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ABSTRACT

Let g, f}, ..., £, be convex functions on RT,
and let (P) denote the problem of minimizing fq(x) subject
W0 XS0, ceny fm( ) £ 0, According to the theory of
conjugate functions, many different dual problems can be
associated with (F), each one corresponding ic a particular
class of perturbations of (P). Thus, in developing dual
methods of solutions of (P), one has considerable flexibility
in the choice of the dual problem, and the choice can be
made in view of its suitability for a given purpose.

This paper treats some simple possibilities in the
important case where each of the functions f; satisfies the
following condition: f; is not affine along any line segment,
unless it is affine along the eniire line extending the segment
(The latter holds, for example, if f; is analytic.) Itis
shown that the perturbations can be chosen in this case so
that the corresponding dual problem (P*) consists essen-
tially of maximizing a differentiable concave function subject
to linear constraints, The duality theorems applicable to
(P) and {P*) are then somewhat more refined than those in
the general theory; e.g. the infimum in (P) and the supremum
in (P¥) are necessarily equal, if (P) is consistent.

The duality theory for the geometric programs OJ.
Duffin, Peterson and Zener, and the quadratic and 2P pro-
grams of Peterson and J;cker, is derived as an illustration.
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1, Introduction

Let fg, fj, ..., I ~be convex functions on Rn, and
let (P) denote the problem of minimizing fo(x) subject to
the constraints f;(x) <0, ..., fi(x) £0. According to the

theory of conjugate functions, many different dual problems
can be associated with (P), each one corresponding to a
particular class of perturbations of the objective function
and constraints. Thus, in developing dual methods of solu-
tion of (P), one has considerable flexibility in the choice
of the dual problem, and the choice can be made in view of
its suitability for a given purpose.

In this paper we describe cases where the dual can
be regarded essentially as a problem of maximizing a differ-
entiable concave function subject to linear constraints.
Actually, it is possible to find many such cases, and the
approaches to them are quite diverse. Rather than attempting
a general survey, however, we concentrate here on presenting
a few especially sharp results for problems (P) of a re-
stricted type.

To this end, we assume that the functions f; are
everywhere differentiable and satisfy the following condition,
called faithful convexity: f; is not affine (simultaneously
convex and concave) along any line segment, unless fj
is affine along the entire line extending the line segment.
The class of faithfully convex functions obviously includes
all strictly convex functions and all affine or quadratic con-
vex functions. In fact, it includes all analytic convex
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functions. Thus the results in this paper are applicable in
particular to convex programming problems with analytic
objective and analytic constraints.

‘We begin with a discussion of the "ordinary" dual
(Dg) of (P), where the constraint functions are perturbed
by subtracting constants. Further perturbations are then
introduced, leading to a dual problem {Dl} which involves
more variables, but which ¢an be handled more directly,
provided that the Legendre transformation can be carried
out. This extended dual, originally presented in a less
elaborate form in 1964 [11], has hitherto not been exploited
for its computational properties.

Our assumptions on the nature of the functions f;
allow certain refinements of the general theorems in [12].
These results encompass the duality theorems of Duffin,
Peterson and Zener for geometric programming [1l, 2, 3] and
those of Peterson and Ecker for (quadratic and) Ep—program—
ming [7,; 8, 9 10]-

We show that, after an optimal sclution has been
determined for (Dl}, an optimal solution may be obiained
for (P), if not immediately, then by solving the dual (Dj)
of just one further problem (P') of the same type as (P).
This may be contrasted with the procedure given by Peterson
and Ecker in ¢ p—zcnl"ograr!‘u’r.ilrlg, where a sequence of sub-
sidiary dual problems, numbering perhaps as many m+l,
might have to be solved in order to determine an optimal
solution to (P). When the simplified procedure given here
is applied to an {P-program (P), the problem (P') is
another fP-program.

2., Dual problems

In the terminology of [12], the problem (P) is not
actually called a convex program until a suitable class of
perturbations has been singled out. Unless otherwise
specified, however, it is assumed that the perturbations are
the following, in which event one speaks of an ordinary
convex program: for each vector u = (uj, ..., uy) in RT
one considers the problem of minimizing fO(X) subject to
the constraints
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m . (2.1)

The dual problem corresponding to this class of perturbations
is that of maximizing the concave function

aly) = inf{f () + y,f (x) + ty f (%) | xeR®} (2.2)

over the convex set

C={y =(y, -+, v )R |y20, aly)>- 0} (2.3)

We call this the ordinary dual of (P) and denocte it by (Dg)-

Problems closely related to (Dg) have, of course,
been studied by many authors., Concerning computation,
the papers of Falk [ 4] and Geoffrion [ 5] are especially
noteworthy. Roughly speaking, (DOJ may be expected to
be useful computationally in solving (P) if the minimization
in (2.2) is relatively easy to carry out for any y > 0, as
for example if the functions f; are all separable, or all
quadratic. In the separable case, solving (P) by way of
(DO) is an application of the decomposition principle (for
a general discussion see [12, pp. 285-290]).

