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The concept of a saddle-point in 2 minimax problem was introduced his-
torically as a mathematical expression of an equilibrium between two oppos-
ing interests. The opposing interests were those of the players in a two-person
game, which could have an economic interpretation. Recently saddle-points
have been studied in the case of differential games arising from problems of
optimal control. The analysis of such games is far more difficult, in that the
correct definition of a strategy or pay-off involves many subtleties.

The abstract theory of saddle-points may be said to begin with the mini-
max theorem of von Neumann. A number of generalizations of von Neumann’s
theorem have been proved over the years, and the abstract question of the
existence of saddle-points has been fairly well answered. However, research
has not only been concerned with existence. Many results have been obtained
lately which shed new light on the nature and properties of saddle-points and
the possible methods of computing them. The purpose of these expository
lectures is to describe some of these results, not as widely known as the stan-
dard existence theorems, in the hope that the results themselves, and the no-
tions which they entail, may be useful in further developments.

The first three sections are concerned mainly with the presentation of the
dual approach to minimax theory, which was initiated by Moreau [9] and the
author [11] and subsequently pursued in [12], [15] and [18] . This is based
on Fenchel’s conjugacy correspondence for convex functions and its extension
to concave-convex functions, Several of the theorems have not previously
been stated in a form valid for infinite-dimensional spaces.

The fourth and final section discusses the idea of determining saddle-points
by generalized methods of “steepest descent”. Results concerning the Arrow-
Hurwicz differential equation in nonlinear programming can be greatly
broadened by means of the powerful, new theory of nonlinear, monotone
operators.

* Supported in part by the Air Force Office of Scientific Research under grant no.
AFOSR-1202-67B.
#% Department of Mathematics, University of Washington, Seattle.
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1. Minimax Problems and Concave-Convex Functions
In a minimax problem, one is given a function X on a product set CX D,

the values of X being real numbers or possibly + « or — =, and one considers
the quantities

1.1 supeo infp K = sup [inf K(u, v)] ,
( ) p( ih; o [UE ( )]
infn sup~K = inf [sup K(u, v)] .
nRe vED [za itz ( )]

In general these two quantities may not be equal, although it is always true,
as is easily seen, that

(1.2) supe infp K <infp supe X .

If equality does hold, the common value is called the szddle-value in the
minimax problem. For the saddle-value to exist, it is sufficient (but not
necessary) that there exist a saddle-point of K with respect to C X D, that is,
a pair (&, v) such that

(1.3) uEC, veED, max K (u, v) = K(u, v) = min K(u, v).
ueC vED

Then the saddle-value is K (i, v).

One of the main goals of minimax theory is to establish conditions on
K, C and D under which a saddle-point, or at least the saddle-value, exists.
Results of this type are termed “minimax theorems”. Another important
goal is to elucidate the relationship between minimax problems and problems
involving only minimization or maximization. Work in this direction is moti-
vated by the Kuhn-Tucker theory of Lagrange multipliers and by duality con-
siderations in mathematical programming. Still another goal is to find ways
of computing saddle-points.

Convexity assumptions appear to be an essential ingredient in minimax
theory. Most results require that C and D be convex subsets of (real) linear
spaces U and ¥, respectively, and many require also that K (x, v) be concave
in u€( for fixed vED and convex in vED for fixed u€C. This concave-con-
vex case is the one we deal with here.

General minimax theorems can be proved using slightly weaker assumptions
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such as quasiconcavity-quasiconvexity in place of the concavity-convexity of
K (see Sion [16]), but such results are limited in other respects by compact-
ness assumptions on C or D, and they seem to have relatively little bearing on
the second goal mentioned above. A remarkable equivalence is now known
between minimax theory in the concave-convex case and the theory of dual-
ity in problems of minimizing a convex function over a convex set (see

[12, 15]). The equivalence is based on Fenchel’s notion of conjugate convex
functions. No results of comparable scope have been found for minimax
problems where K is only quasiconcave-quasiconvex, say, although there
have been some investigations along this line (see Vogel [19] ). This is an im-
portant reason for singling out the concave-convex case for special treatment.

