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1. lntroduction

Let 11 be a positive measure on a measurable
let tbe an extended-real-valued function on rx R'.
regularity assunptio.s described below, the integral

space (7, 4, and

!(t, u(t))r(dt) (1.1)

{ue Lt (r, R") 17 (a) < r } , a rea1, (1.2)

(*) This research was supported in part under e'ant no. AF-AFOSR-
1202-678 at rhe Universily ofWasLirelo!. Seaftle.

are rveakly compact. We shall _qive in Theorem 1($3) general condirions
which are not only sumcient tbr this, but also, if I is nonatomic,
necessarl. The sui]jciency of the conditions has already been announced
in a separate paper []2. Cor. 2Bl. but the necessity is shown here for the
first time.

I r@) - l,
is 'we1l-defined" for every summable furction ril+R'and thus gives
an extended-real-valued functional on the Banach space t (r, R'). Such
functionals arise in many ways, but they are especially comnon and
important in variational problems.

lr rrrr) p-oblen. o-e sdrr. ro .rl,n,nile ,orelhi ,g o, ll-e lorr ,rr

,or 1_rr,riona /,.rchrhal ,f\/r'o\errsro,er o" I r/. R,dcrrred b\
certain conshaints. Other constraints n]ay be represented in .1, itself by
. scrgn.ng re .alre o 'ola. -lorbiader po'r,. of r ' R'. nnd rhi,
is how extended-real-valued functions cone to bc considered. Typically
in the calculus of\rariations (or control theory) ris a region in R'and I
is Lebesgue measure. However, there are also problems ofinterest where tr
is an absiract probability measure (so that 7r(r) is an enpectation), or
lvhere /1 is pnlely atomic Go that 4t, is given by a series).

It is hclpful in applications to knoiv conditions under which the
level sets
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Our prool of the conpactness theorem is based on a new result
(Theorem 2, 11.) characterizing the weak *+-clomres ofthe level sets (1-2)

as subsets of the bidual space rl(t R)** (the \leak** topology being
the w€ak topology induced on I (f, R')** by thc space rl (7. R')* :
r-(7, R')). The arsunent makes much use of duality, particularly the
theory of conjugate convex functions. Fundamental theorens about
nled,rriole r| lrrfuncron. are al.o enploled

The compactness theorem is related to recent work of several

authors. as we erplain after its statement in S3.

2. R€gda ty Assumptions

The integral (1.1) does not make sense \vithout further assumptions
and conventions, sinc€/(/, ,(t)) night not even be measurable in r, much
less summable. Classical regularity conditions are too restrictive and
inflexible for ihe diversity of applications nowadays, but the following
conditions. henceforth assumed to hold, turn out to be very natural.
(For a dilTereni but closely related approach see Iofe-Tikhonirov I4l.)

(i) :fhe neasurc p is tota r o-f ite and conplete.
(i1) f is t:< A-measuruble. u,herc / \ tA is the o-Jield in Tx R' senetated

b! the ptodutts of Vaubset! of T and Barcl subsets of R'.
(iij) f(t,u) is loaet senicontinuous as a function af ueR' for each teT.

Condition (ii) implies in particular that /(r, ,(r)) is measurable in t
il r(r) is measurable in r. (This is evident from the neasurability ol the
traDsformation t-(.t,u(r)).\ The meaning ot +(u) tot a measurable
function r:I+R'is then clear (unambiguously a real number or +or
or -co) iflc, r0)) majorjzes or is rnajorized by a summable function
of 1, and in the remaining case, where neither is true, we adopt the
convedtion that tt(u)= +,'.. Tbis convention and condiiion (iii) are
"one-sided", bui ihey are motivated by applications to problems ol
ninimization.

