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ibstract, Thc theory of conjusaic convex iunct ons is rFFlied to a lundamental

class of "convex" problens !n tho calculus of variaiions and optimal control This

cla$ bas mady sDecial Dropeities which have not Drcviouslv been exploited and lor
which the stardard melhods of approach are inadequate Dualitv theoreDs are

established which yield ne! resulls on the existence ol optimal arcs. as vcll as necev

sary and sumcicn t condii ions lor oFlnnahy. These rcsults have sone relevanccalso to

lhe study ol nonconvex" problens,

Introtluction. Many problens in the caiculus ofvarialioDs and optimal conrrol

can be fornrulated as generalized problems ol Bolza. We lale slrown in [9] rhat il
certain convexiry assumptions and miid rcgularily assumplions (noi requiring

ditrerelrtiability) are satisned, such a problem has associared \vi!hit a dual problem,

which is likewise a seneralized problem ol Bolza The duaL of the dual problem is

the original problen.
The main resuit oflhis paper, Theo.en 1 (formulated in l1), relates the cxtrenal

valuesin adualpair ofproblems ofBolza rnd gives coDdilions underwhich opiinlal

arcs exist. This theorem also provides a condition lor the weak compactness of
certain subsels ofthe (nonreltexive) Banach space ofall absolrtely continuous arcs

j': I0, rl >R". lt establishes (Corollary l) a class or probiens ior $hich rhe

gere.alized Euler-Lagrarge equation (or Hanilionian equatioD) .tDd transvenaliiy

condition studied in [9] and tiOl are necessary and sumcient if an arc is to be

opiimal.
Duality in various forms has already been invcstig.tted in optimal control and

thc calculLrs ofvarialions by a number of authors (see the remarks and references

in [9]), bul the duality conLent of Theorem 1 is not imnediately comparable with

anything in this literature. The paltern is thrt of ihe gcneral dualitv theorems that

have been developed for convex programs, and the resuh itsell sharpens Theorem

3 in ourpreceding paper [9]. However, there is an essential dilTerence. The previous

theorems applicable to convex problens of Bolza have hypotheses concerning a

convei subset olthe dual ofa nonreflexive Banach space: in effec!, certain points are
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assxned Lo bclong to the weak* closurc or Mackey inrerior ofthis se1. Needless
to say, such conditions can bc ver), hard to veriry. Thc chief contribution of
Thcorem I is ro furnish, dcspite rhe underlying nonreflcxiviry, alternari!e.,1iniie-
dinrensioral" condiLions slated directly in terns ol Lhe given Lagrangian functions,
Hamiltonian functions, boundary tunctio s, and iheir growrh prope.tics. Mosr of
rhe olhe. thcorems and propositidrs in this papcr are aimed ai rhe elucidaiion ol
these conditions and Lhei. coDscctucnces.

A precise conrparison of the existence content ol Theorcn I with other resulrs
on the exi\tcncc of optimal arcs is dimcult. DirereDt atrihors adopt difierenl basic
nodels, and much reformulation js necessrry in passing from ore conrexr to
anothcr. Amorg recent papers on the subject, those ol Cesari t2l and Olech [5] on
probl€ms of Lagrange are thc most relelant to the presenl work. However, the
problems lreated in thes€ papers are subjected to sLronger assumptions ol con-
rinuiiy and boundcdDess, yet less restriclive assamplions ofconvexity, than the ones
treated here. For rhe class of problens to which all rhe theories are inmediatety
applic.tblc, ir appears lhal our exincncc results are sharperl although nor greatlv
diferent in scope.

The principal distirction is rhat, in the theorens of Ccsari and Olech, bounded-
ness sonditions (needed in co\npllc.tuess argunenrs) are iniroduced through rhe
specificrlion ola class of "ad issible" arcs over which the givcn furctional is to be
mnrnnizcd. Such conditions do nor appear explichly in Theorem l. Instead.
boundcdness condltions, to the extent rhai they are prcsenr at all, are incorporared
:11. 

' lae groqrl c, rd.lion\ on rle gi\e1 'urcl ..r.
In lact, ralhe. !han assuming nuch boundedness, Theorem I in its compacrness

assertior pro!ides a new crjle.ion for boundedness. This crirerionis applicable e!en
to problems not satislyiig our convexiry assumplions, and ihus ir could lead ro
lurllrer cxtensions ofexisLcnce theory. We do nol prrsue rhis below, but the idea js

quiie sinplei If a gencral Balza functionnl (not nccessarily convex) maiorizes a
convex Bolza fuDctional satisfying all the conditions in Theorem l(a), lhen its level
sets ar€ relatively compact ln thc weak topology, and in particular bounded.

The approach we use 10 dcrive the existence of opLimal arcs is entirely difi'erent
lrom the usual app.oach, where it is shown thrt I minnnizing sequence otarcs has
a subsequence converging in sone sense to a solution to rhe problem. We get
existence elsentially byinvokinga scparation theorem. A major complication js the
fact that rhe separat;on thcorem is invoked in rhe dual ol a ronreflexive Banach
space. lt rnusl be shown by a lengthy argumenl lhat thc separating hyperplane can
aciually be represented by an elenenr of !he original space, rarher than ihe bidual
space- Of course, this approach 10 existence theory is not possible for probtems
not satislying our convexily assumptions, although, as mentioned above, results
in thc convex case can be applied to more general cases indirectly.

The necessary conditions for optimality that ue oblain from Theorem t have
already been aDalyzed in detail in l9l and [10], and we do not develop rhem further



here. These conditions, involving subgradicnts of convex functions, are knorvn

always to be sufrcient 19, Theorem 51, a facr whicll serles to emphasize the special

nature ofconvex problems oiBolza and the desnability of a separate ireatment of
such problems. Particularlyin compulalional work, it isarluable to have conditions

for optinrality that are both n€cessary and sullicient. Thus, hopefully, the results in

this paper could lerd to improved algorilhms. The neccssary and s'tfficient con-

diiions. as well as the results on exisieuce and duality, may also be helplul in
applications of optimal conrrol to areas like economic growth theory, rvhere

convexity is olten very appropriate but ihe diffcrentiability assumprions typical ol
many physical appiicaiions are ralhe. unnatural.

Ourconditions for optimality depend on strongconvexity assumptions, but again

this docs not necessarily mean that thcy do nor have a bearing on "nonconvex"
problems. Afier all, nuch ofvariational llreory involves nolions oIlocal lineariza-

tion or convexification. One may speculale lhal a well-developcd theory of "con-
vexilied problems" could lead io further progress along such lines. This, ai leas!,

is one of the morivations for studying convex problems ol Bolza.

The detailed plan of this paper is described at the end of !1, after the exact

daremenr ull tne mo-n .neoren -1d ,r- Lo-Jlldrie'.

1. Statenent of the main theorem. To rcduce the length of the exposition, we

rssune lamiliarity with thc concepts and definitions in oxr previous paper on dual

problems olBolza [9]. Howcver, we repeat for easy relerence lhe descriplion ofthe
problem and the fundamenral assumptions.

Le! [0,I] be a fixed real inte.vrl (0<7< +6), and i€t 4 denote the usxal

Banach space of(equivalence classcs of) summable functions fron [0,7] !o R" (ihe

latlcr under the Euclidean nor,r L ). The norm on l: is denoted by . !. Ler ,4i
be the Banach space consisting ofall absolutely conlinuous arcs ir: [0,f] >R^

r - r,nri i ljr/rdl.J"

Wc consider lhe problen ofninimizing over ,'1i r functional ofthe lorm
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0.1) oi.r(-r) : /(jr(o.), jr(r))+ 
.f 4t,,1t1,441a,.

where / and Lt:L(t, ,.) are (everywhere defined) functions on X'x R' wiih
values in Rl u {+6}. This is called a contex problen ,/ -BoLd if the folbwing
condiiions are satisfied, as \{e henccforth always assune.

