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Convex Integral Functionals and Duality
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S1. Introduction,

Let (T,O,p) bea measure space, and let L bea
linear space of mappings x : T- X , wherc X is a rcaI
vector space. A convex integral functiondl on L is an ex-
tended-rcal-vdlued functional of the form

(I) If(x) = /_f(t, x(t))p(dt), x€1,

where f(t, ' ) is for each i € T dn extended -real -valued
convex functional on X. Such a functional is, as the ndme
impliesr convex on L , if in a rather general sense it is
well-defined.

The most familiar functiondls of the form If are
undoubtedly the ones occurrrng in the ctassical theory o{ lp
spaces and Orlicz spaces:

.Lt t..x) -: f x't'1". o.,. , . D. lar P "T
or more generally

rir r\\r I s, ,'r, 1-'o-, ,

^hF-a N :i a nonoe..-o r|r9 co vax Lo rlonon .0. @,.
.-r- X Rr, OI o rse, r ,a r,laory o d,alr.1 _n p 

"pac.sand Orlicz spaces also involves the study oI other. simpler.
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convex inteqral functionals. such as the linear functionats

' f xr-. ,r.u'd.
' I JL - i'

These classes oJ lunctiondLs can be generalized by repLacing
X = Rl by dny normed Linear space.

Recent work on convex lniegral lunctionals has been
molrvated not so much by ahese examples as by brodder applj-
cations lo the extremum problems and varlational pdnclples.
For instdncer many problems in the cdlculus of varidtions or
opiimal control involve er.tended -reaI-value.i f unctjondls of

., 2 - l - -. 2.t'. '-r, pr .

where z: [a,b]* Z is d "curye' (with derivdtive i) in a
linear space Z. One can view I ds a functional (L) in the
cdse where X is ZXZ and L is ihe space of funcuons
(z,w):T-X such that w=:. The saudyof I also enrails
ihe study, for fii.ed choices of z , of ihe functiondl

.b(b) 1\ . I ((. z(.,. 
^,(.,,dr ,

Even if ihese lntegral functiondls are not themselves convex.
it is often useful to compare them with certain convex inte
grdl iunctionals whlch they najorize. or to consider their
'convexiflcations ' .u-.-. , s(ead ot , ru- ov.r an _nr6rvo [", ol, on-

ca I _n\-s-i'd.o --rct_ons r oe._ ,60 o/er a r-qro r e o- Rrrr.
the derivative i belng replaced by a vector of partial deriv.r-
tives. The generalized grddient operators associated with
the functiondls I (or closely reldted functionals) in such
cases correspond to variational principles. Many importdnt
differential and lntegrdl operators. as well ds other nonlinedr
operators on functlon spdces, belong to ihls class.

The notion of 'conrinuous addition, of convex func
iions provides futher motivdtion for a general theory of con,
vex integral Junctiondls. civen d coltection oI convex func
tlons ft = f(t, ) on X, it is possible to define another
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convex function

17) F{x) = f- fit.x)urdtl .

rvhich can be reqarded as the integral or 'continuous sum '

of the functions ft (with resflect io F ), It is an important
question whetherj or to what extent, certdin basic results
about the conjugate or subdiffercntidl of a finite sum of con-
vex functions cdn be extended to such an infiniie sun1.
Observe ihal g nay be identified wlth the restrictj.on of If
to the space of d]] constant Iunctions x : T'= X ,

DudLity has alr,vdys pLayed a fundamentaL roLe in the
analysis of convex intelirdl functionals. One may cite in
pariiculdr ihe classical rcsults of Luxemburg dnd Zadnen
[2Ll concernlns dua] functionals of the form (3). These are
e).dmples of convex functionals conjugdte to each oiher ln
the sense introduced by Fenchel.

