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The conceli of a srddle-poinl in a mjnim,\ problen was introduced his-

torically as a malhematical expression of an equfibrium between two oppos
ing interests- The opposing int€rests were those ofthe players in a fwo-person

game, which could have an economic inierpretation. R€cenuy saddie.points

have been studied ln the case ofdiff€tential gancs arising frorn problems of
optjmal control. The malysis of such games is far inore diffictlt, jn that the

correct definition of d strategy or pay_offlnvolves nany subtleties.

The absrract theory of saddle-points rnay be said to begin wirh rhe mini'
max theorem of ron Neumann. A number of generaltallons ofYon Neumann\
theorem have been proved over the years, and the abstract qlreslion of the

exlsrence of saddle-points has been fairly well answeled. However. research

has not only been concerned $ith existence. Many results have been obrained

lately which shednewljghi on the narure and prop€rries olsaddle-points and

the possible methods of conputing rhen. The lurpose of thes€ exposltory

lectures is to describe some ofthese results, not as widely known as the sran_

dard existence theorems, in the hope ihal the results themselves, ard the no-

tions which they eniall, may be Lrseful in further developnents

The first thJee sections are concerned mainly with the presentation of ihe

duai approach to minima,\ theory, which was inilialed by MoIeaL! [9] and the

aurhor [11] and subsequently pursued in [r2], tlsl and [18] rhnisbased
on Fencheh conjusacy correspondence for convex funclions and its extension

io concave-convex f nciions. Several olthe theorems have not previouslv

been stated in a form valid for infirire-dimensional spxces.

The fourrh and finaL section djscusses ihe jdea of deiernining saddle-points

by gen€ralized methods of'\teepesr descent". Results concerning the Arro\1-

Hu jcz difererlial equation in nonlinear progralnnhg can be greaily

brordened by means of the powerful, new theory ofnorlinear, nonoton€
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1. Minimax Problems and Concave-Convex Functions

In a n1inima,.. probiem, one is given a function ( on a producl set CX ,,
the values of( being real numbers or possibiy + - or -, and one considers
the quantities

(1.1) supc infD( = r9) f ini. 
UED

,((.i,I,))1 ,

inf, supcr = inf [,,pp",((,, r)1 .

In general these two quantjties may rot be equa1, although ii is always true,
as is easily seen. thal

(r.2) supc infD ( < infD supc( .

Ifequality does hold, the colnmon valxe is called the tuddletalue in the
mjnimax problem. For the saddle-value to exist, it is sufficient (but not
necessary) that there exjst b saddle-point al K \\iri tespect io c x D, that is,
a pair (a tl such that

(1.3) i€c,ieD, maxK(u, i) = -K(,, t)= rnin ((a u)

Tlen the saddle-value is,((a O.
One ofrhe main goals ofminjma{ theory is io establish condiiions on

,(, Cand, under which a saddle-point, or at least the saddl€-value, exists.

Resulrs of this type are termed "minimax theorems". Another nnportant
goal is to elucidate the reiationship between minimrr problens and problens
involving only rninimization or ma{lmization- Work in this dilection ismoti-
vaied by the Kuhn-Tucker theory of Lagrange multiplien and by duality con-
sid€rdtions in maihematical programming. Slill anotlrcr goal is to find ways
of computnrg saddle-points.

Convexily assumptions appear ro be an essenlial ingredient in minimax
theory. Most results require that C and, be convex subsels ofGeal) linear
spaces Uand i/, r€sp€clively, dnd many reqlLire also that ((r, u) be concave
h r€Clor fixed u€D and convex in ue, for fixed r€C This concave{on-
vex case is the one we deal with here.

General minimax theorems can be proved using slightly weaker assumptions



such as quasiconcavity-quaslconvexity in place of the concrvity-conv€nty of
i: Gee Sion [ 1 6] ), but such results are Limited h other respects by compact-

ness assumltions on Corr, and they seen to have relatively lirile berring on
the secord goal mentioned above. A remalkable equivatence is now knoivn
berween minnna{ theo.y 1n the concave-convex case and the theory of du3l-

iiy in problems of n rjmizing a convex furction over a convex set (see

[12, 15] ). The equivalence ls based on Fench€h notion of conjugate convex

functions. No results ofcomparable scope have been found fol mininax
problens where -( is only quasiconcave-quasiconv€x, say, slthough there

have been sone invesiigatlons alorg this line (see Vogel [19] ). This ls an irn-

portant reason for singling out the concave-convex case for special treatment.
Anoihe! reason is the frct that ar arbitrary minima-x problem can be "con-

vexilied" by various means. This idea is famihar, for example,in rhe theory
olnatrix ganes, wherc "pure straiegies" are generatized to "nixed strategies"

so thal von Neumann's mjnimax theorem can b€ appLied. Similarly, when C

and, are infinite sels, "m8ed straiegies" can be defined measure-theoreti_

cally as probabiLiry disrributions on Cand r. There are orher nethods of
convexification which take advantage of the thear struclure aheady present