In working $'jih condition (ii), one is able to invoke the standard
uselul lacts about measurable funcrions. but it is also possible to apply
the recendy developed theory of measurable multifunctions (set-valued
nappingt with great advantage. A muhfunciion M:r'P (vhere
M0) is for each lez a subset of R, perhaps empty) is said to be
tneasuruhl" if the set

M t(C): {ter MA)^ c + 0l (.2.1)

is measurable in 7 for every closed set CcR". According to an impofiant
theorem of Castaing !l (in a somewhat extended form for R' derived as



Theoren I of []31), if M(r) is closed and nonempty for every r, this
condjtion is equivalent to the existence of a countable colleciior U of
measurabl€ functions z:7+R" such tiat

M(t): cllu(.t)lueU)r for every ler. (2.2)

A theorem of Debreu I3l (again somewhat nodified-see Theorem 2
of [] 3] asserts on the otlrer hand ihat, if /(t) is closed for every l and (i)
holds, the measurability of M is equivalent to the .rx Jr-measurabiiity
of the graph set

l(t,u)eTx R' ueM(t)I.

The theorems of Castaing and Debreu will be used s€veral times in this
paper itr connecdon si(h rhe follouing re{ lr.

LENftTA 1 . Co,dt1rcz (ii) ?J equil)alent Mder (1) and (iii) ta the meatum-
biliry of np episraph kluhifunction

F:t+ F(t)= {(u,i)eR'+\lf(t, u)<cl. (2.3)

PRooF. The Z x ,t-measurability of/ is equivalent io that of the

E, G. u, .t) + f(t, u) - .r

and hence to rhat of the set

{(t,u, !)erx R'+1 @(r, r, c) < 0},

whichis the graph ofthe multifunctiona Theconclusionis then apparent
from Debreu's theorem, since F(/) is closed for each r by condition (iii).

Throughout this paper \re denote by k the greatest extended-real-
valued function on Ix R' majorized by I such that &(r, ,) is for each I
lower semicontinuous and convex in ,.

(The convexit) of an extended-real-valued funciion is delined in
terms of the usual inequality by means of the obvjous conventions for
manipulating +co and -co and the special convention +or-co:

CoRoLLARy. The functian k ir / x ts-neasvable.

PRooF. Let ,( be the epigraph mulrifunctio of i:
r:, ' K(t): {(',, s)eR'+' lt(r, a) < c}.

The definition of k says that

r(r): cl co ,F(t).

(.2.4)

(2.5)

This and the measurability of .Finply rbe measurability of ,( [13, Cor. 3.3]
and hence the .r' t %rneasurability of t.
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It follows from the corollary rhat, like 1r, the integml functionai 1i
is well-defined. The relatjonship between 1* and + witl occupy much of
our attention below. Note that 1i is convex by viriue of the convexity of
k(t,u) in u.

LEMM^ 2. If IrQ\< +.' fot at leatt oke uelj (7, N) then

ifi {rr@) uer} (:r, N\l - inf {1r(,)?lel(7,R)}. (2.6)

PRoor. The inequality > certainly holds. On tlre other hand,
suppose ( is a real number such ihat

int IIk@) uelj(r,R')\<1. (2.1)

Then tlere is a sunmable function so : I- Rl such that

J ".1,yr1oa 
. '

and, for a c€rtain roet(r, R'),

(2.8)

e(r, ro(/))<so(r) for almosi every r. (2.9)

The multifunction

M.t - M(r): Iue R'l f(r, ') < ao(r)] (2.10)

then has M(r) + 0 for almost every r. Moreover, M(/) is closed by (iii),
and ihe slaph ol M is t x !.4-meas]llable by (ii). Debrex's theorem
implies that M is measurable, and from Castaing\ theorem we deduce
the existence of at least otre neasurable funciion zr : Z+ R' such ihat

Il1(r)e M(l) for almost every ,. (2.1r)

Since (i) holds, there is an increasing sequence of measurable setq L of
finite measure witl union r strch that

1,,(r) < lor re L,. Q.12)

Let ,, be a funcrion in t (l ,ry) such that Ir(,J < + qr. If n is chosen
suficiently large. the summable function

,(/): dn(r) if r€L
: nax {'o(r),^/, a(r))} if rdL,

satisfies, in riew of (2.8),

(2.13)

(2.14)
J' 

d,,,r,0,, . ".
Setting

u(t):\(t\ 1l teT^
: u.(t) if ter-

8R

(2.15)



we have r€l(7,R'), and by (2.11)

f(t, u(t)) < P(t) for almost every r.