Let C' denote the subset of C consisting of the
vectors y such that the infimum in (2. 2) is attained. Results
of Falk [4] show that, if f, is strictly convex, then C'
is convex and open relative to the orthant R , and g is
continuously differentiable relative to C' with relative
gradient (fj(x), ..., f,(x)), where the x corresponding
to a given yeC' is the unique element of R for which the
infimum in (2. 2) is attained. Furthermore, if (P) is strictly
consistent (i.e. satisfies the Slater condition) and has an
optimal solution, or if C' is nonempty and the supremum of
g over C' is attained, then

sup g(y) = sup(D,) = inf(P) .

veC 0
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The main restriction in applying Falk's results is the
requirement that f be strictly convex. Thus the case where
(P) is a linear p‘f‘ogrammlng problem is not covered, even
though this is the case on which the results are patterned
On the other hand, if fO is not strictly convex it can be
made so by adum% a strictly convex term. For instance one
can add ¢|x - X| , where X is an estimate of an optimal
solution to (P) and |-| denotes the Euclidean norm, and
one then has C =C' =R% [14, p. 136]. This device has
computational uses, but one disadvantage could be an in-
crease in the dimensionality of the dual problem. In the
altered (D,) the convex set C is m-dimensional in R™,
whereas in the original (Dg) it might be of smaller dimen-
sion, corresponding to the fact that the dual variables had
to satisfy certain linear relations as in linear programming.

Under the conditions we have imposed on the functions
f;, Falk's results can be generalized in a rather thorough
way to the case where fo is not strictly convex, and the
relationship between C and C' can also be described in
greater detail. Instead of doing this here, however, we
develop related results for a different dual problem in which
linear relations among the dual variables appear explicitly.

Let each f; be expressed in the form

fi(x) = hi(AiX + ai] - bix - ci’ (2.5)

where hj 1s a differentiable, faithfully convex function on

n n
R i, A; is a matrix of dimension n; Xn, a;¢R i, bj e R
and Cj € R*, Certainly such an expression (2. 5) is possible,
since one can always take n; =n, Ay =1, a; =0, b; =0
and ¢; = 0. Itis easily seen from the theory of lineality
vectors of convex functions [12, pp. 70-71] that the faith-
ful convexity property of f; is equivalent to the existence
of a representation (2. 5) with h; strictly convex and n; =
rank f; . (As an extreme case of (2.5), we allow ny =0
then the term hl-(Aix +aj) is omitted.) In what follows we

do not assume, however, that h; is strictly convex, since
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that would make it awkward to treat certain examples such
as geometric programs.

The dual problem wea want to discuss is the one
corresponding to the following class of perturbations of (P),
as explained in [12, pp. 324-325]. With each voctor

HO n

O,...,vm)eRmXR X ...xXR " 62 5

one associates the problem of minimizing

hO{AOX+aO~v0}.—bOX.—'CO (2.7)

subject to the constraints

hfAx+a —-v.,)+tbxtc, —-u <0
i ok i i i ==

The dual problem, denoted by (Dl), consists of maximizing

m

- 4 Y T - %7 =::' _1 7l g
CO JraozO h(}{z{}} E o [ciyi +aizi Sihiwi Zi_}j (2.9)

1=]

subject to the constraints

m mo,
bo;l yibi+§¥' Az, =0
i=l i=0

o

(2.10)

: k. ,
ZOECO’ zieini and OﬁyieR for i =1, ..., m, (2.11)

where A, is the transpose of A,

is hi is the convex func-
tion conjugate to hy, thatis,

i n

3 |

h (z,) = sup{zyv, ~h(v) | vieR T}, (2.12)
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and Ci is the (convex) effective domain of hl s

n

L
ciz{zieRlihi(zi)<+co}. (2.13)

We use the convention in (2. 9) that

s =1
7 o i ] s | o . A
v.h, {'yi zi) 0 if ¥ 0 an z, 0 (2.14)

The circumstances in which (Dj) is likely to be
more useful computationally than (DO} are those in which
it is comparatively easy to determine a solution vy (if it
exists, not necessarily uniquely} to any equation of the
form Vhy(vy) = z,. Then, as we explain in the next section,
the values of the objective function (2. 9) and its directional
derivatives are readily available, and the possibly nonlinear
aspects of the constraints z; € ini can, in a sense, be
ignored.

3. The nature of problem (Dl)
P We now state some general facts about the functions
hi and sets C; and how they may be determined from hy,
particularly in light of our assumptions of differentiability
and faithful convexity.

Let L; denote the linneality space of hy [12, p. 70].

