A1

PRCICEEDINGS OF THE FOURTH CONFERENCE ON PROBABILITY THEORY

September 12--18, 1971
Brasevw, Remania

REPRINT

EDITURA ACADEMIElI REPUBLICII SOCIALISTE ROMANIA
197 3




R. TYRRELL ROCKAFELLAR

NEW APPLICATIONS OF DUALITY IN NONLINEAR
PRCGRAMMING

Duality has been studied in optimization problems sinee the origing
of linear and nonlinear programming and cven earlier, Man vy have beeu
intrigned by it and a considerable theory of duality ha\ heen built up.
Our aim here is not to review in detail what is already known, bul to
speculate on some of the current prespeets for this theon It is helpful
fist to say a few words ahout the general role of uuallTT in nonlinear
programming.

Duality is valuable fundamentally as a conceptual tcol for under-
standing optimization problem:s and uncovering their deeper properties.
In this way it is often helpful in devising and interpreting algoiithms,
or in r‘lﬂd]\ zing mathematical models of reality from which the problems
are derived. _I‘m example, characterizations of the globally optimalsolu-
tions to a probhlem almost always involve duality.

A common and direct use of duality in computation is the replace-
ment of a given problem or subproblem hy a dual prollim (or conceiv-
ably a mintmax problem) which iz esgricr {0 solve. Scmctimes the pre-
sence of a dual prohlem makes it pessible to bracket the urkrvown maxi-
munt or minimum value between upper and lower hourds which improve
in the cowmse of computation and provide a criterion for termination.
Duality theory also reveals the meaning of the special values of Lagrarge
multipliers and other auxilliary vaiiables which many algorithn s produce
ax 4 bonus, in addition to solving a given problem. These values can then
be put to work, for instance in sensitivity analysis.

Several develo pments over the last fow years suggest the possibilily
of new applications of duality. The first is the extersion f the theory
to problems of a more general or abstract character. The practical advan-
tage of this is clear when one recalls that, in dealirg with large-scale
systelrs or noneonvex systemrs with sul stantial cm;\t‘\ subsystems, one
of the wain hopes is to hreak the problem down into manag eable picces
[1, 2. The subproblems in such a stinctming may not fit the classical
mold, since the objective function and set of feasible solntiors may be
deserited orly indirectly, in terms of other subproblems. In partic ular,
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clissical assmmptions concerning differentiability or domains of definition
m1y not be reasonable in such a context. Of course, the extension of
duvality theory to new classes of problems should also open up applica-
ticns of a more immediate sort, Optimal control problems are especially
promising in this respect.

A second development that may turn out fo be fruitful is the recog-
nition that a single optimization pr oblem can be dualized in many different
ways. This idea has alw ays been present, in the sense that a given problem
((mld be formmlated in different WAy, (lependmﬂ on what \d]!"lb](?*; Were
introdueed and how the constraints were written down, and each formu-
lation wonld correspond to a different dual problem. In this form the
idea has Dbeen exploited very little outside of linear programming, hut
Jately it has assumed importance in geometric programming. ITowever,
another general approach is now knou 1, where the given problem (say,
of minimizing a certain function over a certain set) is not “‘reformulated”,
but subjected to different classes of “perturbations™. Tach class of pertur-
bations leads to a corresponding dual problem culd Lagrangian function
[with an associated minimax problem). This is deseribed briefly below
(further details may be found in [3, 4]). More recently there has also
heen work directly on replacing the eclassical Lagrangian function by
some other fnnction, thereby o btaining a different dnal pmhlem -\([Hclll}’
as long as certain convexity assumplions arve satisfied, this approach is
equivalent to the preceding one, because it is known that every “general-
ized Lagrangian funetion’ corresponds conversely to some class ol pertur-
bations of the original problem,

The main point here is that there is no reason to limit attention
1o a fixed dual problem, even in the case of a convex programining
problem of classical type. 1t may be possible to construct a much better
dual for a particular application by taking advantage of special properties
of the objective funetion and eonstraints.

