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OPTIMAL ARCS AND THE MINIMUM VALUE

FUNCTION IN PROBLEMS OF LAGRANGE

BY

R, TYRRELL ROCKAFELLAR( 1)

ABSTRACT' Existence theorems are proved fot basic Problems of Lagrange in
the calculus of variarions and optimal control theory, in particular problems for arcs

with both endpoints fixed. Emphasis is placed on deriving continuity and growth
properties of che minimum value of the integral as a function of the endpoints of
the arc and the interval of integration. Control regions are not required to be

bounded. Some results are also obtained for problems of Bolza.
Coniugate convex functions and duality are used extensively in the develop'

ment, but the problems themselves are not assumed to be especially ttconvex".

Constraints are incorporated by the device of allowing the Lagrangian function
to be extended-real-valued. This necessitates a new approach to the question
of what technical conditions of regularity should be imposed that will not only
work, but will also be flexible and general enough to meet thediverse applications.
One of the underlying purposes of the paper is to present an answer to this question.

1. Statement of main results. Let fa, bj be a teal interval, and let L be a

function on la, bf x Rt x Ru with values in (- -, + *], For each subinterval

[ro, rr1 cla, b] and endpoint pair (co, ci) € R" x R', we consider the problem of

Lagrange in which the integral

(1.1)

is minimized over

(t.2)

f 
t t t{,, x(t), *(t\') dttto

all absolutely continuous arcs xtfto, tt) + Ru such that

r(lo) = co and x(tr) = c'

Let the infimum in this problem (possibly + d or - *) be denoted by

F(to, tl, c0, ct). Our aim is to derive, from various assumPtions on L, results

on rhe continuity and growth properties of F, as well as the existence of arcs

for which the infimum is attained.

These results yield the existence of optimal arcs in more general types of

problems, for instance control problems with unilateral constraints, variable
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endpoints and variable time intervals.; Cirtain existence theorems of Cesari [1]
and Olech [7], among others, are theritiy extended. The fact that L is allowed

to have the value 1 o, and only very weak regrilarity conditions are imposed, is
essential, of cowse, in achieving this degree of applicability.

Ve assume throughout that L(1, x, u) is lower semicontinuous in (r, z) and

measurable in (t, x, z) with respect to the o-algebra in la, bl x R' x Rn Senerat-
ed by products of Lebesg.r. ""t" in fa, bl and Borel sets in Rn x Rn. The func-

tion H on la, bf x R'x R" defined,by '

(1.3) H(t, x, p): suplP . u - L(t, x, u\l u e Rnl

is called the Hamiltonian corresponding to the Lagrangian L. It is said to sat-

isfy the boundedness condition tf

(r.4)

where S is some real-valued function on fa, bf * [0, + -) x Rt such that

$(t, r, p) is summable in t for fixed r and p. This condition and the other as-

sumptions on L imply in particular that the integral (1.1) is well defined and not

- o; this is shown in Lemma 1.

In most of our results, we invoke the boundedness condition in a somewhat

stronger form by applying it, not to H itself, but to a certain function Ho which

maiorizes H. We define Ho to bethe least of all the extended-real-valued func-

tions on la, blxR'xRn which majorize H and, are ufper semicontinuous and

concave in the r argument. Thus for each I ela, bl and p e Rn we have

l(r, a) e Rn x Rtl cr_< H'(-t, r, p)l: cl col(r, a) e R" x i?11 a< H(t, x, p)1.

Inthe importantcase where L(t, x, u) ts convex in (x, u)" the boundedness con-

dition on H and the boundedness condition on Ho are equivalent, and in fact
Il0: H (Lemma 2). The two conditions are also equivalent obviously if there

is an r ) 0 such that lxl ) r implies L(t, x, z):1-, or more generally, if the

function { in the boundedness condition on H can be chosen constant in /.
Observe thar if L does not depend on l, the boundedness condition is satisfied

by Ho provided only that Ho is nowhere + F (equivalently: for each p there

is at least one affine function on Rz majorizing the function x --- H(x, P)).
To state the main theorems, we introduce some further notation and terminol-

ogy. An extended-real-valued function I on Rn x R' is said to satisfy the

groratb condition (G,), where 0 ( r ( 1 -, if

(t.;) /(to, 'r) > maxly(lt, - Aocol -ao ' ..o) + bo ' co'

y(1ro - Arcrl-ar. .r) + br, crl,
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where Ao and, A, are nonsin gular n x-z matrices, dg, ay, bo and b, are vectors

in Rt, and the function y: (- *,+ *) -'(- *, + *] is nondecreasing, convex,

bounded below, and satisfies

(1.6) limlnf y(I)/I2 z

(Observe that the right side of (1.5) is convex in (co, .r).) We define

(1.7) s=l(ro, t)laStoStr:bl,-

(i.8) s.:l(ro, tr)la<toltr<bl,tr-t0:€1,
(1.9) llr(t, x,p): tim inr l-tir inf Ho(t,x(r) + trr, pp)/xtl.

p-+a l- )-.1e J

In rhe lamer formula, 7(l) is any point of R' such that the function z *
L(t, i(t), z) is not identically + -. To ensure the existence of such a point, and

to avoid various trivialities, we henceforth make the harmless assumption that

L(t, .,.) ir.rot identically a * for aoy t, and in fact there exists at least one

absolutely conrinuous x: [a, b) -- R' such thar the funcrion 7 - L(t, x(l), *(r))
is majorized by a summable, real-valued function oo la, b\. The definition of H,
is actually independent of the panicular choice of i(l), since Ho(r, x, p) is by

definition concave and upper semicontinuous in r and ihe condition on ?(l)
implies u o(t, i(t), P) > - *. Ve adopt the convention that.

F(r ^, t1, co, cr) : 0 if to= l, and co-- cy
(l.lo) u

- +F if tO: t, and crl cr
Theorem l, Suppose tbat Ho satisfies the boundedness condition and

L(t, x, u) is conuex in u. Let 0 {r ( + e. Tben tbere is an' e > 6 turb tbat tbe

lollouting is true.
(a) The infimum delining F(to, tt,.o, .r) is attained by at least one alc x

for eacb (to, tt, ro, .r) in Srx Rn x Rn.

(b) F ts lower semicontinuous relatiue lo S. x R'x Rn.

(c) Tbe lunction F(to, tr, -,.) satislies the growth condition (Gr) lor.acb
(ro, lr) e s..

Theorem 2. Suppose tbat Ho and H, both satisly the bouLndedness condition

and L(t, t, u) it conuex in u. Tben tbe follotring is true.

(a) Tbe inlimum delining F(to, tr, .0, .r) is attained by at least one arc x

for each (to, tr,.o, cr) in S x Rn x R'.
(b) F ts lower semicontinuous relatiue to .9 x R'x R'.
(c) The function F(to, tr,.,.) satislies tbe grou.tth condition (G*) lor eacb

(ro, rr) e S.

t5
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As we show in Lemma 5, H t(t,.", p) is concave in x, so that in the

"autonomous" case the boundednesd'condition on H, is equivalent to

H r(t, x, P) ( + *. Thus:

Corollary. Suppose tbat L(t, x, u) is independent ol t and conuex in u,

and tbat Ho and H, nortbere haue tbe ualue + *. Then concluszoas (a), (b)

and (c) of Theorem 2 are uali'd.

Theorem 3, Suppose tbat H o satislies tbe boundedness condition and

L(t, t, u) is conuex in u. Assume t'urther tbai tbere is an absolutely con'

tinuous luncrion p: la, bl - R' (e.8, a constant lunction) sucb that

(1.11) r,'p lH(r, x, P()) + , . bQ)|1+* a.e.

Then conclusions (a) and (b) of Tbeorem 2 are ualid, and moreouer:

(c) Tbe function F(to, tr,',') maioizes at least one at'line function on

Rn x Rn t'or each (ro, lr) e S.

In the case of Theorem 3 with p(t) = Po e R2, condition (l.ll) requires

simply that the function (x, u) - L(t, x, u1 - Po ' z be bounded below for

almost every t e[a, b).

Of course, it is not actually necessary to calcrrlate Ho and Ht explicit-

ly from lI in order to apply Theorems 1,2 and 3. It suffices to know a func-

tion Hj ) H such that Hj (t, x, p) is concave and upper semicontinuous in

x, and, Hj satisfies the boundedness condition. Then H o S H; (by the

definition of Ho), so that Ho satisfies the boundedness bondition. Similarly,

if rhe function Hl obtained by substituting H'o tor Ho in (1.9) satisfies the

boundedness condition, then so does Ht. For example, the boundedness

conditions on Ho and H, are both satisfied if

H(t, x, p) S{r(t, ") 1 tr0, fl + p' A(t)x,

where ry'r(t, x), V2(t, P) and the components of the matrix A(l) are summable

in f, and ,b r(t, ,) is concave in r.
Theorem I implies that, for a large class of problems of Lagrange, op-

timal arcs exist when the t-interval is constrained to be sufficiently small.