Another reason is the fact that an arbitrary minimax problem can be “con-
vexified” by various means. This idea is familiar, for example, in the theory
of matrix games, where ‘“‘pure strategies” are generalized to “mixed strategies”
so that von Neumann'’s minimax theorem can be applied. Similarly, when C
and D are infinite sets, “mixed strategies™ can be defined measure-theoreti-
cally as probability distributions on C and D. There are other methods of
convexification which take advantage of the linear structure already present
when Cand D are subsets of linear spaces: convex hull operations are applied
to C, D, and in certain ways to K. In all these methods, the objective is to re-
place the given minimax problem by a concave-convex minimax problem in
such a way that the saddle-points in the original problem (if any exist) can be
identified with certain saddle-points in the new problem. We shall not discuss
this further here, however.

Convexity assumptions are also fundamental for the dual approach to mini-
max theory which will be explained below.

A very useful technical device in the analysis of minimax problems in
which C and D are subsets of linear spaces I/ and V' is to represent the ex-
trema as extrema over all of U X V by defining K in an appropriate manner
outside of C X D. One way to do this is to set

(1.4) K(u,v)=+ il uEC véD,
=_ o if ugEC.

Equally good is to set

(1.5) K(u, v)= — o if ugC,vED,

=+ if V@D,
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Observe that in both cases we have
(1.6) supc infp K = supy; infy K,

infp supe K = infy supy K,

so that the saddle-value of the extended K with respect to U X V is the same
as the saddle-value with respect to C X D, if these exist. Moreover, (i, v) is a
saddle-point with respect to U X Vif and only if (i, v) belongs to C X D and
is a saddle-point with respect to C X D,

Thus in principle we need only consider minimax problems over all of
U X V, provided that we admit + « and — « as possible values of K. The fact
that two (or more) definitions of K as in (1.4) and (1.5) can represent essen-
tially the same problem, suggests however that in taking this approach we
should regard problems as corresponding really to certain equivalence classes
of functions, rather than individual functions. An equivalence relation for this
purpose will be defined below.

The introduction of functions with possibly infinite values is technically
convenient in some aspects of minimax theory, but a much more important
and interesting justification will be given in terms of duality. The notion of
equivalence of functions likewise has a dual motivation.

By a concave-convex function on U X ¥, we shall always mean an (every-
where-defined) extended-real-valued function K with the property that
K (u, v) is concave as a function of u for every v and convex as a function of v
for every u. (Here we speak of an extended-real-valued function fon ¥ as
convex if its epigraph

(1.7) epi f= {(v, @) |[VEV,aER}

is convex as a subset of the linear space ¥ X R1;see [15, §4] for a discussion
of this definition and the way in which it generalizes the classical definition
for finite functions. A function is concave if its negative is convex.) If X is
obtained by (1.4) or (1.5) from a finite concave-convex function on C X D,
where C and D are convex sets, then K is concave-convex on U X ¥, so that
the device described above does not destroy concavity-convexity. We there-
fore limit attention henceforth to the study of saddle-values and saddle-points
of concave-convex functions on all of U X V.

The dual approach to minimax theory will now be explained. Let U and
V* denote (real) linear spaces paired with U and V, respectively. (Thus a
certain bilinear form (u, u*) is given on U X U¥, and another such form is
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given on VX ¥*. For example, one could have U= U” =R™ and V'= V=
R with (-, % as the usual inner product.) Given a function K on U X V, we
define the functions K* and K* on U* X V* by

1.8 Kf@*,v*)= inf sup {(u, ")+ @, v —K(u, v)},

(1.8) ( gk L : (, v)}

(1.9) K*@*,v*)= sup inf {{w, u™+ @, 0" —K(w, v)}.
vEV sl

(If X is obtained by (1.4) or (1.5) from a function on a set C X D, then the
extrema in (1.8) and (1.9) are the same if taken instead over C and D), as al-
ready observed.) We then have K* < K™, and

(1.10) K*(0,0) = — supy; infy K,
K*(0,0) = — infy, supy K.

Thus the saddle-value of X exists if and only if

(1.11) K*(0,0)=K*(0,0).

The dual approach consists of deriving conditions for (1.11) through a gene-
ral study of the properties of K* and K*. Results not only about saddle-
values, but also about saddle-points can be obtained in this manner. The
success of the dual approach is tied to the following fact.

Theorem 1. If K is concave-convex on U X V, then K™ and K* are concave-
convexon U* X V*.