Generdl convex integrdL IunctionaLs conjugate to each
other were first investigated in the author's paper lZ6l for
X = Rn . A concept of 'normaL convex inteqran.i was briefLy
developed there by elementary methods, so ds to provide the
necessary technical Lemmas concerning measurabiLityJ
measurabLe selections, etc. Connections betr,veen normaL
convex integrdnds dnd the nerT ahcory of medsurdble multi
functions. particularly the resutts of Castaing lZ,3L,
Debreu [t] and Kuratowski and Ryll ]iardzewski lI8l, were
e:.ploreci in a separaie pdper 1271. Tal<ing a different approach
lo questions of measurdbiLityJ Ioffe and Tikhomirov ll5, 16]
studied coniinuous addition (7 ) and the dual operation of
continuous lnfimaL convolution in a sepdrdble Bdndch space
X and its dual. The sdme operations were tredted subse-
quently by Castainq l'1,5.61 in iniinlte dimensional space
X dnd by VaLadrer l38l in Rr'. Cdstains simullaneously
e;tended a sufficieni condition oI Rockaiellar 126l for the
,,veak compactness of ihe level sets of ceftain integral iunc-
tiondls (see dLso VaLadier l40l). Thls compaciness condition
was dlso extendcd by the author 130] in a dilferent nanner
which made it possible to show necessity. as welL as suf
ficiency, in certain cases f3Ll.
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Among other recent work of a morc special ndture)
not to be discussed be1ow. we mention the comprehensive
paper of loffe dnd Levin li4l on the subdilferentials of con-
vex iniegral functionals such as (?), This paper is the latest
ln a coLlection includins Cdstains [6], Gol'shtein 1111,

Iofle Iizl, Levln []9, 201, dnd Valadier l3/-, 391. we
mention flrrther the papers of loffe ll3l and Rockdfelldr l3Z,
331 dealinq vrith applications oi new results on convex inte
grdl functionaLs to probLems in the calculus of variations.
The rvork of Teman [35,36] should lead lo more appLications
of this solt.

Our aim in this paper is to set forth some of the basic
theorems about convex integral functionaLs in a more general
form than has previously appeared in the liierature. For the
most pari, the arguments folLow earlier ones! but their exten-
sion to a broader context has been nade possibLe by ihe
technical developments cited abo./ej especially in the.iheory
of medsurable muLtrfunctions.

!2. MeasurabLe Multilunctions and Normal Inlegrdnds.

ll\re assume henceforth thdt O is a d-dlsebrd of sub
sets of T (the medsurable sets)! and that $ is a positlve.
a-iinlte medsure on n which is compLete (i. e. every sub-
set oi a set of measure zero is measurable). In this seciion
X denotes an arbitrary complete separdble metric spdce \,vith
metric d . and fl denotes the s aLgebra of BoreL subsets of
X. The a-dlqebrd rn T xX generated bythe sets A xB .

where A€O dnd B< E, isdenotedby CX4l .

Given a multliunction (sei-vdLued mappins) f:T- X
and a sel J cX. we denoie by f -t(SJ the set of all t<T
such thai r(t) n s + !l]. The set

(8) D(r) ={r< r f(t) +o} =r-l(x)

is called the effectiwe domdln of f dnd the set

(e) G(r) = {(i,x) € T xX :r. r(t)}
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the srdph ol r We saythat f ls !Eei!Ig!]g if its sraph
beLongs to O x A . Other definitions of the measurabilitv of
I are aLso possible, lor example ln terms of the measura-
biLity of various classes of sets of the forln f.-11S) How-
ever, in the case we are realLy interested in, where f is
closed-valued. it turns out that, under our assumptions on
(T,G. p) dnd X , a]l the redsonabLe definitions coincide.

Theorem I. lgL r: T-x
is a closed set ior every
lies of I dre equivalent.

(b)

(c)

be a multifunciion such that l(i)
t . T . Then the iollo\aing proper-

(a) r is measurairle G(f ) is d measurable

i!1.
| '{C) is neasurdbLe for everv closed set
CCX.

f '1U) is measurable for every open set U a X.

(d) I 1(B) is rneasur4ll1Qt C!9ILg9!gLj9! BLx

(e) D(r) is measurable dnd d(r(t), x)
able lunction of t € D(r) for each x€X

(i) D(l) is measurable. dnd there exists a countable

9-9j14!!9a (xi. i € I) of measurable functions
xi:D(r)*X such that l1t) is the closure of
fx,(ir i, I] for each i ( D(r) .

ls) !!q9 9!9!!-c- 99!c!l rxr. r tllof
mea su!419,f!!g!9lti {j'r-x !!9!ll9!l!9 iC!
ly,,-, L )i] 1,, r - -o- o.,

neasurabLe for edch i € L

This theorem is the key to almost everything involving
cLosed valued measurable nuLtifunctions. It is due primarilY
to Cdstding, who states it. minus condition (ql, ds Lenma 2
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of [7]j see also [8]. (Cdsidins dlso omits condition (b) .
which he used eLsewhere as the definition of medsurdbilliy,
but the lmplication here fron (d) lo (b) to (c) is eLemeniary. )