(1\) Each af the:funoians l andLQ, , ) is conuex, tavet se i&ntinuous, and ot

(B) L is mea'uruble fith respect to the *feld in l',Tlt. R" t R senerated bJ'

pft'tlucts af LebesBue sets in IO, T) and Botel set: ifi R't R', ot equiMlentlt I8), L

^ 
a amal canl)ex intestand in the sense oJ l'71.
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(C) Therc exist functions p e LF , t e Ltr and a e L! such that

l(1, jr,,) > (r., r(r))+(t), p(t))-a(t).

(D)'rhereeristlutlctionsxet.f,teLAandpeL\suchihatL(.t,x(t),t(t))=P(t).
These conditiors are discussed jn [9], wherevarious examples olcon!ex problellls

of Bolza are gi\en. Tlre], imply in parlicular that, lor every xeLf ar'td l)eLi,
a(1, -r(t), r(/)) is .t measLr.able funcLion oft which majorizes at least one sumnable
function of r. In fact, O,.. is a well-defined lunctional fron ,.1; to R1 u i+.clwhich
is convex and (weakly and sirongly) lower semicontinuous 19, Theoren ll. Con-
ditions (B), (C), and (D) are trivially satisfied ifl is jndependent of /.

Every arc r E,ti such that Or.r(n)+ +d) satis{ies

(1.2) (n(0),.Y(t))-- c,,

(1.3) (j'(r), -i(r) E r.(r) for almost every 1,

rhere Cr and Dr(r) are the (nonempty, convex) etrective domains of / and 4 |

(1.4) c,: {G,o,q)ER"xR' iGD,r,) < 16},
(l.t ,.0) : (.r, ,)€ R" x R' z(/, r, u) < +otr].

Tlrus nininrizing o,,i over,.1,1is equivalent ro tninimizins or.. subject to (1.2) and
(1.3).

'Itedral proole'r ol 8,7,r cor.sr.ol nrrrn'llg

rl.o' ,1 . .tt') - 4t tl}). t'\T))- l' v1r.py,1.p1,nL,
Jo

over ,4i, where ,T and ru.-ru(l, , .) are defined by

(r.7) n(ta,.1;: ft(to, -4) - sup {(c0,4) (cr, lb - t(ca, ct)1,

(r.8) LrtQ,s): Lt$,?): sup{(x,r)+(,,p) l(r, ir,..)}.

(Hcre ( , . ) denores the inner product in R", and the suprema are taken over all of
rR'r x R'.) An asterisk marks ihe conjugare ofa convex funciion. The dual functions
,? and M again satisfy (A), (B), (c), and (D), and thejr duals are jn turn / and t
19, Theorem 21. CondjLio.s (C) and (D) are dL,al ro each other, iD thc sense that
functions r,?.d have tbe propcrty in (C) if and oily if ,1(t, t(t), r0)) < a0),
whereas functions r, ! and p have rhe propcrty in (D) il and only if

M(t,p, s) Z <p, n(t)> + <i, .1(r)) -d0).
Minimizhg dr,.u over all of ,.1i is equivalent ro minjmizing o.,M subject to the

(r.e) (p(0), p(r)) e c^,

(1.10) (plt), i(t)) e DMQ) for almosr every /r
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0.1l)

(1.12)

(The colrvex sets C. and r-(1) can be determined from thc r€cession functiors of/
and r.; see S4 and [6, Theoren 13.3].)

As shown in l9l, one alwa)rs has the inequaliry
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C. - {(4, d") € R' x R' I n(da, d; < +a.1,

,v(r): {o,.!)€R^xR" M(t,p,s) < +"r1J.

(r.13) ,'ll t..t't = -"':,1 t*"trr,

(1. r 4) H(r, j., r) : sup{(,,2) L(t, x,") | e R']r.

and equaliiy holds if and only iflhe Bolza functionals o,.. and o,,,.- " behave loxer
semicontinuously uith respecl 10 cerLali periurbations." Theorem I, the existence

and dxality resull below, givcs conditions on /, l, ,, aDd ,1,1 for equality kr hold in
(1.13) and for the infima ro be attained. These condirions arc oftwo types: stronger
forns of (C) and (D) and condirions on the attainability of endpoint pairs in the
seis Ci and C..

The stronger forms of (C) and (D) are

(Ca) Fot edch p E R there exist li dians s e Li and de L! such that L(t, x, t)
> (.r, r0)) + (u, r) -a(r).

(D) Fot each x e Rn therc exist functians t) e Ll and p E Li such that L(1, x, t(t))
sP(r).

Condilions (CJ and (DJ are daal 1() erch olher, like (C) and (D): t has the
property in (Co) ifand only if,L/ has the property in (DJ, rDd vice vcrsa. We show
in $2 that these conditjons can be expressed jn an eqriv,tlent, but seemingly weaker,
manner in terms of the //amiltonian fuc,JLot

The Hamiltonian form of (CJ corresponds to a basic condirion employed in
cxistence theory by Olech [5].

Bolh (CJ and (DJ hold if and only if fi(t, r, p) is llnite and slrmmable in / for
every (.r, r) € R" xn" (S2, Corollary to Proposition 1). In the case where r is

independent ol r, (DJ holds jf and only if 11 nowhere has the value cc, while
(Co) holds ifand only if Hno$'here has rhe valxe +l! Gee Proposiiion I in 

"i2). 
ln

essence, (CJ is a growth condition on the convex functions Z(r,,y, .) resembling
the classical growlh condilions of Nagumo and Tonelii Gee i2, p. 4031 and the
relerences given there).

Observe thal (Do) precludes the presence of "implicit strte connraints" in the
problem of Bolza for I and l,, since it implies that for eyery r e [0, I] and 'I € -R"

ihere is at least one adnissible cloice of ,J. that is. at lead one , € R' such t|at
r(r, ir,,)< +otr. Sinilarly, (CJ precludes the presence of "implicit state con-
straints" in rhe probtem ol Bolza for ,1 and ,11. More is said about this below.
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We call an endpoint pair (co, .r) E ni x n" atainabte tot L if rhere is an arc
r E,.11 such rhat

0.1s) '(0): co, .r(i')

(1.18)
Tf o,.1, : id o,,,..,(z) > .o.

If in alditio atr(C^\r C ):RtR, ien nrc canftx teuet sets

( 1.19) {}El* or..(r) s p}, pen',
arc veakb, cat pact in Al.

(b\ rJ undition (Do\ hotds a diCt^rj CL+ a, then

(1.20)

"'l,t* 

t,."t'l - nin o,".M(p) < +co.

: ", -a J'21,, 'xy, 
io))., < +co.

and \teakb atainuble lor a if rhere is an rrc :r €,.1i srch that

(1.16) -r(0): e, r(7') - cr and (x(r), j0)) ecl r,(/) a.e.

Rclationships berwcen these conceprs are treated in Sa (Corollary a ofTheorem 3),
bxl the lveaker concept is the one used in starjng Theorem 1.

The se1 of all weakly xLrainable pairs (b, .") for Z is denolcd by C,. Similarly,
C, denotcs the set ofall (do, dt € R" x n', for which ihere exisrs an arcz € li such

(1.17) pQ): do, pQ):d" and (p(r),/i(/)) €cl rM(r) a.e.

Obriously C. ard C, are convex. Furthermore, it O,,.+ +or we have Cr n C.+ o,
while il O..",= +co we have C. 