Another thing to note iz the fact that many technical resnlts, for
example on the continuity and differentiability properties of convex
functions and saddle-funetions, have now been strengthened and dualized.
Such results should prove useful in partienlar in the construction of algo-
rithms based on duality, since they facilitate the analvsis of the dnal
problem, making it ngable even in cases where it can not be written
down explicitly in a eclassical form,

DUALITY BASED ON CONJJGATE CONVEX FUNCTIONS

Belore going on to describe a few potential applications of a specifie
sort, we skefch briefly the general theory of dual problems that has
grown out of Fenchel's notion of Lonln,ga‘re convex functlions.

Let ng consider a convex programming problem of the type

(1) minimize f,(x) subjeet 1o
fle) <0 for @ = 1,...,m,
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where f: R" — R iy convex for ¢ = 0, 1,...,m, This problem may be
represented “abstractly’ as:

(2) minimize f(x) over all » e K",
where
(3) ' f(r) = fy(x) if @ is feasible

= L oo if » is not feasible.

We may call f the “essential’ objective function in the problem. It is
another convex function. but extended-real-valued.

The ordinary duality associated with problem (1) is derived from
the Kuhn-Tucker theory of Lagrange multipliers, It corresponds to the
(extended) Lagrangian function L on K" x E" defined by :

(4) Lix, y) = fole) + nfilx) + ... +y.fu(x) if y>0,
— — 0 if y 2 0.

Note that IL(r, y) is convex in » and concave in y, and that

(5) flx) = sup L(x, y).

v R

Thus the problem (1), represented as (2), is the “inf, sup,” problem

for L, and we are led naturally to the dual problem :

(G) maximize g(y) over all y e B,

where

. g(y) = inf L(x, y).
rERN

This is called the “ordinary” dual ¢f (1), The function g is concave.
The ordinary dual has heen studicd by many authois and has turned
ont to extremely useful. However, cther dualg cen also ke constineted.
To do this, a space I is infroduced, and on L' x K° an aibitray
(extended-real-valued) convex function F is chesen with the property
that

(8) F(a, u) = f{r) for u = 0.

The problem of minhmizirg F(e, u) over all » e & for a fixed non-
zeto w e R 5 regarded as the “perturbation™ cf (2) ceriesponding to w.



76 Invited papers

The existence of many convex functions J7 satisfyving (3) is obvious geo-
metrically : the tpsur";ph of I is simply o convex set having the epigraph
of the given function [ as a particilar cross-section. We assume below
that I' 1s lower semicontinuous, i.e. that the epigraph of F is a closed set.

For cach choice of I, there ix u corresponding Lagrangian funetion L
defined by

{9) Lir, gy =int [F(r, «) ~u - 9.

s s

{(Thus L iz formed essentially by taking the conjugate of Flr. w) as a
function of « for each x and then changing sowe signs). It is o theorem
that L{x, y)is convex in » and concave in w, and that

(10} Ilw, u) -Rl_'ll) (L(r, y) — w-yl.

Wil

In particnlar (5) holds, in view of (8) and (10), so that problem (2) corre-
sponds as before tothe “inf, sup,” problem for L. The dnal problem cor-
responding to I is therefore deflined to be (6), where ¢ is again defined
by (7) but with the new T, '

The ordinary duality above arises when the choice of F i

{(11) F g )= fia) it f(a e TOL 4 =Ty, . .50
= - oo otherwise (where s — ).

However, the general construetion works even if f is not of the form (3).
It can be applied to problem (2) in the case of an arbitrary, extended-
real-valued, convex function f. Furthermore, a similar construction leads
from the };__“E;lv?.lctl concave dual problem (6) back to (2), and in this sense
the duality lhon;_- is symmetric. The perturbation of (6) corresponding
to a vector » ¢ " is taken to be the problem of maximizing G(y. ») over
all y = B, where