A proof hds dLso been furnished by lotfe and Levin 114,
Appendlx II], lvlosi of the implicalions were established, at
least in special cases, in Castainq s dissertaiion lzl and
developed iurther in a nunber of papers by thdt author. The
equivalence of (a) and {o), however, was esseniiaLly proved
earher by Debreu [9], employlng arguments attributed to
Freedman and Neveu. The assumptions werc rveakenedr and
vdrious implications sharpenedJ for X = Rn by Rockalellar
lz7l, who introduced condition (g).

In qeneral, the implication from (f) to (s) is trivial,
rvhile the implicdtion fron (q) to (f) can be proved by the
follo,,vinq drqument (tdkinq the inder se. I to be the natural
numbers). Let T . {t. T xi(t) € r(t)}. Define xi:D(r)-x
by

xi(t) = x1(t) for t . Tl ,

= xz(t) for t e Tr\T, ,

-, -Lu--"" '

dnd then for i=2,3,..., define :{irD(r) ' X by

x .. - x_/ o- ,i

= xt{t) ior t . D(r)\Ti .

It is edsily checked that ihe colleclion (xi , I . I) has ihe
properties in concLition (i).

Some other recent work on extendinq Theorem I may
be found in the disserldtion of VaLadier [39],

Theorem I is indispensible in demonstratjng that
measurabilily is achieved or preserved when multifunciions

zza



CONVEX NTECRALFUNCTIONALS

are consiructed or manipuLated In various ways. In most
cases the uLtimate plrrpose of dlL this is to endbLe one to
invoke ihe jollowin! fact, obiained by specidlizing condi
tion (i ).

Corollaff.
satisiying any one of the conditions in Theorem 1, ihen there
e)<ists at least one measurabLe function x:T-X such thdt
x(tl . r(t) ior every t . D(r) .

The exisience oJ d measurable selector :. when f
saiisfies (c). a fact basic to the prool oi Theorem 1, was
first proved by RokhLin in 1949 13.1, Part l. $2. No. 9, Lemma
2], ds Castdinq hds polnted out. The result was later redis-
covered inCependently by ruraiowski and Ryll-Nardzewski
lLsl dnd Castdins l2l.

It rs convenient in the rest of this paper to refer to a
iunction f:T XX -- { €, +€] as dn iniegrand. For each
t € T we denote by it the functron t- f(i,x). The epiqraph
of ft is the set

Il f.: T - X is d closed vdlued multifunction

(lol epi ft = {(x,d) . x xRI ft(x) 5"}

medsurable on T xx , and for each
is lower semicontinuous on X and

o -n- m .il_n,L_or i Fp- i. m-"..rdbL. and
for edch t € T the set epi i- rs ciosed and oonemolv,

Proposition I. The following conditions on an integrand f
c!9 qs!l!g!9!I:

a) frs CXB-
t . T the function ft
not ldenticaLly +@.

This is edsily deduced, arglling by way of the measura
bility of the {unciion (t,x,a) - f(t,x)-d and its level sets.

An inteqrdnd f satisfying the conditions in Proposi-
tion I is said to be normaL . The normdlity property can also
be expressed rn terms of a condition resembling (g) of Theoren
1. dnd this is a useiul approach in dedling with convexityi
see 126,211, A simple criterion worth mentionins is this:
f is a normal iniesrand if f(r,x) is finite everywhere,
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measurable in t for t'i:ed x , and continuous in x for
fixed t. lThen the Iunctions of the type t* (a,f(t,a)+.)
as a rairges over d countable dense subset of x dn{j e
rdnges over the positive rational numbers, iorm a countabLe
collectlon hdving property (fl of Theorem 1 rvith respect to
the muLtifunction t - epi ft , so that this muttifunction is

Normality ensures in particular that for everlmeasur-
able functlon xr T - X . the funcrion t * f(r,x(t)) is neasur
abLe. (The laiter function is the composition ol I with the
rneasurable mappins t + (t.xlt)) € T xX. ) If the func.ion
t * i(t,x{r)) is summabLe in the usual sense, or if it major-
izes or is majodzed by a summable (extended-reaL-valued)
function on T , a ndtu.al value {possibly +@ or -..) cdn be
assigned to the lntegrdl

(ll) if (x) = Jr f(t.x(t))F(dr).

ln the remainlng case, it has proved useful to adopt the
convention tlat \(x) = +@, In this wdy, we regard If as a
well-deflned, extended-real vdlued functional on the spdce
of aLL neasurabLe functions x: T* X. The andlysis of such
a functiondl depends heavily on the effective use of the
equivalences expressed in Theorem L and Proposition l.