Of course, K* and K* may well have + e and — e as values. Thus mini-
max theory naturally leads to the consideration of extended-real-valued con-
cave-convex functions, even if the minimax problems themselves are not ex-
pressed in terms of such functions. The functions K* and K* need not agree
everywhere, but under mild regularity assumptions on K, as will be discussed
below, they are “equivalent” in a sense which implies that they agree on a
certain significant subset of U* X 7*. Minimax theorems correspond to
conditions guaranteeing that (0, 0) belong to this subset.
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2. Continuity and Conjugate Equivalence Classes

Since minimax theory deals with the extremal values of various functions,
it is reasonable to expect that conditions of continuity and compactness
must ultimately be involved. Actually, the methods of convex analysis make
it possible to go quite far before compactness is needed, and only a rather
weak type of continuity is required. Such continuity can be “constructed”
using the so-called closure operation for convex functions. This is an obvious
virtue, but the consideration of weaker types of continuity than are usually
encountered in analysis is not motivated only by “constructiveness™ or the
desire to obtain broader minimax theorems. It is also important to the dual
approach: even if the function K in a given minimax problem has continuity
properties which are simple and ordinary, the properties of the functions K*
and K™ may be more subtle, and we must be prepared to handle them. Al-
though much of the discussion below concerns functions on U X V, it should
always be born in mind that one of our chief aims is to apply the resultsin a
dual form to the study of K* and K* on U* X V*,

We assume in everything that follows that the spaces I/ and U™, and simi-
larly ¥ and V™, are furnished with locally convex Hausdorff topologies com-
patible with the given pairings [3, Chap. 4] . (Then the continuous linear
functionals on U can be identified with the functionals of the form u —

(w, ™), u*€ U™, while the continuous linear functionals on U'* can be identi-
fied with the functionals u™ = {u, ¥}, uEU.) The reader who is not familiar
with the theory of locally convex spaces can assume that U= U® = R™ and
V= V*=R" in the customary topologies.

A convex function fis said to be closed if f is lower semicontinuous and
nowhere has the value — e, or if f'is the constant function “—e". (Lower
semicontinuity means that all level sets of the form {v | f(v) < a} are closed,
or equivalently that the epigraph of fis a closed set.) If f'is an arbitrary con-
vex function on ¥, fneed not be closed, but there exists a greatest closed
convex function majorized by f (namely the pointwise supremum of the col-
lection of all closed convex functions /i such that s(v) < f(v) for every v).
This function is called the closure of fand denoted by cl £, It can be shown
that one has

(2.1) (cl ()= liminf f(w) forallv,
W=y

unless the “lm inf” is — « for some v. In the latter event (clf)(v) = — = for
every v, while the “lim inf™ is either — <« or + =, depending on the particular
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v. Note that fand clf trivially have the same infimum over ¥, but that clfis
“more likely” to attain this infimum, because it is lower semicontinuous.

For a concave function g, one obtains clg by closing the convex function
— g and multiplying the result by — 1. Thus lower semicontinuity is replaced
by upper semicontinuity for concave functions, and the special role of — «
is played by + o,

Concave-convex functions can be regularized by means of these closure
operations. Given such a function K on U X V, we denote by cl; K the func-
tion obtained by closing X (, v) as a concave function of u for each v. Simi-
larly, ¢, K is obtained by closing K (, v) as a convex function of v for each u.
Although it is not obvious, it can be shown that cl; K and cl,X are again con-
cave-convex, so that cly(cl; K) and cl (cl,X) are likewise well-defined and
concave-convex. However, for interesting and significant reasons to be dis-
cussed in a moment, the operations cl; and c¢l, do not quite commute, so
that in general

(2.2) Cllc].QK # ClzCllK .

This prevents us from having a single, natural closure operation for concave-
convex functions, and we are brought instead to a concept of functions being
“closed up to a certain equivalence”.

Two concave-convex functions K and K' are defined to be equivalent if

(2.3) ciK=c;jK' and cK=cl,K' .