when C and, are subseis ofiinear spacesi convex hull operaiions are applied

ro C, ,, and in certajn ways to r. ln all these methods. the objecrive ls ro re-
place the given miDinax problen by a concave-convex nlnirnax trobiem in
such a way that the saddle-ponrts in the original problen (if any exist) can be

identified with certanr saddle.points in ihe new problem. We shall lot discuss

this funner here, however.
Converily assunprions are also fundamental for the duat ,pproach io mini-

m { theory which will be explalned below.
A very usefr technicrl device in the anall'sis of ninima\ problems in

which C and, are subsets oflinerJ spaces Uand i/is to represent the ex-

trema as exlrema over all ol UX I/by defining,( in an appiopriate manner

ouiside of CX D. One wav io do this is to set
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(1.4) K(r,u)=+- jl uec. u+D,

= _ if rec.

Equrlly good is to ser

r(u, u)= - - tt u+c,DeD,

=+6 ifrer.

(r.s)
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Observ€ lhat in both cases rve have

(r.6) supc infD .K = supor iof,/ (,

inf, supc K = inf/ sup{r',(,

so that rhe sadille'value of the ertende d tr with respecr to U X I/ is the sane
as the saddle.value with resp€ct to C X ,, if these exist. Mor€over, (a t) n a

3addle-point with respeci lo U X Z if and only if (r-, t) b€longs to C X , and
is a saddle-point with respect to CX D.

Thus in principle we need only conside. minima-r problems over all of
UX 7, provid€d that we admit + @ and - as possible values off. The fact
that two (or more) definitions of( as in (1.4) and (l.5) can represent essen-

tially the same problem, sugg€sts howev€r that in laking this approachwe
should regard problems as corresponding really to ceft^i equivalence clatses

of functions, rather than individual functions. An equivalenc€ relatior for this
purpose wil be defined below.

The introduction offunctions with possibly infiniie values is teclmically
conyenient in some arpects ol minimax iheory, but a much more imporiant
and inter€stingjustification will be given ir terms of duality. The notion of
equivalence of funclions likewis€ has a dual motivation.

By tconcq,e-conv.t fvnclion on UX t/, we shall dlways mean an (every.

*here.defined) extended.real.valued funclion ( wilh the propelty thar
r((!, u) is concave as a function of,/ for every u and convex as a funclion of u

for every ll, (Here we speak of an exlended-real-valued function ton I/ as

conrex if its epigraph

(r.7) epil= {(!, a) I u€r o€R r}

is corv€x as a subset of lhe lineal space I/X Rl;see I I5, Sa] for a discussion

of this definition and the way in which it generalizes tne chssical definition
for finite funclions. A function is concave if its negative is convex.) lfli is

obtained by (l 4) or ( I .5) from a finite concave-convex function on C X ,,
where C and D are convex sets. then ( is concave.convex on U X ,/. so that
the device described above does not desiroy concavily{onvexily. We there,
fore Limit att€ntion henceforth lo the study ofsaddle-valuer and saddle.points
of concave-convex tuoctions on all of U X t'.

The dual apFoach ro minimax theory $dl now be explained. Let U+ and
/' denole (!eal) linear spaces paired with Uand I/, respectively. (Thus a

certain bilinear form ({, ,*) is giv€n on UX U', and another such form i!
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given on I/X F'. For example, one couldha-ft U = U. = Rh and V = V+ =

R' with (.,) as ihe usual inner lrod ct ) 6iven a fllnclionX on UX I/'w€
define the functlons,(- and-K' on U* X I/* by

(1.8)

o.e)

F"(,.,,-) =,'atu,pp {('l,,*)+ (L',u-) r(,, L')},

{-(,.,u-)= sup inf {(.r, -)+(u,u-) r(,, D)i
treV ueu

(If( is obtafied by (1.,1) or (1.s) fron a function on a set C X D, then th€

extlema in (1.8) ard (1.9) are ihe same iflaken incte"d over c,nd D. as al-

ready observed.) we rhen have {' < -K- , and

(1.10) (- (0,0) = - sup., infr -K,

4.(0,0)= infr suPLr.K.

Thus ine saddie-vrlue of,( eists if and only if

(1.11) r--(0,0)={.(0,0)

The dual approach consists ofder ing condiilons for (l 11) through a gene-

ral study of ihe properties of -K+ and {.. Results not onlv about saddle-

values, bui ,lso about saddle-points crn be obtanred jn ihis manner ' The

success of fie dual approach is tied ro the following fact

Theorem l. fl( is roucar e'conv ex on Lt X Y, then Kr dnd tr* arc concaw'

ofcouse,r* 3nd4+ mav lvell have + ' and - asvalues Thus nini-
max tlrcory naturally leads to the consideration of extended'real-vslued con-

cave.convex lunctions, even lfthe ninimtu\ problems themseives are noi ex'

pressed in terms of such functions. The funciions,(* and{* need nol agree

everywhere, butunder mild regul3rlty assunptions on r, as wi11be discussed

below, ihey rie "equivalent" in a sense which inplies that thev agree o! a

certain sisificant subset of U* X r*. Minimax iheorens corespond to
condilions guaranteeing ihat (0,0) belong to this subsei.



