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ABSTRACT

tet f6, f1r . .., fm be convex functions on Rn ,
and let (P) denote the problem oI ninimizing fo(x) subject
ro -./xr_ 0, .... f-'^ 0, A-(o dlno to t'- i-ao-y ol
conjugate functions, nany different dual problems can be
dssociated with (P), each one cofiesponding to a particular
class of perturbations of (P). Thus, in developing duat
methods of solutions of (P), one has considerable fledbitity
in the choice of the dudl problem, and the cholce can be
made in view of its suitability for a given purpose.

This paper lreats some simpie posslbilities in the
important case where each of the functions fi satisfies irhe
followinq condilion: fi is not dffine along any line seqment,
unless it is affine along the entire ]ine extendinq the seqment
(The latter holds, for example, if fi is analytic. ) It is
shown that the perturbations can be chosen in this case so
that the coresponding dual problen (P*) consists essen-
tid]ly of maximizing d differentiable concave function subject
to linedr consraints, The duality theorems app1icable to
(P) and (P') are then somelvhat more refined than those in
the general theory; e.g. the infimum in (P) and the supremun
in (P{') are necessarily equal, if (P) is consistent.

The duaiity theory for the geometric programs of
Duffin, Peterson and Zener, and the quadrdtic and lp pro-
grams of Petersorl and Ecker, is derived ds dn illustratlon.
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1. Introduction

Let f0, fl, . ., fm be conver< functions on Rn, and
let (P) denote the problem of ninimizing f0{x) subject to
the const alnts ft(x) 5 0, .,., fm(x) I 0. Accordins to the
theoty of conjugate functions, many different dual problems
can be associated with (P), each one corresponding to a
particular class of perturbations of the objective function
and consualnts. Thus, in developing dual methods of solu-
tlon of (P), one has considerable flexibillty in the choice
of the dudl problem, and the choice can be made in view of
its suitability for d glven purpose.

In thls paper we descrlbe cases $'here the dud.l can
be regarded essentially as a probl3m of maxin zing a dlffer-
entiable concave function subject to Ilnedr constraints.
Actually, it is posslbl.e to find many such cases, and the
dpproaches to them are quite diverse. F.ather thdn attempting
a general survey, howewer, we concenbate here on presenting
d few especially sharp.esults for problems (P) oI a re-

To this end, we assume that the functlons fl are
everywhere differentiable and salisfy the following condltion,
called faithful convexity: ft is not affine (simultaneously
convex and concave) along dny line segment, unless fi
is afflne along the entire line extending the line segment.
The class of taithfully convex functions obvious.ly includes
all strictly convex functions and all afline or quadratic con-
vex functions. In fact, it includes aII analvtic convex
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functions. Thus the results in this paper are applicable ln
pa.ticular to convex programming problems with analytic
ob j ective and dndlytic constrdints.

We beqin with d discllsslon of the "ordinarv" dual
(Do) of (P), where the constraini iunctions are perturbed
by subtracting constants. Further perturbations dre then
introduced, Ieadins to a dual problem (Dt) which involves
mo.e variables, but which can be handled more directlv,
Fovided that the Leqe4dre transfotmdtion can be caried
out. This extendeC CudI, originally presented in a less
elaborate form in 196a I Ill, has hiiherto not been exploited
for its computational properties.

Our assumptions on the nature of the functions fi
allow certain refinements of the general theorems in [ 1z] .

These results encompass the duality theorems of Duffin,
pa.6rsor dro 75-6. ror oeo. a!l'i !r.og, o. n no I, /, 1l d.
fFos^ol Delercon d!d [(k-' for \q. oc].o.-c a o ao-orog o n-
minq 17, 8, 9, l0l.

we show that, after an optimal solution hds been
determined for (Dl), an optimal solution may be obtained
for (P), if noi lmmedlateiy, then by solving the dual (Di)
of just one further p.oblen (P') of the sdme type as (P).
This may be contrasted wjth the procedure ltiven by Peterson
dnd Ecker in I p-programrning, 1/here a sequence of sub-
sidiary dual problems, numbering perhaps as many m+1,
miqht have to be solved in order to determine an optimal
solution to (P). When the simplified procedure lriven here
is applied to an ,tp-program (P), the ploblen (P') is
dnother I P-program.

Z. Dual Foblems

tn the terminology of 112,l, the problen (P) is not
actually cdlled a convex prosrdm until a suitable class of
perturbations has been singled out. Unless otherwise
specified, however, it is assumed that the perturbations are
rhe rorro\r no- in 

^hich ' '_r o_' sp_a{s ol "n o.d: "_v
convex prog.dm: for each vector u = (ufr ...; uJn) in Rn
one considers the problem of minlmizing f0(r) subject lo
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fi(x) -uiS0, i=1,,,.,m. lz.l)

The dual problem correspondlng to this class of pertuibations
ls that of maximizlng the concave function

s(y) = inf{f0(x) + ylft(x) +

over the convex set

-y f (x) lx(Rn) (2.2)

C=ty-{1,...,}m}€R" lv-0, q{yr , - oo} rl.3'