If c1y K and ¢l K are equivalent to X, then X is said to be closed. Closedness
is thus a continuity condition intimately related to, but slightly weaker than,
the condition that K (i, v) be upper semicontinuous in # and lower semicon-
tinuous in v. It turns out that cl;cl,K and clycl; K are always closed and, ex-
cept in pathological cases, equivalent. Furthermore, any saddle-point of K
must also be a saddle-point of cljcl,K and clycl K. In this sense, a minimax
problem involving a concave-convex function can always be regularized to a
problem in which the function is closed. (The definition of closedness given
by Tynianski [18] is more restrictive and does not have this “constructibility”
property.)

A highly illuminating example of equivalent, closed, concave-convex func-
tions on U X V'=R1 X R1 is obtained from the formula

(2.4) K, v)y=u® for (muv)ECXD=][0,1] X [0,1] .
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This defines a concave-convex function on the square C X D, provided that

K (0, 0), which is ambiguous in the formula, is assigned a value in the interval
[0, 1]. Either (1.4) or (1.5) can be used to extend K from CX D to a concave-
convex function on the whole space. It is then found that

(2.5) cliclhbK=c | K=K,

where K is the concave-convex function given by (2.4) and (1.5) with
K(0,0)= 1. On the other hand,

(2.6) clycl K=cl,K =K ,

where K is the concave-convex function given by (2.4) and (1.4) with
K(0, 0) = 0. The relations (2.5) and (2.6) imply that K, K and K are closed
and equivalent to each other.

Now let K be an arbitrary concave-convex function on I/ X V. Since the
infimum of a convex function is the same as the infimum of its closure, we
have

2.7 inf K(u,v)= inf cLK(u, for every u€lU .

(2.7) uev( )UEVZ(U) ry

Similarly

(2.8) sup K(u, v)= sup cl;K(u,v) forevery vEV .
uely uElr

The expressions on the left in (2.7) and (2.8) suffice to determine the saddle-
value and saddle-points of K, and hence these things depend only on ¢l; K
and cl,K. The definition of equivalence therefore yields:

Theorem 2. Equivalent concave-convex functions have the same saddle-value
and saddle-points (if any).

Because of this fact and the regularization results described above, we
adopt the view that the fundamental objects of study in (concave-convex)
minimax theory are the equivalence classes of (extended-real-valued, every-
where-defined) closed concave-convex functions, Each such equivalence
class corresponds to a single minimax problem.

We have already seen how the minimax problem for a function XK on
U X V¥ leads to the study of the functions K= and K™ on U* X V* defined
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by (1.8) and (1.9). In a parallel manner, the minimax problem for a function
K™ on U* X V* leads to the study of the functions K and K on U X ¥ de-
fined by

(2.9) K@, v)= inf  sup {{u, u™y+, 0" —K"(@*,v")},
urEUT EYF

(2.10)  K(@,v)= sup inf {Q u®)+ Q0" KW, v")}.

prC I yrerE
The next theorem reveals a surprising connection between these situations.

Theorem 3 (Duality). Ler K be an arbitrary, closed, concave-convex function
on UX V, and let K™ and K* be the concave-convex functions defined by
(1.8) and (1.9). Then K* and K* are closed and equivalent, and they depend
only on the equivalence class containing K, Moreover, if K* is any concave-
convex function on U™ X V¥ equivalent to K* and K*, then the concave-
convex functions K and K defined by (2.9) and (2.10) are equivalent to K.

According to Theorem 3, there is a one-to-one correspondence between
equivalence classes of closed concave-convex functions on U X ¥ and equi-
valence classes of closed concave-convex functions on U* X ¥*. Correspond-
ing equivalence classes are said to be conjugate to each other.

The main consequence of Theorem 3 for minimax theory is that it en-
ables us, in taking the dual approach, to reduce the study of saddle-values to
the study of the extent to which two closed, concave-convex functions in
the same equivalence class must agree with each other. Results on this ques-
tion are discussed in the next section. These results can be used to compare
K* and K* not only with each other, but also with further elements K* in
the same equivalence class. Such other functions K* arise, for example,
through alternate maximization and minimization in different arguments:

(2.11) K*u*,u™)= inf sup inf sup
MlEUl UlEV]_ Ua E{Jr'z UQGVZ

LCuq, u3)+ g, ub) + 0y, i)+ 0y, 05 — K (1, v)}
where u = (u;,u,) € Uy X U, = U, und so forth.

