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STATE CONSTRAINTS IN CONVEX CONTROL PROBLEMS
OF BOLZA*

R. TYRRELL ROCKAFELLART

Abstract. Methods of convex analysis are applied to certain problems of Lagrange and Bolza in

optimal control. Conditions characterizing optimal arcs are obtained without the usual differentiability

assumptions on the data in the problem. Special existence theorems are proved. A dual"control problem

is formulated in terms of adjoint arcs which are not necessarily absolutely continuous, but of bounded

variation, so as to allow for jumps caused by the irresence of statecontraints in the primal problem.

1. Introduction. convex problems of Bolza are problems of a bdsic type

in the calculus of variations and optimal control which satisfy convexity conditions

not only in the control or derivative yariables, but also in the state variables.

Such problems have many special properties not implied by standard theory,

particularly as regards duality. Moreover, these properties can be deduced by

convexity methods which do not require the customary assumptions of continuity
and differentiability. A number of results in this vein have been obtained by the

author in [10], [11], [12]. However, these results do not explicitly treat problems

with bounded state yariables, and indeed they often exclude state constraints,

other than constraints on endpoints. The purpose of this paper is to show how the

results can nevertheless be applied to many problems with bounded state variables

by various devices. The effect of state constraints on duality, on the existence of
solutions, and on necessary and sufficient conditions fof optimality is analyzed in
detail.

We take as our model a "convex" control problem of.the form:

(1.1)

subject to

(r.2)

(1. 3)

Minimize f (t, x(t),u(t)) dt + /(x(0), x(1))

where x:[0, 1]--+R'is absolutely continuous and u:[0, 1]--+R'is measurable'

The sets X(f) in Rn are nonempty, closed and convex, while the functions f(t,',')
and I on Rn x Rn are lower semicontinuous, convex and extended-real-valued-
they may take on * co, although not - oo, as a possible value, but they are assumed

not to be identically + oo. Of course, ,4(r) denotes an n x n real matrix. The

dependence of X(t), f (t,. ,.) and A(t) on t is discussed below. No differentiability is

assumed.
It should be emphasized that, despite appearances, our problem of Bolza in-

cludes as special cases many other types of problems, such as problems of Lagrange
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X(t) : A(t)x(t) + u(t) for almost every t,

x(I)€ X(r) for every t,1.
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with fixed endpoints. In fact, other constrairlts, besides the abstract constraint (1.3),

are implicitly incorporated into the prolilem through the use of + oo^ Thus there is

the endpoint constraint

(1.4) (x(0), x(1)) e E,

where E is the convex subset of Rn x R' which is the effective domain of /:

(1.s) n: {@a,cr)ll(co,cr) < +oo}.

Similarly, there is the implicit control ccinstraint

(1.6)

where

(1.7)

u(t) e U(t, x(t)) for almost every t,

U(t,x): {ulf\,x,u) < *oo} c R'.

The reader unfamiliar with this method of representing constraints is referred to

[10] lor lurther discussion and examples.

The implicit control set u(r, x) is convex, but possibly of less than full dimen-

sion in R' ;thus the absence of a matrix B(r) in (1.2) does not mean a loss of generality.

(Note that U(t, x) is not necessarily bounded or even closed.) The functions f (t, x,')
or / might in particular vanish identically on the sets U(r, x) or E, respectively.

The latter sets and the sets X(r) might be described by inequality constraints.

However, such specific situations need not concern us in the development of the

basic theory. They can be handled at a later stage by a routine application of
standard theorems in convex analysis. This is discussed in [10] in the case of
u(t,x) and E, and the considerations are similar for X(r). Thus we can con-

centrate on the main features and difficulties of the problem, relegating many

distracting and notationally burdensome details to "computation" in particular
examples.

If U(t, x) were empty for certain values of f and x, such values would have to

be avoided, and this could amount to an implicit state constraint in addition to
(1.3). We eliminate this possibility through our assumptions in the next section, our

aim here being to keep the state constraints explicit and separate from other aspects

of the problem, so that their exact role can be seen. However, there are problems

which cannot be treated adequately in this way, because there is no sense to U(f, x)

being nonempty for x{X(t). For example, in mathematical economics one

encounters the case where X(t) is the nonnegative orthant of R', and there is no way

to define f (t,x,u\ finitely outside of this orthant without violating our convexity

assumptions. Such problems require a different approach, involving a genetaliza-

tion ofthe basic duality theory to problems where the trajectories are not absolutely

continuous, but only of bounded variation.
The plan of the paper is as follows. In $ 2 and $ 3 we derive lower semicon-

tinuity properties of the cost functional and a basic existence theorem' These

results may be compared most closely perhaps with those of Cesari l1l and Olech

[9]; however, there is not a large overlap, and certainly the methods used here are

very different. A dual control problem, involving the costate variables, is introduced

in $ 4 and studied in relation to certain optimality conditions in $ 5. The optimality

conditions, in a slightly generalized form, are shown in $ 6 to be necessary and



STATE CONSTRAINTS 693

sumcient under fairly mild hypotheses, The iostate functions in these generalized

conditions are characterized in $ 7 as sblutions to a generalized dual problem.
For comparison with other literature on necessary and sufficient conditions

in problems with state constraints, papers of Neustadt 16) , Ul, l8l and Funk and
Gilbert [3] may be cited. (Further references may be found in these papers.) For
the most part, these authors focus on results applicable also to "nonconvex"
problems, but which involve stronger regularity assumptions than ours (differen-

tiability, etc.), even when speciaiized to the "convex" case. Neustadt's paper [8]
does bring convexity to the fore, in methodology as well as hypothesis, and is thus
the closest in spirit to the present work. However, also in [8] differentiability
assumptions intervene, and the formulation of the optimality conditions is depend-

ent on them. The conditions that we formulate do not even require the differenti-
ability of the functions defining the state constraints, although, of course, this
property could be exploited in analyzing the conditions in special cases.

No one has previously shown that the costate functions in the optimality
conditions for problems with state constraints solve a general dual problem. The

case of problems without state constraints was covered in our earlier papers [10],
[12]. Some related results were also obtained under stronger regularity assump-
tions by Tsvetanov [16]. For an economic example not entirely covered by the
results in this paper, for reasons mentioned above, see Makarov [17].

2. The Bolza functional. Let .4 denote the Banach space consisting of all
absolutely continuous functions x ; [0, 1] --+ Rn under the norm

(2.r) llxll" : lx(O)l lx(t)l dt,

and let G denote the larger Banach space consisting of all continuous functions
x : [0, 1] --+ Rn under the usual norm

(2.2) llxll, : max lx(t)1.
o<r<1

(Hdre I . I denotes the Euclidean norm in R'.) We have llxllt < llxll, for all x e .il.
Let

(2.3) S : {" e .illx(t) e X(t) for every r}.

Clearly S is a closed convex subject of .il. Our problem can be represented as :

(2.4)

where

(2.s)

Minimize f(x) subject to x € S,

f (t, x(t), tc(t) - A(t)x(t)) dt + l(x(0), x(1)).

We call F a Bolza functional on the space ,il. Of course, conditions must be

imposed so that the integral in (2.5) makes sense.

INrncnesrrIry AssuMPTIoN. The components of the matrix A(t) are summable as

functions of t el0,l). Furthermore, h(t,x,p) is (finite and) summable as a function

.1,

F(rr) : 
.|.
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of t e 10, l) for each fixed x e R" and p e R", where

(2.6) h(t,x,p): sup {u 'p -_"f(t,x,u)lueu(t,x)}.

The function ft is not only convex in p, but also concave ih x, by virtue of the
joint convexity of f (t, x,u) in x and u [13, Thm. 33.1].