We ca,, rhls rh" o4lllell ouai of tPr and ae.ote ir o\, (D^r.
Proble.'. ctosety.olated to (D0r lar ', ot coursei

been studled by many authors, Concernlng computation,
the papers of Falk [4] and ceoffrion [5] are especidtly
note,^orthy. Ro-ohly soaakrng, r_or may b-.xpectLd to
be usF[uI cornout6rionally in solving (P) .ii Lhe minirrizdtlon
1^ 12.2) ls relatively easy io carry out for any y: 0, as
for example if the functions fi are all separable, or all
quadratic. In the separable case, solving (P) by way of
(D0) is an application of the decomposltion principle (Jor
a general discusslon see [12, pp. 285-290] ),

Let C' denote the subset of C consistinq of the
vectors y such that the infimum in (2.2) is dttalned. Results
of Fatk I a] shor . that, if fO is sts'ictly convex, then C'
1s convex and open relative to the orthant R+ , and g is
continuously differentidble reldtive to Cr with relative
gradient (fI(x),..., fn(;)), where the x conespondins
to a given y€C' is the unique element of Rn for which the
lnfimum ln (2, Z) is attained. Furthermore, if (P) is strictly
consistent (i.e. satlsfies the Slater condltion) and has an
optimal solulion, or if Cr is nonempty and the supremum of
g over Cr is attalned, then

su!, s(y) = sup(Do) : inf(P) ,
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The main restliction in applying FaIk's results is the
requirement that f0 be strictly convex. Thus the case .n'here
(P) is a llnear programming problem is not covered, even
thouqh thts is Lhe case on which the results are patterned.
On the other hand, lf f0 is not strictly convex it can oe
made so bv addinr a srr-c.l convex .6rm, ror :nstan-- onc
can ddd elx-t', whe(e I 1s a_ estrmare or an optina.
solurion !o (P) end l. I denotes the Cuclidean norm, and
one then has C = C' : R1 u4, p. 1361, This device has
computatlonal uses, but one dlsadvantage could be an in-
crease in the dimensionallty of the c'iual problem. ln the
altered (D0) the convex set C is m-dlmensional in Rm ,
whereas in the original (D0) lt might be of smaller dimen-
slon, coresponding to the fact that the dual varidbles had
to satisly certain llnear reldtlons ds in llnear programming.

Under the conditlons we have imposed on the functions
f1, Falk's results carl be generalized in a ratier thorough
way to the case where I0 is not sbictly convex, and the
relationshlp between C dnd C' can also be descrlbed in
greater detail. Instead of doing lhis here, however, we
develop related results for a dlfferent dual prcblem in which
linedr relations among the dual variables appear expucitly.

I-et each fi be expressed in the form

where hi ts a differentiable, faithfully convex function on
n. n

R i, Ai li a mdtrix of dinenslon ni x n, ai i q i, b1 ' R"
and ci ! R', Certainly such an expression (2. r1 is possiole,
since one can always take ni = n, Ai = I, ai = 0, bi = 0
and ci = 0. It is easily seen ftom the theory of llneallty
vectors oJ convex functtons [12, pp. 70-71] that the faith-
ful convedty property of fi is equivalent to the existence
of d representation (2,5) with h! sirict.ly convex and ni =
rank fi . (As an extreme cdse of (2.5), we dllow ni = 0!

then the term \(Aix +ai) is omitted. ) ln what follows we
do not dssume, however, that hi is strtctly convex, since

f.(x) =h.(A.x r a ) +b.x 1c. (z-5)
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that would mdke it awkward to tr.eat certain examples such
as geomet ic programs.

The dual problem we want to discuss is the one
coraesponding to the iollowing ciass oi perturbdtions of {P),
as explained in []2, pp, 32,+-325] . "r'/ith each vector

m0.m R \R -,/.,.\R t1.6

o1- associd!4, tae pob.n o 'j.i -?:nq

h{A\ a . tt.1000000

subject to the constfaints

hi(Aix+a - vi) +b.:+c - ui:!0, i=1,..,, m. 12.8)

The dudl problem, denoted by (Dl), consists of maximizinq

-', \t"r .- - , " r . .1 r . :t , t . o ,0 Lr 0 0 0 ,i i'r

sribject to the constraints

b-l /.b. '.7.=O r,,.I0r

. C. "ld o- ..Rl -o, ,- , .,., n, .z.II,o (i'

{.*vt-r- A is rn6 rrorspos or 4,. . il .6-o.v6w Lrc-
:on .oni odl-a o h - h.l s

n',t,-.r,oi_i i: ii i
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and Ci is the (convex) effective domain of

^ 11,+
' i ': 

o l\'t"

1i/e use the convention in (2.9) that

v._ rv.' l-0 il r.1o a_o -n-L i -- -

lh.tv. - rs )- rr (v.)l/ri

is a constant independent of \
rmplies thdt vi - v F Lr if hi
joininq vi arrd vl : cf, Llz,

hi,

(2. 13 )

lz. 14)

The circumstances in which (D1) is likely to be
more useful computdtionally than (D0) dre those in which
it is comparatively easy to determine a solution v. (if it
exists, not necessarlly uniquely) to any equatlon Jf the
form Vhi(vi) = zi. Then, as we explain in the next section,
the values of the objective function (2.9) and its directional
derivatives are readily available, dnd the possibly nonlinear
aspects of the constraints zi € yici can, in a sense, be
ignored.