One is reminded of various theorems on the local existence of solutions to

differential equatioos, and indeed there is a close relationship, apparent in

the proof. Although no estimate is given for e, so that direct application may

be difficult, the result is nevertheless interisting theoretically, because it
shows thar the general question of existence can often be reduced to finite-
dimensional questions about the growth ProPerties of F(ro, tr, ,0, ,r).
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For example, suppose that [to, lrJ is an int...rul of length between t and 2e,

where r has the properties in Theorem l foia certain r>0. Let tr:(to+ t)/2.
Then properties (a), (b) and (c) are applicable to F(to, tz, ., ,) and F(tr, tl, ., .).
Furthermore, by definition,

(1.12) F(to, t,,.0,.,): inf-lr(ro, t2, co, cr)+ F(t, tr, r, e)1.
c ,eR"

Thus the question of the existence of opiimal arcs over the interval [lo, tr) i.
reduced in principal to the question of whether certain infima in c, e Rn . are at-

tained, and this in turn depends on the growth properties of F(to, /r, ., .) and

F(tr, tr.,., .). Thi. idea can be extended, of course, to intervals [ro, lr1 whose

length is an arbitrary multiple of r by "concatenation".
There does not seem to be any direct counterpart in the literature to Theorem I

or conclusions (c) of Theorems 2 apd ). However, conclusions (a) and (b) of

Theorems 2 and 3 have been obtained under other assumptions. We have already

proved Theorem ; in [9] in the case where L(t, r, rr) is convex in (x, u) (so rhat
Ho: H). This previous version is essential to the present one. In fact, most of

the results here rest on rheorems in [9]. Thus it is demonstrated, in passing, that

the special case where L(t, x, z) is convex is (x, u), ratherthan just convex in
u, is really fundamental to a much wider class of problems.

Aside from the case just mentioned, the closest result to Theorems 2 and )
previously obtained is the following one of Olech [Z]. fU"theorem is not stated
as such in [Z], but it is implicit in what is proved there. (We contribute the novel
formulation in terms of an extended-real-valued Lagrangian L having an appropri-

ate measurability property. Extended-real-valued functions have not been employed

in this way by previous authors on the subject.)

Theorem 4 (Olech [l)), S"pp"te tbat H satist'ies the boundedness condition

and L(t, ,, u) is conuex in u. Assume furtber tbat one of the t'ollou.,ing tuo con-

ditions is satisfied, wbere $ is tbe function in (L.4):

(I) d(r, r, 0) ls independent of r in(l .4), and there is a positiue number s

such that ue can ttrite

(1.t3; 6(t, ,, p\ = 600, p) + rgr(t, p)

lor all p € R" witb lpl = s, o/
(II) there is a positiue number s sucb tbat (l.Li)holds for all p e Rn uitb

lpl > r, as well as for p = 0. Furtbermore, tbere is a constant m sucb tbat

[!lort,, p)ldt<(1.14) -lpl ;/ lpl > ".
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Tben conclusions (a) and (b) ql The,orems 2 ancl 3 bold, and

(c) F bas the groutb property ti)t fu, euery positiue .p and

(1.1t) l(lo, r' c0, cr) e .9x Rzx R"l F(lo, /,, co, cr) 1a aruL .i"ll.ol,l.1ll-<cl

is houndcd.

The latter growth property is also implied obviously by conclusions (b) and

(c) of Theorem 2, and similarly by' conclusions (!) and (c) of Theorem I if S is
replaced by S,.

The reader may wonder about the case, prominent in other PaPers on problems

oi Lugrange, where in minimizing rhe integral (1.1) there is the additional precon-

dition rhat "(t\ e X for all 1, where X is a fixed compact set. Due to the fact

that L is allowed to have the value 1-, this case is fully covered by Theorems

2 and 4, as stated. Namely, in this case one can assume without loss of general-

ity, redefining L if necessary, that whenever x f X one has L(t, x, u) - 1x, ?fld

hence H(1, x, p):- *. Then minimizing(7.1) subject to (1.2) and x(l) e X for

all I is equivalent to minimizing (1.i) subject only to (l-2). If H satisfies the

boundedness condition, and L(t, x, z) is convex in urall the assumptions in

T'l-reorems 2 and 4 are trivially satisfied, and both tbeorems yield the same conclu-

si ons.

It shouid be mentioned that Olech's paPer [7], ftorn which we have distilled
Theorem 4, treats a larger class of problems than those considered here, in par-

ticular certain problerns with a vector-valued integral (1.1). The earlier work of

Cesari [1], where a larger class of problems is also treated, likewise contains

a version of Theorem 4(I), where in effect the stronger assumptions are made that

rhe set

(1.16) 10, *, u)l L(t, x, ,) < + *l
is closed and has a closed projection in the (1, x)-space, L is continuous relative

to (1.16), the function @ in the boundedness condition on H can be chosen con-

stant in t, and for lpl sufficiently small, constant as well in r. Cesari's result

in turn generalizes classical theorems of McShane [5], Nagumo [6] and Tonelli

It:] ro. free problems of rhe calculus of variations. At the same time, it has the

advantage of yielding for control problems (with unilateral constraints) existence

results more general than those of Filippov [3], Lee and Marcus [4], and Roxin

[14], among others, in that unbounded control regions are permitted.

The results in rhis paper are likewise relevant to optimal control, as we

explain in $4 pursuing a more general line of reasoning on the matter than Cesari

or Olech, and thereby extending certain theorems of those authors in several reslrcts.

moreouer,

real a the, (closed)
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A compacrness result (Theorem )) is proved t $3 *hicl,, as an obvious corol-
Iary, gives the existence of optimal arcs'in'various. "nonconvex" problems of

Bolza. Other such theorems can easily be derived from Theotenis 1 and 2, for

examPle, using the growth Pr()perties of F. Related theorems of a more detailed
narure for "convex" problems of Bolza have been preienred in [q] and ItO].

2. Preliminary faets. The lemmas stared below are needed in proofs of
Theorems 1,2 and 3 in the next section:

Lemma l. Suppose tbat H satislies tbe boundedness condition. Then tbe
integral (1.1) ls utell defined for any absolutely continuous t'unction r: [t0, tl]

- Rn, in tbe senie that tbe integrand L(t, x), *(t)) (wbere it exists, ubich is
almost euerywhere ,n lto, rr1) ls Lebesgue measurable in t and maiorizes a

summable lunction of t. (Tbus tbe ualue of tbe integral is unambiguously a real
number or 1 *.)

Proof.' The Lebesgue measurability of L(t, x(t), z(r)) in r, where x(l) and

u(t) are Lebesgue measurable in t, follows easily from the Lebesgue measurabil-
ity of the mapping t + (t, 

"(t), "(t)) and rhe special measurability propefty as-
sumed for L (cf. U2]). (If L were only Lebesgue measurable, the composed

function could fail to be measurable.) The boundedness condition on H implies
further that

(2.1) L(t, x(i,;(t)) Z -6Q, r, o)

if lx(t)l ( r for all t, Since {(t, r, 0) is summable in t, the conclusion is ap-

" Parent.

Lemma 2. Suppose that H o nouthere has tbe ualue + *. De.fine

(2.2) Lo(t, x, z) = suplp . u- IloQ, r, ill p e Rzl ) -*.
Then Lo(t,., .) lt t'or each t e la, bl tbe greatest, lou.,er semicontinuous, conuex
(extended-real-ualued) lunction on Rnx Rn maiorized by L(t,.,.), and Lo is
measurable on fa, bl x R' x Rn in the sense already described for L. Moreouer,

Ho is tbe Hamiltonian corresponding to Lo, in otber uords

(2.3) Ho(t, x, P): suplP ' u- Lo(t, x, u)l u e R"l,

Proof. Let

M(t, P, rz;) = suplrz . x + H(t, x, p)l x e Rnl

= supl? . x + p. u - L(t, x, u)l (x, u) e Rrx R"l.

