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Convex Integral Functionals and Duality

R. TYRRELL ROCKAFELLAR

§1. Introduction.

Let (T,G ,p) be a measure space, and let L bhe a
linear space of mappings x : T— X, where X is a real
vector space, A convex integral functional on L is an ex-
tended-real-valued functional of the form

(1) I(x) = fo{t,x(t})p(dtJ, % E,

where f(t,-) is foreach te T an extended-real-valued
convex functional on X . Such a functional is, as the name
implies, convex on L, if in a rather general sense it is
well -defined.

The most familiar functionals of the form I; are
undoubtedly the ones occurring in the classical theory of LP
spaces and Orlicz spaces:

. 1 | P
(2) L) =5 [ 1) Ppan), L<p<tn,
or more generally

(3) I(x) = (T N( |x(t)[)u(dt) ,

where N is a nondecreasing convex function on [0, 4%).
Here X =RL of course, the theory of duality in LP spaces
and Orlicz spaces also involves the study of other, simpler,
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convex integral functionals, such as the linear functionals
3 - ' d
(4) I(x) = [ x(ty(t)u(dt) .

These classes of functionals can be generalized by replacing
X = Rt by any normed linear space,

Recent work on convex integral functionals has been
motivated not so much by these examples as by broader appli-
cations to the extremum problems and variational principles,
For instance, many problems in the calculus of variations or
optimal control involve extended-real-valued functionals of
the form

n
—

zZ(t))at ,

Ilz) = ID fit, z{t)
a

where z:[a,b]— Z is a "curve" (with derivative z) in a

lingar space Z . One can view I as a functional (1) in the

case where X 1s ZXZ and L is the space of functions

(z,w): T—- X suchthat w =2z, The study of I alsoc entails

the study, for fixed choices of z , of the functional

(6) W afD f(t, z(t), w(t))dt .

a
Even if these integral functionals are not themselves convex,
it is often useful to compare them with certain convex inte-
gral functionals which they majorize, or to consider their
"convexifications".

Here, instead of curves over an interval [a, b], one
can investigate functions z defined over a region © of R,
the derivative z being replaced by a vector of partial deriva-
tives, The generalized gradient operators assocliated with
the functionals I (or closely related functionals) in such
cases correspond to variational principles., Many important
differential and integral operators, as well as other nonlinear
operators on function spaces, belong to this class.

The notion of "continuous addition" of convex func-
tions provides further motivation for a general theory of con-
vex integral functionals. Given a collection of convex func-
tions f, = f{t,-} on X, it is possible to define another
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CONWEX INTEGRAL FUNCTIONALS

convex function
(7) Flx) = [ £t x)p(dt) ,

which can be regarded as the integral or "continuous sum"
of the functions i. (with respect to W ), It is an important

L

gquestion whether, or to what extent, certain basic results
about the conjugate or subdifferential of a finite sum of con-
vex functions can be extended to such an infinite sum,
Observe that F may be identified with the restriction of I
to the space of all constant functions = 3 T—= X . )

Duality has always played a fundamental role in the
analysis of convex integral functionals. One may cite in
particular the classical results of Luxemburg and Zaanen
[2]1] concerning dual functionals of the form (3). These are
examples of convex functionals conjugate to each other in
the sense introduced by Fenchel,

General convex integral functionals conjugate to each
other were first investigated in the author's paper [26] for
X = R, A concept of "normal convex integrand" was briefly
developed thers by elementary methods, so as to provide the
necessary technical lemmas concerning measurability,
measurable selections, etc, Connections between normal
convex integrands and the new theory of measurable multi-
functions, particularly the results of Castaing [2, 3],
Debreu [9] and Kuratowski and Ryll-Nardzewski [18], were
explored in a separate paper [27]. Taking a different approach
to questions of measurability, Ioffe and Tikhomirov [15, 16]
studied continuous addition (7) and the dual operation of
continuous infimal conveoluticn in a separable Banach spacs
¥ and its dual., The same operations were {reated subse-
quently by Castaing [4,5,6] in infinite-dimensional space
X and by Valadier [38] in RP. Castaing simultaneously
extended a sufficient condition of Rockafellar [26] for the
weak compactness of the level sets of certain integral func-
tionals [see also Valadier [40]). This compaciness condition
was also extended by the author [30] in a different manner
which made it possible to show necessity, as well as suf-
ficiency, in certain cases [3l1].
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Among other recent work of a more special nature,
not to be discussed below, we mention the comprehensive
paper of Ioffe and levin [l4] on the subdifferentials of con-
vex integral functionals such as (7). This paper is the latest
in a collection including Castaing [6], Gol'shtein [11],