3. The nature of problem lD")

, We now state some geneldl facts dbout the functions
hi and sets Ct and how they may be determined {,.om hi,
particularly in liqht of our assumptions of differentiabi]lty
and faithful convelity.

Let It denote the lineatity space of hi []2, p. ?01 .

Thus f4 is a subspace of R r, and a vector si b-^lonSs to
\ if and oniy lf the difference quotient

r + 0,

and vi . Faithful convexity
is affine on the line segment
Theoren 8.81 .
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The affine hu]I Mi of Ci can be obtained fron \
ds follows l12, Cor. 13. 3. 4(d)l . Let the vectors
sik(k = l, ..., Ii) generate i{, and let rik be the con-
stant (3.1) coresponding to sik Then Mi is the set of

vectors zj € R 1 satisfying the linear equation

(3.3)

is a constraint implicit in the condition zi€yici in (2.11).

lre arlina s6+ lV. is arl o- D t ir ond oni :l
-,r . 01, ^hic_ red_s, becdus- o' tairhtu con exi-.,
that hi is stdctly convex. Thus it could be aranged by

appropriate choice of the representations (2.5) that Mi =Rni
Ioa i = 0, ..., m, and then every Ci would have a non-

empty interior in R 1 .
-_ gel.ecol C eeo 10! rdve d ,1onenioL) rnLerior

in R I, but it has a nonempty interior relative to Mi,
which we denote here by Ci . Of course, Ci is convo.
and has the same closure as Ci , The followinq facts are
elementary generallzations to faithful convexity of facts
derived in 112, S25l for differentiable, st ictly convex
functions.

(al Th- set Ci s r'- -ang. oI .he orod-ent mdpping
th 1lrs.,i b^Ior isrc -r il a-o orly il Lhe sr pr.nu.-r
in (2.1.2) is attained by some vi. Mo.eover, if zi belonqs
to Ci and vi is any vector such that Vhi(vi) = zi, ane
has

S.z. =..

where Si is the matdx of dimension Ii
row is sik, and ri is the vector in
rik , Therefore, the iinear equation

t.r.-5.2.=O

13' 2)

.th
R'r with components
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h'."(2.) = z.v. - h.(v.) . 13 4)

(b ) If zi and are elements of

0<\<tro,z + \zl € Cl. (3,5)

:l*
h (z )=li.rn h.{2.\zll (3.6)

'hus rn- .e u-s o. )i 01 .h- clocLre ol, i .a' b- oo-
loined ds c:mpie inirs o'r_e v6 u-s o hi on Cr .

rc' hi s o'ontinuousl dirre--nrjable, s!'ic-.1
coF!-x .-ocLion relo--.e -o C' T_o-.o, s-opos6 ti o' z
and zi sdtisfy (3.6), and let

q(\) = h, (2. + \zl), \: 0 (3.7)

If zi belonqs to Ci , dnd v is any vector such thdt
V'.";' - zi, then r'l\r d.cr+a.-s Io r',0 o" \ t--os ro
0, a'o o-- hds r'.0, - z]r. , thus, i. pa,r'c-rd-, .i
gives th"e directional derivatives of hi at zi; in fact,
vj = vhi(zi) if C' is full-dimensiondl. I on- the other hand,
if zl does not belons to C; , then the derivative E'(I)-.-
decreases to -6 as tr tends to 0. (in other words, h;:
becomes "in{initely steep ' as one approaches the relative
boundary of Ci . )

(d) One has C. = C: = Ml if and only if

.l;.r h. \s.,/\- 6 fo--r-r/ " /L., ',.8

zl
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These facts yield r,uch information about the natu:re
or lDl, fo. no-ai'o'aI conve ri-_c-. e- -J ser \

NIlyr, ..., ., \ in q"', z - t7o, ..,t 21 r in R ''\ - n0

Gt , z' - <otza\ <lyt 21 . ... o,,t

k0(20) = co + ao,o - li{,o) , (3. t0)

ki(yi, zi) =ciyi + a.z - y hily lzrl if y. > 0 ,

(3.11)=o if Yt=0 and zi=0,

= _- otherwise (i = t, ..., m) .

Note that for i + 0 one has

ki(ryi, \zi) = \ki(yi, z.), r:o, 13,12)

In (Dt), G is tobe maximized subject to (2.10). The
functions ki are concave and upper semicontinuous It2,p. 57 and Theorem 13.31, and therefore c is concave and
upper semicontinuous. Thus {or every real number a, the
set of feasible solutions ly, z) to (D1) glvins a value
: d to the objective function in (DI) is a closed convex

The differential Foperties oi c can be derived
ftom those of the functions ki, whtch dre apparent from
{c) above. In pdrticular, for i = 1, .,., m let

1.-tr _,2,l*,.i,2.)>- r = lr .,r.,|t. _a,z,.yS-t
{3. 13 )
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.hen f, is d conver coha Ml-ose rela!'ve i_terior l5

[]2, Theorem 6.81, and ki is continuousiy diflerentiable
relative to this reldtive interior. Furthermore, ki becomes
"infinitely steep" as one approaches a relative boundary
point of Fi, unless the boundary point is the origin. At
the oriqin, kl is Iinear on every ray in Ft by (3.I2), ana
the dlrectional derivatives of ki are the.efore tdvial to
calculate.