(2.4)
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Then M is convex in (p, t;a) by the second expression, and M(t, P, .) is the
convex function on R' conjugate co -H(r, ., p). It follows from the fundamental

theorem on conjugare convex functions (see [13, Theorem 12.2f) thar the conjugate
of M(r, P,.) is in turh the greatest lower semicontinuous convex function on R'
majorized by -H(t,., P), which is -Ho(t,'. p) by definition, unless the latter has

the value - - somewhere. Thus under our assumption that Ho nowhere has the

value + F we have for all Q, ,, O)

(2.5) Ho(t, x, p) = inrlM.(t, p, -) - -. xl u., e R"l.

Combining this with (2,2), we got

(2.6) Lo(t, x, z)- suplrz. x+ p. r- M(t, p,*)l(-, p) e R" x R"l.

Thus for each I the function Lo(t, .,.) is conjugate to M(t, ., .), while rhe latter
isby (2.4) con.iugate to L(t,.,.). Applying once more the fundamental theorem

on conjugate convex functions, we see that Lo(1,.,.) is the greatest, lower
semicontinuous, convex function on R'x Rt majorized by L(t,,,.). Finally,
(2.2) defines Lo(t, x,.) as the conjugate of HoQ, x, .). But HoQ, x,.) is t
convex function on R' by virtue of(2.5) and the convexity of M(t,.,.) [13,
Theorem 33.11. Since by hypothesis Ho nowhere has rhe value 1-, Ho(t, x, .)
is either finite and continuous on R' or identically - d on R" LL3, Theorem 7.2].

This implies that rhe conjugate of L o(t, x, .) is in turn H r(t, x, -), so rhat (2.3)

holds. The lemma is now proved.

Lemma 2 is basic to our whole approach. If H0. satisfies the boundedness

condition, Lemmas I and 2 imply that

where bbth integrals are well defined. Furthermore, since Lo(t, x,2.,) is convex

in (x, u), the integral on the right is convex as a function of the atc x. Results

in [91 yield compactness properties of the set of arcs satisfying

(2.8) lb r.o1, x(r), ;(r)) dt <a

for a fixed a. Lower semicontinuity properties of the integral on the left in (2.7)

enable us to transfer these compactness properties to the corresponding set of

arcs satisfying

(2., I 
b at, '(r), *(r)) dt < a.

The case of varying incervals ltr, t11 is handled by reformulating the situation

in such a manner that only the fixed interval la, bl appeats,

(2.7) fb r(t, "(r), i(r)) o,> f! Lo|, x(t), t(t)) at) -€,
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Let 0 denote the set ofall absolutbly'conrinuous functions x:la, bl- Rn.
Ve regard 0 t. 

^ Banach space under rhe norm

(2.10) ll,ll: !: lt?)ldt+ l"(o)1.

The lower semicontinuity we need is expressed by the following lemma. This
lemma, essentially due to Olech [7], [S], is closely related to more recent results
of Cesari [2] that are more general in mahy respects,.but more restrictive in orhers.
We furnish a proof based on the theory of cony'ugate convex functions. For a fresh

discussion of the well-known fundamental connection between lower semicontinuity
6f 6hs T.agrangian functional and the convexity of L(t, x, u) in z, we refer the

reader to the cited paper of Cesari.

Lemma 3. Suppose tbat H satisfies the boundedness condition and L(t, x, u)

is conuex in u, Tben tbe functional

(2.1r) t,(x) : {b rQ, x(i, r(t)) At

is louter semicontinuous sequentially in the ueak topology on 8-.

Proof. Since the function L(t, x, ') fro- R" to (- m, + m1 is lower semi-
continuous and convex, it is the conl'ugate of its conjugate function. The latter
is H(r, ,c, .) by definition. Thus we have

(2.t2) L(t, x, z) = suplp . " - H(t, x, p)l P e R"l.

Ve demonstrate first that this implies, for every x e A,

(2.13) fb rQ, x(r), i(r))rr: 
rtt* fu foOl. t(, - H(t, ,(t), pQ))]dt,

where 9- is the space of all bounded, measurable functions from la, b) rc Rn.

Formula (2.L2) expresses I, as the pointwise supremum of a certain collection

of functionals, one for each p e 8*, and only the lower semicontinuity of the

latter functionals rhen needs to be proved to obtain the lower semicontinuity of I,.
Fix x E0 and let

(2.14) f Q, u): L(t, x(i, u) and b(t, fl : nQ' x(t), P).

From the measurability of the mapping (t, u) - (t, x(t), z), it is clear that / in-

herits from L the property of being measurable with respect to the o'algebra

generated by products of Lebesgue sets in La, b7 aad Borel sets in R". The

convex functions /(r, .) and b(t, .) are conjugate to each other, and hence D also

has this measurability properry [8, Proposition 1]. In particular, h(t, p(t)) it
measurable in t for each p e 9-. Th. boundedness condition on H implies that
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(2.r5)

for every summable u: la, b] - Rr .' (The cited theorem hypothesize s h(t, p) I - *,

but the extension to allow the latter possibility is trivial.) Taking a(r): i(t), we

eet (2.I)).
Ve now fix p a 9* and proceed to investigate the lower semicontinuity of the

functional

for each p € R" the function n(., p) is hajorized by at least one summable function'

Therefore, by a fundamental theorem on conjugaie integralfuactionals lsee [8,

Theorem 2]) the integral Sb"lr(t, ptt))dt is well defined for each p € S* and we

have

,":F- # tp(r) . ,(r) - h(t, pQ)\1" = I: 1Q, ,QD at

Given a sequence x n in '8 converging to xo in the'weak topology' we can find

an r)0 suchri,", irn(r)l (r for aIL t and A' Let [Prl l"afinitesubsetof Rn

whose convex hull inciudes p(r) for every t. The convexiq of H(t, x, ') and the

boundedness condition on H implythat, whenever lrl I r ar,d q e.olprl,wehave

(2.16) . - f:p(t).i(t) n,- [: HG, x(t), P?Ddt'

The first integral describes a continuous linear functional on 0, so the issue

revolves around the weak upper semicontinuity of funciional

(2.r7) , - fo H(t, x{t), p(ildl

(2.18) H(t, x, q) <m xoH\t, x, Pr) <maxr6(t, r, p.):'!(i'

where ry' is a summable function' Therefore,

(2.r9) H(t, xu?), P(r) S /(, for all t and k'

Since.in particular xu(t) converges to "o(t) 
fot each l' we have by Fatou's

Lemma

tt?_.:n fb u(t, "u(r), 
p(r)) il S [: H(t, xo(t), p(il) dt

as desired, Provided that

t'p"Jo HQ, xu?), p(r)) S a(r, ro(r), p(r))'

Thus the proof is reduced to showing that for fixed t ela' b) the function

H(t, x, p(r)) is upper semicontinuous in x' at least as x ranges over the ball of

radius r and center 0 in R'. Equivalently, we need to show that for any ae Rl

the set

(2.20)

(2.2r)

(2.22) lG, u) e Rn x Rnl LG, *, u) - p(t)' u < a' lxl 1rl



OPTIMAL ARCS AND THE MINIMUM VALUE FUNCTION 63

has a closed image under rhe projecrion. !x, u) -x. The assumed lower semi-
continuity of L(t, ', .) ensures that (2.22) itself is closed. Helce boundedness
of (2.22) will suffice for our conclusion. We may assume rhe points F; i\r (2.L8)
chosen so rhat their convex hull includes a ball of radius s ) 0 about p(r). tten
(2.18) holds whenever l"l Sr and lq - p(r)l ( s, so that from (2.L2)_we have

(2.2, L(t, x, ,\ - p(r),. , > slul - rlr(t),

Therefore,every (x, z) inthe set(2.27j satisfies. lzl 5ta+rb{t))/", aswellas
Irl < r, and the lemma is proved.

Remark. A stronger propeny than described in Lemma 3 is actually true,
although we do not need it here. It follows from Theorem 5, namely, thar for
every r) 0 and cl€Rl theset

{x e 0l tr(x) 1a, l"(l)l 1 r f.or alt tl

is compact in the weak topology. (One uses che device of redefinition mentioned
in $1 following the statement of Theorem 4.) Almost the same fact was established
tacitly by Olech [7]; r.. also [10] for refinements in the "convex" case.