Sinc€ minina\ rheory deals with dre extiemal values ofvarious functions,
it is reasonable to expect that conditions ofcontinulry and conpacrness

mustultimarely be involved. Acturlly, the neihods of convex analysisIndke
ii possible io go quite far before conpactness is needed, and only a rather
wert rype ofconiinulty is required. Such contjnuity can be 'rconstrucied"
using rhe so-called clos re opention for convex funcrions. This is an obvious
vidue, but the consideration ofweaker types ofcondnuiry than are usualy
encountered in analysis is not notivared only by "constructiveress" or the
desire to obtain broad€r minima,.( tl]eorems.It is also important to the duai
approach: even if the funcllon,( in a given minin1e\ problen has coniinulty
properties which aJe simple and ordinary, the properlies ofthe funcrionsd
and 4* nay le 1llore $rbtle, and we nust be prepared io han.lle them. A1,
though much olthe discussion below concerns fxnclions on UX I/, ir should
always be born in nnnd rhitt one olour chiefaims is to apply the results in a
dual forn to the study ofr- and{- on U- X /..

We assume in everything that follows that the spaces Uand t/+, and simi-
larly I/ and f* , are furnished with I ocally conver Hausdorff iopologies col"-
patible iNith the siten painngs 13, Chap. al . (Tlen lhe continuous Lin€ar

functionrls on Ucan be ideDtified with the funclionals olthe form Il +
(r, ,*), r*€U*, while the continuous linear funclionals on U* can be idenrl-
fied wilh L\e funcdonrls r. + (r, ,'), r€ a/.) Ihe leader who is not familiar
with tte theory oflocatly convex spaces car assurne that U= U* = Ru and
,/= f* = R, in the custornary topologies.

A convex func on/is said to be c/os€d if/is lower semicontinuous and
nowhere has the vrlLle &, or if.tis ihe constrnt function " -". (Lower
semicontinuity merns thrt dl level sers ofthe fonn iu f(u) < d] are closed,
or equlvalenily &at rhe epigraph of/ n a closcd ser.) If/is ,n arbitrary con-
vex function on r,/need not be closcd, brt there exists r greri€st closed
convex lunclion tndjorized by/(nrn1eiy rhe poinlwis€ supienun ofthe col
lection ofall closed convex funcrionsl, such that l(u) </(u) fo! every u).
This lunction is called the cL,&rr€ of/and deioted by c1f. It can be shown
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2. Continuity and Conjugate Equivalence Classes

(cl /)(t,)= lim inf /(w) for all u,(2.1)

unl€ss the "lim inf is 6 for some r.In th€ latte. event (c]/)(u) = 6 for
every u, while rhe "lim inf is either € or + -, dependjng on lhe pariicular



u. Note that / and cl/ triviaily have the sane intunun over 4 bur that ct/is
"more likeiy" to attain this infimun]. becruse it is lower semicontinuous.

For a concave functionS., one oblains claby closlng the convex function
g and rnultiplying the result by 1. Thus lower semicontinuity is replaced

by upper semicontinuity for concave functions, and the special role of -
is played by + -.

Concave-convex functions can be regularized by means ofthese closure
operrtions. Gven such a funcrion ,( on U X ,/. we denoie by cl1tr the func.
rion obtained by closing-K(r, u)as a concave function of Il for each u. Simi-
larly, cl2r is obiained by closing ((u, u.) as a convex function olD fo. each Il.
dthough it is not obvious. it can be shopn that cllK and c12,( are again con-
cave{onvex, so that cl?(clr,9 and cl1(cl2& are likewlse well-defined rnd
concave-convex. However, for inie.esting and significant reasons to be dis-
cussed in a molnent, the operatlons clt and cl2 do not quite colnmui€, so

that in general

SADDLE.POINTS AND CON!'EX ANALYSIS 115

(2.2) cltc12-K + cl2cllr .

(.2.3) c1t(=cltn:'and cl2,( = cl2('

Tlis prevenrs us from hrving a single, latulal closure oleration for concave-
convel functionsj and w€ are brought irsi€ad to a conceptof functions being
"closed up 1o a certain equivalence".

Two concave-convex funcrions,( and,('are defined tobe equi,alent il

lfclt,( and c12K are equivalenr to,(, then Kis said to be cldred. Closedness
is thus a continuity condition nrtjmately related ro. but sLidily weaker than,
the conditioD that J((ll, u) be upper semicontinuous in1l andlower semicon-
tinuous in u.It turns out ihat c11c12-K and c12c11,( are ahvays closed and, ex-
cept in pl}rhological cases, equivalent. Furthermore, any saddle'pomt of ,(
nusl also be a saddle'pojnt of cltcl2( and clzcltj':. ln this sense, a minimax
problem involving a concrve-convex function can atways be regularlzed to a

problein in which the funciion is closed. (The definilion ofclosedness given
by Tynianski [18] is more restrictive and does not haye this "constructibility"
property.)