^ 
Ci,+ r- In Theoren I ir is required thar these

interseclions remain nonempty if rhe seis are replaced by rheir relarive inreriors.
We denote by alT C rhe altr e r,/1 of a set C (ihe smallest affine set contaiDing C,

an afiine ser being either the empty set or a translarc ofa sxbspace). tf C is convex,
we denote by ri C rhe /€latiue intetiot of C (the jnrerior ot C relarive ro atr C).

THEoRTM 1. (r) If con.lition (Ca) holds a diC^^riC +a,tue

IJi additio atr(Cto C): Rr x R. thetl the conDex IercI:tets

(1.21) tu, E,a; I o..M(p) s p], p e Ri
are veak\ compdct in Ai.

Here w€ use the conrention of lvriting "nin" nr placc ol.,inf,' 1(] indicaE rhar
an infimum is attained. Tlrus (a) asserts in particular rhat an oplj.nal arc exists for
ihe problem ofBolza for I andl, unless there is no feasible arc at alt, which corre"
sponds to the case rvherc O.,- is not bounded bciow. Similarly, (b) asserts that an
opiimal arc exisls lor l'l and ,U, unless there is no feasible arc at a1l, which corre-
sponds to the case \rhere Oi., is nol bounded below.
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Note that parts (a) and (b) ofTheoren i imply each other by duality. Therefore
in developirg the proof ofTheorem 1 we concentrale on (b) and sr.rte many results
lor this case onltr, alihough such results could easily bc dualized. However, we

treal the assumptions in (a) in considerable detail, since it may be desirable 10 use

(a) to deduce the existence ofoptimal arcs for / and a vjthont e)tplicirly dete.miniDg
the dxal functions m and M. To tbis end, one can apply io l and Z olher ve$ions
oltbe condirnrns in (a) which wc establish below.

Tn particular, it i shown in S4 (Corollary 1 to Theorcm S) ihat, in the case where
(CJ is satisfied and o, i is not identically +co on,,11, one has

(1.22) ri C.ndCrl o and atr(C.uC",):R.xR,
if and only if rhere is no arc z E /r1, other than z:0, such tlrat Oi..(r+,\:) is a

nonincreasjng function ol ,\ E R1 for ever), n € ,ti. The i.ttler condilion can itself
be exp.essed in tcrms of the growth propcrties of the conver functions / and a!
themselves (Proposition 6): o,.1.,' + )z) is nonincreasing in ,\ lor every jr if and oniy
if : satisfies

1(z(0\. -(D\ | L(t. ,(t). :0\\ d' 0.

where I and t are ihe recession f nctjons 16l of / rnd a!. The condition on O, ,
equivalent to (1.22) is obviously satisfied, for cxample, no matter whar the choice
of /, if rhere exist rcal numbers p and p, such that there is ar least one arc r € ,41

with o,,.(ir) <p, and every such j' has j(/) <p, 0<r=l Thus (1.18) holds in
particular if (CJ holds and there is a,,1l4re optimal arc r lor / xnd a, or the set of
optimal arcs is merely known to be bounded. Example 6 ol [9] js also contained as

Anolhcr major class of problems for which the assumptions in Theoren l(a)
are satisfied is described in Corollary 3 ofTheorem 3 in $4.

Withoxt any condition at all on the sets C. and C,, a compactness result

seneralizing the one in Theoren l(a) is siill oblrinable. We prove in $3 that,
whcnever (Co) holds, the lcvel sers (1.19) of Oi.' are l,caltcompact relativeto rhe

weak topology on ll and in particular have the property that every bounded
subset is weakly relatively compact. (This is asserred by the dual of Corollary 6 of
Theorem 2.)

Although the existence result in (b) concerns the dual problem of Bolza, rather
than thc orjginal problem, it is also of direct inleresl, becaose it r-ields x necessary

and sumcient condirion for optimality in the origiDal problenr. The followiDg
corollary is immediate ftom Theoren 5 of [9].

CoRoLLARy i. Assune that (DJ haur a d that i Ct 
^ 

ti CL+.t. Then, h arder
thqt x e A1" be an arc minimizing At.L, it is ne.essary, a l sulficient that x be dn

extrcnal arc lb I and L, ar i othet vot^, that x satish the se erclize.l Euler-
Lagrcnge equation ( Hanillonia equation) and tanslietsalitr candition in 19, S9l.



This fact gives some lnsight, incidentally, into ihe role of (DJ in excluding
"implicit srare constraints". The dual exrremal arc p in rhe necessary condition
referred to in Coroliary I belongs ro,1i (it minimizes O..",.). However, if siate
consiraints were preseni, one would expect from well-known results in conirol
rheory and the calculus of variaiio.s that I would be disconrinoous, or at least
could not be guaranteed 10 be absolutely continuous. The melhods in rhis paper
could in lact be used to attack ihis more general situation, br1 ,41 would have to be
replaced by a larger space (allowing for "idealized solutions" to a problen of
Bolza), and the corresponding doalily theory would not be as symmetric. Actually,
there is another method whereb) necessary and sufrcientconditions for optimality in
many problems with state constraints can be derived direcllj, fron Theoren 1 and
general theorems about subgradients. This is treated in Il2l. Thus, in rhe long run,
cotidition (Do) does not really impose a sedous restriction on the applicabiliiy of
the present theory, but acts n1ore to normalize, for technical convenjence, the class
ofproblems under consideration at a parlicular stage.

Another corollary of Theorem 1 may be obtaiied by specializing rhe problems
of Bolza to problems of Lagrange. Ifwe lrke / !o be rhe indicaror ol a point pair
(.0, cr) € R'x R' (that is, the furction which vanishes at (.0, .r) and has the vatue
+or everywhere else), then n]inirnizins o,,r over,i is equivalent to minimizing
ihe integral

R. T, ROCKAFELLAR

(1.23)
J'ru. 'r, 

t. *r, rr ,1,

over all arcs jr with the fixed endpoints.o and rr. In this case, the dual problem
consisis of minirnizing

(r.24) M(t, p(t), iQ\t .tt.

so that the intersection condition inMoreover q,: R" x R' in ihe dual problem,
(a) is satisfied jfand only if CM+ D.

It is ob\rious fronr the convexity ofz(/, ., ) and ,jl1(/, , ) rhat ..i and F, are
conlex. The preceding observaiions (and the dual observations) l,ield modificd
conjugacy relarions between F, and ar.

CoRorLARy 2. (a) Suppose that (Co]' hoLls, and that CM+ r. Then the .onrer
funttio FL k la\|et semicontinuout d d noNherc -.., and l eEry .hoice ol
endpoints ca and cr, the inJinun de|inks FLQo, c1) is atained. MarcaLer. one has

{1.27) FLQa,c;: F*( a,c,): sup {(.",d,) (.tb d; - FM@a, d;)1.

4,", p1o1; <.,,, p1q;, !'

Let -F. and -F{ be the extended-real-valued fxncljons on ,R'i R" delined by

( 1.25) FLQo, d : ;r {J' r1,,'1,y, ;1,n a, ),. ui, 401 : ".,,(O 
: a},

(r.2O F.(do, d,): inr 
{ l' a 6, or.'t, i,1'yy,t,\ o = 

A,", pe) : d", p(, :,tr}.
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(b\ Suppose that (Dr\ holds, a d that CL+ q. Then the co uex function FM is
lover semicantihuou! and no||herc - .u, anl fot eter! choice of endpaints do a .1 dr,
the ikfnun.lefni s FM(da,4) is axained. Mareauet, one ha:t

O.28) F,'(dr,d;: Fl( do,di: s[p t<cr. dr> - <q, da) - rla, c,)].

