saddle point of H.

Our chief result {Theorem 1.1} is that, under the preceding
assumption, (&, p) acts for the solutions to (2) very much like a saddle
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point in the sense of the classical theory of ordinary differential equations.
We show that this property is closely related to the problem of charac-
terizing the arcs x which, in a sense, optimize /. with respect to infinite
t-intervals (Theorem 1.2).

These results have applications to the study of whether economic
systems behave optrmally over time (Ref. 9), and they were stimulated
by discussions and correspondence with K. Shell on that subject. This
is not the place to explain all the economic ramifications, but a few
words may serve to indicate the motivation. In certain models, a state
of the economy at a moment in time is represented by a vector
¥ = (x;,..., x,), where x, denotes the amount of the 7th good which is
present per worker. 'I'hrough different allocations of goods and labor
to the production (or disposal) of goods, the state x can be transformed in
various ways over time. Let ¢; denote the rate of change of x;. Not
all pairs (x,7) are realizable; (x, ¥) must belong to a certain set
TCR* X R* delimited by natural and technological constraints
(reflecting also physical depreciation and population growth, which
could cause the goods to be shared among more and more workers).
On 7, one is given a rcal-valued function {/, where Ulx, ©v) 18 the
social utility of the pair (x, ©). For example, U(x, ©) could be based on the
rate of consumption that can be achicved per worker when the economy
1s in the state x and is being transformed at the rate 2. 'I'ypical assump-
tions are that 7'is a convex set, and U is a concave function. 'I'o connect
this situation with our results, one need only definc

Ly, o) = —Ulx, ) if (v, 2)e 7,
= —x it (x,o)¢T.

The optimal arcs for L are then the arcs x satisfying (x(z), %(¢)) e T
almost everywhere which maximize fotal utility over all bounded time
intervals. They thus represent optimal trajectories for the economy. The
Hamiltonian becomes

H(x, p) —sup{U(x, o) L p o |ve T(x),

where T'(x) 1s the set of vectors » such that (x, #) € 7. The components
of p = (p,,.... p,) are interpreted as theoretical prices for the goods in
the economy.

We proceed to formulate the mathematical results precisely. It is
convenient for later purposcs to make a translation, so that the saddle
point appears at the origin. To do this, we observe that the saddle point
condition (7) can also be written as the subgradient condition

(0, p) = 6L, 0); ®)
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or, in other words,
LE—x0) 2LF0) -p-v forall (v,o)eR" x R (9)
(Ref. 4, Theorem 37.5), where
L(%0) = —H(x, p) (finitc). (10)
Let
Lylw, ) = L(&§ L, 2) — L(F,0) — p -z (11)
Clearly, L, is again convex, lower semicontinuous, and in addition

minL, = L,(0,0) — 0. (12)

The optimal arcs for L are simply the translates by ¥ of the optimal arcs for
Ly . The Hamiltonian

Hy(x, p) — sup{p v — Ly(a, v) | v e R} (13)
corresponding to L; is cxpressed also by

Hy(s, p) — H(s =, + p) — H(¥. p). (14)
Thus, I/, is a concave-convex function which is strictly concave-convex
in a neighborhood of (0, 0) and satisfies

(0,00 8H,(0,0) and  H,(0,0) = 0. (15)

The solutions to the given Hamiltonian system (2) are the translates by
(%, p) of the solutions to

(—(), $(1) & BH(x(), p(0) e, (16)

In this way, our task is reduced to studying the behavior of solutions
(x(t), p(t)) to (16) near (0, 0).

Let K, denote the set of all pairs (a, b) € R® X R" such that there
is a solution (x(¢), p(¢)) to (16) over [0, |-oo) (v and p absolutely
continuous) satisfying

(x(0), p(0)) = (a, b) and Jim (x(2), p(t)) = (0, 0)- (17
Similarly, let K_ denote the set of all pairs (@, b) € R* X R" such that
there is a solution (x(¢), p(2)) to (16) over (— oo, 0] satisfying

(x(0), p(0)) = (a, ) and  lim (x(0), p(1)) = (0, 0). (18)

Theorem 1.1. "The sets K. and K_ have only (0, 0) in common.
Furthermore, there exist open neighborhoods U7, « 17 and U < V)
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of (0,0) (which can be chosen arbitrarily small) with the following
properties:

(a) K. (U.x V.)is the graph of a homeomorphism of (/.
onto V., and K_ N (U_ x V_) is the graph of a homeomorphism of
U_onto V_; '

(b) for each (@, 5) in K. (U, x V.), the solution to (16) over
[0, +o0) satisfying (x(0), p(0)) = (a, b) is unique and remains in
K, N (UL % V.); for each (q,b) in K_ N (U_ x V_), the solution to
(16) over (— o0, 0] satisfying (x(0), p(0)) = (a, b) is unique and remains
in K_n(U_ x V).

Geometrically, Theorem 1.1 says that, in a neighborhood of (0, 0),
K. and K_ are n-dimensional submanifolds of R* x R” which intersect
only at (0, 0) but project homeomorphically onto neighborhoods of the
origin of R under the mappings (a, 8) — a and (a, b) — b.

Although Theorem 1.1 has been formulated starting from a
Hamiltonian function which corresponds to a convex Lagrangian,
it 1s applicable in fact to any finite, strictly concave—convex function H
on an open, convex set U X IV in R x R* which has a saddle point
(with respect to U X V) at (%, p). Indeed, such a function H can always
be extended (possibly using - o0 and — 20) to a concave—convex function
on all of R* % R" which is lower closed (Ref. 4, §34). The extended H
then still has (%, ) as a saddle point, and H is the Hamiltonian corre-
sponding to the lower semicontinuous, convex Lagrangian L defined

by
L{x,v) = sup{v - p — H(x, p) | pe R"} (19)

(Ref. 4, Theorem 33.3),
Of course, (18) is also implied by (3), and the same thing holds
likewisc for L, and H, , that is,

L, ©) = supfo - p — Hw, p) [ p= R, (20)

This relationship enables us to give an extremal interpretation to the
sets K and K_. Let

fula) = inf } [ Loa(), 1) dt
L

(0) = rz;, 1)

where the infimum is over all absolutely continuous functions
x: [0, }-20) — R* with the given initial value. Similarly, let

f(a) = inf )|l Ly(x(2), (2)) dt | x(0) = a‘,: (22)
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The integrals make sense because of (12). 1t is obvious that /, and f_ are
convex and

min /. = £(0) =0 — f(0) — minf_. (23)

Theorem 1.2. (i) Let (q,b)e K_, and let (x(#), p(t)) be a
solution to (16) over [0, |-0) satisfying (17). Then, f.(a) is finite,
a yields the minimum in the definition of f (a), and the subgradient
rclation —b e ¢f (@) is valid. If a< U_, the neighborhood of 0 in
Theorem 1.1, then in fact x is the unique arc which yiclds the minimum
in the definition of f_(«), and onc has —b = Vf.(a).

(i) ILet (a, b)e K_, and let (x(2), p()) be a solution to (16) over
(— oo, 0] satisfying (18). Then, f_(a) is finite, & yields the minimum in
the definition of f_(a), and the subgradient rclation b € éf (a) is valid.
If a e U_, the neighborhood of 0 in Theorem 1.1, then in fact x is the
unique arc which yields the minimum in the definition of f_(4), and onc
has b = Vf_(a).

The situation in T'heorem 1.2 is actually symmetric with respect
to x and p. Relations (8) and (9) can also be expressed as

(0, x) e eM(p, 0), (24)
or
M(p +p,w) = Mp,0)+x w foral (pw)eR* x RY, (25)
where
M(p, 0) = L(x, 0). (26)
This follows from (6) and the reciprocal relation
Lixv) = supfw ¥+ p-v— M(p,w)| (pw)eR" X R (27)
The Lagrangian function M, dual to L, , that is,
My(p,w) = supfee - & — p - v — Lo, ¥) | (v, ) e R* x R"},  (28)
is also expressed by
My(p,w) = M(p — p, ) — M(P,0) — ¥ - . 29)
T'hus, M, is convex, lower semicontinuous, and satisfies

min M, — M,(0,0 — 0. (30)
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The optimal arcs for M are just translates by p of the optimal arcs for
M, . Let

2.8 = inf | [ 7 Mp(), B0 dt | 2(0) = b, (31)