A higl y illuminating example of equivalent, closed, concave-convex func-
tions on UX ,/=Rl X Rl is obtained fron rhe fornula

(2.1) r(,,u)=r/, for (,,u)€cxr=[0, 1] x 10,11
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(2.6) cl2cllK=c12K=8,

infrK(k, A = i,l]fvcl2K(u, u) for every r€U.

sup f(r, D)= sup c11Ii(!, u) fot e\ery u€Il .

teu ueLl

This definer a concave-convex function on the square CX r, provided tlut
((0,0), whichn anbiguous in the fonnula, is sssiSned a vrlue in the lnteflal

[0, l] . Either (1-4) or (1.5) can be used to exiend r from CX D to a concave-

convex function on lir€ whol€ space. It is then found ihat

(2.s) cllct,(=clt(=,lr-.

where ,( is the conclve-convex function gjven by (2.4) and (1.5) with
((0,0)= l. On the other hand,

w!€re 4 is ihe concave-convex function given by (2.4) and (1.4) with
{(0, 0) = O. I he relarrons ().5).nd 1 2.6J inply lb. 4..(- ard A .lr e c osed

and equivalent to each olher.
Now le1,( be an arbitrary concave'convex function on UX I/. Sjnce the

infimum of a convex function is the sam€ as the infimum ofits closure, we

(2.1)

Simitarly

(2.8)

The expressions on the lefr in (2.7) and (2.8) suffice to determine lhe saddle-

valu€ and saddle-poinls of ,(, and hence these $ings depend only on cl1,(
and cl2n:. The definitio! ofequivalence therefor€ yields:

Theorem 2, Equ ale,ttca.are-co vs functio,$ have the sanrc saddle'ralue

and saddte.poitlts (if anr).

B€cause of this fact and lhe regulalizatlon Iesults described abov€,we
adopr the view that the fundamenlal objects of sludy in (concrv€'convex)

minirnax theory are the equiralence clatses ol (extelded-r€al-valued, every'
where-defined) closed concave.conv€x funciions. Each such equivalence

class coresponds ro a snrde mnrima-,. lroblem.
We have dready seen how the minimax problem for a function if on

UX rleads to th€ study of the functions F and4'on U* X I/'defined



SADDLE.POTNTS AND CONVEX ANAJ-YSIS 117

by (1.8) and (1.9).ln a parailel nanner, the minimax problem for a function
r(' orU' \ /' ledd,rorhe,rJdy.r rhe.u1. :on5(.1d4()1/ t/de-
fined by

(.2.e)

(2.r0)

,{-(a, u)= 1n1 sup {(,,,+)+(u,u.) r.(u-,u.)},
u+au* Drav'

{(", u)= sup inf {(r,,-)+(u.u.) r-(a-.u.)}.
1)*et+ u4€u'

"here, - 
(rt.r'2)- / I Ut=/."rd'o br'\.

The proofofTheorem 3 is actualiy quite elementary t is given for
finite'dinensional spaces in ! 2, l5l. and the extension to locally convex

The next theoren reveals a surprisirlg connection between these siruxtions.

Theorcm3 (Dualit!). Let K be an arbinary, closed, co cave-co rex functian
on U X V, and let K' snd E be the cancaw-conex functions defined by
(1.8) and (1,.9\. men K* a d E* are ctosed and equivate t, anit the! depenLt

onl! an the equo\alence class cantai ing K. Moreoter, if K* is a ! con.ove-
catuex fll ctbn a U* X y* equtualent tu K* s d E* , then the co co'e-
conlea functio s K dn(I L.tertne(t bJ, (2.9) (!nd (2.1o) are equivalent to K.

Accordirg to Theoren 3, ihcro is a one-io-one corespondence between
equivalence classes ofclosed concave-convex functions on UX I/and equi-
valence classes ofclosed concave'convex funcrions on U* X r/*. Correspond-
ing equivalence classes are said io be.orlrgare to each other.

The main consequence olTheorem 3 for minimax theory is that it en-

ables us, in taking the dual approach, to reduce the study ofsxddle-vaiues to
the study of rhe extert to which two closed, concave'convex functions in
the same equivaleoce class must agree wit| each olher- Resulrs on thjs ques'
iion are discussed ir the nexl section. These .esults can be used to compare

-F* and{* nor only wirh each other, but irlso wift further €lements {* in
the same equivalence class. Such other functions (* arise. for exanple.
through altemate ma\imlzation and mnrimtation in different argumentsi

(2.11) r(&-,ut)= inf sup inf sup
urerl tteh u2eu2 veYl

{(ilr , "i) 
+ e/r,,i) + (,r , ui) + 1u2, ui) - ((r, u)}
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spaces js routine. The proof.ests on the properties of Fencheh conjugacy
cor.espondence for convex functions and the lollowing fact.