!3. The Conjuqate of an Inteqral Funciional.

q(t, y) = sup {(xJy)

We assume henceforth ihat X is a separable rcftex-
ive Banach space. The dual oJ X (which is Iikewise separ
able) is denored by Y, dnd the natural aitinear pairing be-
tween elements x€X and y.Y by t,y).

Lel 1 be d normal integrand on T XX . Ii ft is
convex on X for every t . T , we say thdt f is convex.'r , o -on 6x - -.iors. on : ,- r-;r . o. -
L0 consisting of aII medsurable functions x; T - X .

The conjugate ot the integrdnd f is ahe iniegrdnd g
on T XY defined by

(12 ) f(t,x) lx€X]
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According to (12), gt is lor each t € T the function on Y

conjugdte to ft , The general theory of coniugate functions
(see lL, 16, ZZ, Z8l) asseris that in this case st is convex
dnd lower semicontinuous, If ft is itself convex (being
already, by virtue of normaLitY, lower semicontinuous and
not identicaLly +c.), then gt is not idenlically +c., and fi
is in turn the function on X conjuqdte lo gi:

(13l rit,xl = sup { x,) 91t.y)]y t Y}.

Combining such obselvations with a measurabiLitv drgumeni.

P ogo" .io1 l. - re i .!'qrdrd I o.l rqd.' lo Ir' o-mol
lnteordnd f is a normaL convex inteqrand. Drovlded thdt for

-c-o-sl t !]le-rqi-E--ql-19-esl-!!9 v. Y qt-q!-l!g! s(t,v)<+-.
The latter is true in parlicutdr if f is convex- dnd in this
eveni f is in lurn the integrand conlugdte to g .

Prooi. We need only show thdt g is measurable onTxY-
To this end, we choose a countabLe collection of measurable
muitifunctions

l_.- /*,1.\, o_ tll , X 1P i

such thal for each t € T

,,x-,1,. o. ..r L, l/

Such a collection exists by property (f) of Theorem l, since
the muitifunction t * epi ft is measurable. For each i < I,

si(t,Y) = ei(r),v) - oi(i).

Then gi is neasurdbLe on T xY : and we have

q(t,y) = sup {si(t,y)li. I}.
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The measurability of g thus follows from the fact thal the
pointwlse supremum of a countable collection of measurable
functions is measurdble.

The main result of this section concerns the duaLity
-n.-qrtsI -'l --ondls -. d'ro lq r-- " denoLe

o 5-lrspdcp o- .he 11.6d. od.e or ajl 1.o-, dbl' Irnc.ions
x:T - X . and Iet M similarlv denote a subspace of the
Iinear space of all medsurable lunctlons y: T - Y. l 'e

dssume that \x(t),y(t)) 1s summdble in t for each x < L
dnd y€ M, so thdt the pairing

\I4r \,y- | rr,, , gol,, M,1-T

is well-deJined. As an obvious special case. one could take
r=rea ana M=4 (the usual Lebessue spaces of functions
on T with vdlues in the Banach spaces X and Y) with
I:p:6, (1/p) + (I,/q) = i.

The space L (or similarly M) is said to be decom-
posable if, whenever x belongs to L dnd x0: S-X is d

bounded medsurable iunclion on d measurable set S c T of
finite measure, the function

(Is ) x (t) = xo{t) for t € S

= x(t) for t . T/S ,

also belongs to L

The following theorem, first proved by the author in
126] {or X = Y = Rn , has not previously been stated in such
qenerality. However, certdin special infinite-dimensional
cases {where X is noi necessarlly a separable, reflexlve
Banach space) hdve been treated by Cdstding 14,5] or are
impliclt in Ioffe - T ikh omlrov []61 and Ioffe Levin llal.
(Reflexlvity is actudlly used only in lhe second assertlon of
the theorem. )

The Lebesgue spaces, of course, hdve

z24



CONVEX NIEGFAL FUNCT ONALS

ll:!t- ' z. - -s o- o-Lposabie .no lr.y, +€ .o 6L

Ietsg. on- x - - ) rten ln- .o ve/ nt-o-ol t'ac(iondl I o-
v = .on ,.u-- .o ".. i'roqur r-n.LFJ--.-o.--_],n.rT.