The proof of Theorem 3 is actually quite elementary — it is given for
finite-dimensional spaces in [12, 15], and the extension to locally convex
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spaces is routine. The proof rests on the properties of Fenchel’s conjugacy
correspondence for convex functions and the following fact.

Theorem 4. The formulas

(2.12) K@, v)= sup {w,v")—F(u, v*)},
VFETH

(2.13) Flu,v*)= sup {{w,v™ — K@, v)},
vEV

define a one-to-one correspondence between the closed, convex functions
Fon UX V* and the closed concave-convex functions K on U X V satisfy-

ng
(2.14) cloc ] K=K

Each equivalence class of closed, concave-convex functions on UX V con-
tains exactly one K satisfying (2.14).

This result may be interpreted as saying that closed concave-convex func-
tions are the “partial conjugates™ of closed convex functions. If the analogous
supremum were also taken over U in (2.12), one would get the convex func-
tion G on U* X ¥ conjugate to F:

(2.15) G, v)=sup sup L, ™)+ W, 0% —Fu, v*)}
uEU p*ep*

The partial conjugacy relationship between concave-convex functions and
convex functions is at the heart of the duality theory for convex programming
problems which is expounded in [12] and [15].

3. Minimax Theorems and Subgradients

Theorems about the existence of saddle-values can be deduced in the dual
approach from the following structure theorem. Here rad C denotes the set of
all u€C such that every ray emanating from u contains points of C besides u.
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Theorem 3. Ler K be a closed, concave-convex function on U X V which is
not identically + « or identically — o, and let

(3.1) C={uclU|clhK(u,v)>—« forallvEV},
(3.2) D={eV || Ku,v)<+w forallucl}.

Then C and D are nonempty, convex sets (not necessarily closed), and they
depend only on the equivalence class containing K. Furthermore, K is finite
on CX D+ oon CX [V\elD] and —~ « on [U\clC] X D.

If Uand V are Banach spaces (the given “compatible” topologies being
the norm topologies), then all the concave-convex functions equivalent to K
agree on [radC] X Vand U X [radD], are + = on [radC] X [V\ D], and
are — = on [UNC] X [radD].

Theorem 3 has previously been stated only for UX F=R™M X R?
[11,15], but essentially the same arguments work in the infinite-dimensio-
nal case. One uses the fact that, if /'is a lower semicontinuous, convex func-
tion on a Banach space, then f is continuous on rad.$ whenever f does not
take on + « on §, and fhas a finite lower bound on every bounded set where
f does not take on — e (see [8] and [13]); analogously for concave functions.
(This is needed in proving that the convex functions (cl{K) (¢,*) on ¥ are
continuous on rad D, so that ¢l K and clycl K agree on UX [radD]. Of
course cly K 2 cl, K, while the closedness of K implies that cl,cl; K = clHK
and ¢lyclLK = cl; K. From the latter relation we have

(3.3) (i K) (@, v)=lim  sup  clhK(u',v), VvED.
€0 (lu'-ull<e

Since for every '€V and vED the inequality
(3.4) (cl,K) (', v) € (e, K) (', v) <+ =

holds, and (cl;K) (+, v) is an upper semicontinuous, concave function on U,
the supremum in (3.3) must be < + = by the fact mentioned above. On the
other hand, the supremum is lower semicontinuous and convex as a function
of v, because this true of each of the functions (cl,K) (1',*). Therefore the
supremum in (3.3) is for any € > 0 a continuocus function of v €Erad D. This
function majorizes the convex function (cl;X) (u, +), and hence we may con-
clude that the latter is also continuous on radD.)
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The convex set € X D defined by (3.1) and (3.2) is called the effective
domain of K. On this set, K is finite. The properties in Theorem 5 imply that
the relations (1.6) hold, so that the minimax problem for K on UX Vis
equivalent to the minimax problem for the restriction of K to C X D.

To get results about this problem, we apply Theorem 35 to the equivalence
class of closed, concave-convex functions which is conjugate to the equivalence
class containing K. All the functions in this class, including K* and K*, have
the same effective domain C* X D*, and it is not hard to see that this is given
in terms of K by

(3.5) C* = {u*€U" | FvED, inf [, u™) — K@ v)] >—«},
u<sC

(3.6) D*=[v*eV® |3ueC, sup [w,v") —K(u,v)] <+ =},
v=D

From Theorem 5 we have

(3.7 K*(@®,v*)=K*(u*,v%)

if U™ and V™ are Banach spaces (the given topologies being the norm topolo-
gies) and either #* €rad C* or v* €radD”.