(12) Gly, v) = inf [L{x, ) — @ - v

£
The funetion (7 is concave on R x R, and
{(13) Gy, ») = g(y) for v =0,
We shall not discuss this further here, except to rewark that the duality

theorems that can be proved relating problems (2) and (6) are dependent
on these notions of perturbation [3, 4].
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We have mentionel that the general Lagrangian fanclions I in
this theory are convex-coneave, but a converse fact has also been demon-
strated. Every (extended real-valued, “lower closed [3]) convex-concave
funetion L is in turn ths Lagrangian corresponding to some choice of
perturbations of an abstract convex programming problem (2) (where f
Is not necessarily of form (3)). Indeed, fmust be given by (5), and the I
from which L arises must be given by (10). Thus convex-concave mini-
max theory and duality theory are equivalent : every convex-concave
minimax problem is essentially a Lagrangian problem. (A minimax
problem over a product of subsets of R and R’ can always be repre-
senfed as a minimax problem over all of B" 3 R* for a certain extended-
real-valued function [3, § 367]).

Note that this complete correspondence between minimax problems
and dual convex and concave optimization problems would not hold
if we adopted the slightly different point of view that, instead of intro-
ducing “perturbations™, we were simply “reformulating™ problem (2)
i terms of some fnrther variables . as

(14) minimize F(z, »#) subject to
;=0 for ¢ =1,...,m.

In this event, since we apparently have a convex programiing problem
with linear constraints, we wounld be obliged to define the Lagrangian
function by

(15) Lie, w, y) = Flz, v) - u-y.

The Lagrangian wounld thus be ot a special type (always linear in W),
and 1t would not be possible to say that “every" convex-concave func-
tion L was the Lagrangian for some convex minimization problem (2)
under some class of perturbations. Also, of course, the linearity of the
constraints in (14) is only superficial, since F is extended-real-valued.
In particular, ¥ may be given by (11), and it would be unwieldy if a
theory of duality required that all ordinary convex programming problems
(1) Dbe reformulated in this manner as (14). In fact, then we wonuld not
even get back as (15) the Lagrangian function (4) assigned to (1) by
the Kuhn-Tucker theory !
Sowme examples related lo penalty functions and saddle-point algorithms
A simple, but illuminating class of examples of Lagrangians associa-
ted with the convex programming problem (1) is obtained by taking 17
to be of the form

(16) By u) = fola) + X olfiix), ).
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It can be shown that the assumptions of F will then be satisfied if o
is any lower semicontinuous, convex function on £? with the property that

(17) wlo, 0) = 0 if « <0,
=1L oo if &« =0.

The correspounding Lagrangian for (1) is

(18) Lz, y) = fola) + ZP P filz), 41),
where
(19) Y, v) = ot {w(e, §) = B1).

“Ordinary duality”, with L given by (1), is the case where
(20) ola, 8) =0 if «< 8,
=4 o if « >0
If we take, say,

(21) oo, B) = '.32/| ol if o<,

=0 if o =0 and =0,

= -+ o otherwise,
the perturbation of (1) corresponding to a vector # is a “*penalty function
approximation” of (1) of a kind commonly used in interior point algor-
ithms (see [H]). Specifically, if w, 5= 0 for ¢ =1,..., m the perturbed
problem is that of minimizing

(22) folw) - Zraui /| [ @)

over the set of all « satisfying f(x) << 0 for ¢ =1,...,m. In this ease
the Lagrangian is:

(23) Lz, y) = folz) + (U4)ZiL, yifi(w) i @ is feasible,

= - o it @ is not feasible,
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and the solution to the dual problem is trivially y = 0. Here it would not
he sensible to think of solving the primal problem by way the dual problem
or the Lagrangian minimax problem. Nevertheless the duality theory
18 not without implications. The dual objective function g is by a general
theorem the conjugate of the concave funetion — p, where p(u) iz the
infimmum in the perturbed problem corresponding to «. Properties of the
dual problem, which can be analyvzed in various ways, thus correspond
to properties of p, and the latter are obviously crucial computationally.
Properties of the Lagrangian similarly have a bearing on the convergence
of the interior point wmethod associated with the given perturbations.
Other interior point and exterior point methods can also be viewed in
this light.
A rather sarprising case is (for any » = 0)

(24) ola B) = B il 2 <,
=4 o if « > 8.