The constraintu e U(t,x) could be omitted from (2.6) without loss of generality.
in view of (1.7). The condition that h(t, x, p) > - co for all (t, x, p) amounts to the
condition, mentioned earlier, that U(r, x) + A for all (r, x). The rest of the assump-
tion on h(t,x,p) is a growth condition of Nagumo-Tonelli type on f (t,x,u) as a
function of ue U(t,x). Thisisessentialino[tainingtheexistenceof solutionstothe
control problem, as is seen in the next section. It is also convenient technically in
a greal many other respects.

'fmonsu l. Under the integrability assumption, F is a well-defined, lower
semicontinuous, conuex functional from the Banach space .& ro Rr U {+oo}.
Moreouer, the (conuex) leuel sets

(2.7) {xe"illF(x)<u}, ureal,

are locally compact relatiue to the weak topology on .4. These sets are also closed
and locally compact as subsets of the Banach space G, with respect to both the weak
and the strong topologies on G.

Proof.This follows mainly from results in [12]. In the notation of [12], we
have

(2.8)

where

(2.e)

Condition (A) of [12] is satisfied by / and L, in view of our convexity and lower
semicontinuity assumptions on I and f (t,. , .). The Hamiltonian function corre-
sponding to L is

(2.10)
H(t, x, p) : sup {u . p - L(t, x, u)lo e R'}

: h(t,x,p) + p.A(t)x.

By duality, we also have [10, p.2lI]
(2.tt) L(t,x,u): sup {,'P - H(t,x,P)lPeR}.

The integrability assumptions on h and A imply that H(t, x,p) is finite and sum-
mable in r e [0, 1] for each fixed x e R' and p e R. Hence L also satisfies conditions
(B), (Co) and (Do) of [12] by the corollary and remark after Proposition 4 of [12].
These conditions guarantee in particular that F is well-defined, convex and lower
semicontinuous [10, Thm. 1]. The local weak compactness of the level sets of F
in.& is a consequence of (Co), as noted inll2, discussion following Thm. 11.

The last assertion of the theorem is obtained from the following fact.
Lurlue I. If a conuex set K in pl is closed and weakly locally compact, then it is

ctlso closed and locally compact as q subset of G, both weakly and strongly.
Proof. We observe first that if a set Ko is weakly compact in .e/, then it is

strongly compact as a subset of G.lnfact, the set of function *, as x ranges over Ke,

F(x) : (D,,r(x),

L(t, x, u) - f(t, X, u - A(t)x).
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is weakly compact in the l1-space of Rn-valued functions on [0, 1]. Hence, by the
Dunford-Pettis criterion for weak cb.rnpactness in Ll-spaces, there exists for
every s > 0 some d > 0 such that

(2.t2) Itt(t)ldt<E whenever xeKo and mesT<6.

In particular, (2.12) implies that
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(2.t3)

if 0 < r, < t2 < l,tz - /,. < 6.The functions in Ko are thus equicontihuous on

[0, 1], as well as, o[course, uniformly bounded pointwise. The strong compactness
of Ko in G then follows from the theorem of Ascoli-Arzela.

Now let K be a convex subset of .d which is closed and locally compact with
respect to w s , the weak topology on .il. Let n, and w, denote the norm topology
and weak topology on 6, respectively. Let x be an arbitrary point of K, and let U,
be a wr-closed, convex wr-neighborhood of x such that K O U, is wr-compact.
Certainly K n U I is then also nr-compact and w'-compacl, as just pointed out.
Thus, to prove that K is locally compact in n, and w, it suffices to demonstrate
the existence ofa wr-closed wr-neighborhood U2 of x in ff such that

(2.14) KnU2cKOUl.
For notational simplicity, we can suppose that x : 0. Let

Ft)t'-

lx(r,)-x(rr)l S I li(t)l dt<e forallxeKo
Jr,

(2.ts)

(2.r6\

U\ : ttJ , c. wr-int (J ,,
W:Kfl[Ur\w."-intU"].

Then W is a wr-closed subset of K 0 Ur, hence wd,-compact and consequently
w,€-compact. Also, 0 ( W. Thercfore it is possible to select a wr-closed, convex
wr-neighborhood U, of 0 such that W I U, : Q. Then (2.14) must hold, for if
U, contained a point y in K but not in Ur, the line segment joining 0 and y would
contain points of Ur\int U'r. Such points would lie in W I U2 by convexity,
contradictinCW n Uz: Q.

It remains to show that K is also nt-closed, and therefore, by convexity,
wr-closed. Let a be any positive real number, and let

(2.1,7) K": {xeKl llxllr < a}.

Then Kn is a wr-closed subset of K, hence w"-locally compact. Moreover, Ko is
convex and contains no half-lines. Therefore Kn is actually wr-compact [2]. It
follows that K, is also nr-compact and in particular nt-closed. Since this is true for
arbitrary a, K itself is nr-closed.

Remark. The converse of Lemma 1 fails, at least without convexity. since a

sequence in "il converging in the 6-norm need not even be bounded as a subset of
.il, much less weakly compact. Thus the properties of F asserted by Theorem 1

relative to the weak topology on .& are considerably stronger than the properties
asserted relative to the weak or strong topologies on 7.
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3. Existence of optimal arcs. By a feasible arc for our control problem, we
mean an x e s such that F(x) < * oo. An.aptimal arc is a feasible arc for which the
infimum of .F over S is attained. Theorem 1 implies that the convex sets

(3.1) {xe SIF(x) < a}, areal,

are not only closed, but locally compact in the weak topologies of .il and6 andthe
strong topology of 6. Thus any slight additional condition which ensures that these
sets are actually compact (and not all empty) is enough to give us a theorem on the
existence of optimal arcs. j

It is well known that a locally compact conDex set is compact if and only if it
does not contain any half-Iines [2] . We have already made use of this fact in proving
Lemma 1. Thus the sets (3.1)are compact (in all the topologies mentioned) if S does
not contain any halfJine along which F is (finitely) bounded above (and hence,
by convexity, "nonincreasing"). Therefore, the latter condition guarantees the
existence of an optimal arc, provided there is at least one feasible arc. This criterion
for existence is geometrically appealing, but not specific enough for most applica-
tions.

We proceed to formulate the halfline condition equivalently as an assumption
on the sets X(t) and functions / and f(t,.,.) appearing in the control problem.
For each / we denote UV tr(r) the recession cone (asymptotic cone) of X(r):

(3.2) tO : {ze RIX(I) + z c X(t)}.

We denote by ? the recession function of /. Thus

(3.3) 7(co,cr) : lim (co * trco,Ey + Ac)l),
ii"+ + @

where (-0, cr) is any element of the set E in (1.5). (The limit is independent of the
particular choice'of (co,a1) [13, p. 66].) Similarly, we let iQ,.,.) denote the
recession function of f(t,.,.).

Botrl,IoEDNsss AssuMprroN. There does not exist a nonzero arc z e "& such thqt

zft) e tQ) for euery t,

i1t, t1t1, z(t) - A(t)z(t)) dt + i1z1o1, zltyy < o.

The integral in (3.5) is well-defined under our previous integrability assump-
tion, and in fact it is a lower semicontinuous convex function of z e ,il [12, Prop. 6].

Trnonnnr 2. Suppose there is at least one feasible arc, and the integrability
assumption is satisfied. Then the boundedness ossumption is necessary for any non-
empty leuel set of the form (3.1) to be weakly compect in .il or strongly compect
in G, and it is sfficient for them qll to be both weakly compect in .il and strongly
compact in 6. In particular, the boundedness assumption ensures the existence of an
optimal arc, lndeeil, euery minimizing sequence of feasible qrcs has a subsequence

which conuerges to an optimal erc, not only in the unifurm norm ll . 11,6, but also in the
weak topology of ,il.