In order to have a theorem asserting the existence of the saddle-value of K,
we need only apply this fact in the case of (u*,v™) = (0. 0).

Theorem 6. Let K be a closed, concave-convex function on U X V which is
not identically +  or identically — », and let C, D, C* and D¥ be the con-
vex sefs defined by (3.1),(3.2), (3.5) and (3.6). Suppose that U* and V* are
Banach spaces (the given “compatible”’ topologies being the norm topologies).
If either 0 €1ad C* or 0 Erad D™, then the saddle-value of K exists, i.e. one
has

(3.8) supgr infy, K = infy supyy K = supe infp K =infp supo K .

The condition 0 € rad D® in Theorem 6 is satisfied if there exists an ele-
ment ¥<C such that the level sets

(3.9) {fveD |K(u,v)<a}, areal,

are all bounded. This follows from the fact that the level sets of a convex
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function are bounded if and only if the effective domain of the conjugate
function is “radial* at 0. (For results on the duality between boundedness
properties of the level sets of a convex function and continuity properties of
the conjugate function at 0, see [8], [10], [13] and [2, Theorem 2] ) A
minimax theorem based on this condition has been proved by Moreau [9],
moreover in a form valid for spaces more general than Banach spaces. (An-
other exposition of Moreau’s result has been given by loffe and Tikhomirov
[5].) Weaker conditions implying in the finite-dimensional case that
0 € rad D* may be found in [11].

Similarly, the condition 0 €rad C* in Theorem 6 is satisfied if there exists
an element v&D such that the level sets

(3.10) {ueC|Ku,v)=al, areal,
are all bounded. In particular, therefore, we have:

Corollary. Let K be a closed concave-convex function on UX V, and let C
and D be defined by (3.1) and (3.2). Suppose that U and V™ are Banach
spaces (the given “compatible” topologies being the norm topologies). If
either C or D is bounded, then (3.8) holds.

The boundedness of C implies actually that rad C* is all of U™ in Theorem
6, while the boundedness of D implies that rad D™ is all of V™.

The closedness requirement on K is implied by (but generally not equi-
valent to) the condition that C and D be closed, and that K be upper semi-
continuous in ¢ and lower semicontinuous in v on € X D. Thus, for example,
the Corollary asserts the existence of the saddle-value of the K defined on
R1 X R1 by (2.4) and (1.4) with K (0, 0) an arbitrary number in [0, 1],
even though this function has a bad discontinuity at (0, 0). Incidentally, if
one takes K to be, not the function just described, but a member of the con-
jugate class, then one has by duality an example of concave-convex function
KonR! X R1 (actually finite and continuous everywhere) such that
K*(0,0) =1 and K*(0, 0)= 0 (with C* X D* = [0, 1] X [0, 1]), and conse-
quently

—1 = sup,, inf, K (¢, v) <inf,, sup, K(u, v)=0.
If both of the conditions 0 € rad C* and 0 €Erad D™ hold in Theorem 6,

then the saddle-value of K is necessarily finite. We shall see below that a
much stronger conclusion can be drawn in this case.
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Up till now we have concentrated on the existence of saddle-values, but
the dual approach also leads easily to results about saddle-points. Just as the
study of saddle-values is connected with the analysis of continuity properties
of concave-convex functions, the study of saddle-points is connected with
differentiability properties.

Let X be a concave-convex function on U X V. An element (u*, v*) of
U* X V* is called a subgradient of K at the point (i, v), if the concave-con-
vex function

(3.11) K—Cou™— (v

has a saddle-point on U X V at (u, v). It can be shown, as an easy extension
of similar results for convex functions (see [2] and [15, 835]), that if K
happens to be differentiable at (i, v) in the usual sense of Gateaux (or
Fréchet), then K has a unique subgradient at (», v), namely the usual gra-
dient VK (1, v) €U™ X V™, In general, however, K may have no subgradients,
at a given point. The set of all subgradients (1™, v™) at (, v) is at all events a
closed convex subset of U™ X V* which we denote by 3K (i, v). The multi-
function

(3.12) oK (i, v) ~ 3K (u, v)

from U X Vto U X V" is called the subdifferential of K. The subdifferen-
tial of a concave-convex function on U* X ¥* is defined similarly as a multi-
function from U* X V" to UX V.