It is possible, in view of dll this, to regard (Dl)
essentially as a problem of maximizing a di{ferentiable con-
cave function subject to only hnear constraints. The ezact
sense is explained by the theorem which fol]ows.

Let F denote the set of dll fedsible solutions
(y, z) to (Dl), and let l' be the modification of f ob-
tained by substitutins Ci for Ci in (Z.lt). let f" be
the modilication obtained by not only substituting Ci {or
Ci, but also slrengtheninq the constraint yi: 0 to yt > 0,
except for indices i such that n = 0 (fi affine). Of
course, the sets F, F' and F" dre convex, but they
need not be closed. Their closures coincide, however, if
r" +d.

Theoren 1. Suppose thdt F" + I . Then the obiective
Iunction in rL,r hos th- sa^- supr- urov-r '' " :-has
over F, and the optimal solutions to (Dt), if any. al1
belonq to F'

{(vr, ,r)lv, > o, z. €v.c:i (3.14)

Furthermore &! (v, z) 44 (v', z')

. (y + \y', z+\zr)€F', o<tr<\0

Then the concave function

q(\) =G(v+rv', z+\z')

(3.r5)

30 3
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0 \ ' \. dnd corri_ro-s.t d;f'-_-nr:ao-e
Iol 0r\-!0. r.- o-rivari - rrr\r 'r._-".^9 Lo €.s
L tends to 0, unless Iy, z) <F', i4 i!_hich event E,(L)
increases to the (finite) right derlvative of E q! \ = 0.

&gqq. The hypothesis implies that f lies between
Ft and the closure of f'. Therefore c, beinq concave,
has the same supremum over f' asover F llZ, Cor. ?.3.11.
The differentidl properties of c described in "Lhe iheorem are
immediate from the propertles of the functions ki noted
above, and they imply in particular that the supremum cannot
occur at a point of F not in Fr.

Theorem I asserts that, if F, + d, the constraints
z0 € C0 and zj € yici (i = f, ..., m) can be replaced in
(D1) by zi € yici . Moreove., latter constraints are duto-
matically taken caae of, in the sense that, as one dpproaches
a point (y, z) which is excluded by these constraints but
not by the olher consb^dints, c becones ,'infinitety steep. ,'

Thus the only constraints in (Dl) which have a practicdl
effect, in terms of qradient projections and related com-
putationdl techniques, are the linear constraints (2.l0) and

.0 - S0z0 :0, yi.i - Siri = 0 dnd y.:0

Iori=1,...,m. 
{3 17)

OI cou s^, ._ the c_osur^s or the co vey -e-s -il"no l, ar- all ool] rad.ol, ..-- 11- closLre or _ .d,lcl ,l
is polyhedral dnd hence describable entirely by a system of
linear equations dnd inequalities. In particular, suppose
that every hi sdtisfies condition (3.8). Then one has
F' . F, and the closure of F is described simpty by (2.I0)
and (3,17). As one apprcaches boundary points of F not
in F itself, the objective function tends to -- .
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,tr. Xxamples

The following pafs of ploblems (P)

illustrate the facts described in S3, as well
areas of application of the duality results to
in S5.

Example l. (Geonetric programmlng

and (Dl)
as indicate
be developed

lI, z, 3l ). Let

i v..
t ' ,' _ o9{t . to, i -0, ..., n, 14.ll

k=l

h n.
wher- .tq s rtF ! "' con Donent ol vi ( D ' Th-n hi
is dn analytic convex function thence a faithfully convex
function) such that

I
2.,.:4, )r 2.. =It, (4.2)

h (z\ z.laqz.. z.C (4. 31

(with 0 loq 0 = 0). Settins xi = Ios ti , one sees that
(P) ls equivalent to a typical geometric program. I,et
b - 0 a_d ci ..0, 

"nd ]et r-- lor pordrrs o ri dnd d.
be d-not^d o) r,<j 6nd o,<0 , -^so^ct_.a ). 'Lhe dua
orobl^ | Dl\ 'o is srs o -axt- z rq . i- co4cove lur ct or

rn ni
'-n 

-r'r.'"io - Ios z *r 'r ,-r '' -os': (4, rl

subject to the linear constiaints

Ci={rt.ntl

-\'
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zik:0 for i =0, ..., m and k =I, ,.., nl ,

0i, z. =1. and ' z :v. fo. i =1, ,,., m, t4,5)
k=l k =l

I
L L a,.tz,v:O tor j :1, ..., n.
i=ok=l '""

Here the feasible set F is actually poiyhedral, because
the sets Ci are polyhedral and bounded.