Proof. Let S denote the set of all arcs z e .il satisfying (3.4). Let Fk) denote the
left side of (3.5). Then S is the recession cone of S and, as shown in ll2, Prop. 6l , F

(3.4)

(3.s) l"
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is the recession function of F, since for the furiction L in (2.9) we have

(3.6)

Therefore, a half-line

{x+ ).2103,i< +co}, z*0,
is contained in a set of the form (3.1) if and only if x belongs to this set and z e S,

FQ) < 0. The conclusion of the theorem is immediate from this and Theorem 1.

Conor-ranv l. Under the integrability assumption, an optimql arc x exists if a
feasible arc exists and the sets X(t) are all bounded (since then the boundedness

^'"T,'::;.11,'iil'Jii]; (3.4) holds only ror the zero arc, because trto : {0} ror
every t.

It is interesting to note that the boundedness of every X(r) in Corollary 1 does

not necessarily entail the boundedness of S, even in the norm ll ' ll , since no assump-
tion has been made on the behavior of X(r) with respect to /.

Cononanv 2. Under the integrability assumption, euery (conuex) set of the

form

(3.7)

is weakly compact in.il and strongly compact inG.
Proof. Apply Corollary 1 to

(3.8) xp(t): {xex(r)llxl < /}.
Conolrnnv 3. Suppose that

{xeSl,F(x) 3 u,llxllt < B}, a and P real,

f(t,*,u): fo(t,x) + fr(t,u),
/(x(0), x(1)) : /o(x(0)) + /'(x(1)),

and denote the recession functions of fi(t,. , -) and l, by i,Q, ' ,') andi,, respectiuely.
(Jnder the integrability assumption, an optimal arc x exists if a feasible arc exists and

euery solution z e.il to the dffirential equation

(3.1 1)

satisfying (3.4) and

(3.t2\

2(t) : A(t)z(t) a.e.

has z(t):0 for at least one tel0,ll. (The boundedness assumption is satisfied in
this case.)

Proof.lf f and / have the structure in (3.9) and (3.10), their recession functions
also have this structure:

(3.e)

(3.10)

(3.1 3)

(3.14)

[' i"a,ze)dt+ ?o(z(o) + ?1(z(1) < o

iG,t,i: ioG,z) + fr(t,y),
i(z(o),r(t)\: ?o(r(o) + ?,(z(1).
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Furthermore, the integrability assumpliol implies that

(3.15) 
,r.Xq 

{, .p - fJt,a)}'< + oo for all p e Rn"

and consequently [13, p. 116] that

[o ify:0,(3.16) f ,(t, y) : 6o0) : {
[+- lly#0.

Thus in this case condition (3.5) is eqqivalent to (3..11) and (3.12). The result now
follows from Theorem2 and the fact that a solution to (3.11) which vanishes for
some f e [0, 1] must be the zero arc.

Remark. A simple but common case where the condition in Corollary 3 is
satisfied occurs when one of the (convex) endpoint sets

(3.17) E,:{ceR'll,(c)<+o}, i:0,1,
is bounded (so that ?, is finite only at 0), or one of the sets X(r) is bounded (so that
kO: {0}).A more general result resembling Corollary 3 can be derived from
[12, Cor. 3 to Thm. 3].

4. The dual control problem. The question of necessary and sufficient condi-
tions for the optimality of an arc x is closely tied in with duality, a topic of interest
in its own right. In this section we describe the basic duality briefly, to set the stage
for later developments.

The dual control problem is:

(.1) Minimize f' ,(r,r(r),w(t))ctt + m@(0),p(l))
J6

subject to

(4.2) P(t) : -A*(t)p(t) + w(t) for almost every t,

where ,4*(r) is the transpose of .4(r) and

(4.3) g(t,p,w): sup{u'p + x'w - f(t,x,u)lueu(t,x),xex(t)},
(4.4) m(do,dr): sup{co'do - ct'd, - l(co,ct)lcoeR',creR'}.

In terms of the Bolza functional

f1(4.s) G(p): I g(t,p(t),i(t) + A*(t)p(t))dt + m(p(0),p(l)),
Jq

we can express this problem as:

(4.6) Minimize G@) over all p e "{.
Before discussing the circumstances under which the integral in the Bolza

functional G is well-defined, we remark that the dual problem, like the original
problem, involves implicit constraints on the controls and endpoints. The implicit
dual control set is

(4.7) W(t,p): {we R'lgf,p,w) < +oo},



(4.e)

(4.10)
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while the endpoint pair (p(0), p(1)) must belohg to the set where the function rz

is finite-valued. However, there are no srqre.constraints in the dual problem, even
implicit ones. In particular,

(4.8) W(t,d # A for every re [0, 1] and peRn.

This is evident from the following result, which may also be helpful in calculating
g(t,p,w) in specific cases.

LBuue 2. In terms of the funetion h in (2.6) and the functions

s(t, w) : suP {x'wlx e X(/)},

l4t, P,r) : sup {x' w + h(t,x, P)lx e R'},

one has, under the integrability assumption,

g(t, p,w) : sup {x' w + h(t, x, p)lx e x(t)}
(4.11) : min {Kt,p,w - z) + s(t,z)lz e R"}.

Furthermore, for euery measurable, essentially bounded function p:10, 1] --+ R'i, is
possible to find a summable function w:[0, 1]'-+ R" and a summable function
a: [0, 1] - Rr such that

(4.12) s(t,p(t),w(0) < a(4 for all t.

Proof.The first equality in (a.11) is immediate from the definitions of g and h.

The second equality results from a basic theorem of convex analysis expressing
the conjugate of the sum of two convex functions in terms of infimal convolution
of the conjugate functions [13, Thm. 16.4]: according to the first equality in (4.11),
g(t, p, .) is the conjugate of the sum of - h(t , . , p) and the indicator of the set X(r) ,

while, by definition, k(t,p,' ) is the conjugate of -h(t,.,p), and s(r,.)is the con-
jugate of the indicator of X(r). The theorem in question is applicable, because

-h(t,.,p) is a finite function under the integrability assumption. (The convexity
of - h(t, x, p) in x has already been noted in $ 2.) In the notation and terminology
of [10], [12], the function

(4.13) M(t,p,r) -- k(t,p,r + A*(t)p)

'is the Lagrangian dual to the function L in (2.9). We have shown in the proof of
Theorem I that L satisfies conditions (A), (B), (Co) and (Do) of [12] under the
integrability assumption, and this implies that M satisfies the same conditions

[10, Thm. 2),lI2, $ 1]. Then for every measurable, essentially bounded function
p:10, 1l -- Rn it is possible to find a summable function r:10, 1l -- R' and a sum-
mable function a: [0, 1] -- R1 such that

(4.t4) M(t,p(t),r(r)) < a(r) for every r.

Setting w(t; : r(t) + A*(t\p(r), we obtain a summable function w for which (4.12)

holds, since g < k. The lemma is thereby proved.
We now introduce a further condition from which it will be deduced, in

particular, that the integral in (a.f is well-defined.
IutrRronrrv ASSUMrTIoN. The multifunction X:t --+ X(t) satisfies

(4.1s) int X(t) # Q for euery t
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(4.16) {(t, x)lx e int X(r)} :'iht cl {(r, x)lx e x(4}.
For an equivalent form of this assumption, see [14, Lernmd,2).
LButrle 3. Under the interiority assumption, the constraint set S has a nonempty i

interior in .il consisting of the functions x such thqt

(4.I7) x(r) e int X(r) for euery t,

and this is the same as the interior of S relatiue to the norm ll' llr. Furthermore, any
x e .il satisfying

(4.18) x(t) e X(t) for almost euery t

actually satisfies (1.3). Thus any x e.il satisfying (4.18) belongs to S.