Lemma 4. Suppose tbat H o satislies the boundedness condition. For each

t eLa, bl, deline

(2.24) E(z) - cl {(p, *) e Rn x R'l .up lH(r, x, p) + r. 'l < r--}.t' 1,,i" t
Tben E(t) is nonempty and conuex. Furtherm.ore, giuen any real s > 0 there
exist n xn mattices N(t) and uectors iQ) in Rn, components summable in t,

such that

(2-25) (p, ru(r)p + l(t)) e E(r) ttheneuer lpl S '.
Proof. By definition we have

(2.26) E(r) = ctl(p, w\ e R" x R"l M(L p,ut) 1+*1,

where M is given by (2.4). Since M(t, ., .) is convex by the latter formula, E(t)
is convex. From (2.4) and the definition of Ho we have

(2.27) M(L P, ra) = sup lw. x t Hn(t, x, p)l x e R"l,

and hence by (2.1)

(2.28) M(t, p,zz): sup lut. x + p. u- Lo(t, x, dlG, i e Rn x Rnl,

This, combined with (2.6), shows that Lo and M are Lagrangians dual to each

other in the sense of 19]. Then 19, Proposition 2a] asserts that the boundedness

condition on Ho is equivalent to a certain condition (Co), according to which in
particular there exists for each p € R" at least one summable function *: fa, bf
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- ..

-- R' such that M(1, p, -{t)) ( + *. . (In particular, E(t) is nonempty.) Then

[g, Proposition 3J applied to M furnishes for any s ) 0 marices N(l) and vectors

l(l) with the specified property.

,Lemma 5. Suppose that H o satist'ies the boundedness condition. Then

Hr(t, x, p) in (L.9) is concaue,in x and conuex in p. Tbe bouidedness condition

on H , implies tbe existence of n x,n matrices N(t) and uect ots i(t) and k(t)

in Rn, components summable in t, .suc.b tbat

(2.2, Q, r,t()p + /r) + sa(r)) e E(r) if lpl S s ( 1e.

. Proof. Let

(2.30) H r(t, x, p) = lim inf H oQ, V(t) + Lx, p)/\,

where F(t) is chosen so that L(t, x(t),.) is not the constant function + * (and

consequently Ho(t, ,(t), p) > - *). Thus Hr(/, ., P) is the recession function
for the upper semicontinuous, concave function Ho(t, -, p)ln, p.66]. Sin.e

-Ho(t,., P) is bv Q.5) conjugate to M(t, P,'), it" recession function is the sup-

port function of the effective domain of M(r, P, .), in other words

(2.3L) Hr(4 x, p): supl*. *l ut€ R', M(t, p,rz) <+*l

[13, Th"or.rn 13.3]. Recall from the proof of Lemma 4 that the set

Eo(/) : 1(p, -)l M(t, p,rl,) < +Ll

is convex and (because of the boundedness condition on Ho) has all of Rz as

its image under the projection (p, w) - P. It follows easily then that

.tl*l (p, u,) e E o()l: l-l Q, u) e cl Eo(, = E(rl

(see [13, $6]). tir"", wirh E(r) as in (2.24), we have

(2.32) Hr(4 w, p) = suplrz . *lQ,u) e E(l)I<+*.

Since E(r) is a convex set, we see from this formula that for each (r, r) the

function Hr(t, x,.) is convex and nowhere + F. Hence it is the conjugate of

its conjugate: defining

Lr(t, x, z): sup lp. u- Hr(t, x, p'll p e n"l
(2.33)

= ",rplp 
. u + x . -l Q, w) e E(il,

we have dually

(2.34) Hr(t, x, p) = suplp. "- Lr(t, x, il u e Rnl.

Ve note now that, by definition,

(2.3, H ,(t, x,l) : lim 
*r3f 

H r(t, x, pil/ tt.
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Since Hr(r, x, .) i" convex and nowheie'+ *, (2.35) says that H r(t, x,.) is the
recession function for HrQ, r,.) (in facr, "lim inf" can be replaced by "lim").
Therefore, pursuing the same reasoning as above, H r(t, x,.) is the support func-
tion of the effective domain of thc conjugate of Hr(t, x,.), which is Lr(1, x, .):

Hr(t, x, p) = supIp. ,l u e Rn, Lr(t, x, u) <+-l

= sup{p . ,l (r, u) e D(t)l;

D(r) = {(r, ")l tr(t, x, u) < +*1.

The convexity of D(r) is apparent f.rcm (2.))), and, as a consequence, Hr(t, x, p)

is by (2.)6) not only convex and lower semiconrinuous in p, but concave in x.
Next define

(2.35)

where

(2.37)

(2.38)

(2.)9)

(2.41)

Mr(t, p, rz): supl*. , + Hr(t, x, p)l x e R"l,

-Fr(t, x, P) = suplrz . x - Mr(t, p, ut)l w e R"l.

In other words, M r(t, p, .) and -fi ,(t, . , P) are the conjugate and biconjugate of

-Er(t,., p), respectively. In view of the concaviry of Hr(t, x, p) in x, rhe bound-
edness condition on H, is equivalent to the boundedness condirion on Fr,.o
that henceforth we work solely with the latrer. Combining (2.38) and (2.36),we
see that

(2.4o) Mr(t, p, tu) = suplw . x + p. ,l (*, u) e D()1.

But D(l) consists of the vector pairs (x, z) such that the linear functional (p, ut)

+'tD. x +p. u is bounded above on E(t). Hence [13, Corollary I4.2.Ll:

Mr(t, p, w) = o if (p, w) e E r(i,
=+N if (p,w)/EJi,

where E, is the recbssion cone of E(l):

(2.42) Er(, = lQ, -)l E(i + (p, -) c B()1.

Note that Mr(t, P, zu) is convex and lower semicontinuous in (p, ut), and

Mr(t, 0,0):0. We claim that M, is also measurable in (t, p, rz,) with respect
to the o-algebra in Ia, bl x Rn x Rn generated by products of Lebesgue sets in
la, bl and Borel sets in Rz x R2. This properry is needed so that M, satisfies
condition (B), as well as (A), (C) and (D) of [9]. Ve can then apply [9, Proposi-

tion 2a], according to which (in view of (2.3Dand(2.41)) F, satisfies the bound-

edness condition if and only if there exists for each p € R" a summable function
u; la, b] - R' such that
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(2.4, (p,.Q\ e'r'r(t) for all t.

To prove rhe measurability property of M, in question, we argue first that M

has this property, bbcause Lo has it (Lemma 2) and M(t, ', ') is the coniugate of

Lo(t,.,.) (see (2.28)) [12, Proposition 1]. The measurability propeny of M implies

for each a c R I the measurability of the set

(2.44) lQ, P, u)l 
!(r, P, -)5 al

in the sense described. For each t let E"(t) denote tne (P, zz)-section of (2'44),

and let d"(t, p, zz) denote the distance of (p, .) from E"(l) (distance from the

empty set being + -). Since M(t,.,.) is lower semicontinuous, Eo(l) is closed.

It is known that in this event measurability of (2.44) (with respect to the o-field

generated by products of Lebesgue sets in la, bl and Borel sets in R" x R") is
equivalent to the (Lebesgue) measurability of do(t, p, u.,) with respect ro t for

each (p, a) (see [12, Theorem t]). Let d(t, p, w) denote the infimum of d\t, p, u)

over all real a (or equivalently, over all integers a). Then d(t, p, uL) is the

distance of (p, *) from E(t) (which is the closure of the union of the sets f'o(r)),

and d(t, p, u) is again measurable in t. Therefore, by the fact just cited, the set

(2.45) l(u p, Dl (p, w) e E(il

is measurable in the desired sense in La, bl x Rn x Rn.. Now choose any summable

function j: [a, b) - Rz such that

(2.46) (0, i(r)) e r(l) tor all t.

Such a function exists by Lemma 4, since Ho satisfies the boundedness condition'

Since Er(t) is the recession cone of E(l) by (2.42), we have

(2.47) E1(, - fi o/dfn(r) - (0, i(r))],

where the intersection is over all natural numbers ^ LI3, P. 61]. This shows

that the set {(t, p, *)l (p, w) e E,(t)l is the intersection of a countable collection

of measurable sets and therefore measurable. The desired measurability ProPerty

of M, is.now verified.
Summarizing to rhis point, we have proved that the boundedness condition

on H, is equivalent to the existence for each p e Rn of a summable function

w. la, bl u Rn for which (2.43) holds. We argue now from the latter ProPerty'

Applying [9, Proposition 3] to MP we obtain rv(r) e Rnxn and A(t) e R" with

components summable in l, such that

(2.48) (p, ru(r)p+ ft(r)) e Er(r) for all I if lpl : 1'

Since Er(l) i. a closed convex coner we have accordingly
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{p, Ni\tlp + sa(r)) e ar(r) ir lpl S s ( +x.

(0, {r) + (p, N(r)p + sa(r)) e E(r) if lpl < s ( 1x,

where 7 still denotes a summable function such that (2.46) holds. Since (2.50)

znd (2.29) are equivalent, Lemma 5 is proved.