\-o, r.'y' - 'rp{ y.. r,.xr]x . -; .!L:fq! v .

lf :n.ao'-io, rs on.-r. V _" o-coToo d.l- a.d
Is(y) <+6 for at least one y. M, l!C-q If on L is in turn
coniuqate to I^ on M:

LI7' 1,,.-r - .o{x.. 1r y. M} .ore.ery x( .

999!, It suffices to prove (16), which asserts equivdlentty
thdt lor each y € M the quantity

J r s(t' Y(t)) P(dt)

is the supremum of

Jl' t 't - ''i x( r/lpror'

ov-r oII f rn- r.or s ,{ , R.olts. ino r, -qr 6a I o /
Ir '. r-J . -. e,,dry,..s -an_p o.:o is nornoll./.
irreseNing]J we cdn reduce the argument to the case where
y(i) = 0 . Thus we need only prove thdt

,18r .-' r/ .1.", .,r,r,d.,x . , /_ ",1'p,orr

(19) e(t) = inf{(t,x)lx. X} . q(t,O).

Note that !, is a measurdble function by the drgument of
Lemma Z. There exists by hypothesis d function xl € L and
a summdble function at such that

(r0) ...,rj -'r . aj\.t fo- ever\ :. T .
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Since jp(t) <f(t,x(t)) for everr' function x by defrnilion,
we see in palticular that the inteqral of E in (18) is in the
standdrd sense well defined and eiiher finite or -.. , and
that the inequality > holds in (18). Now let p be any redl
number such that

(ZT)

We prove the existence of a function x . L such thdt

thereby establishlng the theorem, Fron (21) (and our assump-
ti.ons on the measure space) there exists a summable function
a0, such thai !,(t) < ao(t) for every t dnd

tz3t f a (t)uldt) <B-rl)
DFri'r- r\F rulri']l-rc.io-r r: T-X b]'

r(.r- {x.I ,rJ r' o^(rrl.

Since the function

(t,x) - f(t,x) - aO(t)

is medsurdble, the qrdph of r is d nedsurdble set, i, e.
I is d medsurable multifunction. Moreover, f(t) is for
edch t closed {since I is Iower semlcontlnuous) and non
empty (by (19) and the faci that s(t) <a0(t)). The coro]lary
of Theorem I then implies the existence of a medsurable func
tion x0 (not necessarily in L ) such thdt xo(t) € l(t) for
every t . Since (23) holds, lt is possible to choose a
measurable set S C T of finite measurc such that

tzq) fo"nr.rprori- f, "c, -tu,otr.p.' r\) _

It can be aranged at the same time that x0 is bounded on
S- Lei

f., c(t)*(dt) <P.

f, t{,,,.1,11*10,, .u,
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x(t) = x0(t)

=:.I(r)

Then x< L bythe dssumption of

for t€ S,

for t.r\s.
decomposabilityr and we

'fr.t/r,) -o^l-r 'or r -r
, ..xr-,r \ o.rLi lor r . I\ .

The latter implies (ZZ), in view of (24), and the proof is

Corollary, Suppose that i is conve:. , L 3-!.d M _qq
d-. o posapl-. ono "eirne- .ne -rncr.onal, 94 lpj I:
Qlt M - , denri. dllv - . lh-n .hase con -,{ i1,eqr61 -

functionals dre coniu.rate to each other with respect to the
pdiring (14). dnd hence ln pafiiculdr they are lower semi-
.o',tt"uous *itiiffio,'
L C4d M co poribl- wi. .-is oalrrna.