Proof.If .& were replacedby G here (and in the definition of S), this would be
the special case of [1.4, Thm. 5 and Lemma 2], where the D(r) and f (t,.) in the nota-
tion of the latter results are taken to be X(r) and the indicator of X(t), respectively.
The lemma is also valid in the present form, because ,il is dense in G.

TrmonsM 3. Under the assumptions of integrability and interiority, G in (4.5) ls
a well-defined, Iower semicontinuous, conuex functional from,il ro R1 U {+-}.
If the boundedness assumption also holds, then

(4.te\ -mgr(x): )llotol 
< *oo.

Proof.We deduce this from the main theorem of [12]. Let Lbe as in (2.9), and
let

( f1t, x. r'1 if x e X(r);(4.20) L6(r, x, u; : i
[+.o itx#X(tl.

The measurability properties of lo, to be described in a moment, ensure that the
Bolza functional

(4.21) ro(ri : f 
' ,o,r, x(r), *(r)) dr + (x(0), x(1)) s

Jo

is well-defined. The given control problem can be regarded as that of minimizing
Fo over all of .il , since from the second assertion of Lemma 3 we have

Ir(*) ifxeS,(4.22) Fo(*) : {
[+- ifxt'S.

The corresponding dual problem, in the terminology of [10] and [12], is that of
minimizing

(4.23) f'*o(r,p(t),p(t))dt + m@(o),p(I))
J6

over all p e .il, where

(4.24) Mo(t,p,r): sup{x.r * u'p - Lo(t,x,u\},
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and m is given by @.g.It is easily seen from the definitions that

(4.2s) Mo(t,p,r): g(t,p,r + A*(t)p),

so that this dual problem is indeed the problem presented here as the dual.
We shall verify that conditions (A), (B), (Co) and (D) of l12l hold for Lo.

The assertions about the nature of G will then be valid by [10, Thm.2]. The
duality relation (4.19) will follow from Theorem 1(a) of [12], since our boundedness
assumption is equivalent by ll2, Cor. 1 of Thm. 3l to the condition of dual attain-
ability in the hypothesis of that theoreni

Since X(r) is a closed, convex set, the function Lo(t,- ,' ) is lower semicon-
tinuous and convex on R' x R'. Thus condition (A) of [12] is satisfied by Lo,
provided that LoQ,.,.) is not identically t oo for any t. The latter will be seen in a
moment, in connection with condition (D).

We have already verified in the proof of Theorem 1 that conditions (A), (B),
(C6) and (Do) of ll2)are satisfied by the function L, and in the case of (B) this means
that L is measurable with respect to the o-field in [0, 1] x R2n generated by
products of the Lebesgue sets in [0, 1] and Borel sets in R2'. The corresponding
measurability property of Lo then follows from the measurability of the set

{(t,x,u)lxe X(t)} c 10, 1l x R2n,

which is implied by our interiority assumption. Indeed, since X(r) is a closed,
convex set with nonempty interior, we have x e X(t) if and only if x + B, meets
int X(r) for every natural number j, where B, is the open ball of radius Ilj and
center 0 in R'. Furthermore, the openness of the set on the left in (a.16) implies
the openness of the set of all (r, x) such that x * B; meets.int X(t). Thus the set

(4.26) can be expressed as the intersection of a countable collection of open sets

and in particular is Borel measurable.
The fact that L satisfies (Co) trivially implies lhat Lo satisfies (Co), since

Lo2 L. As for condition (D), we must demonstrate the existence of a bounded,
measurable function x:[0, 1] -- Rn, a summable function u: [0, 1] --+ Rn, and a
summable function a:[0, 1] --+ R1 such that

(4.27) Lo(t,x(t),u(4) < oc(t) for every f ,

or, in other words, such that (1.3) holds and

(4.28) L(t,x(t),u(t)) < a(t) for every /.

Since L is known to satisfy condition (Do), corresponding functions u and a
satisfying (4.28) exist for any bounded, measurable function x 112, Prop. 31. There-
fore, it is enough to show there is at least one bounded, measurable function x for
which (1.3) holds. In fact, Lemma 3 asserts the existence of such a function x
belonging to -el.

Conorrenv. Under the assumptions of integrability, boundedness, and in-
teriority, a feasible arc x exists in the original control problem if and only if, in the

dual problem,

inf G(p)> -oo.ped
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(4.26)

(4.2e)
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Proof. A feasible arc exists if and only,if the infimum of F over S in (4.19)'is not
+ co.

5. Optimality conditions without state constraints. ln the.case where X1r; : p'
for every r, it is possible to derive from the results in fl01 and [2] a companion
theorem to Theorem 3, furnishing conditions that are necessary and sufficient for
the optimality of an arc x. We carry this out as a step in the derivation of more
general optimality conditions in $ 6 for the case where (nontrivial) stdte constraints
are present. The conditions we formulale at this stage do in fact have some bearing
on state constraints, and they help to'clarify the rdlationship between the given
control problem and its dual.

As usual, we denote by \EQ) the (closed, convex) set of all subgradients of a
convex function E on Ro at the point z,that is, the set of all vectors y such that

(s.1) EQ) 2 EQ) + y' .(z' - z) for all z'e R".

Subgradients of a concave function are defined analogously, with the reversed
inequality. The relationship between subgradients and ordinary gradients is
discussed at length in [13, $ 25]. For the function h in(2.6), we denote by 0 oh(t, x, p)
the set of subgradients of the convex function h(t, x, .) at p and, by A,hQ, x, p) the
set ofsubgradients ofthe concave function h(t,.,p) at x. These sets are described
lurther in Lemma 4 below.

We denote by N(r, x)the cone of normals [13] to X(t) at the point x. This is the
closed, convex cone defined by

[ {dr. Q - x) S 0 for all z e X(t)} if xe X(r),(s.2) N(t,x):i'
lA ifx(X(t1.

The conditions to be analyzed may now be stated.
Oprnvnrtry coNDrrroNs. The functions x e d and p e ,il satisfy

(s.3)

(5.4)

where

(s. s) i;(t) : A(t)x(t) + u(t) and p(t) : - A*(t)p(t) + w(t) a.e.

Furthermore,

(5.6) (p(0), -p(1)) e 6l(x(0), x(1)) (transuersality).

The state constraint (1.3) on x is embedded in (5.4) by virtue of (5.2) and
Lemma 3, if the interiority condition holds.

The relationship between these optimality conditions and the familiar
"maximum principle" is made clearer by the following result. (Note the normality:
the multiplier of the cost function is taken to be - 1.)

Lstvrue 4. Let the integrability assumption be satisfied. Then the set Aoh(t, x, p)

consistsof thecontroluectorsueU(t,x)forwhichthesupremumof u.p - f(t,x,u)
is attained. On the other hand, in terms of the dual cost function g and dual control set
W, the set -A"h(t,x,p) + N(t,x) consists of the dual control Dectors weW(t,p)
for which the supremum of x . w - g(t, p, w) is attained.

uft) e A oh(t, x(t), p(t)) a.€.,

w(t)e -A*h(t,x(t),p(4) + N(r, x(t)) a.e.,



STATE CONSTRAINTS

Moreouer, if the function H 6 is defineQ by

(5.8) ic e 0oHo(t,x,p)' and -p e 0"Ho(t, x,p) a.e.