The inequality (2.14) then implies thar +(r) <d. Since d was an arbitrary
reat number satisfyins (2.7), we may conclude thar equality holds in (2.6).

3. Compactness Theorem

For each l€ lwe denote blr r(1, ) the (extended-real-valued) convex
function on R" conjugare to/(r,.) (and k(r..)) in the sense of Fenchel.
Thus

,(/,.i - sup {(r,,)- /ft, &)l'r€R'}
: rup {(,, r,) k(.t.u)lueR'j,

(2.16\

(3.1)

where (.,.) denotes the inner product on R'. Dually, for each I such
that t(r. r)> cc for all ll€R', \le have J14l

r(r r): sup {(ll, u)-r(r, r, r€,Y l. (3.2)

The funcllon,l js tx4-measumble; this can be seen ftom (3.1) by
applying Castairg's rheorem ro the epigraph nruldflnction F in
Lemma 1. The flnctional1, is therefore well-defined and convex. Later,
in our proofs, we shall treat ,r, as an extended-real-valued convex
functional on r'(7, ,4'), and the dxality between 1, and 1i will be
important. For the preseni. however. \re merely need ro observe that
g(/, 

'r) 
is in parlicular measurable in / lor each r, so that the summability

ofr(l,,) .s a function of l can legitimately be considered.
We now state our rnain result.

THEoREV l. 7,{e leLel sets (.L2) oI Ir arc all aeaklr compact in
Lttr. R'), tf

(a) s(t, u) is sumnable in teT lb eNry ,-eR',
(b) f(t. u) is canxex iti uel( for nost eDery teT.

Moteoue\ these sulficient ca ditions arc also necessat!lbt all nE sets (1.2)
to be beakb compact, if the neasure p is atlatamic and It is a ptuper
functianal (that is, Ir\u)> -.t fot ererr uet: lT, R'), 

'r1d 
ly'u)< + 6)

fot dt least ane uet (r, R')).

Incidentally, if g is any real-valxed ixnction on IxR' such that
s(r,r) is convex in r and condition (a) holds, then the function /: k
delined by (3.2) satisfies conditions (ii), cii) and (b) ,and 1r is a proper
con\e\ lLnc.roo" ot L"T. R'). rhi. :. .los,r ir Ll). The;rem 21.

As remarked in 
"sl, 

ru. Ouu" aircady proved the sumciency jn
Theoren I elsewhere 112, Corollary 2Bl, although a slightly ditrerent
arsument will be siven belo$. An earlier proof of suBciency [1],
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Theorem 4l required that g(/, r) be essentially bounded in r, and that r
be of finite m€asure. The sufrciency could also be established using the
Dunford'Pettis criterion lor rv€ak compactness; the argument would
be an extension of one of Valadier [16. pp. 14-16]. However, the present
approach has the advantage of yielding a proof of necessily, as well as

providing (in Theoren 2 below) an emcr descriptjon, in the case Nhere
the level sets (1.2) are bounded in .IJ (r, R') but not weakly compact.
of the weak**-conpact sets which are the weak** closures of the level
sets as subsets of.IJ(r, Ri)**.

If 7 is a bounded .egion in R- and p is Lebesgue measurc, the
suflicienc,v in Theorem I could also be derived fron a versatile lemma of
Olech [9], [10], but in a weaker form $lrere the topology on / (f R")
is that induced by certain continuous functions on I rather than al1 the
functions in r-(l R'). Suffcienl conditions srronger in form, bu! vatid
in cefiain cases rhere -R'is replaced by an inflnite-dimensional space,
have been devised very recendy by Casiains i2, Th6ordme 61.