Theotem 4. The fomulas

(2.12) r(r, u) = sup {(,,,*)-F(.,,u*)},
u*€tr*

(2.13) F(,,u-)= sup {(u,u-) ((u,1,)},
tcy

define a one-to-one corrcspondence betueen the closed, conver functions
F on U X y* dnd the closed cancave-cawex functians K on UX ,/ satisf!-
inc

(.2.t4\ cl2c\-K =,(.

Each equi,ale ce class.rfclosed, cancare-co tex fu ctians an UX V con-
tains eaa.tu one K satish,nry (2.14).

This resxlr may be interpreted as sayirg thar closed colcave-convex func.
tions are the "partial conjugates" ofclosed convex functions.Ifthe analogous
supremum were also taken over Uin (2.12), on€ would get th€ conv€x func-
tion G on U* X t/conjugate to F:

(2.1s) c(a-,u)= 5'n sup {(u,,1+(r,,+) F(,, u*)l
ueu v*er*

The partial conjugacy relalionship between concave-convex functions and

convex functlons is at the heart of the duality theory for convex progranmiag

problens which is expounded in [12] and lisl.

3" M:nimax Theorems and Subgradients

l]1eolems ebout the existence of saddlc-values can be deduced in the duai
approach from the following structure theorem. Here radCdenoies ihe set of
all r€C such that every ray emanating fronIl contains points of C besides r.
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Theorem 5. Let K be a close!1, concav.co ex fu'tction an UX Vwhichis
not identically + - or idetlticd f @, and let

(3.1)

(3.2)

(3.3)

menCandDate anempl,, conyex sets( ot necessarib closed),anl ther
depend onu on the equiyalence class contunli g K . Futthennore, K is finite
on Cx D,+ - on C X Iv\,ctDl ad - 6 on [U\ clC] Xr.

4 U and V ate Bsnath spaces (.the give "camrytible" topalosies bei g
the nam topalosies), the a the co coe-cowex functions equbalent ta K
asee o ltadc) x V and u x ltadDl, ale + - an bad Cl x IV \, Dl, a d
d/€ -o}r [u\c] x k,drl.

Theorem 5 has previously been staied only for U X r = Rn X Rn
11, i5l , but essentially rhe sane arguments work in the infiniie-dimensio-
nal case. One uses ihe fact ihxt. if/is a low€r semicontinuous. convex func,
tion on a Banach slrce, th€n/is continuous on radSwhenever/does not
take on + - on S, a!d/|as a turlte lower bound on ev€ry bound€d sei where

/doesnot rake on -Gee[8] and I l3l ) i aralosously for concrve functjons.
aThi. i. ,eedeJ 'r Dov'rg lo lp.onve\l,rcrion.(,llA) ,..lon/"re
continuous on radr. so ihai cil,( and cl2cll,( agree on UX lradrl . Of
course cltr > cl2,(, w]nle the closedress of r implies that clzcl1( = clz^:
md cltcl2( = cl1,(. From the latler relatio! \re have

C= lu€U c1.2K(u, D\> - - forallr€I/],

,= {r€I/ clr((&,u)<+ - forallr€t/}.

(clr&(,.u)= Lin sup c12((r',u), vu€,
€+0 !'-a l<6

Snce ior e\eq r'€, and u€D the rnequdlrty

(3.4) (c12O (,'. u) < (cl1& (,', u) < + -
holds. and (clrri(., u) is an upper semiconunxous. concave function o! a,',

the suprenum jn (3.3) nusl be < + 6 by the fact menlioned above. On the

orher hand, the suprenum is lower semiconiinuous and convex as a funcrion
ofu, because this irue ofeach of the funcrions (c12,()(r',r. Therefore rhe
sup.emum in (3.3) js for any € > 0 a continuous f!',crion olu € rad r. This
function nnjorizes the convex function (c]1,() (tl, r, and hence we nay con-
clude that the latter is also continuous on radr.)
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The convex set CX D defined by (3.1) and (3.2) is ca1led the ef|bctilre
do?zdi, of ,(. On this sei,r is finite. Tl1e prolerties in Theorem 5 imply that
the relations ( 1 .6) hold, so that the minimax problen foi ,{ on U X I/ is
equivalent to lhe minjmax problem for the restrictlon of,( ro CX r.

To get resLrlts about this problem, we apply Theorem 5 to the equivalence
class ofclosed, concave-convex firnctions which is co,rrgdre to the equivaience
class conraining.(. All the functions in this class, inclu ding -K. and{+, have

the same etfective domain C* X D', and it is not hard to see that this is given

(3.5) C* = {u*eu* 1ueD, nt [\u,u.l ((,, u)] > -],
tut-C

(3.6) ,*={,*€r. l,€c, sup [(D,,.) r(,,r)]<+-].
UED

From Theoren 5 we have

(3.7) r.(,., u-) ={*(,*,,{)

if U* and I/* are Banach spaces (the glven topologies being the nolm topolo.
giet and either 

'l. 
e radc* or u* e radr*.