The asserted lower semicontinuity properlies are immediate froln (1.27) and

0.28).
The condition Cr+ I in part (a) of Coroliary 2 is equivalent io the following,

uniess C,: Jz, in which event F, would be identically +otr Gee S4, Corollary 2 to
Theorem 3) | tlrere is no a.c z, other than z:0, with the property that z(0) - 0::(r)
and thc integral

(1.2e) L(t, )'1t ) + iz(t), i(t) + iz(t')) dt

problem of minimizing

0.30) t(ca, cr)+FLka, c;

problem ol rnininizing

(1.31) n(da, di + FM@a, d1)

over R"x R^ if(1.28) holds. From this theorem, one obtains the fact

(1.32) irl(+.F, : - min (,l?+r-l
if l ls polyhedral and C1 meets lhe relative interior of

(1.33) {(co, ct I F.(ro, ct < +or}.

I:
is nonincreasing as a function ofI € R1 for every x € l*. Again, the latter condition
can be expressed in terms ofrecession funcrions.

Corollary 2 leads to a refinemeni ofTheorem 1 in certaii cases where the boun-
dary functions l and m are polyhedral (i.e. have'epigraphs which are polyhedral
convex sels;see [6, $19]). This is s€cn from the fact that, in terms ofthe function
I',, the problen of Bolza for / and l, can be resarded as the finite-dimensional

over -Ri x R". Fenchel's Duality Theorem [6, Theorem 31.l] can be applied 1l] this
type of problem, lhe dual problem b€ing equivalent, as one would expect, to the

It is proved below in $4 (Corollary 4 olTheorem 3), horvever, that rhe convex set
(1.33), which consnis precisely of the atiaiiable endpoint pairs for r, has the sane
relativc interior as C,. Thus:

CoRoLLARy 3. 6) h (C; haLls,l is pobrhe.l'al, a d C^^tiC + a, fien

(1.34)

(b)

0.3s)

Tl1 
o' 

'r"r 
: 

,''11 
o^"(o).

If (D") holds, I is pobhedral, and Ct 
^ 

ti CL+ t, lEn

inf o,l(r') - nin o. M(p).*!l re,I
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Note that hcre there is no comprctness asserlion of lhe kind in Theorem 1.

Of conrse, Corollary I js srill valid undcr the hypothesis of Corollrry 3(b), when /
is polyhedral, since it follows directll lrom equ.ttun (1.3s) rnd Theorem 5 of I9l.
Applied to problems of Lagrange, Corollary I asserts thit, under the hypothesis

of Corolld.y 2(b), rhe arcs x lor which the infima in the definition ofF, are attaiDed

are precisely thc cxlrcmals ofl (that is, the arcs \rhich satisfy the generalized EuleF
Lasrange eqration for./-; see 19, S9l).

The plan ol the rest of the paper is as follo\rs. S2 is of a preliminary nature; it is
devoted to a discussion ol equivalent and stronger fornrs ol condilions (CJ and
(DJ. The proofofTheoren I really be-sins in $3 lvith dre establishnenr ofTheorem
2 and its corolia.ics, concerning "perturbarions" of thc two problems of Bolza.

These resulrs are the crucial conscq uences ofcondiiions (CJ and (DJ. Theyinclude
(embodied in Corollaries 5 and 6) an existence and dualiry theorem wifi rhe same

conclusions as Theorem 1, but wilh hypotheses Lhat are less direcl. Theorem 3 in
g4 rranslates lhese hypolheses into the on€s in Thcorcm I concernirg the convex

sets Ci, C., Cn nnd C'?. The proof ofTheorem I is thereby effected.

The last two seclions deil wilh supplemenrary results. The meaning in a conven
problem of Bolza of lhc opLinrl arcs for the dual problem is described in $5 in
terms of the beharior of thc primal problem xnder " pertr rbations. " ln $6, sone
concluslons are drawn about probl€ms of Bolz.t in which one mininizes, nol over

,41, bui over ,11 (the space of absoluiely conLiDu rs arcs x: [0, r] - > R" with
derilalile j nr al, 1</=.o). tn particular, growth conditions arc given on
Z(r, r., r, wbich imply thaL Lhe optinal arcs in the problem olminimizing O, . over
.4; acrually bcbns 1o ,41 for n specified />t.

2. Hainiltonian functions and conditiorc (CJ and (DJ. We now treat conditions
(C.) rnd (DJ in greater detail, with ihe aim of dcriving equivalent or stronser
versidrs ol lhese condilions which may be easier to verily in sone cases.

h is convenienl 10 work wilh the Hamihonian function fl on [0, I]x R^ x R"
givcn by (1.14). Formula (1.14) says thar H(r, jr, .) is conjugate io a(/, -!, ), and

therefore l,(/, jr, ) is in turn conjugate Lo A(r, jr, ):

(2.r) ,(/,,r, ,) : sup{(,,1) H(t,x,p)1peR}.

It is known thar H(r, -r, t) is convex inl, concave in -r and measurable in /. ID fact,

H(1, x(t), p(t)) is measurable in I whenever jr(t) and l(t) are measurable in I
ll0, Proposition ll.

From the definitions of M and /d we have

(2.2) M(,,/, r) : sup {(', r)+ H(t, x, x e Rl.

Thus M(r,p, ) is the conjrgaie of the convex frDction 11(1, .,p), so thai ihe

conjugale of .MQ,p, ) is the so-called closure of -H(r,.,1) as a lunction of
x [6, 57 aDd S12]. Therelbre, if we d€note by ,q rhc Ha.nillonian function which



E(1, p, x) : -ct, H(t, x, p),

H(r, r,p) : cl" fr(t, p, x)

(ci t6, S33l). lf(Do) holds, then in particular 11(r, .r, p)> o for all (r, x, /,), and
the closure operations in (2.3) and (2.4) can be omiued. The closrre operations can
also be omirled if (C0) hotds, in rhich evenr -H(/, j,p)<or for alt 0, x, p).

We consider first the case where l, is independent of r, because this case js mxch
simpier, and it molivates rhe more general resulrs which follow.

A convex function/on n' is said to be .rr?ile ifl is the conjugare of a conver
function which is ever] rhere finit€ on n". This is true if and onty ifl is lower
semicoDlinuous znd prupet (i.e. nowhere -c. and nor jdeDticajly +.o), and/
satisfies a growih condition ofthe fonn

f(u) > n0,1t for all,€R",
where ? js a nondecreasing funcrion f.om [0, +d)) to ( co, +..J] such rhat
limr-+. ,(.\)/.\: +or. (This may be seen lrom 16, Coroltary lj.3.ll.)

PRorosrrroN 1. Suppose that L is independent of t.
(a) I o et that (C; hald, it is necessaty and sulf.ient that L(x, .) be .o[i itefot

eLery x e R'" suth that L(x, .) is nor identi1lu +.t, at equitialentb,
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corresponds to M in the same way thar ll corresponds ro a. we have

(2.3)

(.2.4)

(.2.5) rIG, p) < +,n lbt a (x, p) e R \R".

(2.6) H(x, p) > ,D fot att(x, p) e R'xR.

(b) ,l ohlet that (Do\ hold, h k nercs'ary and su|Jicie t that L(x, .) at be irten"
tica y +o. fot ant x e R, at equiralently

Proof. Assertion (b) js an immediaLe consequence ot (Do) and ihe fact that the
convex functions Z(ir, ) and 11(jf, ) are conjugate ro each orher. Asserrion (a) is
obtained by applyins (a) ro M and 11 and usiis (2.4). The inequality (2.5) says, in
liew ofthe convexity of H(x, ),that H(x, -) is for each r eirher finire everywhere
or ideniically or.