Theoren l can be regardedas anextension ofihe classical theorem of
Naguno I8l, in the sense lhat it furnlshes (in view of the Dunford-Pettis
criterion) a suflicient condition for the functions rl in a set of rhe
form (1.2) to be uniforrnly summable. (Condinon (b) is superfluous for
this conclusion.) In the classical result, Iis a bounded, neasurable subset
of the real line and /is of the forn

f(t,u)= tp(u), ueRt ,

\rhere E is a linite, increasing function on [0, +co) such that

hn e(;)/i - n.

Our condition (a) nnpljes that r(r. ) is lor almost €very r a finite convex
function on R', and hence that /(t,.) satisfies for almost erery I the

liro /(r,.l&)i.l : +cc

(ree tl4, S 131).

Although tle necessiiy of (a) in Theorem I has not previously been
proved, the essential necessity of (b), elen for the weak iower seni-
continuiry ofl is well known in various cases where/is nore regular
than required here. In fact, the relaiionsiip bet!r'een convexity and lo\yer
semicontinuity has been an inporiant subject of investigation in the
calculus of variations ever since the discoveries of Tonelli. We cannol
go into the detaiis here, but refer the readff instead to the papers of
Iofie and Tikhonirov i4l, [5], and the literature cited there.
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4. Weak**-closures of L€yel Sets

ln the method we shall use in deriving Theorem t, the telel sets (1.2)
are regarded as subsets of rhe bidual _IJ (2, R,)** and comparcd witt
their closures ir the weak** topology. (The restriction of the latrer
to I (7,II'), viewed as a subspace of ]j (r R)+*, coincides of course
with the weak topology on t (r R).)

We make use olthe facr rhat / (7, R') has a natxral complement in
I (r, R')**. Speciflcally, rr(t R')** is the direcr sunr ofthe iwo (norm-
closed) subspaces I and S, where ,4 js the canonical copy of,Il(r. R)
and S is the set of all continuous linear functionals ,r on r"(t R,,) with
lhe following property: there exists an increasing sequence ofmeasurabte
sets 7; of finite measure 

'!ith 
union r, sxch thar ?r(a) :0 whenever I is

a function in r'(r, R") vanishing almosi everywhere outside of 4, for
sone 

'r. 
(This can easiiy be seen by represenring I'(f, n) as rhe space

ofalln'-valued continuous functions on a compact HausdorFspace Tand
then applying the Lebesgue decomposition theorem ro the measures in
the conesponding dual space.) The elemenrs ,el and &;eS in rhe
deconposition ru: ?r: +rrr may be iermed the ..absolutely conrinuous..
and "singular" conrponenls ofthe functional rre-d (t R')**, respectively.

Using lbe decomposition just described (and tlre convenrions about
+.o and -ca), \{e deiine the functional 7/ on r1(2, R,)** by

i,tu t: t,1r'^1u or,,. (4.1)

where k(/,.) is as in 12 the greatest lower semicontiruous, convex
function on R" majoized by /(r, .), and

d(u):sup {,,(r) rel'(?', n),14(,)< + co }. 14.2)

(4.3)

(4.4)

is the tftak++-closute of the lerel set (t.2). (The set (4.4) is also

Assuming that 1a is not idertically +.., on L" (r. Rl. 6 is of course a
positively homogeneous, convex functionai vanishing ar 0. Then 1, is
a convex functional on l(r,n1*+ which reduces to 4 on l(tR')
(identified henceforth $'iih l).

The following theorem, not siat€d before, explains the €xact
relationship between i, and I/.

THEoREM 2. ,Srq,zos€ that IrQ\<+.a lb same uet(I', p), and
l,(L)<+o. Jbt sotne rcI:(7, R"). Suppase either that the tneasurc p is
no atonic, or that l(t, u) is cont)ex ik u fat ulnon ercry t. Then fot erery

t: inf {+(.u) uer} (r,Pcl,

{,ret (r R')-- tt(&, < r}
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ueak**-closed if disrcala d a : i, t:rid i thk case it is the direct sun of

tu e rj (r, R')t rN@) : tJ (1.s)

and the cotnex cahe co sistitig of the srtguln functiandls tueS sucll that
u)(r)<o Jot eLs! tieL'(T. N) satisfri]1s tst.l,)< +...)