In order to have a ineoren asserting lhe existence ofthe saddle-vdlue ofr.
we need only apply this faci in the case of ("+,r*)= (0. 0).

T\eorcm 6. Let K be a closed, concat'e.catvex functia anUXrwhichis
at identica r + -' ot identically 6, a d let C, D, C* and D* be the con

rex ses defined br G.1), (3.2), (3.s) and (3.6). Suppase thit U* and y* are
Eanach spaces (the given "conpatible" topologies being the notn topologies).
If either 0 €ftdc+ ar O endD+, then the sa.ldle-tdlue af K exists,l.e. one

(3.8) sup., inJrr= jnf 
r/ supu -K = supc infD r = infD supc ( .

The condition 0 Eradr* in Theoren 6 is satisfied iflhere exists an ele-
nent ,€Csuch that the level sets

(3.e) {u€, ,((l,l. u) < a}, area1,

are all bounded. This follows f.om the fact that the level sets ofa convex



function are bounded if and only if the effective doirain of the conjugare

function is '1adidl" at 0. (For resillts on ihe duality between boundedness

prope.ties ol the level sets of a convex function and coniinuity properties of
the conjugate function at 0, see [8] , Uol , tl3l dnd t2, Theorem 2l .) A
mjnime{ theorem based on lhis condilion has been proved by Moreau [9] ,

moreover jn a form valld for spaces nore general thin Banach spaces (An-

other exposltion ofMoreau\ resull has been giv€n by loffe and Tikhomnov

[5].) Weaker conditioDs implying in the finlte'dim€nsional case that
0 € radr* Inay be found in [11].

Sinilarly, fie condition 0 € radc* in Theorem 6 is satisfied if there exists

an element ue, such that the level sets
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(3.r0) {a€c ,((r, D)>e}, 0real,

are all bounded.In particula., therefore, we have:

Corcllary. Let K be d closed cancoe-covex function on U X V, a d let C

and D be rlefined bt G.t) and (3.2) Suppose that U* and Y* arc Eanach

spaces (the siven "compatible 'topalogies beins the nam topologies) If
either C ot D is bounded, the (3.8) holds.

The boundedness of C implies aciualiy that radc+ is all of a/* in Theorem

6. while the bourdedness of, implies that rndr+ is al of I/* -

The closedness requirenenr on,( is implied by (but generally not equl-

valent io) t\e condiiion tlut Cand, be closed, and thrt -K be upper semi-

contjnuous in, rnd lower semicontinuous ln u on CX ,. Thus, for etample,

lhe Corollary asserts the exisience ofthe saddle-va1ue ofdre,( defined on

Rl X Rl by (2.1) and (1.a) wiih ((0,0) an arbitraty nunber in [0. 1] ,

even thoush lhis function has a bad discontrnuity at (0, 0) Incideni y,lf
one takesr b be, not the functionjust described, but a member ofihe.or-
/ngdte class, ihen one has by duality an exanple of concave-convex funcrion
( on R I X R1 (aciualy finite and continuous everywhele) such that

F.(0, 0) = r and{-(O, 0) = 0 (wiih c- x D- = [0, 1] x [0, 1] ), xnd conse'

quently

1 = sup, i,4 l((Il. u) < inf" sup" r(&, u) = 0 .

If bothof rheconditions 0€radc* and 0€rddrr hold in Theoren 6,

then the saddle.value of ,( is necessarily finite We shall see below that a

much stronger concluslon can be drawn in this case
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Up til] now rve have concentrated on the existence of saddle-values, but
the dual approach also leads edsily to results aboul saddle'points. Just as the

study ofsaddle-values is connected $.ilh the analysis ofconrinuity propefties
of ooncave{onvex functions, the study of saddle-points is connected with
differentidbility properties.

Irt -K be a concave-convex funcrion on U X I/. An element (r 1 
, u+ ) of

U* X I/* n cdled a srlglddr€, t of r ai the point (r, 1)), if the concaver on-

has r sxddle-polnt on UX fat (,, u). It can be shown, as ,n easy extension

of similar results for convex functions Gee I2l and [1s, $3s]), thai if,(
happens to be djfferertiable at (r, u) in the usual sense of Gdteaux (or
Frdchet), then,( has a unique subsradient at (&, t), nam€ly the usud gra-

dient V((r, u)€ U. X t/*.ln general. however,tr may have no sLrbgradients,

ai a given point. The sei of all subgradients(u-,0-)at (,, t')isar all evenisa
closed convex subser of U* X ,'* $'hlch we denote by a((r, u). The multi-

(3.11) .( - (', r.) - (., u*)

(3.r 2) aK (u, D)+ aK(u, D)

from U X I/ to U* X V. is c^lled t}'e subdiflercdral of,(. The subdifferen-
tlal of a concave-convex funciion on U* X f* is defined simitarly as a mulri-
funciion from U* X V* ro Ux rr.