E)<dmple Z. {Qua&aticatly constrained quadrdLic
prosramminqi cf. [?, 8, 9, t0]), If each of the convex
functions fi is quadrdtic, it is sirnple to write dov,'n repre-
sentatlons ol the fonn (2. 5) with

n,
. L .z I+ zh.(\ r =; rv - =; L '-,, . 1,1.6\

k=l

n,
One then has Ct = R I and

n.

h lz.) =; lz.t- =- L "_. , 14.'t)
'k=l '^

so that in (2,9) one has

y.h;(yi2.) = l"rl'/zvi if y.. 0 (zl arb. ),

R. TYRRX-T-L ROCIC{I ELIAR

=o if yi=o and 2t=0, t4.8)

= +oo otherwlse,

Observe that the last remarks of $3 are applicable to tlds
example; h. satl6Iies (3.8 ).
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The more general rp-programs of Peterson and Ecker
may bo obtained by lettins hi be of the form

h.(".)= ii irlpif I'ir. 
oto, ,.oo.* *, (4.9)

in which event one has

. .j 9il
_ ' k=]

where (I/q + (],/qi = f . The next example shol's that a

much broaCer class of problems can actually be handled just
as easily,

Example 3. (Quasiseparable Programming), The
conv6x Iunct o_ f. ;. sd,o 10 b- q!cgla!9!s!_. : it cal b_
expressed as a sum of functions, each ofwhich is a Iinear
lu_.Uo_ oa Rf conros d wl-n o co vex I'ncLo .Doss o y
i' ri_ire/ o r R' ihrs _j -s o-osis_oa_aol_ _ dnd onl it
fi can be represented as in (2.5) $'ith hi sepatable:

n,

I,.r,'.r- I h., L', (".1I/

Assuning that every fi has this property, u1 addition to
the properties already speclfied, we can actuallt get repre-
s6' toion; in whic: r, - 'u' I on, h. o' 'l d_e a]l oifle.-
enLidL.Le and sr.' rI! ao I ex, - lo c6:luget' tu rcjons hlk
are then, of course, relatively simple to deiermine, and

( 1. tz)

Furthermore, C. is the product of the (nonCegene.aLe)

Ii:
:L - 'rik R' Lk 7_q : ' (-+. 1

., _! --
nl'r, t = )l r.. t,.. I .r r k_] rK1(
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Thus Ci has a polyhedral closure and a nonempty interior

lMi = R r) . It follows that the feasible set F has a poiy-
hedral closure.

Lv,ample 4. (Convex Fogrdmming with linedr con-
sEaints). Suppose that fi is affine for i = i, ,,., m, so
thdt the term hi(Aix + ai) can be omitted in (2.5), Then in
(Dl) one maximizes

" *il .' +^, -h+t, to "1 i-i 0 0 0 0
(4.1,1)

subject to the constraints

bo vrb, + r.lzo = o, yi: o, zo € co (4.15)

If these constraints cdn be satisfied with z0 € Cb , then,
as explained in S3, the condltion z0 < C0 reduces for prac-
r'Col plrposFs to Ln6 linear consE-aini S0z0 - rn LI c. .s
vd.uoJs iI C0 I "s ts _oa-mo-) t--iorl. ll \0 is strictl)
convex_and satisfies the growth condition (3.8), then

co = R o '
If f0 itself is affine, so that (P) is a linedr prosram-

ming problem, everything concerning z0 can be omitted
from (4. la) and (4.15), and {Dtl is the usual dual linear
programming problem, coinciding with (D6).

trxampie 5, This miscellaneous, but specific example
lllusirates some useful tricks, as well as a particuldr com-
p,rialion of the conjugdte functions hi. We consider the
Problem of mininizinq

+l

(Y4)(l + 3xt)4 - 7xz + exp lxl - ).z l

over all (xP xz) € Rz satisfyins the constraints

(4. 16)
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in the giyen formulatron, this problem does not
satisfy our assumptions, because the absolute value term in
(4.16) spoils the differentiability of the objective function,
and the qudntity 1- xtx2 in(4.18)isnotconvexasafunc-
tlon of xI and x2. Also, the first term in (4.17) is not
globally convex as a function of )<l and x2 , althouSh it
is convex for xl: 0 and xz: 0 Note, however, that
the objective function is the pointwise maxlmum of two
analytic convex functions, and that the set of points saiis-
fyins (4.18) is indeed convex.

We may transform this problem into ihe desired form
as follows. First, where the expression l*1 - "21 occ,.]ts,
we replace it by a new variable x3 , which is requfed to
sati sfy

(The trick used to obtain this consb'aint is the following one,
which is applicable under quiie general cfcumstdnces. Let
the set of all (r.1, x2) satisfyinq (4,18)be denoted by H .

x3axr- xz and x3:xz-1,

(A similar device can be used whenewer th€ given objective
function is the naximum of several functions which are
differenuable and faithfully convex. ) ue next replace xI
and x2 by lx1 and x2 in (4,1?) to get a globalty
convex {unctlon (see below)j this involves no loss of gener-
ality, because of the nonnegalivity in (4.18). FinaIIy, we
replace (4, 18 ) by an equivalent convex consEaint:

q+ + \., - nr)z)r/z - xt - xz i! o \4, za)

L]NIARIY CONSTRAI\ID DTIALS

el r frl/3 + 2.3.e ,

1:0, x2: a, xi<zlr .