The assertion in Theorem 2 that the $eak+*-closure ol (i.2) is (4.4)

implies in particular that the weak closure of (1.2) in L' (2, n') is the
corresponding (convex) level set of 1i. This is closely related to some
results of Cltstaing [1] coDcerning measur3ble multifunctions. as well as
to convexity rheorems in the calcxlxs of variations relerred to abole.

PRooF. Since 1, is not identicalLy +.o (and likewise A, we have

/,(r) - sup {(r, r)-4(z) ret (r R")}
:sup {(tl,,)-1l(") uel}lr,R\I> co (a.6)

for every r€l'(7, R') by 111, Theorem 21, {here

fa.. - l ,'rr. r'rr '7 rdr,. t4.-
Jr

TIe second equality in (4.6) is seen by applying Lemma 2 ro the function

l,(, u) : / (t, u) - <u, x ( t\>

(The firsl equauty in (4.6) is proved h [1]l under tlrc assumptio..
satisfied here, that 1, is not identically +co on r'(r. R"). However, we
renark for purposes bclow thil thjs assumption is nol essential, and
all of (4.6) can actLrally be established by nearly the same argument as

xsed in Lemna 2.) We aiso have fronr i12, Theorem 1l ihe lormula

fr(r,): sup {r/ (r,) 1,(,)liiel'(r Rl}> .o. (4.8)

Thus L is the conjugate of ,r,, which is not identicalty + c. ard is the
conjugaie of 4 and the convex fxncrional Ii. This implies, by the
rrr i,nerral tneoren rbor r .o ,jrpare con\e\ tu h io r.. Lhar L i, tae

sreatest weak++loller sernicontinuous functional on c(ZR)+*
maiori/ed on Lr,7. R'' or /. und rha ,.: ,ce /. i, rle re.ll:crion olir Lo

| (", R)) 1* is rhe greatesr weakly lower semicontinuous convex func-
tional on ]] (r, n) majorized by -Ir.

I lollo{, inned,"te ) rlir
inf {i/(?,J l1i€,c (r, ,{)++ l : inf {/r(,)l&el(tR)i: a< +.D (4.9)

(equdlitJr with t holding by Lemma 2). Furthermore, for eacb real ? I t
the level set (4.4) is the weak** closurc of the level set

92
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while (4.10) is in turn the weak closure in t (r. R") ol
{uel (r, R') (co I/) (") < a},

co 1, denoting the grealest convex functional nrajorized by /,. Il /(/, ,)
rs convex in , for almost every 1, then of course co -ar - 1r :1k- and wc
rnay conclude as desired ihat (4.4) is for a+a the weak+*-closure
of (1.2). The assertion ofthe iheorem about the case a: t (t reai) needs
no argument, since it is clcar frorn (4.9) thar jn ihis case (4.4) is the set
of al1 r: ui +r.s such thar r! belonss to (4.5) and o (ruJ < 0.

To complete the proof of Theorem 2, we denonsirale that ifl(/. ,)
is not necessarily conve)t jn,j bur 11 is nonatomic. the level set (4.11) is
fora + A containedintle \eakclosu,€ ofthe corrcspondinglevel set (l.2).
This anounrs to denonstrating that tte \reak closure of the epigraph of
4 in L1(t R) x Rr is convcx. Let F be the multifunctlon (2.3). and iet

(1.1r)

It suffccs to show thal the weak closure ol F contains lhe convex hull
co F, or equivalently, ihat the image of F under an arbitrary coniinuous
iinear transformation Z lio]n / (t R") to a finite-dimensional space R''
is dense in the image ofco F. Actuatly, ir turDs out that l-(F) is convex,
so thar a(F): a(co F).