Thus L; is a subspace of R i, and a vector s; belongs to
Li if and only if the difference quotient

[hi(vi +xs,) - hi(vi)]/?x, A %0,

is a constant independent of A and Vo Faithful convexity
implieg that vi = v;el; if h, is affine on the line segment

joining vy and v;; cf. [12, Theorem 8.8],

(48]
e
(e
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The affine hull M; of C, can be obtained from I,
as follows [12, Cor, 13. 3. 4(d)]. Let the vectors
s;pk =1, ..., ;) generate Ij, andlet ry be the con-
stant (3. 1} corrpspondmg to Slk Then M, is the set of

vectors z; ¢R M satisfying the linear equation

S,z =r,, (3.2)

-

where 8, is the matrix of dimension 4 >< n; whose k™
row is sjp, and r; is the vector in rRE4 xmtn components
rj} - Therefore, the linear equation

Yy Sz, =0 (3.3)

is a constraint implicit in the condltlon Zj € ylc in (2.11).

The affine set M. is all of R 1 if and only if
L; = {0}, which means, because of faithful convexity,
that hj is strictly convex. Thus it could be arranged by

n,
appropriate choice of the representations (2. 5) that M; =R 1
for i =0, ..., m, andthen every C; would have a non—-
n

empty interior in R * ,

" In general Ci need not have a nonempty interior
in R i, but it has a nonempty interior relative to Mj,
which we denote here by C! . Of course, C] is convex
and has the same closure as o The following facts are
elementary generalizations to faithful convexity of facts
derived in [12, §26] for differentiable, sirictly convex
functions.

(a) The set C:!t is the range of the gradient mapping

Vhy . Thus z; belongs to Ci' if and only if the supremum
n (2.12) is attained by some v;. Moreover, if z; belongs

i i
to Ci' and v; 1is any vector such that Vh, (vlﬁ =z., one
has

i

300



LINEARLY CONSTRAINED DUALS

5. = v. = h(v) . (3.4)

i
(b) If z, and zl,' are elements of R ' such that

z, + Azl eCl, 0< A< (3.5)
1 4 1

0 ]
then

ni(zi) = lim hi(zi—'.\zi) : (3.6)
A O
Thus the values of h;: on the closure of *G. can be ob-
tained as simgle limits of the values of hi on Ci' .
(¢) hj is a continuously differentiable, strictly
convex function relative to Ci . Indeed, suppose that z;

and z] satisfy (3.6), and let

*
o(\) =h, (z, +1z!), N 20, (3.7)

If 24 belongs to Ci , and v. is any vector such that
Vhi(vi) = zq, then ¢'(\) Idecreases to ¢'(0) as M\ tends to
0, and one has ¢'(0) = ZiVy . (Thus,win particular, vy
gives t}:;ﬁe directional derivatives of h1 at zj; in fact,
vy = Vhi (zi) if C' is full-dimensional.) On the other hand
if z; does notbelong to C; , then the derivative ¢'(A)
decreases to =« as A tends to 0. (In other words, hj
becomes "infinitely steep" as one appreoaches the relative
boundary of Cj .)

{d) One has Ci = C{ = Mi if and only if

lim hi(hsi}/x = +oo for every sif Li . (3.8)

A=+ o0

301



R, TYRRELL ROCKAFELLAR

These facts vield much information about the naturs
of (D)., For notational convenience, let us set 1\?( =
(N =

(Y15 +++3 Yp) In RHH z =(ZO, svey Zp) in R ng +
Foow. + nm) 1
= + - ] .9
Gly, z) kO(zo) i kl(yl, zi) w8k BT zm}, (2:9)
), & - - .
Kotzg) =cg +ap2g ~hylzg) s (3.10)
lny 2.0 =gy, Bae, =uli b 23 4F = 58
Ki\ye B =opyy Fagm m vty 20 90y, 2 0,
=0 if yizo and z, =0, (3.:11)
= -« otherwise (1 =1, ..., m).
Note that for i # 0 one has
1 7 } =) > ; :
ﬁi(\yi, \zi} \ki{yi, zi), AN=0 (3l

In (D]), G is to be maximized subject to (2.10). The
functions k; are concave and upper semicontinuous [12,
P. 67 and Theorem 13. 3], and therefore G is concave and
upper semicontinuous. Thus for every real number o, the
set of feasible solutions (y, z) to (Dp) giving a value
>« to the objective function in (D7) is a closed convex
set.