¢ 0 '
g-(0) = inf || My(ple), pie) de | p(0) = bl. (32)
T'he functions g_ and g_ are convex, and we have
ming, =g,(0) =0 =g_(0) =ming . (33)

Theorem 1.3. (i) Let (a,b)eK_, and let (x(?),p(t)) be a
solution to (16) over [0, -| %) satisfying (17). Then, g, (b) is finite,
p vields the minimum in the definition of g (b), and the subgradient
relation —a = ég_(b) is valid. If A= 17, the neighborhood of 0 in
Theorem 1.1, then in fact p is the unique arc which vields the minimum
in the definition of g_ (), and one has —a —= Vg_(b).

(i1) Let (a, b)= K_, and let (x(t), p(¢)) be a solution to (16) over
(— 0, 0] satisfying (18). Then, g_(b) is finite, p yields the minimum in
the definition of g_(b), and the subgradient relation a € ¢g_(b) is valid.
If a= V_, the neighborhood of 0 in Theorem 1.1, then in fact p is the
unique arc which yields the minimum in the definition of g_(4), and one
has a = Vg_(b).

We end this section with a counterexample illustrating the need for
strict concavity—convexity in Theorem 1.1. For x = (x;,x,) and

p = (py, po) 1n R? define

H(x, p) = —x1p, + X3Py . (34)
Thus, H is the concave—convex [Hamiltonian corresponding to

L{x,v) =0 if ¢, =x, and ©v, = —x,
=+ if oy Aoy 6f Uy (35)

The function / has a saddle point at (0, 0) and vanishes there; hence,
Iy = H (and L, = L). The set élly(x, p) = ¢H(x, p) consists solely of
the vector (—ps, p1, %5, —%;). 1T'he Hamiltonian system is

:{'1 = Xg, Xy = —X) (36)

P =ps, Po= —p1. (37)
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Every solution (x(2), p(¢)) to (36) (37) has the property that | x(t)| = const
and | p(f), = const, so that (x(f), p(#)) cannot tend toward, or away from,
the saddle point (0, 0). Therefore,

K, = K_={(0,0)}, (38)

and the asscrtions of Theorem 1.1 fail.

Theorem 1.2 is proved at the end of Section 2 using Theorem 1.1.
The proof of Theorem 1.1 is given at the end of Section 4. Two other
theorems in Section 4 treat the case where IZ, L, M are finite everywhere
and H is strictly concave—convex throughout R" x R™ The properties
in Theorems 1.1 and 1.2 then take on a global character, and in particular
K. and K_ are the graphs of homeomorphisms from all of R" onto
itself (Theorem 4.2).

2. Local Behavior and Optimality

The duality between M and I. has already been discussed in
Refs. 1 and 3, and the facts apply equally to 3, and L, . Rather than
duplicating any of the discussion here, we simply appeal to symmetry
and refer without proof to parallel results for M and 3, . The Euclidean
norm on R" is denoted by | - .

Proposition 2.1. There is an open neighborhood of (0, 0) in
R"™ x R™ on which L, is finite (and, hence, continuous). Furthermore,
there is a continuous, increasing function y: [0, +o0) — [0, - o0) with
(0) = 0, such that

Lyx, o) Z (=] for all (x,v)sR" X R", (39)
Similarly, for M, at (0, 0).

Proof. Since H,, is strictly concave-convex around (0, 0), there is
a convex neighborhood ¥ of 0 such that Hy(0, p) is strictly convex in
p e V. T'he functions L0, -) and F (0, -) are conjugate to each other by
(13) and (20), and 0 is by (15) a subgradient of H,y(0, -) at 0, so this
implies that L,(0, +) is differentiable (and therefore finite) in a neigh-
borhood of 0 (Ref. 4, Theorem 26.3). On the other hand, there is a
neighborhood U of 0 on which the concave function H(-, 0) is finite and
strictly concave. The maximum of H(-, 0) over R" is 0 and is attained
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(uniquely) at the origin, so it is possible to construct a continuous,
increasing function y: [0, - o0) with »(0) = 0, such that

Hy(x, 0) =2 —p(|x[) forall xeR", (40)
This inequality is equivalent to (39) by virtue of (13), which implies that

Hy(x, 0) = —infL(x, 2). (41)

Trom (41) and the finiteness of Hy(+, 0} near 0, we observe further that
the set
dom Ly = {{x, z) & R* x R* | Ly(x, z) == +—0) (42)

projects onto a neighborhood of 0 under the mapping (¥, ©) — x. Since
dom L, is convex and also, as we have seen, contains a set of the form
{0} % W, where W is a neighborhood of 0, it follows by an elementary
argument that dom L, is a neighborhood of (0, 0) (Ref. 4, Theorem 6.8).
The convexity of [, implies that L, 1s continuous on the interior of
domZ, .