The convexity ofa set ofthe fortn a(F) is a well known consequence
of ihe theoren of Liapunov 16l, according to which the range of a
nonatomic R'-valued mcasure is a compact convex set. (Only rhe
convexity assedionis needed here. Lirdenstrauss has furrished an elegant,
half-pageproof of Liapuno\r'stheorctn usingthe Krein-Miinrantbeoreml
the positirity hypotlesis on the component measures can be obviated b,v

means ol the Hahn decomposition theorem.) The argument is srandard,
but we repeat it here for completeness.

Let l, be a continuous linear iransformation lrom -#(l R') to R',
and l€t:, and:, be elements ofF. We show tlat L(F) nrcludes a convex
sel containing a(21) and a(2,). For each measurable subset t of 7let z!
be the function in .Il (I, R" 11) defined by

zE(t): z,(t)-ztft) if teE
:0 il rdr.

Then zs+z1e F. The set function ' defined by

r (E) = L(zE)

F: kE-rl(r R"+1) ?(r)€r(r) a.e.]. (4.12)

(4.13)

(4. i4)

is countabiy additire from .f Lo R" (by virtue of dre linearity and
continuity ofl,), and it is also nonatomic. Hence by Liapunov's theorem

lL\z)+Ltz) Eert) -LtF I (4.15)

i...,\e\. 1Ii,.er colrdrns Lt-,1 tlor t -0.) J rd ,f r--, rlor f- 7).

93



5. Proof of the Compactncss Theor€m

Suppose in Theore l th.tt condjtions (a) and (bl hold. Then 1r:1k.
11 can be assumed Lhat If(r) < + qr lor some ,e t (7, R,). since orhcnyise
the weak compactness ol the level sets (1.2) is triviai. Thcn Tlleorem 2 is
.tpplicable. To sholv weak conrpactness it suffces to show rhat the
sets (1.2) are bounded. nnd thal the function o in the dellnition ofi,
satisfies

d(r) :0 lor cvery nonzero l.es (5.1)

Given any,,ero(r,R'), \re can lind a finite subset {a,,...,a,,} olR,
$,hose corvex hull contanrs ?,(/) for almost ever) /. Then

for alnosi evcr) t b] virtxe of the convexity ols(r. ). The right side of
(5.2) is summable in I, and therefore 1o(1r<+.o. Since i' \'as an
arbirrary elemenl of L'(7, R"). we lnay conclude that (5.1) ho1ds.
Furthermore, if, belongs to n lelel set (1.2) ard ,er'(7' R"). we have

,0. r()) < max [s(r. /l) ]i: l. .... ,,1 (5.2)

(r, ?)) < 1r(?D+/,(r) <' + I!1.1, < +.. (s.3)

1a(o): inf l..r(,) uelj lr, R")J. (5.4)

Moreovcr. the inturxm in (5.4) js attained. because the ielei seis of1, are
rveakiy conpact. and hence the jnlllnum cannor be or. because
1r(,)> .! lbr every r€Lr(rR"). Therefore -r,(0)< +or, and rhe
hypothesis ol Thcorem 2 is satjsfied. It lollows that rhe sets (4.1) and (1.2)
arc the same for every rcal r.

ir n" i.rLr. lt -l an t t. R" -lo .ee rf" ,.
no .es co.r l' ,u , r',.r.r.ider.re.er/-reireo,r.'1.2,,r:\/r\er

by (2.3)), and correspordnrgly lct

,(: i.?€L rt -R'+' ) I :ir )e^(i r r c.l (5.5)

by (3.1), and lrencc the linear funcrional (, ri) is bounded above on (1.2).
Thus thc sols (1.2) are ail boundcd, ard the suficiency ol condirio.s (a)
and (b) 1s proved.