Ioffe [12], Levin [19, 20], and Valadier [37, 39]. We
mention further the papers of loffe [13] and Rockafellar 32,

3] dealing with applications of new results on convex inte-
gral functionals to problems in the calculus of variations.
The work of Temam |35, 36] should lead tc more applications
of this sort,

Qur aim in this paper is to set forth some of the basic
theorems about convex integral functiconals in a more general
form than has previously appeared in the literature. For the
most part, the arguments follow earlier ones, but their exten-
sion to a oroader context has been made possible by the
technical developments cited above, especially in the theory
of measurable multifunctions.

e
[ ]

Measurable Multifunctions and Normal Integrands

We agsume henceforth that ¢ is a o-algebra of sub-
sets of T (the measurable sets), and that u is a positive,
g -finite measure on i which is complete (i.e. every sub-
set of a set of measure zero is measurable). In this section
X denoctes an arbitrary complete separable metric space with
metric d , and f denotes the ¢ -algebra of Borel subsets of
X . The ¢-algebra in T XX generated by the sets A XB ,
where Aeq and Be g, is denoted by @ Xa.

Given a multifunction (ae.—valdf:d mapping) I':T— X
and a set 5 C X, we denote by I'~ {b} the set of all t ¢ T
such that T(t)1 S # ., The set

(8) DIC) ={te TIT(t) # P} =T (X

is called the effective domain of I" , and the set

(9) GII') = {{t,x) e T XX|x e I'(t)}
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the graph of I" . We say that I is measurable if its graph
belongs to g X @R . Other definitions of the measurability of
T are alsc possible, for example in terms of the measura-
bility of various classes of sets of the form F'I(S}. How -
ever, in the case we are really interested in, where T" 1is
closed-valued, it turns out that, under our assumptions on
(T,G .,p) and X, all the reasonable definitions coincide.

Theorem L. Let T': T—X be a multifunction such that I'(t)
is a closed set forevery te T . Then the icllowing proper-
ties of I" are equivalent.

(a) I is measurable, that is, G(I") is a measurable
set.

-1 ; .
(b} I (C) is measurable for every closed set
cCCcXx.

; L - _
(c) I" "(U) is measurable for every open set U C X,

{(d) " "(B) is measurable for every Borel set B C X,

(e) D{I'} is measurable, and d(IT'(t),x) is a measur-
able function of t ¢ D{I") for each x e X .

{(f) D(I') is measurable, and there exisis a countable
collection (xj,1 ¢ I} of measurable functions
xi:D(F}—*X such that I'(t) is the closure of
{Xif_-‘.) |ie I} foreach te D) .

{g) There exists a countable collection :‘jxi,i el) of
measuraple functions xi:T—>X such that the set
{xi(t)| 1e I} N T(t) is dense in I'(t) for each
te T, and the set {te T|x(t) e ['(t)} is
measurable for each 1¢ 1.

This theorem is the key to almost everything involving
closed-valued measurable multifunctions, It is due primarily
to Castaing, who states it, minus condition (g), as Lemma 2
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[7]; see also [8]. (Castaing also omits condition (b) ,
which he used elsewhere as the definition of measurability,
but the implication here from (d) to (b) to (¢) is elementary. )
A proof has also been furnished by Ioffe and Levin |14,
Appendix II]. Most of the implications were established, at
least in special cases, in Castaing's dissertation [2] and
developed further in a number of papers by that author, The
equivalence of (a) and (b), however, was essentially proved
earlier by Debreu [9], employing arguments attributed to
Freedman and Neveu. The assumptions were weakened, and
various implications sharpened, for X = Rt by Rockafellar
[27], who introduced condition (g).