The differential properties of G can be derived
from those of the functions ki, which are apparent from

(¢} above. In particular, for i = 1, vaay m 1ot

Fi = vy, 2 Ik fyjs2) >0} = {ly;, 2)ly, 20, 2,¢y,0.} .

i
{3.13)

302



LINTARLY CONSTRAINED DUALS

Then Fi is a convex cone whose relative interior is
7 Z. , > 0 z, ey, C! 3.14
{(}i, l)lyl ; 2;¢v.Cl ( )

[12, Theorem 6.8], and k; is continuously differentiable
relative to this relative interior. Furthermore, k; becomes
“infinitely steep'" as one approaches a relative boundary
point of Fj, unless the boundary point is the origin. At
the origin, k; 1is linear on every ray in F; by (3.12), and
the directional derivatives of k; are therefore trivial to
calculate.

It is possible, in view of all this, to regard (D)
essentially as a problem of maximizing a differentiable con-
cave function subject to only linear constraints. The exact
sense is explained by the theorem which follows.

Let F denote the set of all feasible solutions
(v, z) to (Dp), andlet T' be the modification of T ob-
tainad by substituting Ci' for Ci in (2.11), Let F" be
the modification obtained by not only substituting C{ for
Cy, but also strengthening the constraint y; >0 to y; >0,
except for indices 1 such that h, = 0 (fi affine). Of
course, the sets F, T' and F" are convex, but they
need not be closed., Their closures coincide, however, if
e

Theorem 1. Suppose that F"# § . Then the objective
function in (Di} has the same supremum over F' as it has

over I, and the optimal solutions to (D;), if any, all
belong fo F'.

Furthermore, let (v, z) and (v', 2') be such that

Lyt ay', 2zl e Py 0<_.\<>\0. (3.15)

Then the concave function

(M) =Gy + \y', 2 + rz") (3.16)
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is continuous for 0 < A < Ay and continuously differentiable
for 0 <X <Xy. The derivative ¢'(\) increases to +o as
A tends to 0, unless (v, z)eF', in which event o¢'(\)
increases to the (finite) right derivative of ¢ at A\ = 0.
Proof. The hypothesis implies that F lieg between
F' and the closure of F'. Therefore G, being concave,
has the same supremum over F' as over F [12, Cor. 7.3.1].
The differential properties of G describad in the theorem ars
immediate from the properties of the functions k; noted
above, and they imply in particular that the supremum cannot
occur at a point of F notin T'.
Theorem 1 asserts that, if F" # @, the constraints
zgeCg and z;ey,Cy (I =1, ..., m) can be replaced in
(D) by z;ey;Cl. Moreover, latter constraints are auto-
matically taken care of, in the sense that, as one approaches
a point (y, z) which is excluded by these constraints but
not by the other constraints, G becomes "infinitely steep. "
Thus the only constraints in (Dy) which have a practical
effect, in terms of gradient projections and related com~
putational techniques, are the linear constraints (2.10) and

-5 - r -8 = d >0
r Z o, yii izi 0 an yi_

(3 AT
e o Bl x e g By

Of course, if the closures of the convex sets Cy
(and Cj) are all polyhedral, then the closure of F (and F')
is pelyhedral and hence describable entirely by a system of
linear equations and inequalities. In particular, suppose
that every h; satisfies condition (3.8). Then one has
F' = F, and the closure of T is described simply by (2.10)
and (3,17). As one approaches boundary points of F not
in F itself, the objective function tends to -2 .
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4, Examples

The following pairs of problems (P) and (Dj)
illustrate the facts described in §3, as well as indicate
areas of application of the duality results to be developed
in §5,

Example 1. (Geometric programming [1, 2, 3]). Let

n,
i
h,(v,) :log(E e lk) 1= 0 5 vy 'y (4.1)
i ]
k=l
n

where v, 1is the kth component of v; ¢R 1 Then hy

is an analytic convex function (hence a faithfully convex
function) such that

I1, pl
:{zieR1|zil’ZO, > 7 =1 (4.2)
. o=l is
nl
Ly '{Jf
hi{zi) :15'11 zl log Zik’ zl sCl 5 (4.3)

(with 0 log 0 =0). Setting x; =log t; , one sees that
(P) is equivalent to a typical geometric program. Let

bi =0 and ¢y =0, and lm the components of Ai and ay
be denoted by ai. and a},O , respectively. The dual

problem (D) corsists of maximizing the concave function

N <l i o
L 4 ozglay g -logz )+ /),y logy, (4. 4)
=0 k=l * - t

subject to the linear constraints
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zikzo for 1 =0, ..., m and k-—:l,...,ni,
n,
¥ . ;
=1, and z, =y, for i=1, ..., m (4.5)

P T = ik i ’ #
k—ln k=l
m i i
1 Z a .z, =0 for j =1, ..., m.

iZ0k=1 Xj ik
Here the feasible set F is actually polyhedral, because
the sets C; are polyhedral and bounded.