3. A compactness theorem urrd th"tproofs of .the main results. Our arguments

are based on the following generalization of a result we established in [9, Theo-
rem la] in rhe case where L(t, x, u) is cdnvex in (x, u).

Theorem 5, Suppose tbat Ho satisfies the boundedness condition and

L(t, x, u) is conuex in u. Let l: R' x Rn - (- -, + *) bn an arbitrary lower semi-

continuous function. For the sels

o.L) [" . Ul fb r(t, x(t), *(t)\ dt + t(x(a),*(a)) s o.], d. real,

all to be compact in tbe uteak topology of 8, it is sut't'icient that tbe follou.'ing

condition be satisfied, Let C, and C, be tbe conuex subsets of Rn x Rn de-

lined by

(2.49)

Then

(2.50)

3.2) C r:

O., cr=l

(3.4)

',)l ,,".11,, 
lco' do- ', . dr- ilcoi.r)1 <**|,

{,'0,
(p(o), p(6))l r P € 8, (pQ), f(i) e E() a.e.l,

uhere E(t) is giuen by (2.24). The condition is that the relatiue interiors of C,
and C, baue anonempty intersection, and the affine bull of Crv C, is all of
R'x Rn. Here C, has the same relatiue interior and closure as tbe conuex set

ci cc, where

c;: 
\ttt'>, 

p@))l p €8,, t1e rr.la, b7,

,":F, 
["(,, x, P(t))+ l(r) ' A S OtA].

Proof. Let /o be the greatest, lower semicontinuous, convex function on

R'x Rn majorized by /. Assuming that the condition in question holds, the set

C, is in particular nonempty, so that /o nowhere has the value - *. The func-

tion Lo in Lemma 2 satisfies the regularity assumptions imposed on L, so that

by Lemma 1 the functional

o.5) O(r) = {b ro0, 
"(r), 

t(r)) dt+ loG(,a), x(b)), x e 8,
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is well defined. Since /o and Lo(i".,..) are convex, we can apply ro @ our
compactness result in [9, Th"or.- 1a]: rhe boundedness copdition on Ho is, in
view of (2.3) and [9, Proposirion 2], equivalent to condition (Co) of [9], and the
other property required by [9, Theorem lal is precisely the condition we have stated
on the sets C, and, Cr. Thus the sets

0.6) l" e 0lo(") 1 o1, a reat,

are all weakly compacr. These sers contain the'corresponding sets (l.l), since
Lo < L and l, ( /. It follows then from Lemma 3 that rhe sets (3.1) are likewise
weakly compacr, since a relatively weakly compact subset of a Banach space is
weakly closed if and.only if weakly sequentially closed. The fact thar C, and

C) have the same relative interior and closure is asserted by [9, Corollary 4 to
Theorem 31, applied to the function M in (2.4), (2.27) and (2.28). (In the cited
corollary, condirion (Do) is mislabelled (Co). In rhe contexr "f [9], the function
M is dual to Lo and therefore satisfies conditions (A), (B), (C) and (Do), since
Lo satisfies (A), (B), (Co) and (D). Thus the corollary is applicable.) This
completes the proof of Theorem J.

The proofs of Theorems I,2 and J also use a new device of reformulation
that has wider theoretical applications. There are other methods, of course, for
representing a problem wirh a variable /-interval in terms of a problem with a
fixed r-interval, but these require that L(t, ,, u) be more rhan just measurable
in t.

Reduction of variable interval case to fixed interval case. Each triple
(x, to, tr), where r is an absolutely continuous function from [ro, tr) to R",
Ltn, trTCla, bf, may be identified with an absolutely conrinuous funcrion x, :
(x, rg,rr) from lo, b7 to R'+Z,where ro(t) : to, rr(t) = tr, i(t) = 0 if a ( t { to

or l, ( t {b, Denote the set of all such functions x' by 8'. Defin.

O.7) L' : la, b] x Rn+2 * pn+2 
- 

(-*, a*]

as follows, where .xt : (x, 16, rr) and u' = (u, oo, o r):

(3.8) L'(4x',u')=+* unless alrolrr{b, o0-0, ot:0,

and when the larter conditions are sarisfied

L'(t, ,', u') -- L(t, x, u) if ro,- t 1r|

G.D : Do(z) if t 1r, or t> ry

=k(t,x,u) if t=roor t-.r,

where Eo(z) is 0 if u:0 and,1* if uf0,and, k\t, x,.) isrhegreatestl.s.c.
convex function majorized by L(t, x, -) and 60. Then for an absolutely continuous
function xo:la, bf + Pn+2 we have
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(r.to1 f: L(t, x(i, x()) dt

if x' belong" to 8' and coresponds to *rlto,rrl -* R", while

(3.1 1) {b tG, x'(t), *'e)) dt: +* if x' (8'
Tbus minimization problems for L u.,ith {ro, lr1 uariqble can be regarded as prob-

lems for L' ouer the t'ixed interual [a, bl,

To see by way of Lemma 1 thar the integrals of L' make sense, observe that
L'(t, x': u') is again lower semicontinuous in (x', u') and measurable in (t, x,, u')
in the same sense that we have imposed on L. Furthermore, if H satisfies the

boundedness condition, then so does the Hamihonian H' corresponding to L',
since for p' - (p, no, nr) we have

o.12) H'(t, ,' , p') : -* unless a (. r o 1. r, (. b,

and in the latter case

H'(t, ,' , p') : I|(t, x, p) if ro( t<ry

if. t<16ortlrrt
: rn"*{H(r, x, p), el if t = ro or t: rf

Note also that L'(t, x', u') is convex in ut if L(t, x, z) is convex in z.
Unfortunately, it is not necessarily mue that if Ho satisfies the boundedness

condition, then the analogous function Hj corresponding to L' satisfies the
boundedness condition. The essential diffrculty is that there may be no finite
concave function majorizing borh H(t, ., p) and 0, even though H(t,., p) is
majorized by such a function. However, this is a minor complication which, for
our purposes, is easily obviated. We need only add to Do(zr) in(3.D the term

Du(x):o if xeB,
13.r4)

-+6 if x{8,

where B is some compact subser of R'x R'. Then the identification (3.10)

still holds provided that

13.r5) x(to)eB and x(t)eB.

The effect of this alteration on H' is to replace the 0 in (3.13) by -Du(x). It
can then be verified that the boundedness condition on Ho does imply the

boundedness condition on Hj.
(We sketch the proof of the last assertion. Fix p e R2. Assuming that Ho

satisfies the boundedness condition, we can actually find summable functions

69

L'(t, ,'(t), *'(t)) at : [t;t0

3.13) =0
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w:la, bl - Rn and a:fa, bl -* Rl.such that

O.L6) Ho(t, x, p) < w(il. x + a(t) ior all t and,'x

[9, Proposition 2]. Since B is compacr, we can also find a summable function

B: [a, b) -- R 1 such that

13.r7)

We then have

(3.18)

for all

3.19)

0.2r1

a<u(t).x+p(t) forall tif xeB.

maxlH(t, x, p),-6u(x)l:-Q). r+ la(r)l + lp(r)l
x and, t, and consequently

H'(t, x', p'):w(i. "+ la(r)l + lp(r)|.
Since the right side of (3.19) is affine in r, the left side can be replaced by

ai(t, x', p'). Thus

3.20) H'o(t, xl p'): l-Q)1 . ,+ la(r)l + lp(r)l if lx'l { r,

where the right side of (3.20) is summable in t. We conclude from this that
Hj satisfies the boundedness condition.)

Proof of Theorem 3. In establishing (a) and (b), it suffices ro show that
rhe assertions are valid for (to, tt,.o, rr) in S x B x B, where B is a fixed
compact subset of R'. However, this case can be reduced by the reformulation
device just described to the case of a fixed interval. Thus we need only prove

that F(i, b,.,.) is lower semicontinuous relative to B x B, and that for each
(co, .r) e B x B the infimum defining F(a, b,.0, .r) is attained. To do this,
we apply Theorem 5 with

(.0, rr):0 if co e B and cr € B,

=+* if colB or crlB.

The compactness of B implies that the set C, in Theorem 5 is all of Rn x Rn.

On the other hand, C, is nonempty by the hypothesis of Theorem 1.. We may

therefore conclude from Theorem 5 that every set of the form

3.22) L(t, x(,t), i(t)) dt < a,

(a real) is weakly compact. The set

(3.23) l(ro, .r) e B x Bl F(a, b,.0, .r) < al

is the image of (3.22) under the weakly continuous mapping x - (*(a), x(b)).