CoRoLLARy. If L is independent of t, the.folk)hing statenents arc equi&kn.
(^) (CD) and (Da) both hotd.
(b) rhe .anoex function L(x, ) is cafnite fot et)er| x e R .

(c) rhe contex function Mb, ) is calinite fot ercry pe R.
(.d) H is fnite oh RxRt.
We now turn to the general case.

PRoposlrroN 2. (A) Let X be ary) aryn caniex subjet o.f R" tu|rt,:ienttt tarye that
cotnlition (D) u be satisfed vith afunctian t t'hose rcnge ties in a campatt subset
of X (e.s. X: Rr). The (C) halds if ahd onb, if for ea& p e Rn therc exists a
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(2.11) Ht,. r. rV " v' - 10. / I.

(2.12) w-p b-P whene\er lp p"l 5".

Define I, on [0, r] xR" by

(2.13) h"{r, p) : rl.nn H(t, x, p-u) 3 H(t, x, P)

real-talued funcrion )', on lo,TlxX such that yp(t, x) is su, rulble in te[A,T),
con(arctuxeX,and

(2.1) H(t, x, p\ < y,(t, x), v(/, j') € 10, 7l x x,

(2.8) L(t,t,L') > (.1),p)-y,(t,x), V(i,r,,)el0,7lx,YxR".

(b) Let P be ary ape rcnt)ex subtet of R" sufitiennt larye that .onditio (C) can

be satislle(l ith ,t.fu ctian t whose nnse lies in a tonpact subset of P (e s. P: Rr).

Then (.D) halds if antl anlr iffot each x e R therc exists a rcal-ualued fu ctioll v"
on l},:tlxP such that y"(t, p) i:| sunmable in t e10,Tl, rc rcx in p eP, a d

(2.9) H(t,x, p) > v"(t, pt, v0,1)el0,7lxP'

(2.10) M0,p,.!) > (jr,r)+y'(r,/), v(1, p, r) e [0, r] x P x R"

Proof. It sxfrces by duatiiy to prov€ (b), since (a) cdn be obiained bl' applying

(b) to the Hamilronian F corresponding to M and using (2 3) ll (DJ holds, then

for each ir we may actually choose y, lo be of the form

y,(t,p): t.I)(t),p> p(t), t)eL|, F€Li

Thus (Do) is at least as sirong as the condition given in (b)

Con\'erse1y, slrppose that the condition given in (b) is satisfied Fix any r E R",

a.d lel 7, be a flrnction on l0,Il with the properties described. The inequaljty
(2.9) implies in particular that ihe convex lonction fi(t, -r, ) nowlrere has thc

value -.c. Since 11(1, r, ) and a(t, i, ) are convex functions conjugate to each

other, and l(r,.r, ) iikewjse docs noi take on -qr, it foliows thai neiihcr of these

funciions is idenlically +€.
Lei it be a compact subset ofP conlainiog ihe range oft, wherel is a lunction

nr Z: such that (C) is satisEed for certain lunciions i Ell and d EIl Observe that

Let e > 0 be sufrciently snall rhat ,r+ 2.rcP, where 3 is the (closed) unir guclidean

ball ir R'. Let U be lhe convex hull of the set 10 - Itl .-B, where 1o is a fixed but

arbirra.y element of ttl. Then U is a compact, convex neighborhood of0 such thal

Herc i,(r, ) is for each I a lorver senicontinuous, conven function from -R" to

n1 u l+ori, nol identicaUy +co, because t1(1, jr, ) is such a function and U is a
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compact convex set;in fact,i"(t, ) is obtained by infimal convolution of }/(t, r.,

and the indicator 5' of U [6, p. 77]. Denoting the corjugate ofr"(t, .) by r]0,
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.)

.),

hI(t, u) : L(t, x, D) + 6'tr(1,) > L(t, x, x),

h,(t, p) < d(t) wh€rever lp-?o 5 e,

(2. r 4)

where tt' is the (finire) support function of U. Therefore 11 is a normal convex

integrand on I0, rl x R^ by (B) and [8, Coro]laries 4.2 and 4 51, and consequently

,, itself is a normal conlex integrand, since nornaliry is preserved und€r duaiity

t1, rl.
To establish (Do), we ne€d only show, in view of (2.14), that n10, r(t)) is surn-

mable in / for some l) €Z*, and for this it suffices by Theorem 2 of F,lll to show

thal ,4"(r,p) is summable in I for each ? e R' such that lp-poj 
=c.From (2.12) and the choice of t/, we have

h,\t, p) 
= 

lnr H(t, x, A < HU, x, t(t)\,

if l? lol<.. Thus, by (2.11),

(2.15)

wherc a is the summable function given by

dO: dO- (jr, i(r)).

On the other hand, if lp ?o 56 we have

(2. r 6)

where the infimum is well defined because?- UcP by (2.12). Let {p1, . . ., lL be a

finite subset oiP whose convex hull includes? U. (Such a subset exists, because

/ U is compact and P is open; see t6, Th€orem 20.41.) Let

PrQ\ : m x.{^/"(t, pJ, . . ., y,(t, p),0} > 0.

Since each ol the functions y,(., pJ is sumrnable by the assumptions on 7,, the

function Po is also sumnable. Furthermore, the convexity ol zr(t, .) inplies that
y,(t, p'r=Po(t) fot evety p' in the convex hul1 of{p1, . . ., pk}, and thus in particular

lot every p'€p-U-
Nowchoose p > 0 sufncienrly small that pB- U-p r-R.lftis an arbitrary element

of U, ,+0, we have

h"(t, p\ > lnl y,(, p u),

p : (t-^)p'+i(p-u), 0<^<1, p'ep-U'

p':p+pu \u' i:pllul+D.
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The convexity of r,,(1, .) then inplies that

and consequently

y,(t,p u)z r-'lz"0,z) F"(Dl > [p/(p-'+p)] 'U,Q,p) B"Q)1. '

Denote the last expression by p(t). Then p is a summable function such that

y ,(t, p 1t) > P(t), vu e u,

and it loliows from (2.16) thai ,"(1, p)>B(). Since I was any element of Ri satis-
fying jp-po 56, and (2.15) holds, we may conclude as desired that r"(/,p) is

summable in t whenever I ?ol=..

CoRoLLARY 1. Let X be as in Ptoposition 2(a). Co dition (C) is satisJqed iftherc
a:istx an extende.dreal-1)alued function Lo on L},TlxXxR, LoSL, suth that
La(t, x, o) is conuex in (x, D) fu eDery t, a d the futlttion Ha an 10, Tl x x \. R"
obtained fton Lo by lornula (1.1\ is fnite and sumnable in t e [0, Tl for etery
(x,p)eXxR:.

Proof. Since Lr=L an I0,Tl><X><R, \'/e haye Ha>H on [0,7]xxxn^.
Morcover, lhe convexity ofro in (jr, r) implies that go0,.x,p) is concave in n, as

well as convex in p [6, Tteoren 33.1]. Thus, the condition in Proposition 2(a) is
satisfied with 1,,(,, .x) : 11o(/, r., p) on I0, 7l x x for each z.

CoRoLrARy 2. Let X he a-t in Propsitian 2(a\. Condition (C) is sati|ied in

f ,(t, p) 
= 

(t - 
^jy.(t, 

p') + 
^y,(t, 

p - r\,

(t 
^)yJ.t, 

p') s (l l)p"(t < p,(D,

(2. r7)
L(r, x, u) > f(t, x)+tt1u A(t)x ((t) )+ <t), d(t)>

for eDery 6 x, t)) e Io,rlx x\ R,,

vhere the components of c(t) and the matix A(T) arc tummable in t, the tompo ents

of d(t) are bounded and nea.swabte in t, f i.s a teat-Mtxed function on 10, Tlx x
such that f(t, x) is summable in t and conl)ex in x, and r is a non.lecteasi'ts .function
fton 10, +.r) to (-@, +t'Jl such that

(2.18) lirn ,/(r)i): +.o.