By definition, K has a saddle-point at (#, v) if and only if

(3.13)  (0,0)€0K(@ D).

The next theorem allows us to put this condition in a dual form. The first
assertion of the theorem is immediate from Theorem 2, and the rest can be
deduced from Theorem 4.

Theorem 7, Let K be a closed, concave-convex function on U X V. The sub-
differential 9K then depends only on the equivalence class containing K.
Furthermore, the subdifferential corresponding to the conjugate equivalence
class of closed, concave-convex functions is the inverse of aK, in the sense
that for any member K™ of this class one has

(3.14) (1, ) EIK" (u*,v*) = (u*,v*) €3K(u, v) .
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Combining (3.14) with the saddle-point condition (3.13) we see that, if
K is closed, the saddle-points of X are precisely the elements of 8K™(0, 0),
where K* is any member of the conjugate equivalence class, Thus K has a
saddle-point if and only if K* has a subgradient at (0, 0).

Conditions for the existence of subgradients are fortunately very easy to
derive from theorems about supporting hyperplanes to convex sets. Employ-
ing the well-known results in the case of convex functions, together with the
fact mentioned above that a lower semicontinuous, convex function on a
Banach space is continuous on any open set where it does not take on + o,
we get:

Theorem 8. Let K be a closed, concave-convex function on U X V which is

not identically + = or identically — =, and let C and D be the convex sets de-
fined by (3.1) and (3.2). If U and V are Banach spaces (the given “‘compatible”
topologies being the norm topologies), then 8K (u, v) is « nonempty, bounded
set for every (u, v) € rad(C X D), whereas 0K (u, v) is empty for every

(v, v)E CX D.

A minimax theorem is now obtained by applying this result to the conju-
gate class and then invoking the conditions in Theorem 6

Corollary (Existence of Saddle-points). Let K be a closed, concave-convex
function on UX V. If U* and V* are Banach spaces (the given “compatible”
topologies being the norm topologies) and both of the conditions 0 € radC™
and 0 €Erad D™ are satisfied (where C* and D* are given by (3.5) and (3.6)),
then K has at least one saddle-point, and the set of ¢ll such saddle-points is
closed, convex and bounded.

Here, of course, one can substitute for the conditions 0 € radC* and
0 €radD* the stronger conditions discussed following Theorem 6.

4, Saddle-points and "“Steepest Descent”

Recent years have seen the rapid development of the theory of a class of
nonlinear operators closely related to the subdifferentials of convex and con-
cave-convex functions. An important part of this work consists of generaliza-
tions of the method of “'steepest descent’ in its continuous form. Without
going into much detail, we would like to point out the connection between
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the new results and the theory of saddle-points, particularly the Arrow-Hurwicz
differential equation [1,p. 118].

A multifunction T from U X Vto U* X V™ is called a monotone operator
if the inequality

(4.1) (ug—iq, ug—u7) + wo—vy, 05— =0
holds whenever
(up,vp) € T(ug,vg) and (U], v]) € T(uy,vq).

It is called a maximal monotone operator if it is a monotone operator whose
graph

(4.2) G(T)={(@ v u*,v") | @™, v)ET,v)}

is not properly included in the graph G(T") of any other monotone operator
T' from UX Vto U* X V*. Every monotone operator is embedded in a
maximal monotone operator, as can be shown using Zorn's Lemma. (Usually
monotonicity is defined for mappings from a space X to a space X *. We take
X=UXVand X* = U* X V* here because of our intention of treating
saddle-points.)

This concept of monotonicity is decidedly not very intuitive, although a
number of heuristic justifications can be given. The main reason for consider-
ing it is that it turns out, perhaps rather surprisingly, to be a concept arising in
many situations and leading to deep mathematical results. The key to apply-
ing these results to minimax theory is the following fact proved in [14].

Theorem 9. Let K be a closed, concave-convex function on U X V which is
not identically + « or identically — . Ler T be the multifunction from
UX Vo U* X V* defined by

4.3) W v ETW, V)= (—u*, v )€K (u,v).