Example 2. (Quadratically constrainad quadratic
programming; cf. [7, 8, 9, 10]). If each of the convex
functions f; is quadratic, it is simple to write down repre-
sentations of the form (2. 5) with

n,
1
. 2 _1v 2

hi(vi)~2]Vi| =3 Vi (4.6)

k=l

n,
One then has C'.i =R ! and

* 2 ll

h (z )--Iz| =EZ_, 2 s (4.7)

so that in (2, 9) one has

B
Yy ityi zi)

2 ,
1zi| /Zyi if yi>0 (z:.L arb. ),

I

0 if yi=0 and zi=0, {4.8)

+ o ptherwise.

1]

Observe that the last remarks of §3 are applicable to this
example; hi satisfies (3.8).
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The more general ﬁp—programs of Peterson and Ecker
may be obtained by letting hi be of the form

n
N Pik
hyv) = ), (/e v, I'F, 1< <+ w, (4.9)
k=1
in which event one has
n
sk \':!.' qik
hitz)= ), Waglzy |7, 1<ag<+=, (4.10)
k=1
where l/p1 I/Cz =1, The next example shows that a

much broader claau o- problems can actually be handled just
as easily,

Example 3. (Quasiseparable Programmingj. The
convax function fi is said to be guasiseparable if it can be
expressed as a sum of functions, each of which is a linear
function on RT composed with a convex function (possibly
infinite) on R . Thus f; is gquasiseparable if and only if

fi can be represented as in (2. 5) with hi separabla:
I'l.
h(v,) = ‘ h (v,) (4.11)
it ik ik

.—l

Assuming that every f; has this property, in addition to
the properties already specified, we can actually get repre-
sentations in which the functions h, ik on R! are all d1ffe1
entiable and strictly convex. The conjugate functions h
are then, of course, relatively simple to determine, and
one has

Furthermore, C, is the product of the (nondegenerate)
intervals

2
{
i
M
s
s}
=
\
|
b3
M
—

G, = ;
ik “ik ik ik
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Thus C; has a polyhedral closure and a nonempty interior

kol
(Mj =R i} . It follows that the feagible set F has a poly-
hedral closure,

Example 4, (Convex programming with linear con-
straints). Suppose that f; is affine for i =1, ..., m, SO
that the term hy(Ayx + ai) can be omitted in (2.5). Then in
(Dl) one maximizes

c. +) cy +az ~h(z) (4.14)
=T 0

subject to the constraints

m
b0+§, yibi-:r.l\:;zozo, V.20, z ¢C, . (4.15)
i=l
If these constraints can be satisfied with z5eCh, then,
as explained in §3, the condition ze¢C, reduces for prac-
tical purposes to the linear constraint SOZO =r, (which is
vacuous if Cg has a nonempty interior), If hg is strictly

convex and satisiies the growth condition (3.8), then

n
CO =R 0 .

If i, itself is affine, so that (P) is a linear program-
ming problem, everything concerning zg can be omitted
from (4.14) and (4.15), and (D;) 1is the usual dual linear
programming problem, coinciding with (DOJ.

Example 5. This miscellaneous, but specific example
illustrates some useful tricks, as wel]l as a particular com-
putation of the conjugate functions h;. We consider the
problem of minimizing )

)4—?}( —:exp|x - x| (4.16)

(1/4)(1 + 3x% > 1 2

1

2 G F .
over all (x xz) ¢eR "~ satisfying the constraints

l’
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5 5.1/3 2 '
(xl + xz) / t2x, 29, (4.17)
%, 20, x2_>_ g, Xlxzzl : (4.18)

In the given formulation, this problem does not
satisfy our assumptions, because the absolute value term in
(4.16) spoils the differentiability of the objective function,
and the quantity 1 - R1Xp in (4, 18) is not convex as a func-
tion of x; and x,. Also, the first term in (4.17) is not
globally convex as a function of 2] and X5 although it
is convex for x; > 0 and X5 > 0. Note, however, that
the objective function is the pointwise maximum of two
analytic convex functions, and that the set of points satis-
fving (4.18) 1s indeed convex.

We may transform this problem into the deslired form
as follows. First, where the expression |x1 - %, | occurs,
we replace it by a new variable xg , which is required to
satisiy

> - > =
Xy 2%~ X%, and Xg 2%, - X

K
(A similar device can be used whenever the given objective
function is the maximum of several functions which are
differentiable and faithfully convex.) We nextreplace xj
and x» by :’Xl| and |x2| in (4.17) to get a globally
convex function (see below); this involves no loss of gener-
ality, because of the nonnegativity in (4.18). Finally, we
replace (4.18) by an equivalent convex constraint:

Z}l/z—x -3 KD (4.20)

(4 + (x -x 1 >

1 2)
(The trick used to obtain this constraint is the following one,

which is applicable under quite general circumstances. Let
the set of all (x;, x,) satisfying (4.18) be denoted by H .
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We observe that for each {xl, Xp) € RZ there exists a unique
smallest real number A\ such that (x; + X\, x, +\) belongs
to H. Denoting this » by r(x, x»), we have

- <

and r is convex. The function r is easily computed in
this case, and the left side of (4.20) is 2r(x, %5) )
The given problem is thus equivalent to minimizing

£,(x) = (1/4)(1 + 3% - 7%, + exp x

1 3

subject to the constraints

£.(x) :(|xl|5+ lx2]5)1/3+ 2x2—950,

() = (4 + (x, - XZ)ZJI/Z %

= - - <
T5lR) SRy iRy B B0,

f{x}:-x1+x2—x3_50,

where x = (xl, X2y X3) ¢R3. The functions f; are all differ~
entiable and faithfully convex, so this is a problem (P) of
the desired type.