By defrnition,,( has a saddie-point xt (A O ifand only if

(3.13) t0,0) € a-((r, t) .

The next theorem .llows us ro put ttus condilion in a dual form. The first
,ssertion of the theorem is immediate frorn Th€oren 2. and the rest can be

deduced from Theoren 4.

Tbeorcm7. Let K be tclosen, co|c!!t cowex Jinctio onUXy.Thevb-
.lifferentkl aK hen depetds o U o the equtualerue cldss ontainins K.
Furthermarc, the subdiJlercntial cotrespondins to the conjugte equitalence
class olclosed, concoe co exfunctians^thei,e^eofaK,i lhe sense

thd far a y membet K* of this cLas o e ha!

(3.r4) (,. u) e ar.fu-, u.) e (,+,,+) € a,((?l, u) .
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Combining (3.i 4.) wirh ihe saddle-point condition (3.13) we see that, if
( is closed, rhe saddle-poiflrs of ,( are precisely th€ elemelts of ai:*(0, 0),
where (t is any nember ofthe conjugate equivalence class. ffrrr,( l,as d
saddte.point if and onD if K' has a substadient at (o, a).

Conditiors for lhe existence ofsubgradienls are fortunately very easy to
de ve fron theorems about supporting hyperylanes to convex sers. Employ-
ing the well.kno$n results in the case ofconvex functlons, rogeiher with the
fact mentioned xbove thal a lower semicontinuous, convex function on a
Banach space is conrin'rous on any open set where it does not take on + -.
we get:

Theotem a. Let K be a cbsed, cancb-e.ca vex functian o LIXywhichis
notide tically + 6oride tial r -,anlletca d Dbe the canvet setsde.

lined by (3 .1) and (.3 .2) . If U a d I/ are Bmach spaces (the siyen "cotnpatibte "
topahsies bei g the nDm topolasies),the aK@, D)is a nanempty, baunded
set lot et, er! (u, v) < ftd.(C x D) , whereds aK @, 

") 
is empty fot ercry

(u, D)+ cx D.

A minimax rheoren is now obtained by applying this result to the conju.
gate class ud then invoking th€ condiiions in Theorem 6

Cotollaty (Exttence of Sadlle-points\. Let K be d cbsed, concave-conrex

funcnan on U X v. If U* and l/* are Banach vaces (the siven "conpatible"
topologies beins the notm tupologies) a d bath af the can iitians 0 € ndc*
a doeAdD* arc satisfied (i|herc C. andDa ue sbe b! (3.s) and (3.6)),
then K has at least ane laddle-point, and the set o1all such st idle.points is

closed. cont,ex and hau ded.

Here, of coune, one can subsritute for the conditioDs 0 € radC+ and
0 €radr+ the stronger conditions discussed following lheorem 6.

4. Saddle-points and "Steepest Descent"

Recent years have seen the rapid development ofihe theory of a class of
nonlinear operators closely rehted to the subdifferentials ofcorvex and con-
cave{onvex functions. An imporiant part ofthiswork consjsts ofgeneraliza,
tions ofthe method of "sre€pest desceni" in its continuous fom. Wjthout
going into much deiail, we would like to point out the connectton between
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the new results and the theory of saddle-points, particularly tlre Anow-Hurwicz
differenrirl equation It,p. 1181.

A nultifunciion 7 from U X V ta U* X y* is called a manota e opetutar
if the inequaLity

(1.1) (ro-rr,16 ri)+(uo rrr,ui uj)>0

(r;,u;) € z(,o,uo) and (ri,ui)€r(,r,ur).

Ii is called a /l],ztimal monotone operalor if it is a nonotone operator whose
graph

(1.2) c(D= t(u, r,, u.,t.) (,1.,u.)e?(l,,u)]

is not properly included in lhe graph G(7') of any oiher monotone operator
T' *am ttx V ta LI* X r*. Every nonoione operator is €nbedded i! a

ma\imal monotone operatori as can be shown using Zorn\ kIl]ma. (Usually
monoionicity is defined for mappings fron a space X to a space,Y*. W€ take
X = U X l, 

^rd 
Xa = U. X I/" here because ofour inienilon oftreating

saddle-poinrs.)
This concept ofnonotonicity is decidedly not very inluiiive, although a

nunber ofheudstic justifications can be given. The nain reason for conslder-
in€ it is that i! turns out, pefiaps rather surprisingly, to be a concept arising in
nany situations and leading to deep mathemalical results. The key to apply'
ing these results to minimd theory is tt1e following facr proved in I I 4] .