Proof. The assertion concerning 0oh(t,x,p) is immediate from the fact that
h(t,x,. ) is by definition the conjugate of the convex function f(t,x,. ), whose

effective domain is U(r, x) (see [13, Thm. 23.5)). On the other hand, let
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ln1t,*.p)+ p.A(t)x if xeX\t),
(5.7) Ho(t, x. p) : {

[ -.o tf x t X(tl,
the optimality conilitiohs, except for tansuersality, can be expressed in the Ham-
iltonian form

(5.e)

Then g(r, p, .) is by (a.11) the conjugate of the convex function -ho(t,. , p), and the
effective domain ol g(t, p, - ) is W(t, p). If the integrability assumption is satisfied,
so that ft(r, x, p) is finite and hence continuous as a concave function of x, - ho(t, . , p)

is lower semicontinuous (X(t) being closed) and consequeltly is in turn the con-
jugateofg(r,p,.).Thus,bythesamereasoningasfor0oh(t,x,p),theset -AhoQ,x,p)
consists of the vectors w eW(t,p) for which the supremum of x .w - g(t,p, w) is
attained. We note now that, since - ho(r, . , p) is the sum of the finite convex
function -h(t,',p) and the indicator of the nonempty cgnvex set X(t), we have

(s.10) - )ho(t, x, P) : - }h(t, x, P) + N(/, x).

This is a special case of a basic formula for subdifferentiation (see [13, p. 215 and
Thm. 23.81). The same formula also yields the Hamiltonian form of the optimality
conditions.

The generalized Hamiltonian equations (5.8) have been studied in [10] and

[11]. They are yery similar to ordinary differential equations, despite the "multi-
valuedness". As a matter of fact, if the integrability and interiority assumptions
are satisfied, the subgradient sets in (5.8) reduce to single elements, the ordinary
gradients of If o , for almost all choices of (t, x, p) such that x e int X(r). This result
may be deduced from [13, Thm. 35.9].

The next lemma explains the fundamental connection between the optimality
conditions and the dual control problem (cf. Thm. 3).

Lnuun 5. Let the assumptions of integrability and interiority hold. Then, in
order that xe S and p e.& be arcs such that

(s.1 1) -min F : -F(x) : G(p): min G,
sd

it is necessary and sfficient that the preceding optimality conditions be satisfied.

Proof. As we have observed at the beginning of the proof of Theorem 3, the
given control problem corresponds under our assumptions to the problem of
minimizing the Bolza functional Foin(4.2I) over all of ,q/. Thus this is just the
special case of [10, Thm. 5] corresponding to / and the function L in (4.20).

Conolr.Lnv. Let the assumptions of integrability and interiority hold, and let
x e .il. In order that x be an optimal qrc in the giuen control problem, it is sufficient

(hU,x,p) ifxeX(r),
ho(t,x,p): {

[-oo if xdx(0.
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that there exist an qrc p e .il such that the.opiimality conditions are satisfied. These
conditions are qlso necessary, if the bdundedness assumption holds and the infimum
of G in the dual problem is attained.

Proof. ^Ihe sufficiency is obvious from the lemma, and lhe necessity is a
consequence of Theorem 3.

The preceding corollary indicates the need of some criterion for the attainment
of the infimum in the dual control problem. This is where state co.nstraints in the
original problem cause difficulties. A dual existence theorem ought to involve some
Nagumo-Tonelli-type growth condition on the convex functions g(t,p,. ): at the
very least,

(s.t2) lim g(r, p,w + 7w)17: + a
,.++@

for every w and nonzero w. However, this growth property is not present if
X(t)+ Ro. Indeed,sinceg(r,p,.)istheconjugateoftheconvexfunction -hr(t,.,p),
where ho is given by (5.9), the property holds if and only If hoft, x, p) is finite as a
function of x [13, Cor. 13.3.1], and this is not true if X(t) + R'.

These observations show that we cannot hope to prove the necessity of the
above optimality conditions in the case of nontrivial state constraints. However,
this is not surprising. It is well known that state constraints can cause 'Jumps" in
the costate variables p(r), yet the optimality conditions, as we have stated them, do
not ailow for such discontinuities. There is a dual interpretation of the situation:
the reason we cannot prove necessity is that the dual problem is formulated too
raarrowly for solutions to exist. If the dual cost function g does not have the growth
properties which guarantee that the Bolza functional G attains its infimum over .il,
then perhaps G can be extended to a larger space of functions p for which we do
have attainment. We shall reconcile these two interpretations in $ 7. For the present,
we state a result applicable to the case where X(r) : p'.

Arrl.NA.nntrY AssuMprloN. T/re relatiue interiors of the conuex sets D and E in
R' x R' haue a nonempty intersection, where E is the set of all "admissible" end-
point pairs defined in (1.5), and D is the set of all pairs (x(0), x(1)) arising from arcs
xes{ such that );(t): A(t)x(t) -f u(t) with u(t)eU(t,x(t))for almost euery t.

The relative interior of a convex set is the interior relative to the affine hull
of the set [13, $ 6]. Note that one does at least have D n E + Q if a feaslble arc x
exists. Thus, if there are not state constraints, the attainability assumption says that
"feasible arcs exist, and not just marginally."

TrnoneN{ 41121. Suppose that X(t) : R" for euery t € [0, 1], so that S is all of .il
and the norn'ral cone N(t, x) is just {0} for euery (t, x) e [0, 1] x R'. Let the assump-
tions of integrability and attainability hold. Then

(5. 1"3) -infF:minG> -oo.d.4

In order that x e .4 be an optimal arc in the original control problem, it is necessary
and sufficient that there exist an arc p e.il for which the optimality conditions hold.
The arcs p obtained in this way are precisely the optimal arcs in the dual problem.

Proof. This combines Lemma 4 with [12, Thm. 1(b)] for the function l, in
{2"9). (Condition (Do) of [12] holds for L, as observed in the proof of Theorem 1

above. Furthermore, the set C"inll2l has the same relative interior as the set D
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here, because C, has the same relative interior as
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(5.14)
( rt' )

{t"tot, 
x(l))lx . * . 

Jo 
L(r. x(r), x(tD dt < a}

according to ll2, Cor: 4 of Thm. 3], and D lies between these two sets;)

6. Generalized optimality conditions for state constraints. We proceed to
reduce the general case to the case ofno state constraints by means ofan abstract
multiplier principle. ,

Every continuous linear functional on the Banach space C corresponds, of
course, to an Rn-valued measure on [0, 1] , which can be expressed as dp for a certain
function p : [0, 1] --+ Ro of bounded uariation. We denote by I the space of all such

functions under the norm

(6.1) llplls: lp(0) + lldpll.

Thus fi is a Banach space isomorphic to R' x C*, and -ql is isometrically embedded
in 0.lt should be said that A actually consists of equivalence classes : we identify
two functionsp and q if p(t-) : S!-)and p(r*) : SQ*)at all the (countably many)
places where these functions have jumps, since then dp : dq. In this context we
regard p(0) as p(0-) and p(1) as p(1 +).

Srnrcr FEASIBILITv ASSUMPTIoN. There is at least one ctrc x e,il satisfying
F(x) < I a such that x(t) e int X(t\ fot euery t.

Lnuue 6. Let the assumptions of integrability, interlority and strict feasibility
hold. Then qn arc x e .il is optimal in the original control problem (that is, F attains
itsminimumouer S at x),if and only if there is afunctionpoe 0 for whichthelinear
functional

L(z): pnft)' z(t) dt - po(O). z(0) + po[). z(t)

(6.2)

z(t) dpo(t), z e .4 ,

has the Jbllowing properties:
(a) A, attains its maximum ouer S at x;
(b) f + L attains its minimum oaer .il at x.

Proof. The sufficiency is immediate from the fact that (a) and (b) imply, for
arbitrary z e S.

(6.3) F(z) : (F + L)(z) - /t(z) > (F + AXx) - A(x) : F(x).

To prove the necessity, let x denote any optimal arc. In the space ,il x Rl, we

consider two convex sets, the epigraph of F (i.e., the set of all pairs (2, a) such that
u > F(z)) and S x (* co, F(x)1. The latter has a nonempty interior which does not
meet the former, so that the two sets can be separated by a closed hyperplane.
The hyperplane cannot be "vertical," because of our strict feasibility assumption,
and therefore it is the graph of a certain continuous linear functional A on .il.
Since both sets contain the point (x, F(x)), properties (a) and (b) hold for A. Further-
more, since S has a nonempty interior relative to the norm ll . llr (Lemma 3), A must

f'JO

I
I
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actually be continuous relative to ll . llr, due to (a), and hence A can be represented
as in (6.2). (For the integration by parts,'sbb [4].)