The next step is to choose suitable representations
of the form (2.5). Here convenience in computing the con=-
jugate functions is the chief guide, and this is dependent on
one's knowledge of general rules and examples, such as
those in [12] (cf. the situation in computing indefinite integ-

rals), We take
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-
Bo(Vop Vo) = W4y, + exp vy, ,
~ 5 51/3 2
by (Vi vyps V) = ‘l"ul h l"lzl R TE
R 2.1/2
hZ(VZI) =(4 + VZl) ,

1 0 0
30 0
A=[ ], A =0 1 of, A =[], -1, 0]
0 [0 0 1 1(J10 2

a, =(, 0), a =(0, 0, 0), a,=0

b, =(0, =7, 0), b; =(0, 0, 0), b, =(-1, -1, 0),

We do not define h;, A, or a; for i=3, 4, because f
and f, are linear. The only trick here that deserves special
mention is the introduction of the variable v;;, where v
could apparently have been used just as well, This makes
it easier to compute h’f . (The same trick can be used
whenever a function h; is a sum of convex functions, each
of which has a known conjugate.)

The conjugate of hy 1is easy to determine directly
(cf. [12, p. 106]):

e _ 4/3 . N
ho(zm, 202} = {3/4)20l Al zoz{log zy, 1y5
¢ o= 4= z JER2|z >0} .

0 01? "p2 0z=
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The conjugate of h; is obtained by a fancier method, al-
though in principle the Legendre transformation would give
the global answer [12, Theorem 26.6]. We write

hy(Vy)s Vygs Vyg) = (5730w vy, v ) + 4w,(vya),

where

w, ( |5

51/5.5/3
1990 vy, 17977

o) 2 (3/5) (lvy,

~ _ 2
WZ(VlS) = (1/2)\.!'13 i

(The convexity of wj follows from [12, Theorem 5.1] and
the convexity of 2P norms; this provides in particular one
way of verifying the convexity of hj.) We then have

* *
n (255 25 213) = (5/3}Wl((3/5)zu, (3/5)212} +
+ 4W2((1/4)zl3)
with C, = R3, where, using [12, Theorem 15. 3],

e 5/4 5/4.4/5.5/2
wy (255 2),) = (2/5) (127" + 1z, 1757177,

* _ 2
w2(213) = {1/2)213 =
Finally, we compute from the definition that

h'(z ):-—2(1-221)1/2, c, ={=z

2(251 2 | 122, <1} .

21 21
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Substituting these expressions in (2.9}, (2.10) and (2.11},
we obtain the following dual problem (Dj) in the variables
¥y (e Sy wen g B Z 01 (k =1, 2), 21k (k =1, 2, 3) and
Zop ¢ maximize

4/3
Zq) + 2y~ (3/4)201 p—

- /3379 T 22
2 | % - g2 V2

-1
~/8)yy 2, 2~ %21

subject to the linear constraints

+ 3z +Z..+ 2 =0

W H ey Ty ol T T %y T %

=" B AL 4. . g =
Y, "y, P2, v B, 2 =T,

(4,22)

y, 20

T ,3’220, b

20, v >0, =z >0, —y_<z_ <y

3 4 garTt FpEeTP =g

5. Relationships between (P), (DO) and (Dl)

The general duality results in [12, §30] are, of
course, applicable to (P), (Dg) and (Dj). It would be
repetitious to state these results here, so we only present
certain refinements which follow from the assumption that
the functions f; are faithfully convex. The main goal is to
indicate the axtent to which (P) can be solved by solving
(Dq).

We denote the optimal value in (P) by inf (P); this is
+oo by convention if (P) has no feasible solutions. Ths
exprassions sup {Do} and sup (Dl} have an analogous
meaning.
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Before giving a duality theorem concerning these
optimal values, we describe the basic relationship between
problems (DO) and (Dj). Let 90 and g1 be the upper
semicontinuous, concave functions defined by

gow} =g(y) if vy>0,

(5.1)
== if yZ20,
gl(y, z) = Gly, z) if (2.10) holds,
(5.2)
= —co if (2,10) does not hold,
where g is given by (2.2)and G by (3.9). Then
sup{Do) = sup{go(y) | vy erR™} 3 (5.3)
m N
sup(D)) = sup{g (v, z) | yeR", zeR }. (5.4)
m
Theorem 2. For each veR  one has
(v) = sup{a,(y, z) | zeR") (5.5
g,¥) = suplg,ly, 2) | 2z« ; .5)
where the supremum is attained by some =z. Thus
sup{DO) = sup{Dl}, (5.6)

and (Dg) has an optimal solution if and only if (Dq) has
an optimal solution.