Corollary 2.1. If x: [0, L) — R” is an absolutely continuous
function for which the integral in (21) is not +oco, then x(¢) - 0 as
t — + 0. Analogously for the integrals in (22), (31), and (32). \

e

Corollary 2.2. One has f(a) = 0 if ¢ + 0 and the infimum
defining f.(a) is attained. Similarly, for f (a), g.(b), g_(b).

Proposition 2.2. (i) One has
fle) +g.(b) = —a-b for all  (a, b) s R* x R", (43)

If (a, b) e K_ and (x(#), p(t)) is a solution to (16) over [0, + o) satisfying
(17), then equality holds in (43), x yields the minimum in the definition of
f.(a), and p yields the minimum in the definition of g (). The converse
implication is also valid,

(i) One has
fla)+g (b)) =a-b for all (a, b)c R* x R". (44)
If (@, b) € K_ and (x(2), p(2)) is a solution to (16) over (— oo, 0] satisfying
(18), then equality holds in (44), x yields the minimum in the definition

of f_(a), and p yields thc minimum in the definition of g (5). The
converse implication is also valid.
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Proof. (i) Let x and p be absolutely continuous functions from
[0, — =) to R* with x(0) = @ and p(0) = b. We have

Lo(x(t), 2(2)) | My p(e), p(2)) == %(t) - p(2) - x(2) - (%) a.e. (43)
by (28), so that

- i T

! Lo(x(t), () dt — | My(p(2), p(2)) dt = x(T) - p(T)~a - b (46)
“0 ]

If the limit of the left side of (46) as T’ — —+ oo is not + =0, both ¥(7T") and
P(T") must tend to the origin, in view of Corollary 2.1, implying that

J| Lo 5) de + [ 2(p(0) 5O) dt = —a - B. @7)

Theretore, (43) holds. If (x(¢), p(z)) satisfies (16) and (17), then equality
holds in (45), this property being equivalent actually to (16) (Ref. 4,
Theorem 37.5), and hence cquality holds also in (46) and (47). Since

L. 50 d = ) and [ M(p(), B0 dr =g (B) (48)
L i

by definition, it follows from the general inequality (43) that equality
holds in (48) and (43). Conversely, if equality holds in (48) and (43) for
functions x and p with %(0) = « and p(0) = b, then, retracing the argu-
ment, we see that (x(#), p(7)) must satisfy (17), and equality must hold in
(45). But, as we have just noted, (45) with cquality is equivalent to (16).
In particular, therefore, we have (a,b)e K. . The proof of (i) is
analogous.

Corollary 2.3. If (a,b) = K. N K_, then (a, b) — (0, 0).

Proof. We have both
fda) g {b) = —a b (49)

and
Jla) -g.(0) =a- b (50)
where the infima defining the left sides are attained. Adding the equations,
we sce from Corollary 2.2 that ¢ = 0 and b — 0.
Proof of Theorem 1.2 Using Theorem 1.1. ‘l'he relation
—b = if.(a) is implied by

Jia) = g.0) = —a - b, (31
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inasmuch as (43) holds (Ref. 4, Theorem 23.5). Thus, the first sentence
in Theorem 1.2(i) is true by Proposition 2.2(i). If /. and V7, have the
properties in Theorem 1.1, therc is in fact a continuous function
k: U7 — T such that

_Ra)eéf.(a) forall aeU,. (52)

However, it is known that, on any open sct, ¢f | (@) 1s a singleton for almost
every a, and the elements of &f,(a) at the remaining points can be con-
structed by a limiting process and convexification (Ref. 4, p. 246). Thus,
the continuity of & in (52) implies that, for all a € U. , éf_(a) consists
simply of —£A(a). T'hen,

—k(a) = Vi (a) forall asli,, (533)
since the unique element of &f.(a), when there is one, is the gradient
{Ref. 4, Theorem 25.1). This establishes the assertion of Theorem 1.2(1)
concermrg the rephcement of f (a) by Vf (a). The unlquenesﬁ of the
minimizing arc x is immediate from the converse assertion in Propml—

tion 2.2(i) and the uniqueness in Theorem 1.1(ii). T'he proof of (i) is
parallel.