The perturbation of (1) corresponding to a vector u is then the same as
the perturbation in the case of ordinary duality, except that the constant
rlu'* is added to the objective function of the perturbed problem.
Thus it seems that the dual problem and Lagrangian should be essentially
the same in ordinary duality, but in fact there is quite a difference.
In the Lagrangian L given by (18), one has

(2) i)y, ) = uif o flw)t it file) =o— 2,
= — yildr i f, (0) < — yf2r,

Note that L is finite everywhere, Thus in the corresponding minimax
problem, there arve no implicit eonstraints. (In ordinary duality, the multi-
pliers y, are constrained by ¥, > 0). Furthermore, L is continuously
differentiable, assnming the functions f; are.

In this case, therefore, in place of the Kubn-Tucker Theorem, we
get the result that problem (1) can be solved, at least in principle, by find-
ing the wsaddle-point of a certain continuously differentiable; convex-
concave funefion on R"x R" (no constraints). YWhether or not this is
a reasonable approach to compuiation in some cases is not clear, but
the question is certainly open. Past attempts at solving convex prograi-
111111,9‘ pr oblems by direct ealenlation of saddle-points have heen hampered
in particular by the constraints y, > 0. In any event, it is known that for
a  differentiable concave-convex function L the {lifferentia-l equation

(26) (— z, ) = VL(z, ¥)
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has a unique solution starting from any initial point (2(0), y(0)). Under
mild assumptions (e.g. a sort of striet convexity or concavity condition
on L at a saddle-point) every such solution (2(2), #(t)) eonverges to a sad-
dle-point as { — - oo, “Small step” algorithms for finding saddle-points,
based on (26), can therefore be constructed. The real question computa-
tionally, however, is whether “large step' algorithms of some good kind
are possible.

Like the Lagrangian problem, the dual problem corresponding
to (24) has the advantage that there are no implicit constraints, and the
objective function is continuously differentiable. This makes it possible
to simplify or improve certain dual methods of solving (1).

CONVERSION FROM NONLINEAR TO LINEAR CONSTRAINTS

The constraints in the convex programming prohlem (1) are in
general nonlinear, but it may be possible to construet a dual problem
in which the implicit censtraints are linear. Solving the primal by way
of the dual mnight then be easier than solving the primal directly. Tn the
example just described, the dual is in fact unconstiained. However, there
is another approach to this matter which exploits special properties of
the functions f,. The duality obtained in this way generalizes that in
geometric programming,where the standard dual problem is well-known
to be “essentially” linearly constrained. We shall not go into the details,
since they are given in [6]. It is enough to point out here that this is
a new kind of application of general duality theory, and that other possi-
bilities may lie in this direction.

NONCONVEX PROGRAMMING AND DUALITY GAPS

- If the functions f, are not convex, problem (1) is much niore diffi-
cult, but duality theory might still be applied and could lead to progress.
The construction of Lagrangians and dual problems outlined above can
easily be modified to fit this case: F(x, u) is required to be convex in
for cach x, but not necessarily convex in (@, u). As before, L is defined
by (9) and the dual problem by (6) and (7). The dual problem is still
coneave, and formulas (5) and (10) still hold (assuming F (x, ) is lower
semicontinnous in «). The real trouble, of cowrse, is that typieally the
infimum in (1) and the supremum in the dual problem (6) will not be
equal, the difference being termed the duality gap. Thus while the dual
can still be solved essentially as a concave programming problem, its
solution does not yvield a solution any more to the primal.

In many ecases, however, we can obtain by this procedure an *“esti-
mate’ of a solution to the primal, where the “estimate’ is relatively
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good if the duality gap is relatively small. A potential application of
duality theory now is the following. Since different choices of the dual
problem are available, it may be possible to reduce the duality gap
and thereby come closer to solvi ing the ;_1\ en primal. As a matter of ff!,(t
it can be shown that this is always s possible in principle “to within any =
although whether this can be effected in a computationally sonund manner
iz another issue; the case of (16), (24), is especially promising,

Observe that lere, since no convexity ix assumed with respect
to i, the linear structure of R is not needed. Thus I could be replaced
by a discrete set X, if desired. Naturally, almost any dual method of
solution would rest on the availability of a good dlzhoulhm for mncon-
strained minimization of a real-valued function on X,
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