Proof. The proof of this result does not depend on
taithful convexity, but it uses the finiteness of the functions
hj in applying Fenchel's Duality Theorem [12, Theorem 31,1].
Let P and P be the perturbation functions associated
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with (Dg) and (Dj), respectively. Thus pg(u) is for
each ue¢RM the infimum of f3(x) subject to (2.1), while
pyfu, v) is for each ue RM and wveRY the infimum of (2.7)
subject to (2.8). The functions py and p; are convex,
and we have the conjugacy relations

9,(v) =inf{yu + po(u) | weR™} =(=p) * (v), (5.7)

g,ly, 2) = inf{yu + zv + p,(u, v) | u eRm, Ve RN} C

(5.8)
= {—pl) * (v, z)
(see [12, Theorem 30.2]). Also
Pyu) = p(u, 0). (5.9)

Therefore, assuming for the moment that p(u, v) is never
-w, we have for every ye¢R™

g, (y) =inf{q(u, v) + pl(u, v) | usRm, veRN}, (5.10)

0

where ¢q is the convex function on R RN whose value
at (u, v) is yu if v =0 and +« if v # 0. From Fenchel's
Duality Theorem, we then have

5, = sup{(-p)* (v, 2) - q' (v, 2)ly eR™, 2¢R"}, (5.1

where the supremum is attained, because the interior of the
convex set {(u, v}lpl(u, v) < 40 } meets the subspace
{(u, v)iq(u, v) < 4o} ., Of course, the conjugate function
¢ vanishes at points of the form (v, z) and has the value
+oo at all other points. Thus (5.11) is equivalent to (5.5)
by (5.8). If p; takes on -, the expression o« -
could occur in (5.10), and a different argument must be
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given. In this degenerate case, p] takes on -w through-
out the interior of its effective domain {(u, v) | pylu, v)< ~m}
[12, Theorem 7.2], so that pgy also takes on -« by (5.9).
But then gg and g; are identically +w by (5.7) and (5.8),
and (5.5) holds trivially.

Theorem 3. (Duality) If (P) has a feasible solution,

then

inf(P) = sup(D,) - (5.12)

Moreover, if (P) has a feasible solution x such that
fi(x) < 0 for every index i such that f; is not affine, and
if the common extremum in (5.12) is not -, then (Dj)
hag an optimal solution.

On the other hand, suppose (D) has a feasible
solution (v, z) such that y; >0 and z;«C} for every
index i such that ny #0 (thatis, the set F" is nonempty,
as in Theorem 1). Then again (5.12) necessarily holds, and
if the common exiremum is not +=, (P) has an optimal solu-
tion.

Proof. The assertions in the first paragraph are im-
mediate, in view of Theorem 2, from the corresponding asser-
tions for (Dy) (see [13] and [12, Theorem 28.2]). To prove
the assertions in the second paragraph, we express g) as
-(Kg + -+ +Kpay), where the convex functions Ki on
’Rm X RN are defined from the functions k; in (3.10) and
(3.11) by

K.y, 2) ==k.(2.), (5.13)
Ki(y, z) '-—ki(yi, zi} for 1 =1, ..., m, (5.14)

Km__l{y, z) =0 if (2.10) is satisfied, (5,

(53}
—
w
—

=+ if (2,10) is not satisfied .
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We then have

sup(Dl} = —mf{KO B s T Km+l'] = {KU + ...t Km+l) *(0,0)
- K K" )0, 0) (5.16)
TR 2t DBy T

by Theorem 20,1 of [12], where T denotes infimal convolu-

tion, and the infimum in the definition of 1 is attained.
{Th" hvpothesis of the cited theorem, for the fUDCtIOI‘S K
is the condition that F" # @.) The conjugates Ki are
easily computed, and one sees thereby that the infimum
symbolized by the final expression in (5.16) is inf(P) .
We leave the straightforward details of this to the reader.

Remark 1. If inf(P) is finite and the functions h;
all satisfy (3.8), as in Lxample 2, then (P) has an optimal
solution. This follows from [12, Cor. 27.3.3].