In general, the implication from {f) to (g} is trivial,
while the implication from (g) to (f) can be proved by the
following argument (taking the index set I to be the natural
numbers), Let Ti = {t ¢ Tix-l(tJ e I"(t)}. Define Xé_:D{I‘}—»X
by

Xll',t} = xl(t) for te TJ. ;
2 Xalzt) for te TZ\T]_ :
= XSLt) for te TS\"I‘T]. U TZ)_. B
and then for i =2,3,..., define x:D(I')—~ X by

xi(t) - xi(t) for te Ti 5
= xl[t) for te D(l")\Ti ;

It is easily checked that the collection (% , 1 e [) has the
properties in condition (f).

Scme other recent work on extending Theorem 1 may
be found in the dissertation of Valadier [39].

Thecrem 1 is indispensible in demonstrating that
measurability is achieved or preserved when multifunctions
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are consiructed or manipulated in various ways. In most
cases the ultimate purpose of all this is to enable one to
invoke the following fact, obiained by specializing condi-
tion (f).

Corollary, I IT—-X 1is a closed-valued multifunction
satisiving any one of the conditions in Theorem 1, then there
exists at least one measurable function x:T-X such that
®x(t) e I(t) for every te D(I').

The existence of a measurable selector x when T
satisfies {¢), a fact basic to the proof of Theorem 1, was
first proved by Rokhlin in 1949 [34, Part I, §2, No. 9, Lemma
2], as Castaing has pointed out. The result was later redis-
covered independently by Kuratowski and Ryll-Nardzewski
[18] and Castaing [2].

It is convenient in the rest of this paper to reierto a
function f:T XX - (-%,+] as an integrand. For each
t e T we denote by I; the function t— f(t,x). The epigraph
of f;: 15 the set

(10} epi I = {(x,0) ¢ X XRlift(x) <a}l.

Proposition 1. The fcllowing conditions on an integrand £
are equivalent:

a) fis G X# - measurable on T XX, and for each
t ¢ T the function f; is lower semicontinuous on X and
not identically 4=,

) The multifunction t— epi fJE is measurable, and
for each te T the set epi f. is closed and nonempty.

This is easily deduced, arguing by way of the measura-
bility of the function (t,x,a) = £(t,x}-o and its level sets,

An integrand f satisfying the conditions in Proposi-
tion 1 is said to be normal . The normality property can also
be expressed in terms of a condition resembling (g) of Theorem
1, and this 1s a useiul approach in dealing with convexity;
see [26,27]. A simple criterion worth mentioning is this:

f is a normal integrand if f(t,x) is finite everywhere,
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measurable in t for fixed x , and continuous in x for
fixed t. (Then the functions of the type t - (a,f(t,a)+e)
as a ranges over a countable dense subset of ¥ and &
ranges over the positive rational numbers, form a countable
collection having property (£} of Theorem 1 with respect to
the multifunction t - epi so that this multifunction is
measurable, )

Narmality ensures in particular that for every measur-
able function x: T - X , the function t - f(t,x(t)) is measur-
able. (The latter function is the composition of f with the
measurable mapping t— (t,x(t)) ¢ T XX, ) If the function
t - f{t,x(t)) is summable in the usual sense, or if it major-
izes or is majorized by a summable (extended-real-valued)
function on T , a natural value (possibly +® or -w) can be
assigned to the integral

:E"

(11) I(x) = fT £(t, %(t)) u(dt).

In the remaining case, it has proved useful to adopt the
convention that If(x) = 4+, In this way, we regard I'f as a
well-defined, extended-real-valued functional on the space
of all measurable functions x: T~ X. The analysis of such
a functional depends heavily on the effective use of the
eguivalences expressed in Theorem 1 and Proposition I,

§3. The Conjugate of an Integral Functional,

We assume hencetforth that X is a separable reflex-
ive Banach space. The dual of X (which is likewise separ-
able) is denoted by Y , and the natural bilinear pairing be -
tween elements x ¢ X and v e Y by X,v).

Let £ be a normal integrand on T XX . It f, is
convex on X forevery te T, we say that f is convex.

In this event If is a convex functional on the linear space
Ly consisting of all measurable functions x: T - X .

The conjugate of the integrand f is the integrand g

on T XY defined by

(12) git,v) = sup {{x, v} - f{t,x)| x ¢ X} .
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According to (12}, g; is tor each te T the function on ¥
conjugate te fJE . The general theory of conjugate functions
(see [1, 16, 22, 28]) asserts that in this case g; is convex
and lower semicontinuous, If f, 1is itself convex (being
already, by virtue of normality, lower semicontinuous and
not identically +®), then g, is not identically 4, and f;
is in turn the function on X conjugate to g.:

(13) f(t,x) = sup {{x,y¥) - glt,v) |y « ¥}.