\4. L7 J

(4. ie )
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we observe that for each (x1, x2) . R2 there exlsts d unique
smallest real number \ such that (xl + \, :Z + l.) belongs
to H. Denotlng this I by r(xi, x2), we have

H = {(xt, xz) I r(x' x.) ! o} ,

and r is convex. The function r is easily computed in
this case, and the Ieft side of (4,20) is zr(xt, z?) . )

Ite giv-_ o-oblem is tlus equ . olenr to -i'.miz-ng

!O{^, - \l'r,/I - JxlJ - 7x2 + e,{o xJ

subject to the constraints

c ,c r/1itry\-( xl - lxal- "-Zx'-o.0,

)1/)
tatrt -10- {x.-xzr'r"'-x,-x, o,

fr(x) = x, - xz- t3aa,

where x = (x1r x21 x3).R3. The functlons fl are all dlffer-
entiable and faithfully convex, so this is a problen (P) of
the desired type.

The next step is to choose suitable representations
of the form (2,5), Here convenience in computing the con-
jugate functions is the chlef quide, and this is dependent on
one's know.ledge of general rules and examples, such as
those in 112] (cf. the situatlon in computing indefinite integ-
rals). We take
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CONSTRA]NED DUALS

"*P 
toz 

'
5 r 1urrl5lv3 * zuL ,

0

I
I

o-l
ol, r, = 1r,
oJ

"2=o
0),

-l' ol

ao = (lr

0, 0), b2

-l)ba = (1, -r, -1), bn = (-t, r,

c0=cz=ca =c4 =0, cI:-9.

We oo not deflne hi, At or at for I = 3, 4, b€cause f2
and 14 are ]lnear. the-onjy trick here that deserves spec'lal
mentlon is the lntroductlon of the varlable vl3, where vlz
could appdrently have been used just a6 well, Thj.s makes
lt easler to compute hf . (The same trlok can be used
whenever a function hl ls a sum of convex functions, each
of which has a known conjugate.)

The conjugtsre of ho 16 easy to determlne dtectly
(cf. [l2, p. r06] ):

nf,\zo, zorl = tz/u"f,(3 + zoztros zo2- !) ,

. =!1. ' ,.o2 --o "-or, -02' ' -oz: o) '

3lI
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The conjugate of hl 1s obtalned by a fancier method, al-
though tn princlple the Legendre fansformation would give
the global answer It2, Theorem 26.6]. we write

hl(vll, vlz, vl3) = (5,/3)nvl(v11, vn) + 4w zlv3) ,

*I('ll, tlzl= 1:7st1rlu,rl5 o lurrlt)r/51'/t

w 
zW-'.) = lr/2)vl3 .

(The convexity of wt follows from Ilz, Theocem 5.I] and
the convexlty of !o -norms; tl^l" prov:des 'n parr'cular one
way of verlfying the convexlty of hl. ) We then have

nll..r, "rr, zB) = l5/3)wl(.3/5)zrr, (3/s)zel +

,,*lte/nt,rrt

with C, = R3, wherer using Il2, Theorem 15. 3]'

*l@rr, .rr) = 1z1s11tl"rrls/a r l"r.lu/ntn/ult/' ,

,i*rt"rrl = ttta"l, -

Finally, we compute from the definltion that

nlt,.rl = -zo-"lrl1/', cr= {"rr l -r: z2r5l} .

3t2
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Substituting these elpressions in (2.9), (2.l0) and {2. tl),
we obtain the followinq dual problem (Dl) in the variables
yi (i =1, ..., 4), zok (k =I' z)' zlk (k =1' 2, 3) and
221 : ma:<imize

r /2
,A oz- t1 t)zAt - zorloo zO.- o,t

,"/4 ,5/4 t
-,2,1t.Et 'yt _,,rll, + ,t2 ," a./1,

) ) l/)
-lI/gtyr'213 + zty;- z;rt' '

subject to the linear constraints

-YztY.,-!+r 3"ar, 
"11+ "zr= o,

-yZ-Y3+Y1l zl|+ zI3- zzI=7 ,

-Yj- Yq+ zOZ=O t
14. 22)

Y,i0, o, y3:0, y1ao, zazao, -vz:zt:yz

5, Relationships between (P), (D0) dnd (DI)

The seneral duality results in l12, S30l a.e, of
course, applicable to (P), (D0) and (D1). It would be
repetitious to state these resuhs here, so we only present
certain refinements which follow ftom the assumption that
the functions fi are faithfully convex. The main goal is to
indicate the extent to which (P) cdn be solved by solving
(Dt).

We denote the optimal value in {P) by inf (P)! this is
+- by conveniion if (P) has no feasibie solutions. The
expressions sup (D0) and sup (Dl) have an analogous

3ll
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Before giving a duality theorem concerning these
optimal values, we descrlbe the basic relationship between
problems rDol ard lDl). Let g0 and qL b'the Jpper
sefiicontlnuous, co_cave luncLions def:n-d by

g-ryt = q(y, if y 0,
|.l

=-6 jr vzj,

st(Y' z) = G(Y' z) if (2.10) hotds,
15.z)

: -a if (2.10) does not hold,

where g is given by t2.z) dnd G b (3.o). Ihen

sup(Do) = sup{so(y) ly.R*}, (5.3)

supfDl, - sup q_ty, 11 r, en, z. RN r'.4)

Theotem 2. For each y<Rm one has

N
so(y) : 'rp aly, z) I z la , (..'l

where the supremum is attained bv some z, Thus

sup(Do) = sup(Dt), (5.6 )

eql (D0) hds an optiral solution i'6no or v if rDrr las
an optlmal solution.