Proof of Theorem 1.3 Using Theorem 1.1. This 1s anulo-
g()'L'I.S.

For the needs of Section 4, we state another result like Proposition 2.2
for extrema of the Lagrangians L, and M, over bounded intervals. With
0 = 1 = Loo, let

il d) =ik j} Lax(0), $(0)) de | w(0) = &, (T) = a: (54)
er(t.¥) — int ) [ M), BO) | O) = b 6@y = b, (59
g !

where the infima are over all absolutely continuous R-valued functions
on [0, T] satisfying the given endpoint constraints. 'I'he functions fr
and gr are convex, positive away from (0, 0) (Proposition 2.1), and

min fr = fp(0,0) = 0 = g-{0,0) — mingy. (56)
Proposition 2.3. One has
frlavay geb, b)Y ma -0 —a b forall (a,a) and (b,8). (57)

If (x(2), p(2)) 1s a solution to (16) over [0, 1] satisfying (x(0), p(0)) = (a, b)
and (x(T), p(T)) = (a', b'), then equality holds in (57), x yields the
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minimum in the definition of f; (@, @') and p vields the minimum
definition gp(b, "). The converse implication is also true.

Proof. This result is obtained by the same argument as Proposi-
tion 2.2 (see Ref. 1, Section 9).

3. Reduction of Local Context to Global Context

The asscrtions of Theorem 1.1, except for the one about the
interscction of K, and K_ , which has already been derived as a corollary
to Proposition 2.2, concern only the local behavior of H, and the
generalized differential equation (16) near (0, 0). Therefore, in verifying
Theorem 1.1, we can replace H;, by any other concave-convex function
on R" X R" which agrees with H, on a neighborhood of (0, 0). The
following result allows us in this way to concentrate our efforts on a more
special case, where the properties of K. and K_ in Theorem 1.1 take on
a global character.

Proposition 3.1. Lect C % D be a compact, convex neighbor-
hood of (0,0) in R" < R™ such that £, is strictly concave—convex
relative to C X D and H, is finite on a neighborhood of C x D. Then,
there is a finite, strictly concave—convex function 71, on R* x R* which
agrees with Hy on C < 1, Moreover, H; can be constructed so that the
corresponding convex Lagrangians

Ly(x,v) = sup{p v — Hy(x, p) | pc R}, (58)
My(p, w) = sup{z * & 4 Hy(x, p) | x e R"} (39)
are finite throughout R" > R

Proof. BSince H, is concave -convex and finite on a neighborhood
of the compact set C' « D, there is a Lipschitz constant « such that

| Ho(&', p7) — Ho(%, p)) = ol 8" — [ 4+ [p" —p ) (60)
(Ref. 4, Theorem 35.1). Define
Gi(v. £) = mintll(x, p) —alp = pll  3eC. (61)

'Then, G, is a finite, concave-convex function on C x R" which agrees
with Hy, on C x D. In particular, (7, again satisfics (60) on C x D.
Now, define

Gy, p) = max{Gy(v', p) — al ' - L. (62)
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The function G, is finite and concave—convex on R" x R*, Furthermore,
it agrees with G, , and hence H,, on C x D. Finally, set

Hy(x, p) = Galw, p) — Golx) + Gl ), (63)

where (45 1s a finite, convex function on R* which vanishes on (), is
affine only on line segments contained in C, satisfies

lim Gy(x)| x| = oo, (64)

|xt w0

and G, is a function with analogous properties with respect to D. It is
easily checked that H, then has the desired properties, but we must prove
that a function Gy , as described, does exist.