Suppose now that rlre ievcl scLs (1.2) dre all weakll, compact,
that 1, is 'proper" is described, and fiar 4 js nonatomic. We show
that (a) and (b) nust hold. Sincc 4(r) < +.! for at least one,e/ (7. R'i),
lormula (a.6) is valid. as aiready remarked in the proof of Theorem 2.
Thus in p.trticular

({ith ( given by (2.4)). Trivially ,(>li. Corvcrsely. if .e R we have
:(/) : (,(rl. d(.)). \here uEtj (r, R'), aetj (r, Rt ), al]d t (r. ,(/)) < '0)lor almosr every /. Since 4(,1:4(r) and k</, {e must have

l (/, r(r)):l(r, ,(/)) a.c.
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Thus 

^t,r(1))<r(r) 
for aimost every t, so thar z€F. This proves

tlat E = F. We observe ne\t Lhat, s;nce k is.q x /-measurable (Corollary
to Lemma l), tlie multifunction -(is measurable (Lenna I applied io k).
If t is a function in / (t R) such that 4(r)< + co, we have i(t, t (r))
measurahle in r and

k(r,n(t)) <f(t,u(t))< + co (5.6)

for almost every t. Thus there exists a function ze F such that the set

T',- {t€rl.(t)4K(t)} (5.7)

is measurable and of neasure 0. L€t

K'(t): K(t) il reT': {z(t)} ir ttr'.
Then,(':7+ R'+1 is a measurable nultifunction whose values ,('(r) are
closed and nonempty, and consequenlly there exists by Castaing's
theorem r countable colleciion Z of neasumble functions z:t*R"+l

K'(t): ct {z(t\ zez} a.e.

Since tr' agrees wift n: except on a set of measure 0, we have

(5.8)

-i((r ): c1 {:(/) i :€Z} a e.

(5.e)

(5.i0)

In view of the fact that I is totally o-finite, there exists lor each of the
measurable functions rez an increasing sequence of measurable sets

4(z) ol finit€ measurc wiih union I, such lhat

l,(t)l<,? for every /e 4,(z). (j.11)

Let Z' de^ote the countable collection consistins of all the functions
r': f 'F+1 of the form

z'(t): z(t) it ter.(z)
=.(t) ir t+r^(z), (5.12)

where , ranges o\et Z, and r?? nnges over the positive integers. The
funciions in Z'are summable, and they have tle property rhat

Therelore Z'-R. But R = F, as already shown, and hence (usitrg the
countability of Z') we have

{z'(t) | z'Ez'l-F(t) a.e. (5.14)

The set F(t) is clos€d by virtue of the lower senicontinuity of/(r, r)
in ll, and therefore (5.13) and (5.14) inply

K(t): cI {z' (t) z'ez')t a.e. (5.13)

(5.l5)
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This lerifies condition (b).

K(t) : F(t) a.e.



Without loss of generality, we can assume henceforth for sinplicity
that k :l OuI task is to shoiv thal the (nonempty. convex) set

contaiis all the "constant functions". (For every reC wc have

1a(r)> co by (4.6.), so that s(r.r(t)) is sLnnnable in r') It is enoush
actually to demonstrate that the strong closure of C contains all the
constart functions, for suppose the latier is rrue and let a be an arbitrary
element of R'. let ldr, ..., a.] be a subset of R' Nhose conlei hul1 is a
neighborhood old. By assumption, given any s >0 we can find functions
,-reC such that

,,0)-dr <e almost everywhere (i= 1, ,/). (5 17)

If s is su mciently small, .7 will belons to the conve)t hu or{r1(r), .., t,.(t)}
for almost eYery 1, so that

(5.18)

Tbe right side ol(5.18) is summable as a function of t, and therefore 4€ C.