Then T is @ monotone operator, and if U and V are reflexive Banach spaces
T is maximal,

More general criteria for maximality are given in [14] , but for present
purposes we shall in fact only discuss the simple Euclidean case where U=
U*=RMand V=V*=R".
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Let K and T be as in Theorem 9, and let
(4.4) E={(u,v)| T, v)#0}={(u,v) | 0K (u, v) # 0} .
The set £ is not necessarily convex, but according to Theorem 8 we have
(4.5) CXDDOEDInt(CXD),
where C X D is convex, For each (u, v}, let — S(u, v) denote the unique ele-

ment of T(u, v) nearest to (0, 0). (Such an element exists, because T(x, v) is
a closed, convex set.) We want to consider the differential equation

(4.6) (dfdey (@), v(@)=Su(),v(®), 0<t<=,
((0),v(0)=(a, b) EE,

where (d/df)* denotes the right derivative with respect to £. (The solutions to
this equation are thus to be trajectories (#(r), v(¢)) in £ which are continuous
and right-differentiable in £ for 0 €t < ».)

This is a rather unlikely looking differential equation, but it is a generali-
zation of “steepest descent”, and it includes the Arrow-Hurwicz equation as
a special case. Suppose, for example, that X is of the form

4.7 K(u,v)=L(u,v) fucC,veD,
=+ w ifusC,vED ,
=—w ifuglC,

where € and D are nonempty, closed, convex subsets of R and R", respec-
tively, and L is a continuously differentiable function on R™ X R? which is
concave-convex relative to €' X D. (Note that K is indeed a closed, concave-
convex function on R™ X R™ whose saddle-points are the saddle-points of L
with respect to C X D). [t can be verified from the definitions that in this
case one has £ = C X D, and for each (u,v) € C X D the vector S(u, v) is the
projection of the vector

(4.8) VL, v), =V, L(u, v))

on the closed convex cone generated by the translate [CX D] — (u, v).
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(Thus S(u, v) is the nearest vector to (4.8) which eives a ““feasible direction of
motion” in C X D from (u,v). If (1, v) €int{C X D), the vectors S{i, v) and
(4.8) coincide.) “Steepest descent” in the classical sense is the case of (4.6)
where L is actually independent of w and D is all of R™. Similarly, “steepest
ascent” is the case where L is independent of v and C'=R™. In general, (4.6)
involves “‘steepest descent” in v and “steepest ascent” in u simultaneously.
The Arrow-Hurwicz equation is the case where Z is the Lagrangian function
in an ordinary convex programming problem, and C and D are the nonnegative
orthants.

Despite the nonstandard character of the differential equation (4.6), a
great deal can be said about its solutions. The general results of Kato [6, 7]
and Browder [4, cof. Theorem 9.23] for maximal monotone operators can be
applied, in view of Theorem 9. In this way one can deduce:

Theorem 10. Let K and T be as in Theorem 9, where U=U*=R"M gnd V =
V* =RP, Then for each (a, b) € E the differential equation (4.6) has a unigue
solution (u(#),v(r)), 0 <1<+ o,

Furthermore, suppose that K has a saddle-point (it, U) with the property
that, if (u, v) € E is such thar the identity

(4.9) K((1=N) Nz, (1—0)5+w) = (1—X) (1—w) K (i, )
+ A=) K (1, U) + (1-M)pK (i, v) + MK (1, v)

holdsfor OSIA< |l and 0 p <1, thenu=uandv="v. Then (it, 0) Is the
unique saddle-point of K, and for each (a, b) € E the solution (u(r), v(z)) to
(4.6) sarisfies

(4.10) lim (u(r),v(ry) =, 0v).
=

The condition in the second half of Theorem 10 (which is by no means
the most general condition that can be given for convergence to a saddle-
point) is satisfied in particular if the saddle-point (i, v) is such that the con-
vex function K (i, -) is “strictly convex at v .(not affine along any line seg-
ment including v), while the concave function K (-, v) is “strictly concave at
u”. An example where the condition does not hold, and (4.10) fails even
though the saddle-point (i, ») is unique, is provided by

K v)=uw, (u,v)ER?, with (@ 0)=(0,0).
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Results of this type were developed for the Arrwo-Hurwicz equation by
Uzawa [1] . For a discussion of related discrete methods of determining
saddle-points, see Tremoliers [17] .
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