(Here any af the functians A, c, d and f could xani.sh identica y.)

Proof. Replacing ? if necessary by its convex hull, which has lhe same proper-

ties, we can assume withoutloss ofgenerality that t is convex. Denote the expression



on the righi in (2.17) by Z0(r, ir, ,). Then r0 is corvex in (r, ,), and the coffespond-
ing Hamiitonian A0 on [0, 7] x xx R" is given by

Ho(t, x, p) : sup {(.-, p) ao(,,,!l,)}

: /(r, x)+sup {(,,p d(t)> ,(r; A(t)x c(t)l)}
(2.te) : -/(t, r) + sup {(, + .a( t)r + .(t\, p - d(t)> -rt()ul)J

: f(t, x) + <A(t)x + c(i), p - d(t)> +,1- ( p - d(t\l)

(cf. 16, Theorem 15.31), where

1'(p): sgn{}r-1(})}, p } 0.

The growth condilion on ? implies that t* is finite (and nondecreasing). Therefore

t10(t, ir, /,) is finite and sunmable jn I for every (ir, /') E -rx R', and we Inay apply
Coroua4 1.

RIMARK. Trivially, the condition in Corollary 2 is satisfied jf

L(1, x, t) > L1(t,x,1))+rt(o-A(ttx c(tt),

where,/, l0) and.0) have the staled properlies and al satisfies (C).

PRoposrrroN 3. Cokditio (Dl implies the fa oving (seeni gly nuch sttonger)
prcpe y: giL)e a y baunded set X-R, there exist nxn matices B(t), uectots

b(t\ e R anl rcalary B(), a summable vith tespect to t, such that wheneret x is a
easuruble Jnnctionr'om I0,Tl to X, one has

(.2.20) L(.t, /t),4r)) 
= 

F0) for t(t) : B(t)x(.t)+b(t) (sunmabk).

koof. Let S be an ,-dimensional simplen in R' containing .Y, and let
be the vertices of S. Condirion (Do) enables us to lind functions

lie Ll and he L! (i:0,. . ., z) such thal Z(r, irr, ui(r))=p,(r). For each I e t0, rl,
1el -B(t) and,(r) be rhe unique , x, matrix and vector in R'such that

r97rl CONVEX PROBLEMS OF IOLZA I5

Q.21)

and 1et

,(r: B(t)r't+r(t), i: Q,t,...,n,

P(t.) - max P,(,)

Then B(1), ,(r) and B(r) are summable in r. Suppos€ now that jr is any measurable
function fron [0, 7] to { and let ,(r):r(r)r(1) +}(r). Then r €Zi. Furthennore,
since ir(/) € 

^S 
there exisl unique scalars )(l)20 sxch thai

)o(r)jro+. +)"(,).\ : jr(,), ,\0G)+ .+.\"(t): l.
Relation (2.21) implies that

.\J,),Jt) + . . . + ).0),"0) : 
'r(t).
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Thus by the convexiiy ofZG, , .) we have

L(t, x(t), r'(.t)\ s < P(t),),r,1r14r,',1r1,,,1ry.)

as claimed.
REMARK. Proposition 3, or rather its proof, shows that (Dt is also equivalent ro

the following, seemingly weaker property: ther€ erists a funciion t € 4 such thar
for every ./ € R^ one can fi nd functions, € a* and p e rl with L(t, t(t) + y, lj(t ))
Spo). (The latter property implies the property in Proposition 3 by an easy ex-
t€nsion of lhe samc argument.)

The rext proposition gives olher strong forms oi (CJ and (DJ.

PRoposrrroN a. @) Conditia (Ci hokls if and only if for eoch baunde.l set
P-R therc is a futiction La rtan [0, r]xR^xR" ro n1 u{+co} satisfi,ins (A),
(B), (C) and (D), suth that La 

=L, 
and the function Ht obtainedfion La br:fomula

(1.14) 
^ 

jnite and tu nabteinteIa,rlfaretety (.!,/)eR"xP.
(b) Conditio (Da) holds if and onlt if fot ea.h bou ded set X.R therc is a

function Lo .ton I0, rl x Ri: R" ,o R] u {+.o} satisfrins {1\), (B), (C) arl (D),
such that Lo > L, and the fukttion Ha obtained Jran La b famula (t .t4) is fnite and
sumnabte in t eI0,rlfot ercry 6,d e I x Rn.

Prooi 11 sufrces by dualily to prove (b). Suppose thar rhe srared condilion is
satisfied; we shall show that (DJ ho1ds. civen any t E R',, let X:l.x] and select a
funciion Z0 of the lype described. The funclion /(r,l):Ho(r, r, p) is then finire
and summable in r € 10, rl, as well as convex in p € R"- Therefore by [7, lI,
Theorem 2l there exists a function u €Zl such rhar/*(r, ,(r) is sunmable in r,

where/*(t, ) n for each / the conjugare ofllr, .). We have

f+(t, t(t)) : Lr(|, i,b(t)) _> z(r,;, u(,)),

so lhat (Do) is obtaiued by settins B(r):/*(, ,(r)).
Con!ersely, suppose that (DJ holds. In proving that this implies ihe condition

in (b), we can limii altention to the case where ,Yis a nonempty, compact, convex
set. For such a set ,{we may take elements 30), r(r) and p(r) \yirh the properries in
Proposiiion 3 and de6ne

La(|, x, D) : BO) if .rexand,: B(t)x+b(t),
: +co orherwise.

Then Lo satisfies (A), (C) and (D) tdvially. It also satisfies (B), as may be seen by a
direct application of the definilion of "normal convex integrand." (lf Z is any
countabl€ dense srbset of X, the countable collection of funciions from [0, f] to
R'x R" of the lorm

/ + (x(t), ,(,)) : (2, B(t)z+b(t)), zez,



19?t l CONYEX PROBLEMS OF BOLZA t7

meets the requirements of ihe definition.) Furtherrnore, we have to>Z by (2.20).
ForanyxeXwehave

Ha(t, x,p, : <B(t)t + b(t), p> p(t),

so that ,Yo(/r r,p) is summable in 1. Thus Z0 has the properties specified in rhe
condition id (b).

CoRoLLARy. Conditions (Ci and (Do\ both hotd if and o U il H(t, x, p) is a
f ite, sumnable function of t e t0, rl for e\ety (x,?) e R" x R'.