We remark that, in the situation in the corollary, the
subdlfferential napping AIf , which is a multifunction from
L io M , is easily described in ierms of the subdifferentidl
nappings 8ft:X-Y. Indeedr AIf(x) is for each x € L the
set of aII y € M such that

(25) y(t) < Aft(x(t)) for almost every t

- As an illustrdtion, let us suppose that L . Lt dnd
t=4, tSoi-*, qt7p1+ (t/q) = r. rhese spaces
are decomposable, so that the corollary is applicable
if f 1s any normal convex integrand such that f(t,x(t)) is
summable r, I ror ar Ieogt o-e r-ncrion x. LP. - anrl
g,-))tt,r is sunndole in - Lor ar leasL one rL,ciion y( -:.,rne cor\ex ruicrionals -, "" i dno Io on r-$ "re tnern
Io^er s--rcon.inrors \^lr'r rerpe, - -o ror 5nI) tne norr top-
ologies, but also wlth rcspect to the wedk topoloqjes that
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fp. aro fJ, -noLce on eacf or,.r. FurLnermor-. s-n - f
is"a Banacn'space wlose orol mdy be idenrllied "i,n -! ,"
we can conclude that the subdifferential mappinq

(26) aIr: i,P" * fq ,

which as we have seen cdn be expressed by the relation (25),
is a Egllgl qg!9!9!9_!!9l r, as weII as a maximal
cyclically monotone operator 1291. Special note shouLd be
made oI tne case X - .1 - Rr j s-1c- -nen (25) be ones

(27 ) y(i) € r (t,x(t)) for almost every t ,

/,,ner- f(r,.) i5 for eacr r a gerers] ldxi-ral nonorone
operBror _ro- Ri .o Rl . Ifis case ts e_coulrered, .or
exampleJ in the study of the Hammerstein equation and vari-
ous bounddry-vdlue problems.

4. A Reflnement. With an Application to Weak Compactness.

n.ne asa or th-orem r 
^nere 

L-4 ".o r--T,
therc is an unanswered question which turns out to be crucidl
in dedling with mdny integral Iunctionals that drise in prac -
tice. In this cdse we do have, under the assumptions in the
corollaFy above,

(2s) Is(y) = sup{(r.Jy)T-rrtxt x. l]1 rora]]

\29) lf(x) = sup{(x,y)r-In(r)lv. r! } toratt

Y e l" ,

1

". \'
I

r]. o' ri"
conjugdte to I

(30) I (y ) = sup{y (y) Intrl r. {},

cdr-rol o- io-n-ilied ^-.n.ne drtsL !' ot

w- -on dalln- tsnorner 'on\ex ue tronal I'
g'

dro rre rF-tsr1ors-ip o.rwe-r '' ono Ir r-oLire" .or---.o
tion,
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Certdinly if the continuous linear functional y'N is
of the form

,rrl y iy/ - (x,y)_, xL t
\,

Lhen ;ty" 
r - I-,x, by \-o). Th s rne res-r,. Lioi of I Lo

Ihe cooy ol I+ canonicdlly -mbeooed in Lf,+c"r oe -d-.,i-
ti.d wirh II . PLL onorrer ra . L' car oe ieg"roed as a
canon.cdl exrersion oI -ne inregral IJn.tiol aI lI _o a sptsce
more genero .r d_ { . \,rh"- rs .ne exa -,ature ol _--
extension ? This questlon was answered in I30] for X = Rn,
ono -ne res- - cd- no!\ atso o. ror-lL]ateo ror mliniie-drmen-
sional X .

To do lhi,, we _trsL neeo ro nal,- so-e obs-wationg
aoo-. -he srruc-16 ot -!' . I -urcriona, y" . L-' or rne
-ype LJ] rs said to o- do!olrrely .or-i r-o-s. T-e'ab"o ure]
co,rLrLo-s lut ctionats ..lrs rorm a ..osed s-o,pace oJ ?,
isome--rc ro { . Wta. -, no- .o ueII xnorrn. is _,a- rhrt
sLbsod.e rai in".ural comolemerr rn : rne rLbspace
con:i,l-r9 ot .ne si-9Llar fLnctronals. A"rLnc__o,lol ,' . j
said to be singular if T can be expressed as the union of

l3z)

where y;*

(33)

an incrcasing sequence of measurable sets Tm with the
property that y'"(y) . 0 for all functjons v € iP- vanishproo--iy rha- y l)/ . 0 -or sll r-n t_ois \ . _f vani.hi-ot -6) t. '
::::P.":"" '"t"'0" ot 