Let C7 be the polar of C, that is,

CO={yeR"|x+ y =1, YoelC) (65)

and let (y,) be a dense sequence in C% 'Then, C° is another compact,
convex neighborhood of 0, and we have

C={xsR"|x y, =1,k (66)

(Ref. 4, p. 125). Define

hp(x) =0 R

=(x-v.— 17 S - (67}
Then, /;, is convex and
0 = fp(w) = (1 4 Bl x [)?, (68)
where
f=max{|y || ysC% <1 ~coo. (69)
We take
Gw) = 3 )25 (70)

The series converges for all x by virtue of (68). Obviously, G, is finite,
convex; and, since (66) holds, (7; vanishes only on C. Any line segment
along \1h1ch Gy 1s afine must be a segment along which every 74, is
affine. But there can be no such segments outside of C, due to the
definition of %, and the fact that the sequence (y,), being dense in a



380 JOTA: VOL. 12, NO. 4, 1973
neighborhood of 0, spans R". To verify (64), it suffices by convexity to
demonstrate that
Am Gy(Ax)/A == —oo  for all nonzero v R (71)
(Ret. 4, p. 66ff). Fixing x # 0, we choose v, such that x + y,. => 0. Then,
l_un (AR = +o; (72)

and, from the nonnegativity of all the terms in (70), we can conclude (71)
as desired.

4. Results of a Global Nature

As justified by Proposition 3.1, we assume henceforth that H,
L, , and M, are finitc everywhere, and that H, is strictly concave—convex
throughout K" > R®. The convex functions f, , f_, fy,g.,g_, gr atc
then finite everywhere too.

Proposition 4.1. Let (x,(2), p,(2)) and (xu(t), po(f)) be solutions

to (16) over an interval J. Then, the function
h(t) = (xy(7) — xo(0)) = (Pa(2) = pul?)) (73)
1s nondecreasing on J. In fact, if A(t;) = A(t,), where ¢, < ¢, , then for

all £ [t,, 1] one has (x(2), p1(£)) = (xu(2), po(2)), and hence A(t) = 0.

Proof. Since H,is strictly concave—convex, this is a special case of
Ref. 2, Theorem 4.

Corollary 4.1. Given a= R" and o' c R*, there is at most one
solution (x(t), p(¢)) to (16) over an interval [#,, ¢,] such that x(z)) = a
and x(t;) = a’. Similarly, for 5= R™ and 5" € R", therc is at most onc
solution such that p(£;) = band p(1;) = b'.

Corollary 4.2, Given e R", there is at most one solution
(x(2), p(t)) to (16) over [0, - 20) satisfying

x(0) = a, ,[_i:}}. x(7) = 0, (74)
as well as at most one solution over (— 20, 0] satisfying

¥(0) = q, fIn_}n x(¢) = 0. (73)
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Given be R", there is at most one solution (x(z), p(¢)) to (16) over
[0, - oo) satisfying

20) =05, lim p(t) =0 (76)
as well as at most one solution over (— oo, 0] satisfying

pO) =5, lim p(z) = 0. (77

Corollary 4.3. TForeach (a,b)e K. , the solution to (16) satisfying
(17) is unique. l.ikewise, for each (a, #) e K _, the solution to (16)
satisfving (18) is unique.

Theorem 4.1. For 0 == 7" =2 450, the function f; on R* . R»
is everywhere continuously differentiable and strictly convex, and the
infimum in its definition is always attained by a unique arc. The same
properties hold for g, . Furthermore, one has the conjugacy relations

gr(b, b)) = max fa" b6 —a - b— fr{a, a}, (78)
frla, a') — Fll_'n;ii;g{a' b —a b gr(b, b)), (79

and the gradient relation
(—b,b) = Vifa,a)) iff (—a,a) = Veg(b, b). (30)
‘The conditions in (80) are satisfied iff equality holds in (57).