Combining such observations with a measurability argument,
we obtain:

Proposition 2. The integrand g conjugate to the normal
integrand f is a normal convex integrand, provided that for
each t there is at least one v ¢ ¥ such that gt,y) < +%0,

The latter is true in particular if f is convex, and in this
event f 1s in turn the integrand conjugate to g .

Proot. We need only show that g is measurable on T XY,
To this end, we choose a countable collection of measurable
multifunctions

t— (xi{t}, ai(t}} e X XRL , iely
such that foreach te T

epl ft = cf {{Xi{t}, cei(t))Il e 1} .
Such a collection exists by property {f) of Thecrem 1, since

the multifunction t— epif; is measurable. Foreach 1¢ I,
let

g,(t,¥) = <xi(t},y> - a,(t).

Then g; is measurable on T XY , and we have

g(t,y) = sup {g,(t,v) i e I}
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The measurability of g thus follows from the Iact that the
pointwise supremum of a countable collection of measurable
functions is measurable,

The main result of this section concerns the duality
between the integral functionals If and I. . let L denote
a subspace of the linear space of all measurable functions
x:T - X, and let M similarly denote a subspace of the
linear space of all measurable functions y: T— ¥. We
assume that |Qx{t},y(t)}| is summable in t for each x ¢ L
and v ¢ M, so that the pairing

(14) @Yy g = [ &E,yEDWd),  xel, yeM,
T

is well-defined. As an obvious special case, one could take
L = LE){ and M = L? (the usual Lebesgue spaces of functions
on T with values in the Banach spaces X and Y) with
l<p <o, (1/p) +(1/q) =1.

The space L (or similarly M) is said to be decom-
posable if, whenever x belongs to L and Xg+ S—>X is a
bounded measurable function on a measurable set 3 CT of
finite measure, the function

(15) xit) = xo[t) for te S

x(t) for te T/S,

also belongs to L. The Lebesgue spaces, of course, have
this property.

The following theorem, first proved by the author in
[26] for X =Y = R" | has not previously been stated in such
generality. However, certain special infinite -dimensional
cases (where X 1is not necessarily a separable, reflexive
Banach space) have been treated by Castaing [4, 5] or are
implicit in loffe -Tikhomirov [16] and loffe-Levin [14].
(Reflexivity is actually used only in the second assertion of
the theorem. )
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Theorem 2. If L is decomposable and If(x) < +0 for at
least one x e L, then the convex integral functional I on
M is conjugate to the integral functional I; on L, that is,

(le) Ig{y} = sup {(x,y}T—If[x) ]x e L} forevery ve M.

If in addition f is convex, M is decomposable and
Ig(y) <+ for at least one y e M, then Ifr on L is in turn

conjugate to Iy on M:

(17) I_T-(X} = sup{(x, y)T g (v) |y e M} for every xel,

Proof. It suffices to prove (l6), which asserts equivalently
that for each y ¢ M the quantity

J g 9tt, y(1)) p(at)

iz the supremum of

Jplstt), yit)y - (e, x(2))Jp(dt)
over all functions x e L. Replacing f, for each t by
f. - {+,vy(t)) if necessary (this manipulation is normality-

preservmg}, we can reduce the argument to the case where
y(t) =0 . Thus we need only prove that

(18) inf {fo(t,x(t) dt)x e L} = fT w(dt)
where
(19) o(t) = inf{f(t,x)|x ¢ X} = -g(t,0) .

Note that ¢ 1is a measurable function by the argument of
Lemma 2, There exists by hypothesis a function X € L and
a summable function a; such that

(20) f(t,xl{t)} <a/(t) forevery te T.

1
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Since eo(t) <i(t,x(t)) for every function x by definition,
we see in particular that the integral of ¢ in (18) is in the
standard sense well-defined and either finite or -9 , and
that the inequality > holds in (18). Now let B be any real
rniumber such that

(21) fT o(t) uldt) <B .