The virtue of Lemma 6 is that the minimization in (b) corresponds to a control
problem without state constraints. Namely, one has

(F + A)(x) fr(t, x(t), x(t) - A(t)x(t)) dt + l'(x(0), x(1)),:1,(6.4)

where

(6.s)

(6.6)

(6.7)

(6.e)

where

(6.10)

,

fr(t,x,u): f(t,x,u) = po(t).(A(t)x + u),

l,(x(O), x(1)) : /(x(0), x(1)) po(O)'x(0) + po(1)'x(1).

The functions /r and /, satisfy the same assumptions as / and l. Thus we can use

Theorem 4 ofthe preceding section to characterize (b).

At the same time, the situation in (a) of Lemma 6 can be characterized by
results in [1a]. These results make use of the following concept.

Let K(r) denote a convex cone in R' (containing the origin) for each r e [0, 1].

An Rn-valued measure p on 10, 1l is said to be K(t)-ualued rf the Radon-Nikodym
derivative d pl d0 satisfles

ft{0.*{r), o-a.e.,

where g is any positive measure on [0, 1] with respect'to which p is absolutely
continuous. (This property is independent of the particular 0.)

LEr,rlr.q.7. Under the interiority assumption, a functional of the form (6'2)

attains its maximum ouer S at x if and only if (x e S and\ the measure dpo is N(t, x(t))-
ualued (where N(r, x(r)) is the cone of normals to X(t) at x(t)).

Proof.lf .il were replace dby 6 in the definition of S this would be Corollary 6,{
of [14], since our interiority assumption on the multifunction X :t "+ X(r) implies
lower semicontinuity [14, Lemma 2]. The result follows in the present case because

A is continuous in the norm ll .llr, and S as a subset of .il is dense in the corre-
sponding subset of 6 (Lemma3).

Our main result on necessary and sufficient conditions, Theorem 5 below,

concerns the following conditions.
GsNsnLrrzm oPTIMALITY coNDITIoNS. These are the same as the optimality

conditions in $ 5, except that p e 0 rather than p e M, and

(6.8) the singular part of dp is N(r, x(t))-ualued .

Of course, if p is of bounded variation, the derivative p(r) in condition (5'5)

does exist for almost eyery t,although it is not necessarily true that p is the integral
of p. The singular part of the measure dp may be regarded as the "singular dual

control contribution," in the sense that one has

dp(t): -A*(t)p(t)dt + dp(t),

dp(t) : w(t) dt + (singular Part).
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The generalized optimality conditions reduce to the previous ones if lhere are
no state constraints, since then N(r, x14;'= {0}. (fo say that the singular part of
dp is {0}-valued is to say that p is absolutely continuous.) More generally, condition
(6.8) implies that the singular part of dp is concentrated in the set of t values for
which x(r) lies on the boundary of X(r). If p is discontinuous at r. we get the jump
condition

(6.11) p(t*) - p(t-)e N(t, x(0).

The generalized optimality conditions,iexcept for transversality, may be regarded
as the natural extension of the Hamiltonian "equations" (5.8) to allow for pefi,
instead of .just p e d.

TnEonnu 5. Let the assumptions of integrability, interiority, attainability and
strici feasibility be satisfied. Then, in order that an arc x e il be optimal in the giuen
control problem, it is necessctry and sufficient that there exist a function p e I for
which the generalized optimality conditions are satisfied.

Proof. We are in the situation of Lemma 6. Property (a) of Lemma 6 has
akeady been characterized in Lemma 7. On the other hand, we have observed that
property (b) characterizes x as an optimal arc for a certain control problem without
state constraints, corresponding to the functions /, and /, in (6.5) and (6.6). The
integrability and attainability assumptions on f and I carry over to f , and l r, as
may easily be checked. Thus Theorem 4 is valid for the unconstrained problem with
ft and /r. The function h, which corresponds to /r, as /r does to f in (2.6), is

(6.t2\ hr(t,x,p) -- h(t,x,p + po(r)) + po(t).A(t)x.

Thus the optimality conditions for the unconstrained probfem, expressed in terms
of a function p, e .&, are :

(6.13) *(t\: A(t)x(t) + u(t) and br(t): -A*(t)pr(t) + wr(| &.e.,

(6.14) u(t\ e 0 ohr(t, x(t), p r(t)) : A rh(t, x(t), poQ) + p1(r)) ?.a.,

(6.15) wr(t)e -A"hr(t,x(t),pr(t)): -A"hQ,x(0,po(f) + pr(|) - A*(t)poQ) r.a.,

(6.16) (p,(0), -p,(1))edl,(x(0), x(1) : dl(x(0), x(1)) - (po(0), -po(l)).
We may conclude therefore, as an intermediate step, that x is an optimal arc if and
only if xe S and there exist functions poe A and pre,il suchthaL dpo is N(r, x(r))-
valued and conditions (6.13) through (6.16) are satisfied.

We can write dpo as

(6.t7) dpo(t) : po(t) dt + dp(t),

where p is a certain singular measure. Then dpo is N(r, x(r))-valued, and x belongs
to S if and only if p is N(1, x(r))-valued and 1o(t) e N(r, x(t)) a.e. (The latter implies
that N(t, x(t)) + A a.e., so that x(t)e X(t) a.e.; then xe S by Lemma 3.)

Suppose now that the preceding conditions are satisfied by x, po and pr, and
let

(6.18)

(6.1e)

p(t):po(t)+pr(t),

w(t) : po(r) + A*(t)po(t) * w,(r).
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Thenp(r) : io|j)+ pr(r).andthesingul4rpartofdpis,il.Asimplecheckshowsthat
the conditions at hand reduce to the generalized optimality conditions for x and p.

Conversely, suppose that x and p satisfy the generalized op-timality conditions.

It would be possible to show that p can be written in the form (6.18) in such a way

that the preceding intermediate conditions are satisfied. However, this approach

requires a complicated measurability argument. We therefore proceed more

directly, via the theory of subgradients and the fact (Lemma 4) that the optimality

conditions (5.3), (5.4) and (5.5) can be expressed in the Hamiltonian form (5.8).

Since 116 is the Hamiltonian corresponding to the Lagrangian Loin(4.20), we can

express these conditions equivalently in the Lagrangian form

(6.20) (p(t),p(t))e 1LoQ' x(4, *(r)) a.e.,

where dlo(t,. ,') denotes the set of subgradients (in R' x Rn) of the convex

function Lo(t, . ,. ) [10, p. 212). As observed in the proof of Theorem 3, the given

control problem amounts to minimizing the functional Fo in @.21) over all of d.
Thus we need only show that (6.20), (5.6) and (6.8) imply

(6.2t) Fo(z) 2 Fo(x) for every z e &.

Fixing z e .il , we observe from (6.20), (5.6) and the definition of "subgradient" that

LnQ , z(t), 2(t)) > L(t , x(t),jt(t)) + (z(t) - x(t)) ' p(4
(6.22)

+ (2(t) - t;(t)).p(t) &.e.,

while

(6.23) t(z(0), z(t\) > /(x(0), x(1)) + (r(0) - x(0))'p(0) - ('(r) - x(1))'p(1).