Proof. The fact that (78) and (79) hold, at least with sup in place of
max, and the infima in (54) and (55) are always attained, is a special case
of Ref. 3, Corollary 2 of Theorem 1. We can replace sup by max in
(78) and (79) becausce fr and gy arc finite cverywhere (Ref. 4, pp.
217-218). In view of (78) and (79), equality in (57) is equivalent to
(—h, ') = &frla, @), as well as to (—a, a') € cer(b, D) (Ref. 4, p. 218).
Suppose now that (4, ¢') and (b, b") satisfy the latter relations, and let
and p be any arcs for which the infima in (34) and (55) are attained. The
converse part of Proposition 2.3 asserts that (x(f), p(¢)) is a solution to
(16) over [0, 77 satistying

(00, pO)) = (@ B, ((T),p(T)) — (@, &), (81)

However, according to Corollary 4.1, there is no more than one solution
to (16) over [0, 7] satisfying (82). Thercfore, x is the unigue arc yielding
the infimum in (54), and p is the wnigue arc yiclding the infimum in
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(55). We may conclude further from Corollary 4.1 that (&, 4') is uniquely
determined by (a, @'). In other words, given (a, '), therc is at most onc
pair (b, &) such that the cquivalent rclations (—b, 8') € éfy(a, a') and
(—a, a') e égr(b, b') hold. Dually, (a,a’) is uniquely determined by
(b, b"). Of course, it is also true that the multifunctions &f; and dgr are
everywhere nonempty-valucd, since f; and g, are everywhere finite
(Ref. 4, p. 217). Therefore if; and égr reduce to single-valued mappings
from R* into itself, and these are necessarily the continuous gradient
mappings Vf and Vgr (Ref. 4, Theorems 25.1 and 25.5). The continuous
differentiability of fr and g, implies, via the conjugacy relations (78) and
(79), that f; and g, arc strictly convex (Ref. 4, Theorem 26.3). This
completes the proof of Theorem 4.1.

The next result will enable us to extend Theorem 4.1 to the functions
fe 8., f_,g by alimit process.

Proposition 4.2. The following results hold:
Jim firla, @) = £.(a) + /(@) (82)

Am gr(b, ') = g.(6) - g (¥). (83)

Proof. We observe at the outset that, since (12) holds, the
functions f;(a, 0) and f,(0, ¢') arc nonincreasing in 7 > 0 and satisfy

fr{a,0) = fA(a),  fA0,a') = j.(a). (84)
We claim also that
inf fr(a, 0) < f(a),  jnf fr(0, @) < f(a'), (85)
80 that
Jim fr(a,0) = f.a), Jim f(0,&) = [(a) (36)

T'o prove the first inequality in (85), we fix any a with . (@) < a < -0
and construct an absolutely continuous x over an interval [0, T'] such
that

0) =a, AT)=0, J.TL(.(.\-(t), &(1) dt < a (87)

Inasmuch as f.(@) <= «, there cxists by definition an absolutely conti-
nuous function x,: [0, 4+2o0) — R” such that

=i

00 =a | Lo(xo(t), %o(t)) dt <2 o (88)
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According to Corollary 2.1, x,(¢) tends to 0 as ¢ — 400, Let A = 0
be arbitrary, and choose p such that

O{MQQNL%%mmen@ (89)

The nonnegative function f,, being finite and convex on R* X R",
is continuous, and it vanishes at (0, 0) [see Eq. (56)]. Therefore, we can
select € > 0 such that

file,d) =2 if |e]-=-e and |d| < e (90)
There exists in turn a T = 0 such that
|%(2) <<€ if £ T,. ©1)

By virtue of (90) and (91), there is an absolutely continuous function
%1 [0, A] — R* such that

80 = 5T w0 =0 [ La) s)dt <p. )
Let T = T, + A, and define

w(2) = xy(t) if 0=t=T,,
= xy(t — Ty) if Tyt T, (93)

Then, x is absolutely continuous on [0, T, x(0) = x,(0) = a, x(T) =
x(A) =0, and

‘U r Lo(x(t)), 2(t)) dt = |0_°L Lywolt), (1)) dt
+KMN&Mmﬂ{@_M+N=m(%

Thus, (87) holds as desired. The verification of the second inequality in
(85) 1s parallel.
Qur next step 1s to note that

far(a, @) = frla, 0) + fr(0, @) forall ¢ = 0. (95)
Indeed, suppose that « > f7(g, 0) and o' = f,(0, &'), and let

x: [0, T]— R" and w1 [0, T]— R”