Assume that i is a function in r'(f, X') not belonging to the strong
closure of C. We shall argue fron this to a contradiclion, tlereby
establishing Theorem L Since Cis convex, t can be separated fronr C by
a continrous linear functional on r'(r, R"). Thus the xeak*+-closed,

c : {.1e r Q, R') I L(ri) < +'lo} (5.l6)

s(t, d) < max s(t, r!(r)) .

contains nonzero elements, where d is given by (1.2). Fron [12,
Theoren ll we have formula (4.8), and therefore t is the recession

function ( asympiotic function') oflr [15]. In other words, we have

o: {wet} (r, n\*a 1N(tt> o@)I (5.1e)

o (d = lnr Li !(u) + tu,) - I t(n)ll ). . (s.20)

: snp lIt(tr,+ 
^a) 

i t1u)fl2,

where t can be taken to be any element of r1(2, -R')+* such ihat
1r([)< +o:r. In panicular, (5.20) inplies that

Ir@+ ).w) <ir@)+ )'a(t) (5.21)

for every r€, and 2>0. Taking t to be an element of / (r, n) such

that t(t)<a, where d is some fixed real number, and taking ?, to be a

nonzero elemenl of ,. \re see from (5.21) that t(t+fu)<d for
sumciently smaU,l>0. Then it+,la belongs by Theorem 2 to the

weak*+-ctosure of the level set (1.2). and hence to (1 2) itselt implyins
ueLl(T, R'). Thus, is contained in -C(7, R'). and , consists Gince
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it: tr= tt a1 1,r 17, p1) of the functions 1,e/ (t R') such that

I
J, 

d,r.i'" r,d" ' .ln-L/.{t lu' t t/,1. {5.22}

I
-,li n..1. '[/,r., r' i )u t',i - I't. i' r'l h!'a!t .

(Here t still denotes an elenent of t (I, R') such that 1r({) < + co.)
Il r is any function in C, we have

f(t, u)(t) + )b(t)) > <w(.t)+ ) (t), 1,(.t)> s (.t, tr(t)) (5.23)

by (3.1), so that the direrence quotient

U(t, t:(t)+ ).tL)(t)) f(1,nQ)\ll),, ).>0, (5.24\

majorizes a sumnable function of 1. Furtherrnore. these difi'erence
quotients are rnonotone increasing h .1, because of the convexity of the
functions/(r. ). It follows from the Lebesgre convergence theorem ihat
the integral can be interchanged wirh the limit in (5.22). tn orher words,
, consists of the functions ,rell(I,,V) such ihat

(5.25)

I10,,): litn lJQ,b(t)+^u, l(t, o(t)))l).. (5.26)

Note that r0, ,) is positiveiy homogeneous in ?l.

Fix any nonzero lunction ,roer. Since (5.25) holds for ,r: r,o, and
since ,(1, 0) :0, there is a measlLrable set 11 of positive measure such
t}}at

h(r, 1,oQ\ - <uo(t), i(t)) < 0 for almost every re?,, (5.21)

J tro. ,oll - <,0r. o('))ra(d') < o,

Do(r) +0 for alnost every /eI1.

r.t4 : J i,.:,{r)rr,{ao.

L,(r): t.(t) bo(t) it rera,
:o if t|'ro.

(5.28)

Let 4 be a measurable subset of 11 ofpositive, finite measure on which
?,0(1)l is essentially bounded in 1. Let .Zo be the class ol subsers of To

belonging to .q, and let pa be the firit€, positive, nonatomic measure

(5.2e)

Let a be the mapping which assigns to each elemeni i. of the space
t(To, llo, Rl) the function ?l given by

(5.30)

9',7



This mapping t is a iinear isometry ftonl /(To.4o, R1) onto a closed
subspace of l(I, R'). If .l>0. the funcrion ?r: Z(,1) satisfies

/r(/, rz (/)) (?,(1), t(1)) < 0 a.e. (5.3D

because ol (s.21) and the positive homogeneiry ofr(1, .), and hence D€D.
In particular therefore, we have

L(B+)c D (i.12

where r+ is the "nonnegative" portion ofthe udt ba of-C(70,po,R').
Since-D isweak**-closedas asubsetof t (I, R')**,theconvexsetr(a+),
beins closed and bounded, is weakly compaci in -C (r, -P). Equivalenily,
B+ is weakly conpact in -rj(7.,t..R'). Brt ihis implies that
L1(Ta, pa, R1) is finite-dimensional, conkary to the fact that lio is
positive and nonatomic.
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