Integrating both sides of (6.22) and adding to (6.23), we get

(6.24) Fo\z) 2. Fo(x) -

where;r is the singula r part of dp. unless Fs(z) : * m (in which event FoQ) 2 Fs(x)

trivially), z(r) must belong to X(0 for every t (cf. Lemma 3). Then, since ,il is

N(r, x(r))-valued, the integral in (6.2$ is nonpositive, so that Fo(z) > F6(x)'

Remark. The preceding argument shows that the generalized optimality

conditions are sufficient even without the assumptions of attainability and strict

feasibility, as long as at least one feasible arc exists. (The existence of a feasible arc

was used in concluding from (6.21) that x is itself feasible, i.e., Fo(x) * *a.
Actually, this assumption is unnecessary, in view of Lemma 8 in the next section')

7. The generalized dual problem. Theorem 5 is incomplete in comparison

with Theorem 4, because the meaning of the functions p that appear in the gener-

alized optimality conditions is unexplained. Presumably such functions are

generalized solutions to the dual problem. We show now that this is true in a certain

precise sense.

Returning to the function s in (4.9), we define for an R'-valued measure ,u:

[' eo - x(t\)dp(t\,

l"l"(7.1) s(t,dp(t)): s(t , (dpld9)(t)) d0(t) ,
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where 0 is any positive measure with respect io which p is absolutely continuous.
(Since s(r, w) is positively homogeneous as a.function of w, this formula is independ-
ent of the particular 0.) Under our interiority assumption, s has the measurability
needed for this definition, and the integral is well-defined (possibly * oo, but not
- co) [la, $a].

It will be recalled that the dual control problem in g 4 consists of minimizing
the Bolza functional G in (4.5) over the space A. We take the generalized dual
problem to be that of minimizing over the space A the functional

(7.2) G(p\: G(p) + s(t, dfu(t)),

where p is the singular part of dp. Since s(r, 0) : 0, it is clear that G agrees with G
on -sl. Thus G is a certain extension of G from d to the larger space 9.The topo-
logical nature of this extension is described below (Theorem 6). It may be ascer-
tained that G is again convex. (This can be deduced using (4.1 1) and the definitions.
It is also shown by the last part of the proof of Theorem 6, which assumes only
"integrability" and "interiority.")

LsraN{r 8. Let the assumptions of integrability and interiority hold. Then the
generalized optimqlity conditions are satisfied by x e.& and p e 0 if and only if
xe S and

(7.3) -minF: -r(x) : G(p): minG.
Sg

Proof.Define Lo as in(4.20) and Mo as in (4.25); thus I,o and Mo are the
Lagrangians dual to each other that correspond to the Hamiltonian .EIo given by
(5.7). The Hamiltonian "equations" (5.8), which according tci Lemma 4 express the
optimality conditions (5.3), (5.4) and (5.5), can then ll0,p.2l2l be expressed as

(7.4) Lo(t,x(t),*(4) + MoQ,pft),p(r)): x(r).i)0) + x(t).p(t) ?.a.,

where for arbitrary x e .il and p e A ft would be true that

(7.5) Lo(t,x(t),*(4) + MoQ,pQ),it(|) > x(r).8@ + x(t).p(t) a.e.

On the other hand, if 0 is any positive measure on [0, 1] with respect to which both
Lebesgue measure on [0, 1] and the singular part p of the measure dp are absolutely
continuous, we can write the conditions (6.8) and x e S as

I"

(7.6\

where

(7.7)

r(t, x(t)) + s(t,(dpldqxr)) : x(t).(dpldq)(t), 0-a.e.,

if x(r) e X(r),

if x(r) t' x(r).

fo
r(f,x(t)) : i

[+oo
(In view of Lemma 3, we have x e S if r(t, x(t)) is finite 9-almost everywhere, as
implied by (7.6).) For arbitrary x e .& and p e I (with I depending on p as above),
it would be true that

(7.8) r(r, x(r)) + s(t,(dpldqx0) > x(t).(dpldfi(t) q-a.e.
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Multiplying both sides of (7.5) bV @tld?)(t), adding this inequality to (7.8) and
integrating with respect to 0, we obtain,.since

(7.9) Loft, x,*) + r(r, x) : Lo(r. x, *),

the inequality

I, t"u,x(d, *(r) 
" . I: 

M o(t, p(t)Bg1 dt

= f'ro dp(t) + J'*,, p(t)dt..

+ [' ,(t,apg11

(7.10)

Thus (7.10) holds for arbitrary x e .il and p e 0, with equality if and only if (7 .4)

and.(7.6) are satisfied. We note next that the transversality condition (5.6) can be

expressed as

(7.1 1) (x(0), x(1)) + m@(0),p(1) : x(0).p(0) - x(1).p(1),

where for arbitrary x e .il and p e A we would have

(7.t2) l(x(0),x(1)) + m(p(0\,p(t)) > x(0).p(0) - x(1).p(1).

(This is immediate from the definitions.) Adding (7.12) to (7.10), we get the in-
equality

(7.13) Fo(x)+G(p)>0

(Fo as in (4.21) and (4.22)) for arbitrary x e .il and p e A, with equality if and only if
(7.4), (7.6) and (7.11) hold. Since the latter conditions are equivalent to the gener-

alized optimality conditions, Lemma 8 is proved.
Conolr.lnv. The functions p e 0 in Theorem 5 are precisely the solutions to the

gener alized dual pr oblem.
It remains only to show that the solutions to the generalized dual problem

can be construed as limits of minimizing (generalized) sequences in the previous
dual problem. This is a corollary of the following theorem. Here, by the weak*
topology on 9, we mean the topology induced by the linear functionals

(7.t4)

TnsoRnu 6. Let the assumptions of integrability, interiority and boundedness

be satisfied. Then G is the lower semicontinuous extension of G to 0 in the weak*

topology. In other words, for each p e A one has

(7.1 5) G(p) : lim inf G(p), Pie il , Pi + ?,

where the limit is taken ouer all week*-conuergent generalized sequences.

Proof. For each (a, y) e R' x 6,let E@, y) denote the infimum of

p --+ a .p(0) + !' ilA dn{t), (a, y) e Rn x 6 .

i,

I(7.t6) f(t,x(t) + y(t),x(t) - A(t)lx(r) + y(01) dt + l(x(O) f a,x(1))
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over all x e -el satisfying ;

(7.17) x(0 + y(r) e xk)' for every r.

We shall demonstrate that

( 1t )(7.18) E@,y): sup la.p(0) + I y(tldp(t) - Gb)1,p.dl J6 - 
)

while on the other hand, for every p e 9;
( pt )(1.ts) G(p) : sup sup lc .p(o) + I y@ dp(| - E@. il\.

oeRn yes I Jo )

This will imply by the fundamental theorem on conjugate convex functions (see

[5]) that G is the lower semicontinuous extension of G to g intheweak* topology.
As a matter of fact, (7.18) is a case of Theorem 3. For the functions

(7.20) .f"(t,x,u): f(t,x + y(t),u - A(t)y(t)),

(7.21) /'(x(0),x(1) : (x(0) + a,x(t)),

and sets

(7.22) Xr(t) : X(t) * y(t) (translation),

q(a, y) denotes the infimum in the control problem, where

pl
(7 .23) I f ,(, , x(t), i;(t) - A(t)x(t)) dt + l'(x(O), x(t))

Je

is minimized over all x e .e/ satisfying

(7.24') x(t) e Xv(t) lor every r.

In the corresponding dual control problem, we have

(7.25) gr(t,p,w):g(t,p,w)-(w- A*(t)p).y(t),

(7.26) m"(p(0),p(1) : m@(0),p(1) - a.p(0).