384 JOTA: VOL. 12, NO. 4, 1973

be arcs such that

aT
4(0) =a,  x(T) =0, .]U Lo(xy(1), (1)) dt = a, (96)
W0 =0, w(T)=a, [ L@, su@)d <. (@)
Y
Sctting
v(f) = ay(t) i 0Lt T,
=x(f—-T) if T<t<2T, (98)
we obtain
M0)=a,  €QT)=da, [ Lyx(t) &) dr < o - . (99)
“1
Consequently,
a2z forla, a), (100)

and the validity of (95) is apparent. From (95) and (86), we deduce that
lim sup fr(a, @') < £.(a) 4 £-(@). (101)
We demonstrate now that
lim inf fr(a, @') = fu(a) + f(a'). (102)
Let u > 0 and « satisfy

li;.’"l_igffr(ﬂs @) <ow—2p < 0w, (103)

Choose an arbitrary A > 0. Again, there is an € > 0 such that (90) 1s
valid. The inequality in Proposition 2.1 implies that, if 7 is sufficiently
large and x;: [0, 7] -> R" satisfics

W0) =a ()=, [ Lyt a) dt < a2 (104

then
| ay(8) = € for some .S, 0=z 8wl (105)

Let 7 satisfy
.fT(a! aj) i S 21“‘: (106}
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Theorem 4.2, The function f, on R"is everywhere continuously
differentiable and strictly convex, and the infimum in its definition is
always attained by a unique arc. The same properties hold forg. , /_,g_.
Furthermore, one has the conjugacy relations

£.(8) = max{—a - b — f.(a)}, (115)
fu(a) = max{—a - b — g. ()}, (116)
g-(8) = max{a - b — f(a)}, (117)
fo@) —= max{a - b — g (3), (118)

and the gradient relations
—b =Vf (a) = —a = Ve (b) < (a,b)c K., (119)
b=Vf(a)=a=Vg (b)= (a,b)c K_. (120)

The conditions in (119) are satisfied iff equality holds in (43), while
those in (120) arc satisfied iff equality holds in (44).

Proof. Since all the functions arc finite, the conjugacy relations
(78) and (79) are preserved when the limit is taken in Proposition 4.2,
at least if max is replaced by sup (see Ref. 4, Theorem 10.8, and Refs. 6-7).
Thus,

$lb) +g ) = sup (& ¥ —a b~ L) — L (121)
Jio) ) = sup fe b —a b —gh) — g (). (122)

Here, the supremum is attained, because of the finiteness of the functions
(Ref. 4, pp. 217-218), and the expressions (115)—(118) follow
immediately.

We demonstrate next that the infimum (21) defining £. () is attained
by a unique arc x. The identity

fil@) = inf{frla, @) +f,(@)), 0T < 4o, (123)

is easily deduced from the definitions of f. and fr. The function
a' — fr(a, a') -+ f(a') is strictly convex, since fr is strictly convex
(Theorem 4.1), and it is cofinite (conjugate to a finite function), since f,
is cofinite by (116) (Ref. 4, p. 116). Cofiniteness is a growth property,
and it implies that the infimum in (123) is attained. The attainment is
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continuous) which vanishes at 0 and is positive away from 0 (Corollary
2.2). Thus, for each ¢ = 0, the set

{acR"|f(a) < € (134)

is an open ncighborhood of 0; and, by choosing e sufficiently small, we
can make this neighborhood arbitrarily small. Specifically, we can
arrange that (134) is contained in U x U’, where U’ is the (open)
inverse image of J under K_. Denoting (134) by U_. and the image of
(134) under K by V., we then have an open neighborhood U_ > T7_ of
(0, 0) as above, which is contained in U < V. To complete the proof
of Theorem 1.1, it suffices to show that, if (x(z), p(¢)) is a solution to (16)
over [0, +oo) with

(x(0), () € K. 0 (U, % V), (135)

then x(7) € U, for all ¢ £ [0, —o0). According to Proposition 2.2, x vields
the minimum in the definition of f (x(0)), and it follows more generally
that

Fu8(D) = [ L), () dt - forall T 0. (136)

Since L, == 0, we see from (136) that f (x(f)) is nonincreasing as a
function of 7. Hence, if x(0) belongs to a set of the form (134), the same
must be true of x(#) for every ¢ = 0. Theorem 1.1 is now established.
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