We prove the existence of a function x ¢ L such that
(22) S fEx(0)u(dt) <p

thereby establishing the theorem, From (2l) (and our assump-
tions on the measure space) there exists a summable function
ag, such that e¢(f) < aglt) for every t and

(23) J oo aglthude) <p .
Define the multifunction IT": T=X by

T(t) = {x e X | f(t, %) <ay(t)).
Since the function

(t, %) = f(t,x) - @

oft)
is measurable, the graph of I is a measurable set, i.e.

I" is a measurable multifunction. Moreover, I'(t) is for
each t closed (since ft is lower semicontinuous) and non-
empty (by (19) and the fact that ¢(t) < ceo(t)). The corollary
of Theorem 1 then implies the existence of a measurable func-
tion xg (not necessarily in L) such that xg(t) e I'(t) for
every t. BSince (23) holds, it is possible to choose a
measurable set S C T of finite measure such that

(24) [ (0 mae) + fT\Sa«ltth(dt} <P

It can be arranged at the same time that X is bounded on
5. Let
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x(t) = xo(t) for te S,
=x)(t)  for te T\S .

Then x ¢ L by the assumption of decomposability, and we
have

flt,x(t)) e (t) for te 3,

0
f(t, x(t)) < ozl('t} for Te T\ 5.

The latter implies (22), in view of (24), and the proof is
complete.

Corollary, Suppose that f is convex , L and M are
decomposable, and neither the functional Iy on L nor I
on M is identically 4+ . Then these convex integral
functicnals are conjugate to each other with respact to the
pairing (14), and hence in particular they are lower semi-
continuous with respect to any locally convex topologies on
L and M compatible with this pairing,

We remark that, in the situation in the corollary, the
subdifferential mapping 0l , which is a multifunction from
L to M, is easily described in terms of the subdifferential
mappings o8f;:X-—Y . Indeed, 8If(x) is foreach xe¢ L the
set of all y e M such that

(25) v(t) e aft{x{t}) for almost every t.

As an illustration, let us suppose that L = L% and
M = L% ; L<p<ow, (1/p)+(l/q) =1. These spaces
are decomposable, so that the corollary is applicable
if { is any normal convex integrand such that f(t,x(t)) is
summable in t for at least one function x ¢ LY , and
glt, ¥(t)) is summable in t for at least cne function ve 1,
The convex functionals If on Lg){ and I_ on Lgv are then
lower semicontinuous with respect to not only the norm top-
ologies, but also with respect to the weak topologies that
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LI}J{ and LY induce on each other, Furthermore, since I_}%
is a Banach space whose dual may be identified with LC%( ,
we can conclude that the subdifferential mapping

LD q
(26) BIf. LX—> LY :
which as we have seen can be expressed by the relation (25),
is a maximal monotone operator, as well as a maximal
¢cyclically monotone operator [29]. Special note should be
made of the case X =Y = Rj—, since then (25) becomes

(27) y(t) e T (t,x(t)) for almost every t,

where I'(t,-) is for each t a general maximal monotone
operator from R™ to Rl . This case is encountered, for
example, in the study of the Hammerstein equation and vari-
ous boundary-value problems.

4, A Refinement, With an Application to Weak Compactness.

In the case of Theorem 1 where L = L and M =17

there is an unanswered question which turns out to be crucial
in dealing with manvy integral functionals that arise in prac -

tice., In this case we do have, under the assumptions in the

corollary above,

) 1 o0
(28)  1(y) = sup {, y)T—If(x)|x ¢ L} forall Ye L, ,

; ] 1
(29) If(x) = sup{ix,y>T-Ig(y)ly € LY } forall xe LX ;

However, L; cannot be identified with the dual LY* of

“0 B i ey Ed
Ly - On L“i. we can define another convex functional I*
conjugate to Ic .

(30) (y") = sup{y (v) - LIy € L3 3,

and the relationship between I and If requires clarifica-
tion,
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Certainly if the continuous linear functional y* is
of the form

wla

8 1
(31) yy) =Y, xe Ly

then T (y') = I(x) by (29). Thus the restriction of I to
the copy of canonically embedded in L®* can be identi-
fied with [ . Put another way, I" can be Tegarded as a
canonical extension of the integral functional If to a space
more general than L%( . What is the exact nature of the
extension ? This question was answered in [30] for X = Rn,
and the result can now also be formulated for infinite-dimen-
sional X .