Egq[. The ploof of this result does not depend on
faithful convedty, but lt uses the finiteness of the functions
hi in applying Fenchel's Duality Theoren [12, Theoren 31, tl .

l,et p0 and pl be the perturbation functions associated
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with (DO) and (Dt), lespectlve1y. Tbus po(u) is for
edch u€Rm the infimum oJ fo(x) sublect to (2.1), while
pllu, v\ isro-eac' u€Rm and v RN rhe lnflrum of r2.?l
subject to (2.8). The funclions p0 and p1 ale convext
and we have the conjugacy relations

go(y) = inf{yu + po(u) u € RmJ :(-po) * (v), (5.7)

st(Yr z) = tnf{l'ru + zv+

(see []2, theorem 30, 2] ).

n,(u, v) ]urnm, v,xN1 =^ (5.8)
(-pt) {' (y, z)

Also

Po(u) = Pl(u, 0) . (5.9)

Therefore, assuming for the moment that pl(u, v) is never
-co, we have lor every V e Rm

so(t) =inf{q(u, v) + pl(u, v) u.a',v.nN}, 1s.to)

where q is the convex function or'r Rm X RN whose value
at (u, v) 1s Yu if v = 0 and +6 j.f v + 0. From Fenchelrs
Duality Theorem, we lhen have

s'(t) =sup{(-pt)+(y, z) -q*(y, ,1lv.nm, z"nN}, 1s.11

wh^_e .he suoremum is atta:ned, because .he lnter:or of lhe
convex set l(u, v)lpr(u, v; < +co i meets lhe subspdce
{(u, v)lq1", vl<+o} OIcourse, the cohjugate runcuon
q" vanlsh-s dt po.rrs of Lhe torm t, z) dnd has rne value
+c. at all. oi-hef poinis, Thus (5.11) is equivalent to (5.5)
by (5.8). If pI takes on -6, the explession a-..
could occur in (5.10), and a different argument must be

3t5
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given. In this degenerate ca9e, pt takes on -. through-
out the interior of lts effectlve domain {(u, v) lpl(u, v)<--i
lI2, Theorem ?.2.], so that p0 also takes on -{ by (5,9).
But then g0 and gl are identically +.. by (5.7) and (5.8),
and (5.5) bolds trivia.lly-

Thcoiem 3. (Duality) .lI (P) has a {easible solution
then

inf(P) = sup(D!) (5.12)

(P) has a fedsible solutlon x such tbat
Il(x)< 0 3!j!q4r-.!!!igl j sucn Lhat fi is not affine. end
if the ^omrnon eytromu- ir r;.1'',s_0.9! -", l!-2" ,Dt'
has dn optimal solutlon.

On the other hand. suppose (Dt) has a feasible
so.Iution {v- zt such Lhai v. > O dnd z. rLil for cverv
1!99:! i such that ni + 0 (!bC!-ts._l!9 9!,! F" is nonemptv.
as ln Theorem 1). Then aqain (5.12) necessarilv hoids. and
lf the comnon extremum is not +-, (P) has an optimal solu-
tlo4.

@!, The assertions in the first paragraph are Im-
mediate, ln view of Theorem 2, from the corresponding asser-
tlons for (DO) (see Ii3] dnd [12, Theorem 28.2] ). To prowe
the assertlons in the sccond pardqraph, we express gl as
-'KO i.. - (- , w'-r rhe co" ex fu.c.-ons (i on
,qm x Dr! are d 'red fro rhe fu 'ions r in 3.10 and
(3. iI) bY

Ko(y, z) = -ko(20) ,

Ki(y, z) = -ki{yt, zi) Ior

Km.t(Y, z) =o if(2.I0) is

(5, l3 )

i . r, ..., n, (5.14)

satisfied, (i.ItJ

= - if (2.101 is not sdttsfied
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sup(Dt) = -1nf(K0 + ... + Kl|+t) = (K0 + ... + Km+t) 1' (0,0)

= (K- r .. nK+ . )lo, o) (5.16)

(5. 1? )

by Theorem 20.I of lIzl , -here denotes infinal convolu-
tron, and thc infinum ln the definition of .l is attained.

'.1 ch oo ,rsof .'ecrot'or.mt,'o.1- 1- rio s (,,
's'-- o d.iio. . ar d, -"- con uc.,e- 'j "--easily computed, and one sees thereby that the infinum
symbolized by the final expression in (5.16) is inf(P) .

11,,e leave the straiqhtforward details of this to the reader.
Remark 1, If inf(P) is finite and the iunctions hi

all sdtisiy (3.8), as in lxample Z, then (P) has an oltimal
solution. This follows from 112, Cor' 27.3.31.

Remark Z. Theorem Z, applied to Exdmples l anC 2,
yields the dueljty iheorens of Duflin, Peterson and Zener
in geometric programming ll, 2, 3] and Peterson and Ecker
in .{ p-programmins l?, 8, 9, I0l, except for those results
involvinq the subinflmum in (P). The latter results are
covered by the general theorems stated in ll2, $30], as has
aheddy baen pointeC out in the case of geometric programming
by Hanala I6l.