Hence every set of the form (3.21 is compact. In particular, F(a, b,., .) it

x(a) e B, .(U) e nlV,alr
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;

lower semicontinuous relative to B x 8.. From the weak compactness of (3.22) we

also see the weak compactness of

3.za)

it c, e B and ct €8. Since this'is rrue for arbiuary real a, the infimum of

[|tG, "(r), i(r))/t subject rc x(a) = c0; x(b) = c' i.F attained by at least one arc
r. This is of course the infimum defining F(a, b,"0, ,r), so assertions (a) and
(b) are proved.

Assertion (c) of Theorem 3 is a consequence of the last part of Theorem 5,
which implies in parricular thar, since rhe set C2 is nonempty in the argument
above, so is Cj. Thus we can find functions q €8 and p € Llla, &] such thar

(3.25) BG) >_ H(t, x, q(t)) + q0) . x f or al| x € Rn

or in other words

0.26) L(t, x, ")240). *+ q(t). u- B0) for all (*, u) e R, x Rn.

It follows that

{" 
. U[ [! rtt, x(t), *(t)) dt 1. a, x(a) : co, 

"(a) 
: .,]

i(ro, rr, ro, .r) 2q(tr). .r- q(to\. .r- {:: B(t\at-

[,' o, 
,t,, "(,), ,(,)) " , tj 

,rrr:,, _rr,," rrl, 

*^,r),rr, 

),o _rrr, 

orr,,r, 

0,,
(3.27)

and hence

3.28',)

Proof of Theorem 2. Applying Lemma 5, we consider rhe differential equation

3.29) p(r) = ru(r)p(il + i\t) + lp(r)la(r) a.e.

The summability of ru(t), l(t) and A(t) in I yields a global Lipschitz property
of (3.29) which implies in particular the existence of a solution over the whole

interval la, b). Any such solution p satisfies

O.3o) QQ), iQD e E(i a.e.

by virtue of (2.29), and hence the hypothesis of Theorem 3 is satisfied. There-
fore (a) and (b) of Theorem 2 are true.

To prove (c) of Theorem 2, we note first that for each po € Rz there is ac-
cually a unique solution p e8 to G.2Dwith p(d: Po. Furthermore, in view of
(3.30) each solution to (3.29) satisfies (p(a), p(b)) € C' where C, is the convex
set introduced in (3.3). Thus C, has all of Rz as irs image under the projection
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(Oo' l) - Po, and hence ri C, (therblative interior of Cr) likewise has all of
Rn as its image under this projection. Theref.ore, we can belecr &, e Rz with
(o,b) e iCr.

We now consider the differential equation

O.3L) d,n = N(r)a(r) + lq(t\lk(i,
which similarly has for each initial.poinr qo € Rn a unique solution q eA with
AQ)= qo. Denote the value of q(bl for this solirtion by QQ); observe that

O.32) e$qo): \eQo) if I > o.

If p satisfies (3.29) and 4 satisfies (3.31), we have for any ), ) 0

G.33) bQ) + \d(i = ry(r)tp(r) + ra(r)J + /r) + o(ik(i,
where

o(t) = lp(t)l+ Ila(r)l : lp(r) + tra(r)1,

so that

O-34) (p(r) + Xq(i, pQ) + I,|(r)) e E(r) a.e.

by (2.2D. Then (p(a) +).q(a), PQ) +Xq(bD €Cr. ln otherwords, for each qo e

R' the convex set C, contains half-lines of the form l(po, p) * X(A0,Q(ao)) 
|

I 2 01. Each pair (qo, QQ)) therefore belongs to the recession cone of cl C2,
which is the same as the recession cone of r't C2U3, Corollary 8.3.1]. tn pui
ticular,

G.3, (0, ar) + Qo, Q(q)\ e ,i C, for alt qo € Rn.

We recall now from Theorem 5 that C, has the same relative interior as the

convex set Ci in (3.4), This enables us ro infer from (1.35) that

e3q (qo, Q(q) + br) e ri c', for att Qs € Rn.

l-"t lq'ol i = 0, ... , nl be the veftex set of a simplex in R" which includes the
unit ball. . There exist a unique matrix A , e R"' and vecror a, € Rn such that

G.i7) Froio+or=e(ti), i=0, 1,...,m. e

If qo is any nonzero vector in Rn, the vector lAol-lAo belongs to the unit ball
and hence is expressible as a convex combination of the q!:

(3.38) ltol-tto= i 
^or'o-i=0

We then have
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''.m

O.3D Ir(lqol-tqo) + o',.*'t i,r(Ara'6 + ar),

so rhat bv (3.37) and (3.32) 
i=o 

'

:

o.4o) Ar(qo) + lqllat= lqrl i \reeio) = i x,o{hslair't.
i=0 i--0

It follows tron (3.16)and the .ono.*ityiof ri Ci thai

(3.41) 
. 

(qo,ArQo+hslor* tr) = 
,E*^ilqolq'0, 

e(lqolai) * ur) e ri c'r.

We have shown this for qol0, but ir also holds trivially for qo = 0 by (3.36).
Thus

O.42) (qo, FrQs + lsolar+ br) e ri C', for all Qs € Rn.

Now if (Oo, O) e Cj, there exist by definition functions p eQ and p e

Ltla, bl such that P{a) = po, p(b) = py and, (3.2il holds. This implies, as we
have already seen in the proof of Theorem ), that (3.28) holds, and in particular

O.43) F(a, b,.0, .r) )-?t, ct- po. ,o- ['" Otlor.

Therefore

O.44) 6(po, pr) < ** for alt (po, p r) e C'r,

where

3.4, C(po, pr): sup{P1 . ,r- po. co- F(a, b, co, cr)l> -*.
(The inequality G(po, Pr) > - - results from our basic assumption that for at

least one r e 0 the function t - L(t, x(r), i(l)) is ma jorized by a summable

function. In other words, there is at least one pair (co, cr) such rhat
F(a, b, ro, .r) ( + -.) The function G is convex according to its definition

O.45). Since Cj is a convex set, (3.44) implies that G is continuous relative to
ri Cj. Cornbining this fact with (3.42), we see that rhe function

3.46) po- G(po, Irlro+lpsla,+ ur)

is finite and continuous throughout R'. Let

O.47) s(p)= *'* c(po,ErPo+lpola,+6,)(+-.
la6l<r

73
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Reasoningfrom(3.45),wededucethat.foreveryp0€R"

O.48) F(a, b,.0, .r) >-(Arps+ lpolar+ br). rr- p'0.'.0- g(lprl)

and consequently, letting A, denote the transpos. of A,

F(a, b,.0, .,) ) br. cr+ sup- l(d,., - .o) . ps + lprlar. cl - s(lp.l)l
PO€R!"

O-49) =bt. cr.;3% lpl.o- A'rcrl+Fat. cr-sqr)|.

bt- rr+yr(lro - ar. l-ar. rr),

with

o.io) /r(r) : 
,ilpo 

lur - sk )1.

The finiteness of g(p) for all p. e10,1 -) allows us ro conclude from (3.50) that

/1 is a nondecreasing, convex function which is bounded below by -g(0) and

satisfies

3.51) 
^IL 

,,(,\),/tr = +-. 
,

By a parallel argument (with the above roles of po and P, reversed), we can find
a similar function /6r matrix Ao, and vectors ao and bo such that

3.52) F(a, b,.0, .r) )_bo. co + yo(1., - Aocsl 1ao. cs).

A function y can be constructed such that /1Tg,T l yy and y too is non-

decreasing, convex, bounded below and satisfies (3.52). Then F(a, b, ., .)
satisfies (i.5) and the growth condition (G*) holds as asserted.

Proof of Theorem l. Choosing any s such that 2r ( s (+ -, we consider
the differential equation

O.5, p(r) = ru(r)p( ) + iQ) a.e.,

where N(l) and i(r) have the property in Lemma 4. Let B, denore the closed l

ball in R" with center 0 and radius r. Since the components of N(l) and 7(r)
are summable in t, there is an € > 0 such thar, over interval lA, T) Cla, bl
of length ( 2r, the differential equation has a (unique) solurion in B, emanating
from each point of Brr" as well as a unique solution in B" terminating at each
poiot of Brr. Each solution P to (3.5) ooe, fV, Z''] thatstays inside B- sat-
isfies

3.54) (pQ), iQ)) e g(i for atmost eyery t e la,ll
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by (2.25). In particular, therefore, Theorem 3 can be applied with [a, &] replaced
by any subinterval tA,Tl of length < 2r. This shows that coriclusions (a)

and (b) of Theorem I are valid.
For notational simplicity in the proof of (c), it suffices ro assume that the

interval la, bf itself is of lengrh l-2e and to demonsrrate that then F(a, b,.,.)
satisfies the growth condition (G'r). Thus we can assurne that for each po e Br,
the solution P to (3.53) with p(a) = poi satisfies

3.55) (p(r, p(r) e E(t) for almost eyery t ela,Tf,

Let Po(po) denote the value of P(b) for'this solutionl of course, Po is an affine
transformation. For the set C, in (Jl) we have

3.56) (po,,PoQoDec, if po€82,.