Remark 2. Theorem 2, applied to Examples 1 and 2,
vields the duality theorems of Duffin, Peterson and Zener
in geometric programming [1, 2, 3] and Peterson and Ecker
in {P-programming [ 7, 8, 9, 10], except for those results
involving the subinfimum in (P). The latter results are
covered by the general theorems stated in [12, §30], as has
already been pointed out in the case of geomeiric programming
by Hamala [6].

It is clear from Theorem 3 that the optimal value in
(P) can usually be obtained by solving (Dl), but further
analysis is needed to see how optimal solutions to (P) can
likewise be obtained by a duzl approach, In this analysis,
it is convenient to represant each oi the lineality spaces

L; introduced in §3 as

n,
L ={weR | Bw=0}, (5.
1 1

53
—
=1

where Bj 1s some matrix. Such a representation is of
course, easy to obtain from the matrix Si by elementary

linear algebra. In particular, if h; is strictly convex, one
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can take Bi to be the n; X n, identity matrix. Note that
the subspace

L = {weR" | BAW = 0} (5.18)

is the lineality space of f; . Thus fi(x + Aw) is an affine
function of A forall x, if w satisfies BjA;w =0.
Theorem 4. Let (y, z) be an optimal solution to
(D1}, and let I be the index set consisting of 0 and all
the indices i¢{l, ..., m} such that L i #0 . Then (P)
has an optimal solution if and only Vi Tz € Ci' for every

‘T
Lotk

Furthermore, suppose that the latter condition 1S
satisfied, and for each ieI let v; be an elementof R !
such that VPi(vj) = y] 'z (with the factor v;@ omitted if
i=0). Let M Dbe the affine subset of R? consisting of the
vectors x such that

BiAix = Bi(vi - ai} for every iel, {5.19)

The functions f; for i<l are then affine on M, and the
optimal solutions to (P) are the vectors x such that

xeM and fi(x) =0 for every ice I, 1#0, (5. 20)
fi(x} <0 forevery if1I. (5.21)

Proof. It follows from the first assertion of Theorem
3 that x is an opiimal solution to (P) if and only if x isg
a feasible solution to (P) such that

n

fO(X) = gl(y, z) . {(5.22)

I

Using the defintion of the conjugate functions hf‘, one can
easily verify that (5.22) is equivalent to (5.20) and (5. 21},
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if M is taken to bethe getof all x« R? such that

Vh.(Ax +a,)=v, z, forevery 1el (5.23)
iv i1 i i

(with yi_l omitted if 1 = 0). The esquivalence of this des-
cription of M with the one in the theorem follows from the
fact that hy is faithfully convex. Indeed, assumil}_% that
vy satisfies Vhi(vi) =y;zy, one has Vhi(w) =Yi724,

if and only if w - vy € Li . Thus (5.23) holds if and only if

B.(Ax, +a -v,)=0 forevery iel,
i1 i i

or in other words (5.19). This completes the proof of Theorem
4.

The affine set M in Thecrem 4, if nonempty, is a
translate of the subspace L equal to the intersection of the
Li for ieI, and hence one has

dim M =dim L < min,
- iel

dim L£ : {(5.24)
Therefore in particular, if one of the functions fi for iel
(e.g. the objective function fo) is strictly convex, so that
dim Lj = 0, there is only one element x in M. This x
must automatically satisfy the equations and inequalities in
(5.20) and (5. 2l) and thus be the unique optimal solution in
(P) .

More generally, if M is not zero-dimensional, we
may look &t the set M' consisting of the vectors x which
satisfy (5.20). Since the functions f;, ieI, are affine on
M, thisinvolves solving a further system of linear equations,
and M' is an affine set. If M' is zero-dimensional, its
unique element x is the unique optimal solution to (P), as
in the case just congidered. Otherwise, the problem is
reducead to the following: find an xe¢M' satisiving (5. 21).
This can be solved by linear programming if the functions

f, for ifI, like those for iel, are affineon M', asis
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true certainly if -L! O L for every i£ 1. (Observe that this
holds in Example 4. It also holds if Lj D Ly for i =1, ...,
m.)

At all events, if none of these shortcuts can be used,
one can pass to the following convex programming problem,
in order to obtain a solution to (5.20) and (5. 2l) and thereby
an optimal solution to (P):

2
(Pt) minimize*zl lx[ over all xeM' satisfying (5. 21).

This problem is in fact of the same type as (P) . (The linear
equations expressing the condition xeM' could be repre-
sented as linear inequalities, but they could also be used to
eliminate some of the variables x; and thus transform (P')
into a similar problem of reduced dimensionality.) Thus (P')
can be attacked via its dual (Dj), justlike (P). Since the
objective function in (P') is strictly convex, an optimal
solution to (D'} immediately ylelds an optlmal solution to
(P'), as just explamed

Thus, having computed an optimal solution to (Dy),
one can determine an optimal solution to (P) by solving at
most one more problem (Dj), which is similar to (Dl) but
probably of a vastly lower dimension.
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