"o, L,.-tu'll v* ' 4" 'a'junlquely as a4. whtce eez"niil naSc A Hztl
U b*d"d,

v =v +v

-s dosol---ry con.-n-o' s. yl 's s.-g-Lar.-o

iJv"ll = lvl + Lv" I

A- -os- ror Y. Rr. .hi. -esLlr,an oe oe.lu. Fd or, r6pra-
sen-ing Li as o sp6c6 o[ .o.-ln-o-, -u-cr_ons o- a on pac.
set and then applying the Lebesgue decomposjtion theorem to
the elements of the dudt spacer regarded as measures. A
more d-ro-r prool nos oeen fur-.sneo ,y D-oovi_s<.i ano
-\'l:hurrr [r0] -or - D and -nls as b66- e^-6ndad oy toae
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and Levin I14r Appendix I] to an drbitrary, separabie Banach
space Y . (Some related decomposition theorems may also
be found In ioffe l13l and Rao [2a]. )

f-eoren 3. Assrm- -na. f -" convex. rha- -.tx, ? l,
for dt least one x € Lr- . andJ.l-ina :,-Gi-. +* r- ut ieast one
v ( L-* . Le- .' be ri'ie con,,ex I-nctlond on ,'9 oel ned
!/ /J0/. l 'r . w tF respecr ro lhe a-rolical qecompos---oa

Ix'(y+) = If(x) + I(y'") ,

where x ls the element o{ TLL corresoondino to ihe abso
^i------_1_----:--lutelv continuous component i,l of y . Moreover- the

Iunctional J is ol the special forq

(35)

(36 ) Irn{v) . +*1 .

:_qof. -ne argLmen- o-v6, o/ - e d-rhor -n I 0. Ineor-m l
extend" v:f+{aL+}-+r+6+€!+-ee3J].9- io t_- pr.sen- os-.

( ,r-+ ^"it^bt' '^ t'i"") )

A number of applications of Theorem 3, for exampte
to integral functionals on spaces of continuous functions,
hdve been explored in [30] for X = Y = Rn. \4/e ]imit ourselves
h6r6 -o d6d c. g fron lneorem 3 a .rrre--or -or ea^ omodci
ness in Li.

Theorem 4. Assume that f is convex, and that f(t,y(t))
Is s!'r _ aole rn t lor ev-rv f-n "-o- y . L€ . tnen -or
every real number a the convex set

(32), one has

(3,1)

I(vi) = sur' {v'"tvtLv . o1 ,

(31 ) 1*. r{ r rrr*t 5"1
is compdct in the weak toFology induced on Lty !f 4.

Lv

z3a
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&got: W- co'r assu're rrar II(x) . -€ lor o- .-o5L o-re
x..lv. sin.e o-nerw-se the os"ertion is'r'v dI. -h-n
T.eor'e'- 3 is appllcabl-. ^nere D - ? in rJ5r ond r ro' o/
oul hypothesis. It follows that the set-(3? ) can be identlfled
wlth

(3e)

and we need only show that the latter set is compact in the
weak'k topoiogy on r-!'!. l.coraing to a basic theorem
about conjugate convex functions proved at ihe same time by
.. J. Voreou zJl tsnd th^ d.-no -15, T\eorem ,A]. -n.s is
.r r- -l . is conrin-o-s d- 0 -n rh- ror r :oooloqy o. lT, .

Cerlain y 19 rr Io^er semiconi-nuous r-ro-rgtro-r. I , si,rce
Io is oniLg.t- ro l, (-orollar) o[ T-.ore* 2,, -- rim"i*,
o-n]y to recall that a finite, Iower semicontinuous, convex
function on a Banach space is necessarily continuous (see
[1] or I25, cor. ?cl).

Remark. If X = Y = Rn j the summabillty hypothesis on g
in Theorem 4 can be weakened io the assumptlon that g(t,y)
rs summable in t for every y € Y (or merely ior every y in
some dense subset of Y); see Rockafellar I30]. More gener-
d]]y, in the infinite dimensiondl case it suffices to assume
that for edch real number r there is a sunnable function 'such ihat

(39 ) q(t,y) <ar(t) whenever y. Y, iy] :r,
Theorcm 4 has been proved under somewhat stronger assump-
tions than ihis by Castaing [,1r 5], and the result has been
shdrpened fufther by Vdlddier t40]. The approach oI Castainq
and Valadier, bdsed on a ]emma of Grothendieck, is more
dlrect and has the ddvdntage of avoidlng a discussion of the
structu.e of f!'r. On ttre other hand, the p.esent dpproach
yields ddditionai information about the nature of the seis (38)
in situations where they are not wedkly compact, as well ds
a prooi of the necessity oI the condition in sone cases [31].
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