We see in particular from (3.32) that the image of the convex set C, under rhe

projection (Oo, O) -po includes Br,. Hence the image of ri C, under the
same projection (where "ri" denotes relative interior) includes the interior of
Br,. Select an arbirrary d e Rn such that (0, a) e ri Cr. Then

o.57) (z/3)(p o, ro(po)) + (1/)(0, d) e ri c, ir p o € B 2r

so that if we define

(3.r 8)

we have

o.59)

r(po): Q/t)po(3/z)po) + i/ia

(po, P(po)) e ri c, if po e 8,.

Here P is again affine. Once more we use the fact provided by Theorem 5 that
C, has the same relative interior as the set Cj in (3.4), and that rhe convex
function G in (3.4) is finite and conrinuous on ri Cj. fhis implies in view of
(3.59) tl't"t the function po - G(po, fQo)) is bounded above on Br, say by ao.
We see rhen from (3.45) th^t

3.607 F\a, b, ro, .r) > pQo) . ct- p,co- do if. p, e 8,.

Since P is an affine mapping, we have P(p) =ArPo+ &r, where V, e Rn"n
and b, € R2. Substiquting this expression in (3.60) and letting A, denote the
transpose of A p we obtain

F(a, b,.0, .r) 2 , 
ryp {(a-rlo + br) . .r - po. co - aol

lPol<'3.et)

=-ao+ bt. rt+ zlco- ,+rc1l.
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By a parallel argument, we have 
,. I

(3.62) F(a, b,.o,.r)Z-ar+ bo-.0+rlcr-a'ocil.

Therefore growth coridition (G,) is satisfied by F(a, b,' ,') fot

(3.63) y(I) : I max ltr, 0l - max lao, a, l.

4. Application to control problefis., The preceding sections have dealt with

minimization problems which are Of the same folm as the classical "free" prob'

lems of the calculus of variations, excePt that the Lagrangian function L is

allowed to have the value 1 *. Actually, the exception makes a world of differ-

ence, because it enables us to apply the same results to problems like those in

control theory, where there may be comPlicated constraints. This application

can be carried out much in the manner of Cesari [1], and Olech [7]. However, we

take a different approach which yields somewhat sharper conclusions.

It is helpful at the outset to formulate the general control problem more

abstractly than is customary. Ve assume we are given a function

(4.1) K:la, b]x Rn x Rn x R- + (-e, +o1

such that K(t, x, r, r) it lower semicontinuous in (x, u, u) and measurable in
(t, x, u, z) (with respect to the o-algebra generated by products of Lebesgue

sers in la, bf and Borel sets in Rz x R" x R-). The basic Lagrange problem is

to minimize the integral

(4.2)

over all measurable control functions u' lt o, t rf ' R- and all absolutely con-

tinuous functions *: lt o, t r) - R' satisfying

(4.3) ,(lo): .o and r(tr) = cr.

Here [to, trl is a fixed subinterval of la, b]. (To avoid trivial technical nui-

sances,we assume that K(t,., ., .) is not identically + * for any t ela, bf,

and that it is possible to find ar least one absolutely continuous x:la, b) - R"

and measurable u:la, d - 
pz such that K(1, *Q), i(), r(r)) i" majorized by a

summable function of l.)
Of course, endpoint conditions more general than (4.3) could be considered

or a term k(to, tr, r(ro), ,(lr)) could be added to (4.2). But this would be

irrelevant for our plesent Purposes. Our aim is rather to deduce under certain

assumptions the equivalence of the above problem and the problem of minimizing

ft, r(t, *Q\, i(i)il subject ro rhe same consrraints (4.3), where
'to

f it nt,,'(r), *(r), ,Q))dt
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. (4.4) L(t, x, ) = inf[K(r* r, u, u\l u e R-1.

Once this is accomplished, the theorems in this paper can bq applied to the basic

,. control problem, and it is a simple matter to extend the coverage to other model

problems. For example, the compactness theorern i" $3 for Bolza functionals, as

well as the device explained in $3 fo. reformulating the variable iqterval case,

can be brought to bear.

Before going further, we discuss the relationsht> between our abstract con-

trol problem and the usual one. In the usual problem, one seeks to minimize

.t
(4., t-.'' lo{,, ,(i, u(t)) dt

u to

over all measurable functions u:lto, tr) -Rm and absolutely continuous func-

tions x: [lo, l11 - R' satisfying (4-, and the constraints

(4.6)

(4.7)

(4.8)

k(t) = f (t, x(), uG)) a.e.,

u(t) e u(t, x(t)) a.e.,

r(r) e X(r) a.e.

To put this in the above form, we simply define

K(t, x, u, u) : t'o{t, *, o) if x e X(i, u € d(t, x),

(4.9) and. u: f (t, x, u),

: +F in all other cases.

It is clear that then the integral (4.2) (assuming it is well defined-see below)

has the value + * unless the constrainrs (4.6), (4.7) and (4.8) are satisfied, so

that minimizing (4.2) subject to (4.3) is identical to the control problem just

stated.

Lemma $. Assume in tbe t'orgoing that the set

(4.10) G:10, x,u) e la,bf xRn xR-l x e X(t), u eIl(t, x)l

is measurable (in the specilied sense) and the lunctions /s: G-Rl and f: G - Rn

are likewise measurable. Assume tbat lor eacb t e la, bl and ae Rl ,-tbe set

(4.1I) Gr,o:|G,u) eRn x R-l x e X(),u € {1t, x), lo(t, *, r)<al

is closed, and relatiue to it the mapping f(t,., -) is continuous. Tben K(t, x, u, u)'
in (4.D is indeed lower semicontinuous in (x, u, u) and measurable (in tbe

specified sense) in (t, x, u, u).
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Proof. Fix a e Rl and considbr"the sets

l(t, ,, u, u)l (t, x, u) e G, t's(t, *, o)' 5 a, f (t, ,, u) - u = Ql,

lG, ,, u)l (x, u) e Gr.o, l(t, x, ) - u: pl, t ela, b1,

The question is whether the s.€rs (4.L3) are closed and (4.L2) is measurable. The
fact that the sets (4.13) are closed is obvious from the closedness of Gr,oand 

.

continuity of f(t,.,.) relative to G:t,ol Our assumptions imply the measurability
of the mapping (t, *, u, u) - t'(t, x, u) - ?/, so that the measurability of (4.L2) is
also immediare.

' The regularity assumptions in Lemma 6 are in several respects weaker than
those made by other authors in treating the existence of solutions to control

problems, most recenrly Cesari [1] and Olech [7]. The sets U(t, x) and X(r) are
not required to depend "upper semicontinuously" on I, and, as a matter of fact,
they do not even have to be closed. Furthermore, I o(t, ., .) i" ttot required to be

continuous, but only to have a certain lower semicontinuity propefty. Thus, for
example, cases are covered where /o(1, x, z) grows to + € as u approaches the
boundary of Il(t, x), or as x approaches certain boundary points of X(t). Such

cases are excluded by the assumptions of Cesari and Olech.
' Ve should menrion in connection with Lemma 6 that, if g:la, b] xW - Rk

has the property that g(1, -) is L.b."gue measurable in r and conrinuous in zz

(I/ being a subset of Rd), then g is -easurable with respect to the o-algebra in
fa, b)x il/ generated by products of Lebesgue sers in la, bl and Borel sets in r4l.

This is apparent from the represenrarion in the case of RA : Rl that

lG, *)l gQ, *) 5 al = T.. x !V...21 |t'

where for a dense sequence l- | i" I/ one defines

Tr, = It e la, b)l g0, *r) < a"+ (I/)1,

Wr, = lute wl' l- - * rl 1 t/ il.

In the example where K satisfies (4.9), the function L (which throughout

this section is given by (4:4)) can be expressed by

L(t, x, i = intla e Rtl (u, d e Q0, x)1,

PG, A = {(/(r, ,, r), t'o(t, x, u))l x e X(i, u e (JG, x)1.