T\eorcm 9. Let K be a closed, concove-coweit funcnon ol1Ux v \)hich is
not identically + 6 or ide tia l), @.Let Tbe the multifunctiontom
UX Il ro U* X V* defrned bf

(4.3) (u-,u-)€r(u,u)*( u*,D')eaK(u.u).

men T x a monotone opetatot, and if U a d y are rcflexit, e Batach spaces

More generrl criterh for naximality are given in [14] , but for pr€seni
purposes we shall in facl only drscuss the simple Euclidean case where U=
u*=Rhandy=v*=Rh
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Irtr and Zbe as in Theorem 9. and let

(.4.4) E= t(u, D) r(u,x)+O\I= I{u. D) aK(u,D)+0}.

The set t is not necessarily conv€x, but according to Theorcm 8 we have

(1.5) CxD)E)int(CxD),

where CX, is convex. For each (Il, r),let S(u, u) denote rhe unique ele.
nent of r(l1, u) n€arest to (0,0). (Sxch an elenent exists. because 7(r, D) is
a closed, conver set.) We want io consider the differential equation

(1.6) (dldt)+(u(t\,u(t))= s(u(/),u(r)), 0<'<-,

(" (0), u(0) = (a, ,) €t,

where (d/dt+ denores the righl derivative withrespect to 1. (The solutions to
this equation dre rhus to be trajectodes (r(r), u (1)) in t rvhich rJe continuous
and risht-differentiabte in I for 0 < t< -.)

This is a rather unlikely looking differentid equation, but it is a generali-
zalion of "steepesr descent", and ii includes the Arrow-Hruwicz equation as

a sp€cid case. Suppose, for exarnple, that,(is ofrhe fom

(1.1) K(u,L)= L(u, u) ir uec,ueD ,

=+@ [uec,u+D,

=_- if!+C,

where Cand, are nonenpty, closed, convex subs€ts ofR'1 dnd R/1, respec-

tively, and, is a conrinuously dlfferentiable funclion onR', X R'which is

concave-convex relative to cx r. (Nore thali: is indeed a closed, concave-
convex function on Rn X R, whose saddle-points are the saddle-points ofl,
with lespect !o CX r). It can be verified from rhe definirbns that in this
case one has t = C X ,, and for erch (", r) € CX D the vector S(,, u) is ihe
projection of the vecior

(4.8) (V,,2(,, u), vuI(,r, u))

on the closed convex cone seneraied by the rranslate tcx. Dl (u,u).



(Thus s(u. u) n the nearesr vector io (4.8) which sives a "feasible dneciion of
morion" ir CX , fton1 (r, r).If (r. u) € ini(CX ,), the vectors S(r, u) and
(4.8) coincide.) "steepest d€scent" in the classical sense n rhe case of (4.6)
where Z is rctudlly independent ofr and, is all ofR,. Sinilarly, "s!€epesi
ascent" is the case where, is independenl of u and C =R'r. In general, (4.6)
involves "sreepest descent" in u and '\teepest ,scent" in & simultaneously.
The Arow.Hurwicz equarion is rhe case where Z is fte lagrangian funcrion
in an ordinary conyex programmhg lrobl€n, md C and, are the nonnegative

Despire the nonstandard character ofihe differential equarion (4.6), a

great deal can be said rbout its solutions. The general resulis of Karo [6, 7]
and Browder [:1, cf. Theor€ 9.23] for na\nnal nonotone operators can be
appLied, in view of Theorem 9. In rhis way one can deduce:

'lheorcm lO. Let K a d T be dr in Theorem 9. whete U = U* =Rn q dV=
Vr = Rn. Then for each (a, b) eE the ctilfercnti('t equatbn (4.6) has a unique
ro1,ttr,, (tl(t). u(r)),0 < r< + -.

Futthernore, suppose th,lt K has a scddle point (i,i) with the prcpetty
that, iflu, u)e t is ruch that the identit|

(4.e)
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,(((r I),1M.(l p)t+/ru.) = (l I)(1 //),((t, t)

+ r(1 !lr(r, t) + (1 I)!,((r, u) + )rd(r, u.)

icldsr4rr' 0 < I < I ad 0 < y < I, then u = i and | = t. Ihen (n, O h the
unique sattae-pont al K, dnLt fot each (d, b) e E the salutian (u(t).u(t)) ta
(4.6) satsli?s

(,r.10i llm ("(t).')(r, = ('r, t)

The condltion in rhe second half of Theorem 10 (which rs by no means
the most Ceneral conditiol that c be given for convergence to a saddle-
point) is satisfied in pariicular iflhe saddle-poinl ('r, t) is such thar the con-
vex functio!,((t, J is '\trictly convex ar t' (nor affine ong dny line seg-

meni irchrdlrg t), while ihe concave funclion,(i., t) is "strictly concave at
t". An exalnpl€ where the condinon does not hold, and (4.10) fails even
thoueh the saddle-pojnr (t, t) is unique, is provided by

K(u. u)= uD, (r,u)€R?, with (t,t)=(0,0)
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Results of rhis type were developed for rhe Arrwo-Hurwicz equalion by
Uzawa [1]. For r discussion ofrelated disorete methods of derernining
saddle-points, see Tremoliers l17l .
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