It is clear ftom Theor.em 3 that the optimal vaLue in
(P) can usudlly be obtained by solvinq (DI), but lurther
analysis is needed to see how optimal soLutions to 1P) can
llkelvise be obtained by a dual approach. In this anal\7sis,
it is convenient to represent each ol the linealitv spaces
Li introduced in !3 as

where Bi is some matrix. Such a representation is of
couse, edsy to obtain from the natrir< si by eleme4tary
linear algebra. In pdrticular, if hi is strlctly conve:, one

Li={-.n1 s.w=0},
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can tdke Bi to be the ni X n. identity matrix. Note that
the subspace

={w€RnlBA.w=o} i5. r8)

is the lineality space of fi . Thus fi(x + Iw) is an dffine
function of I forall x, if w satisfies BiAiw = 0.

Theorem'1. lC! \y, z) be an optimal solurion to
(DI), and let I be the index set consistinq of 0 and all
rh- ndi.es ' . | , . . . , m !!!j__t)a., i 0. _h:r 'p,has an optimal soiution if and onlv yilzi € Ci for everv
iaI.

-rr-her_ o -. suopos. ihoi r-- 6rt-- cond_i o- isr.
s"t s''-d. anll jq!:!!l. i Le- /i oe on e. --. -ni oI R 1

jrs!-!Id v\i'.' ' - y;rz. , ^irt .\: -acEa -I- iireo il
t -0. E M 116 tna a,..na sLbJet o- Dn c6nsist:.qo'11-
vectors x such thdt

BAx=B(v -a )loreverv i€I (5. 1q )

lhe lrnct o-rs { 'o- i I ore Lhen arline on M- .n. rne
op.r'r ol so.r[ons 'o rP a-o the v6 tors y suc, ri"r

- \' ond '.(xl = 0 lor -v-rv i. I. _ 0- (5. z0)

{5. zLJfr(x) :0 for every i1i.

Proof. It follows from the first assertion of Theorem
3 that x is an optimal solution to lP) if and only if x is
a feasible solution to (P) such that

{o(x) = sr(y, z) .

U

Uslng the defintion of the conjugate functions hi, one can
easily verliy that (5.22) is equivalent to (5.20) and (5.2I),
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or in othq words (5.19). This completes the proof of Theorem
4.

The affine set M in Theorem'1, if nonemptv, is d

tanslate of the subspace L equal to the intersection of the
q ior i € I, and hence one has

L]}IEARLY CO\STRAIM1D DUAIS

if M is taken to be the set of dll x<Rn such thai

Vh.(A xi + ai) = y.'2. for eYery i € I (5,23)

(with yt-l omitted if i = 0) The equivalence of this des-
cription of M with the one in the theorem follows from the
lac. r'di h! 's 'oi!hrL' v.^o1\el. _o_'d, dssL ,rq lral
v sdt r.-'s Vh;,,,-.it"r, o,^ Fas Vh.rw, - -r-i,
if and only if w - vi . I,i . Thus (5. 23) holds if and onlv if

B.{A.x. - a -v.) =0 for every i€I,r rl

dim M = dim L: nin.€I din1 L: \5,24j

Therefore in particular, if one of the functions fi fo. i € i
(e.g. the objective function f0) is strictly convex, so that
din Li =0, there is oniy one element x ln M. This )<

must ;utonatlcally satisfy the equations and inequalities in
(5.20) and (5. ZI) and thus be the unique optimal solution in
(P) .

More generally, if M is not zero-dimensionalr we
may look nt the set Mt consisting of the vecto.s x which
satisfy (5. 20). Since the funcuons fi, i € Ir are affine on
l,/. r".s invol,es solv,lo o l-rrh-" s stem oi]i:_iq- -q' dlionc,
and M' is an affine set. if M' is zero-dimensionalr its
unique element x is the unique optimai solution to (P), as
in the case just considered. Otherwise, the problem is
reduced to the followinq: find an x. M' satisfylng (5.21)
This can be solved by Iinear programming, if the functions
fi tot i/I, Iike those for i €1, are affine on M', as is

3t9
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t|ue certainly if -Li - L for every i/ 1, (Obs6rve that this
holds 'r Exa" ple :1. It atso hotds lf -' :) -b fo. - = l, ..,,
m.)

At al] events, if none oi these shortcuts can be used,
one can pass to the following convex programnlng paoblem,
in order to obtaln a solution to (5,20) and (5,21J and thereby
an optimal solutlon to (P):

(P'l ninimlze -!
z I"lZ o.ru. a.ll x€M' satisfylnq (5.211,

1.

2.

This problem is in fact of the same type as (P) . (The Iinear
equations expressing the condition x€M' could be repre-
sented as linear inequatities, but tllev could ajso be used to
elinlna-- so.- of r'- var'able" xl o o thu- far5 rrn .Pr.
in!o a s.imllar problFm of r--duccd dlmenslondlity.l Thus (P')
can bq attacked vla its dudl (D.i), just ltke (P). Since the
objeclive function in (P') is strtctly convex, an optlmdl
solution to (Di) innediately yields an optimal solutlon to
{P'), as just explained.

Thus, havlng computed a4 optimal solutlo4 to (Dl),
one can determine an optimal solution to (P) by solvlng at
most one more problem (Di), which is similar to (Di) but
probably of a vasUy lower dlmenslor!.
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