Thus the dual problem consists of minimizing

(7.27) G(p) - a.p(ol - I' yf,l.p@dt
Js

over all p e g, so that (7.18) is just equation (a.19) in Theorem 3 in the case oflfv,
I'and Xv(t). The interiority assumption in Theorem 3 is satisfied by Xv(t),since it is
satisfied by x(t) and the function y is continuous. The boundedness assumption is
likewise satisfied : the recession functions of fv(t,. , . ) and lo and the recession cones
of the sets Xv(t) arc actually identical with those of f (t,. ,.),1 and X(r). As for the
integrability assumption, the question is whether the function

hY(t,x,P) : sup {P'u - fY(t,x,u)}
(7.28) u

: h(t,x + y(t),p\ + p. A(t)y(t)
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is summable in , for each fixed x e R' and p e'R'. The lasttermin(1.28) is summable
in /, because , (r) is summable in r and.y(r) is continuous in t. According to our
integrability assumption on h, h(t, x, p) is finite and summable in r for each x and p.

Since the function x--, -h(t,x,p) is convex, this implies [i4, Cor. 2A] that
h(t,x(t),p(t)) is summable in t for all bounded, measurable functions x and p.

Hence, in particular,h(t,x -t y(t),p) is summable in t for xe R',./€ G and p€ R",
and it follows that hv(t, x, p) is summable in r. This verifies that the hypothesis of
Theorem 3 is satisfied for f v 

, I' aid Xv(t) , and equation (7. 18) is thereby established.
We now turn to the proof of (7.19), which is by direct calculation employing

results in [14]. The supremum in (7.19) iq

( rl

sup sup rup { o .p + I y@ dp(t)
qeR yeg xed I J6(7.29) f, .)

+ I LoG, x(0 + y?\,x(t)) dt + /(x(0) + a, x(l)) |Js )

(cf. proof of Theorem 3), where Le , &S before, is given by @.20). This can also be
written as

( rr
sup sup tup { 1ro - x(0)) .p(0) + I QO - x(t)) dp(t)
coeRn ze6 xed I J6

1r )
- | Lnft, z(t),*(t)) dt - t(cn, x(1)) |Jo I

(7.30) : sup supsup {"0.p(0) - x(1).p(l) + | z(t\ 4p(t)
coeR" ze€ xed I J g

+ [' n@.*(t)(tt ' Ir t"rt,z(t),y(t))dt - ttco,crll

: m(p(0),p(1)) + *g {1. 
zft)tlp(t) * a@},

where

(7.3t)

Let Ho be the function in (5.7), so that

(7.32)

We claim that
pl

(7.33) QQ): I no(r,z(t),p(t))dt, ze6, peg.
J6

The verification uses the fact, already remarked earlier in the proof, thath(t,z(t),
p(r)) is summable in r for all bounded, measurable functions z and p (and hence for
all z eG and p e fi\. This implies, first of all, that if z eG and

Qk) :::g {i. pQ)'x(t)dt - [' Lo(t,z(t),rano,\.

Ho(t,z(t),p(t)): sup {p(r) .u - Lo(,2(t),u)}.
u€Rn

(7.34) z(t) e X(t) for every r,
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the flrnction (t,p)-. H(t,z(t),p) is summable in re[0,1] as well as finite and
convex in p e R'. It follows then lrom [14,.Cor. 24] and (7 .32) that

(2.3s) 
I"r"u,z(tt,p(t))dr: sup {l't,,, 

.rrtt I Lo(t.z(tt'.r@lld,}

for every bounded, measurable function p, where the supremum is taken over all
summable functions u:[0, 1] -- Rn. Therefore, (7.33) is valid if (7.34) holds. On the
other hand, 1f (7.34) does not hold, then the set of / values for which z(t) ( X(t) is of
positive measure, due to our interiority alsumption (Lcmma 3). Then the integral
in (7.33) is unambiguously - oo, while the integral of lo in (7.31) is unambiguously
+ oo for every x e ,il . The latter implies that the supremum defining QQ) is - n.
Thus (7.33) is valid even if (7.34) does not hold.

Summarizing to this point, we have shown that the supremum in (7.19) can be
written as

(7.36) m(p(0),p(1)) + ::p U. 
z(t)dp(t)+ 

J'n01,, 
,1a,01,y0,|

for arbitrary p e 6.Now leI

(7.37)

so that

(7.38)

q(t, z1 : - H o(t, z, p(t)),

{z e R"lq(t, z) < + o} : X(t).

The function q is convex in z e R' (sin ce h(t, x, p) is concave in x) , and the supremum
in (7.36) is

(7.3e)

To calculate the latter, we use [14, Thm. 5]. The hypothesis of this theorem requires

4 to be lower semicontinuous ( * + .o; as a function of z for each t, measurable on
[0,1] x R' with respect to the o-field generated by products of Lebesgue sets in
[0, 1] and Borel sets in R', and

::p {1, 
z@ dp(t) - [' nu,lil d'l '

[rlna, )ldt < +a for zeZ

q(t,z(t\ dt\

+ 
l'a*{r,au{o),

(7.40)

whenever V c.10,1] and Z c R" are open sets such that Z c. X(t)for al| teT
(In addition, the set (7.38) is required to satisfy conditions equivalent to our
interiority assumption here;see [14, Lemma 2].)

Postponing for a moment the verification of these properties of q, we note that
the theorem in question asserts

J

J
TP {l' <a atat - I"

: [' n*{r,B@)dt

(7.4r)
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where q*(/,.) is the convex function conjugbte to q(t,'), Q*Q,') denotes the re-
cession function ofq*(t,.), and d4 is thesingular part ofdp. ln fact,

(7.42) A*Q,w): suP w'x: s(r,w)
x€X(r)

in view of (7.38) [13, Thm. 13.3], while by definition,

q*(t,w): sup {z'w - q(t,s)}
' . zeR^

(1.43) : g*(t,',p(t),w + A*(t)p(t))

(see (5.7) and (4.11)). Thus (7.41), inserted in (7.36), yields the expression

11 fr(7.441 m(p(01,p(1)) + 
Jo s*tr.p(tl.p(t) + A*(tlp(t}o, * 

Jos(r,dp(t))

for the supremum in (7.19), and this is G0). as desired.
We complete the proof of Theorem 6 by verifying that q does have the

properties listed above (preceding (7.40)). The lower semicontinuity of q(t,z) in
zeR'follows from (7.32): since Lo(/,.,') is a lower semicontinuous, convex
function on R'x R", this formula implies that HoQ,',') is a "lower closed"
concave-convex function on Rn x R" [13, p. 357]. This "closedness" of Ho(t,',')
entails upper semicontinuity in the concave argument, because llo nowhere has the

value * oo [13, pp.356-3571. To see the measurability of q in the required sense, we

represenl

(7.4s)

where

(7.46)

and

(7.47)

Recalling that h(t,z,p(t)) is summable in z (since p, being a function in 0,is
measurable and bounded) , we observ e that qr(t, z) is certainly measurable in r for
fixed z € Rn, as well as finite and convex in z for fixed r e [0, 1]. It follows that qr is

measurable on [0, 1] x R'[15, Prop. 1, fl. On the other hand, the set

(7.48) {(t,z)lzeX(t)} c [0,1] x R'

is measurable in the specified sense, because, under our interiority assumption, it is
a countable intersection of open sets-this has already been shown in the proof of
Theorem 3, following display (4.26). Thus the function q, is also measurable, and

the measurability of e : er * q2 may be concluded. Finally, we remark that the

summability of h(t, z,p(r)) in t for each z e R" trivially implies the summability

property required ofq. Theorem 6 is now proved.

CoRogany. Let the assumptions of integrability, interiority and boundedness

be satisfied. Then a function p e 0 solues the generalized dual problem if and only if
p is the weak* limit of a generalized sequence Qt,) in .d which is a minimizing sequence

q(t, z) : qr(t, z) I qt(t, z),

qJt, z) : - h(t, z, p(t)) - p(t) . A(t)z

IO ilzeX(tl.
qz(t, z) : 1

[+* If ztX(tl.

J

ltr.1
!,:
tl,!
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in the earlier dual problem; that is, 
. ,

(7.49) lim G(p,) : inf G.
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