(4.12)

(4.13)

(4.r4)

where

(4.15)

NUj=7 i=1



OPTIMAL ARCS AND THE MINIMUM VALUE FUNCTION 79

Thus L is convex in u if d.G, ,);r "on*.*, or more generally if the set

(4.16) 7Q, *\= l(/(r, x, u), fo(t, ", u) +s)l r eX(l), u e IJG,x), s z 0l

is convex. Both Cesaii and Olech deal directly with (4.16), imposing continuity
assumptions on its behavior with respect to both t and x, etc., in-addition to
stronger forms of the assumptions in Lemma 6.

Ve avoid any such direct assumptibns below. This is achieved through a

boundedness condition on

(4.L7) 'J(t, x, p, q):",rplp. u + q. u- K(t, x, u, u)l (u, u) e Rn x Rml,

rather than iust on

(4.18) H(t, x, p): suplP . r- L(t, x, u)l u e Rnl: J(t, x, p,0).

The function ,f is said, of course, to satisfy the boundedness condition if

(4.t9)
t:il, /(t' x' P' 4) t$(t' r' P' q)'

where { is some real-valued function on la, bl 
" [0, + *) x R'x R- such that

$(t, r, p,4) is tn-rnable in t for fixed (r, p, q).

If K is given by (4.9), as in Lemma 6, one has

(4.20) !{t, x, p, d = sup lq. u + p. f G, ", ,).- f oG, x, u)l
u e U (t,x)

if xeX(t),whereas I(t,x,p,q)=-* if xdX(t). (tf u(t, r) isemptyin(4.20),
the convention is used that the supremum of the empty set of real numbers is

- *.) It should be emphasized, however, thar we are nor limiting ourselves to
this special case. The following theorem applies equally ro the more absrracr
control problem formulated above.

Theorem 6. Assume that I satisfies tbe boundedness condition. Tben tbe

integral (4.2) is u.,ell defined (in tbe sense of Lemma I) for any absolutely con-

tinuous x:lt 0, tr] + Rn and measurable u:lto, trf ,- R^, and il its ualue is
not + 6 the lunction u must be summable. Furtbermore,

(a) L(t, *, u) it lou.,er semicontinuous in (x, u), measurable (in tbe sense

described) in (t, x, u), nowhere - x, and H satislies the boundedness condition;
(b) t'or euery absolutely continuous x: [lo, rr1 - R*, one has (wbere tbe

minimum is attained):

G.2L) [t 
1 

LQ,
"(r), 

,(r)) o,: ^t^{1" K\t, x(t), i(r), r(r)) dtl u measuroUbl.
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Proof. We can regard K as a Lag;angian in (t, x, y, ,, u) rhat happens to
be independent of y, with the z variables play.ing rhe role ,of the derivatives of
the y variables. Then ,f is the Hamiltonian corresponding to K, and Lemma 1

is directly applicable. This verifies thar the integral of K is always well
defined. Nexr,fix any r) 0 and s >0 and choose a finite subser (p., q) ot
Rn x R- whose convex hull contains 

- z 't

(4.22) lQ, d € Rn x n"l lpl ( I and lql S rl.

For the function @ in the boundedness condition on /, define

(4.23) ,lt rQ) = ma.x $(t, r, P;, Q i).

Then, since l(t, *, p,4) i".otl.x in (p, q), we have

(4.24) l(t, x, p, d S,l',(t) if lxl < ,, lpl S t, lql S 1,

where ry', is summable. This implies from the definition of / that

(4.2, K(t, x, u, u)) lrl + lrl -t,(i if lxl < z

The summability of u(t) in t, whenever the integral (4.2) it finite, is then
obvious. It is also obvious trom(4.2) that for each a E Rl and t ela, bf rhe

l(*, u, Dl x(6 x, u, u) < a, lal _< rl

is bounded. This set is also closed, in view of the lower semicontinuity assump-
tion on K, and hence it is compact (for any real a and r ) 0). Therefore the
infimum defining L(t, *, u) in (4.4) is attained (not - *) by at least one z for
each (r, x, u)"and the set

(4.27) l(", ")l L(t, x, ,) 1a, l"l S'1,

being the image of (4.26)under the projection (x, u, u) -(r, z), is compact (for
any real a and r > 0). In particular, L(t, *, a,) is lower semicontinuous in (x, u\.

The desired measurability property of L is more difficult to verify, and it
seems most efficient to invoke the theory of measurable, closed-valued multi-
functions, as this will also assist in proving (b). (By definition, a multifunction
Z: la, b] - Rk is measurable if for each closed set B C RA the set of t e

[a, &] such that Z(t)o B l./ is Lebesgue measurable in [a, &].) For each
t ela, bf , let

(4.28) z*(t)=7(*, r, u, o-) €Rn x Rn x R- x ntl o: K(L x, u, u)1,

set

(4.26)

(4.29) zr(il:7(*, u, u, &) e R'x Rn x R- x Rll o: L(t, x, u)1.



\

OPTIMAL ARCS AND THE MINIMUM VALUE FUNCTIONS 81

Thus Z*(r) is the epigraph of K, while .Zr(r) is the epigraph, not precisely of
L, but of L regarded also as a (constant) function.of z. The lower semicontinuity

of K and L is equivalent to the closedness of Z*(t) and Z'rG). Moreover, the

measurability of K (with respect to the o-algebra generated by products of Lebesgue

sets in la, bf and. Borel sets in R' x R' x R-) is equivalent to.the measura-

bility of the multifunction

(4.10) Z*:La,bl--+R"xRnxRm

lsee [11] orlL2,Theorem t]). Similarly for the desired measurabiliry pfoperty of

L; thus to obtain this property we need only verify that the multifunction Z, is
measurable. To do this, we observe that, since the infimum in (4.4) is always
attained, as already demonstrated, we have

zrb): Z*(i + Z(i f or alI t,

Z() =1(0,0, u, O) e Rn x Rn x R* x Rll z arbitraryl.

Trivially, the multifunction Z: s -Z(t) is measurable. It is known that the
(closure of) the sum of two measurable multifunctions is measurable Ill, Corol-
lary 7.2], and hence Z, is measurable. Therefore L is measurable in the sense

described. The fact that H satisfies the boundedness condition, since / does,

is immediate from (4.18). Thus (a) is proved.

The proof of (b) is relatively easy, using what has akeady been established.
Let x:lto, tr) -. Rz be absolutely continuous. Ve know that for each I there

is at least one choice of u(t) e Rz such that

(4.33) L(t, x(i, i(r) = K(t, x(t), *G), u(i).

The problem is to show that z(t) can be chosen measurably, and we need only be

concerned with the case where the integral on the left of (4.2L) is finite. In this
case L(t, 

"G), 
i(l)) is summable, hence finite almost everywhere, say for I in

a certain subset T of la,5]. Let

(4.31)

where

(4.32)

(4.34)

where

(4.35)

z"(i: l(r(r, t(r, ,, a(r))l u arbitraryl, t eT,

a() : r(t, r(r), i(t)).

Then Z* is a measurable, closed-valued multifunction from T to Rn x Rt x
R- x Rl, as is Z*. The inrersection Z*fi Z": s - Z*(t) n Z"(t), t e T, is
therefore likewise a measurable, closed-valued multifunction [9, Corollary 1.31,

and it is also nonempty-valued. It follows (from a result proved independently
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by Rokhlin, Castaing, and Kuratowiiki and Ryll-Nardzewski-see [11, Corollary
1.1] or [12, Theorem 1]) rhat Z*n Z, possesses a measurable selection. In
other words, there is at least one measurable function ori 7 whose value for each I lies
inZ*() oZr(). Butthismeanspreciselythat zft) canbechosenmeasurably in(4.33)
for t e T, and the choice can be made arbitrarily t ela, l7/7. Theorem 6 is thereby proved.

Remarks. Vhen Theorem 6 is combined with Theorem 4 (Olech [Z]) ana

Lemma 6, one obtains a result more,general than that described in Olech's paper
for the same Problem. (The regulatity.assumptions are weaker.) It is interesting
that, when Theorem 6 is combined with Theorems 1,2,3 and J, rhe assumprions
on llo and H, (constructed from H in (4.18)) suffice-there is no need to intro-
duce the analogous funcrions ,/g .nd /1 corresponding to / and depending on

4 as well as p. The existence of optimal arcs inproblems where ho, tri is
allowed ro vary (as in the work of cesari, olech, and others) is obtained im-
mediately from the lower semicontinuiry of the minimum value function
F(to, ty.o, .r) 'tt (lo, rr). Similarly forproblems where co and c, vaiy, ex-
cept thar there the established growth properties oI F(to, tr, c0, cr) with respect
to (co, cr) enter in.
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