To do this, we first need to make some oose_rvatlous
about the structure of LOE-"\. A functional y* ¢ LZ™ of the
type (31) is said to be absolutely continuous., Thé absolutely
continuous functionals thus form a closed subspace of L%
isometric to L?lé . What is not so well korég}vn, is that this
subspace has a natural complement in L, , the subspace
consisting of the singular functionals. A functional v* is
said to be singularif T can be expressed as the union of
an increasing sequence of measurable sets Tm with the
property that v (y) = 0 for all funcuons 3. L‘@ vanishing

everywhere outside of T, m | Each y* ¢ LY" can be expressed
unlguely &s el whese essential range i Fetall r( &mwfae:{

sl

s

(32) y—y +y s

where yg is absolutely continuous, y:: is singular and
(33) ly™ I = Dy I+ My ]

At least for Y = R this result can be deduced by repre-
senting L' as a space of continuous functions on a compact
set and Lnen applying the Lebesgue decomposition thecrem to
the elements of the dual space, regarded as measures. A
more direct proof has heen furnished by Dubovitskii and
Miliutin [10] for Y = Rl, and this has been extended by loffe
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and Levin [14, Appendix I] to an arbitrary, separable Banach
space Y . (Some related decomposition theorems may also
be found in Ioffe [13] and Rao [24].)

Theorem 3, Assume that f 1s convex, that Ie(x) <+
for at least one X e L;];( , and Ig(y) < +w for at least one
' L°§. . Let I" be the convex functional on I%* defined
by (30), Then, with respect to the canonical decompositicn
(32), one has

(34) Ty ) = L(x) + vy,

=1

where x 1is the element of L)l{ corresponding to the abso-
lutely continuous component y:_; of yv* Moreover, the
functional ] is of the special form

255
e

(35) Hyg) = sup {v _(v)ly « D},
where
w ~
(36) D={yelL, ]Ig{y) <40},
Procf. The argument given by the author in [30, Theorem 1]

extends wirtwally—witheout-ehange to the present case.
(fme-P available &n neym?;‘;‘)

A number of applications of Theorem 3, for example
to integral functionals on spaces of continuous functions,
have been explored in [30] for X =Y = R®, We limit ourselves
here to deducing from Theorem 3 a criterion for weak compact-
ness in l%(: s

Theorem 4, Assume that { 1is convex, and that i(t, y(t))
is summabple in t for every funciion v ¢ L°§ . Then for
every real number o the convex set

(37) {x ¢ L;{ | Lx) <@}

; e ; 1 0
is compact in the weak topology induced on LY by LY i
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Proof, We can assume that If (%) <4+ for at least one
x e L, , since otherwise the assertion is trivial, Then
Theorem 3 is applicable, where D = I, 4% (35) and (36) b
our hypothesis. It follows that the set (37) can be identified
with

(38) v e 1y I ry’) <d y,

and We need only snow that the latter set is compact in the
weak”™ topology on LY . According to a basic theorem
about conjugate convex functions proved at the same time by
J. J. Moreau [23] and the author [25, Theorem 7A], this is
true if I is continuous at 0 in the norm topology of LY
Certainly I, is lower semicontinuous throughout LY , Since
I, is conjugate to If {Corollary of Theorem 2), It remains
only to recall that a finite, lower semicontinuous, convex
function on a Banach space 1s necessarily continuous (see

[1] or [25, Cor., 7C]).

Remark, If X=Y=R" , the summability hypothesis on g
in Theorem 4 can be weakened to the assumption that g(t,y)
is summable in t for every v ¢ ¥ (or merely for every v in
some dense subset of Y); see Rockafellar [30]. More gener-
ally, in the infinite-dimensional case it suffices to assume
that for each real number r there is a summable function o,
such that

(39) git, v) Ecar{t} whenever ye Y, i[y” <r.

Theorem 4 has been proved under somewhat stronger assump-
tions than this by Castaing [4, 5], and the result has been
sharpened further by Valadier [40]. The approach of Castaing
and Valadier, based on a lemma of Grothendieck, is more
direct and has the advantage of avoiding a discussion of the
structure of L“Q*. On the other hand, the present approach
yields additional information about the nature of the sets (38)
in situations where they are not weakly compact, as well as
a proof of the necessity of the condition in some cases [31].
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