REMARK. If flis any real-valued function on [0, Z] x R. x R" such that,"(1, r, p)
is summable ir r, concave in jr, and convex in Z, then 1/is rhe Hamilronian corre-
spondins to the function, civen by (2.1) [6, Theorcm 3J.1]. Then l, satisfies noi
only (A) and (B), but also (CJ and (DJ by the preceding coroltary. (The facr rhar
t satisfies (B) can be seen from the r€Fesentalion

(2.22) .(r, jr,,) : sup I<r, pk>-H(t, x,pk\,

where {pr, /,, . . .} is a countable, dens€ subser of-4i. For each index tr, ihe function

LhO, x, o) : <n,p;-H(t,x,pk)
is finite, convex in (-r, ,) and measurable in r, and consequenrly Zr is a normal
convex integrand [7, I, Lernma 2]. Since a is the pointwise supremum of the
fri,clion, L oy r2.22i. L r. .r.ell d rorrrl con\e\ inregrdrd tS. Coro ary a. t l J

3. Perturbations of the Bolza functionals. The duality between the problem of
ninimizins Or.. and the problem ofminimizing o.,r has been explained in [9, ls]jn ierms of certain pedurbations of Or,. and O.,M. A more derailed study ofsuch
perrurbations yields, nor only Theorem l, but also, as shown in 55, a dual inter_
pretation of oplimal arcs for either problem in ierms of.,Lagrange nuttjpliers,'

As in I9l, we identiiy lhe dua1,1i* olthe Banach space ,!; wirh R" e) 2". under
the pairing

(3.1)

the norm being

(3.2)

((a' Y't' ot : <a, p(oD + f <!o\,io, dt,

l(d,r)i:max{a, ir, -}.
For eacl' a - R' ana ,1, . i i we denore b) pr. .ra..,I rhe infinum of

(3.3) t(t(o)+a, 4n)+ lt L(, x(t)+t(t), *(t)) .tt

over all arcs jr e,-41. The extended-real"valued function ?i., on ,.1i* is we defined
and convex, and the lunction ?i, on ll conjugate ro ql,r is Oi,.M t9, Theorem 31.
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Similarly, for each , e R" and q ELi
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n(p(o) + b, p(t)) + f
denote by ?n.M(r, 4) the infinum oi

M(t, p(t) + q(t), iQD dt

(3.5)

(3.6)

(3.7)

(3.8)

(3.4)

(1.9)

over all arcs pe,li, and then e,i., is a well-defined convex functjonal on li*
whose conjugate on ,11 is O!.,. One has

j:l o'.rj') : e,."(0, o),

j:: o'"(1) : E''v(o' o)'

Furlhernorc, unless Oi,, and On,, are both identjcally +.c on ll and the origin
of,1i* does not belong to the w€ak* closure of eiiher dom ?,,r or dom p,.M, one has

- inf o. r(p) : weak* lilrl inf er.,(d, f),
".!l
inf Oi I.r) : werki lim itrl q,, .(i, al.

It is clear from these facts that ih€ eqxality of the extrema in Theorem 1 can be
established by showing that either pr., or ?,.M is we.k* lower semicontinuoLrs ar
the origin of ,11+ under the stated conditions. Our pattern of proof is as follows.
Assuming condition (Do), we show in this section that the weak* topology on ,1;*
can be replaced by the strong topoiogy in (3.7), and that there erist points of the

dom ?r,, : {(d, r) e ..11* .pL.J.a, y) < +..j
at wlrich qr., is not only strongly lower semicontjnuous, but actually strongly
continuous relative to atr(dom p,.J. ln $4, we show tbat th€ origin is such a point
if and only if ri q 

^ 
d C,+ L

While the equality of the extrema iD Theorem I may be deduced from special
lower semicontinuity properties of 9i.i and p..M, th€ atrainmeni of these extrema
may be deducedfrom differentiability prop€riies. The study ofsuch differentiability
properties also leads to a dual interpretation ofoptimal arcs in convex problems of
Bolza, as we explaiu in S5.

Recall that a subsrcdien I of pi.r at a point (4, t) in ll* is an element / of the
space l+** such that

(3.10) eL.L@, r) > eL,L@, ,) + <(a, t) -(a, t), p>, Y(a, r) e Al+.

Here(.,.)denotesthecanonicalpairingbet\yeenli*andl***;ifpbelongsto,4;,
resarded as a subspace of li**, lhis pairins is expressed by (3.1). The ser of all
subgradients of ,h,L at (a,t) is denored by 4p,,.(a,t). This is a closed convex
sxbset of,.1i+*.

If?'..(r, t): +.o, the ser a?!..(t, t) is enpty, whereas if pi.L(r, t): - c.i, it is all
of ,al+*. If pr.,(a, t) is finite, the elemenls of aq.,(n, t) can be described in t€rms
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of direclional derivatives of 9l.! (see g5). They correspond to the "nonvcrtical"
closcd supporting hyperplanes ro lhe ePfrap, of?i.!, which is the ser

(l.n) epi e,.' : {(a, )' p) e ll* @t R' p t q,.la, r)},

CONVEX PROBLEMS OF BOLZA

at thc point (t,.):, p), where F =9r,.(t, t). Thus the €xislence of s bgradienls can be

deduced from standard theorems aboul the €xistenc€ ofsupporting hyperplanes.
The significance of subgradicnts for problems of Bolza is apparent from the

lollowing consequence of Theorem 3 of [9].

PRoposrrroN 5, An arc p e Al belones to tw.L(O, 0\ if and onlt if it satisfes

(3.r2) o,. p): irfo,.M - info,.!.

Dually, an arc x e Al belonss b ee"||(0,0\ iI and ohly if it satisfes

ll.l3) O,,(jr) = info,, = inf O-,..

Proof. The delinition of "subgradieni" impLies that p belongs ro aer..(0,0) if
and only if

-sr,r(o,0) l s'lp t<@, r), p) -e!.1@, y) 1@, )) e Ai*\
: ei(p) : o.."(p)

This inequality is equivalent to (3.12), in vi€w of(1.13) and (3.5). The dual assertion
is proved sirnilarly.

In the sludy ofcontinuity and the existence ofsubgradieDts, the following known
facts (lvhjch hold for any convex funcrion) are basic. There exist points ofdom p,.!
at which p,,r is (strongly) continuous relalivc to afr(dom 9,,.) if and only if epi pr.,
has a nonempty relative inlerior, lflhe Ialter is true, then the points of dom qi.r at
which p/.. is continuous relative to af (doin pr., are precisely the points of
ri (dom pr.'), which is the projection ofri (epi qr.,) on,4l*. Furthermore, then 9r..
is subdifferentiable at every point (a, }) of ri (dom pr,'), i.e. the set ae!.,(d, /) is

nonempty in ll**. These facts are usually stated in terms of continuity relalive to
the whole space, but the generalizarion to the case of continuity relative to
afi(dom pr.) is obvious. (In proving lhe subdifferenliability asserlion, one uscs

the Hahn-Banach Theorem rc cxtend a con(inuous affine lunction on aff(dom 9r,r)
najorized by 9!.r to a coDtinuous afllne function on all of,!i*.)

The usual limit^tion of the facts just cited, if they can be applied at all, is that
they lead to conclusions involving,r***, rather than li. ln particular, they only
furnish lhe existcnce of subgrudients of pr,, in ll**, whcreas, if Proposition 5 is
10 be ol use, one needs the existence ol subgradients irl li. The chief virtuo of
condition (Do) is thar it enables one to surmount this dimculty.

THF(REM 2. ,llJsr/me that lD.) holds. Then the conjugate co tex findio qtL
:ofrlM o?? l:** r,r/ o^.M on,4L i tlp sense that it agrce: flith O^ M an At"(lhe
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lat ter space rcgaded aaonica y ai a subspae of AA+*), fiercas it har the L\:rlue + d.

eDerJhhere ourside of Ai.
htthermare, rre, atr(don ?r., x clased ahd af Jinite coclinensia ik Ai+,

ri (dom 9, r) is nonempty, and 9\L is continuous rclati\e to atr (dort g) at eLvy
paiht of ri(domEr).

Proof. We deduce thc asseiion about 9i, from a more fundamental result in
17,IIl lor conjugales of integral functionals on the space ,,i. Only th€ values

of p;1, outside of,4l ne€d to be dealt with, since we already know that o..v is the

function on ,41 conjugale to 9r.r wilh respect to ihe pairing between d* and ,.{**.

Each element of ,{}**\.41 corrcsponds to a linear functional on li* of the form

la.))- o.b !!{y), beR", !EL;+1L\.

Thus our task is to prove under (DJ that, for any , € R' and r € I."*\Zl, onc has

(3.14, supl a.b -\tv)-p,!la,yl aeR".yel: = -d..

According to the definition of9l rthe supremum (3.14) is the same as the supremum
of

a., rrt/)-1(x(0)r r. '(n) -J" Ltt. rlt\ rt(t\,.iQD dt

over all a € R",l elf and jr E,4;, and hence it€quals

(3.r5)
sup {<co -i!(0), b) +r(&-x) -/(co, x(D)

- [' 4t, rP1' t1t s) a, 1 
"6 

e tr, u e r:, x e'\].

The continuous linear functional x > <{0), r)+r(r)on,1}can also berepresented

in the form

, - rr(D.d - J" 
(i(r). r(r)\ dt

for certain elements d € R" and r € Zl uniquely determined by 6 and r. Then (3.15)

can be rc-expressed as

sup 
t(.o. 

b .\r(r).d =s('lr+jo i0), r(t) 
'1'

f'.]
/(co. J(n) 

J" 
t{/. r{t), iV i) dt I' o € R", u e Lf , x e Al }

tff: ..o { "'. 
b - . t, d -,tu)- Jo .r(/ 

r. r(t) JI

fr\
-lrco.rrt. J" 

I(r.,lrl.ut/r)dtIr'o.r') R' R",ueI:.DeLt.]

<D(t), 4r)) dt 
I'" 

tf,, 
"lO, ^Ol 

o'j|= ,,tb,dt+ st)p {"(,)* *p { ['K!: \ ELI uo
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\\ e . Urm lb]r rle ilier rLrDrenLm ;n ll-e l-Lter e\pre*,. r r.

(1.16) | H\!. ut! ). trt D J,.
Jo

so ihat our task reduces 10 showing thai

(1.17) ',r{rt,, I H\t,u\t),t\')tdtld /rl -..a.I Jo -l
To see that the inner suprenum equais (3.16), consider (for any fixed 1l e rf,) rhe

(3.18) f(t, t) : L(t, u(t), r), (1,,)€l0,rlxR,.
Condition (D0) implies in particular rhar/(1, ) is nor identically +co on X" for
any r e [0, r], and jr follows tlren fron [8, Coro]lary a.5l and conditions (A) and
(B) on Z tlrat/is a normal convcx integrand on t0, Il: n" tu the sense of l7l, t8l.'I he nornal cor\e\ 'nregrand cor"rg" e o/i,

f*(t,p) : H(t,u(t),p)

by (1.14). There erist by Proposirion 3 funciions rFZl and F€al such that
L(1, u(t), 0(t)) S P(t). On lhe orher hand, since (C) hotds there exisr functions
, €rf,, i EZI and d eti such rhat

L(t, u(t), O > (r(1), .i0)) + (,, p14) -,r(r).

H(t,u(t\, p) > (r(r), /)-p(r)
and

H(t, u(t), p(t)) < a(t) <u(t ), s(t))

by (1.1a). Thus /0, r(1)) and /+(r,t(/)) are summable in L This implies by [7,
I, Theorem 2l that the functionals

I/U\ | ftt.D(trdt -l It'.dt't.\tttd!. u.L;.Ju Jo

tr trI tp)- | tt(t.p(t\\J, - | Htt.tth.pl.)d!. p-Li,Jo Jo

are conjugate to each other, and hence in particlLlar

r.,.; -,-oll- D\t),t\t) at tvt "-t:lJo)
as claimed.

We show now by a simiLar argument that (3.17) holds for an), I etf;, assuming
oI course that r elf;*\al. As above. let ?-, r, and d be functions satisfying (C), so
that

(3.1e) H(t, x, t(t)) 
= 

d(r) - ('I, i0)), v0, ;l) € [0, r] x n'.
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Le! p be a real number larger than ?il. and / L -, and define I on [0, I] x R" by

(3.20) s'(r, r.) : -nin {H(1, jr, p) lpl = 
pl > - H(t, x, t(t)).

(The minnnum is aitained, because H(t,x,p) is lower semicontinuous in p bv

(1.14).) The concavily oi a10, i,l) in r. implies rhal s(/, jr) is convex in i Moreover,

s0, r) is neasurable in t by [8, Corol]ary 4.31, because 11(,], ) is a norrnal

convex inleg.and on [0, r] x R" for any i e R" (take ll(r):n in rhe above argunent

concernine (3.18))- ln fact g(r,.I) is sunmable in t for each x: we hav€

s(t,x) > -H(t,x,p(t)): <', i(t))-t(1)

by (3.20) and (3.19), while if r €,Ll and p e rl ar€ functions such that Z(1, jr, ,(r))

spG) (and such flrictions exist by (DJ) we have

H (t, x, p) > <x(t), p> -B(t),

so that

s0, r) 5 -inf{(,o),?) - F(t) Ipl = 
p} : p (t)l+P(t).

Inasmuch as s(1, r:) is convex in r and summable in /, we may conclude from

17, ll, Theorcn 2l that the convex luncrional

t"\4 - | !t. utt )t dl'tn

is well defined on rf; and lhat, since r €4*\tl, we have

,"p {,t,r I'gv,,t,r-ra,J r"'ur - -.., i L Jo" .)

This yields rhe desired relation (3.17), because (3.20) implies

s(t, u(t)) 
= 

H(t, u(t), t(t)J.

The second paragraph of Theorem 2 still must be verilied. If a convex set C in

some locally convex space has lhe property that aff C is closed and of finite co-

dimeDsion, and i C+a, then eEry conrex set C' co tai i g C llas the same

Uoperty. Thrs it sufrces (by the remarks preceding the theorem) to show that

epi er.'conlains a convex set C such rhat affC is closed and offinite codimension,

and ti C+ s.
Let x b€ any bounded subset ofR" with a nonenprv inlerior, and lct 3(r), ,(l),

and P(t) be as in Proposition 3. For each J, eZ." let.r, denote lhe unique arc in li
satisfying the differenrial €qualion

t!(t) : B(t)Lx"(t) + y(t)L 
"lz) 

: o,

N: {(a, r) e A'"+ la: -{0)}.

(3.2t)

and let

Q.n)
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lo(co, c") : max {/(co, c"),0},

Lo(t, x, r,) : max {t0, x, ,), 0}.

Then 1I is a closed subspace of ll* of finite codimension- Choose any t e int -f
and any (co, ct such that /(co, ct < +6, ard let (a0, /) e l** and i!0 e ll be the

unique elements such that

.xo(0)+ao :.0, ,'o(I) : c',

ro(r)+:yo(r):i, io(r):ro)t+r(r).(3.23)

It is possible to choose an 6> 0 such that

ljr,(r)+)0)+;le x
for almost every 1€[0,2], 

'vhenever llr .S". rnen for any (d,:r)eN with

Lr.s"wehave
/(jro(0) f'I,(0) + d0 + .l, r.(4+r"(4) : r(c., r,),

r0, 10(r) + r,(r) +_r0(r) +r (r), i"(r) + i"ft))

- L{t, x!(t)+)(t)+r, B(r)tr,(r) +rG) +;l+ r(r)) S p(r),

so lhai by de6nilion

(3.24i E..,Lao a. va yt 
= tr.".c,t".['Bttta,.

Denote the right side of(3.24) by d (a real rumber). We thed have

(3.25) et.L@o+a,),o+),) 5 d whenever (d, J,) 6 N, l:r,1. s €.

Thus epi q.' contains a translate C ofthe convex set

e:{@,r,!)eAI*@R'i(',r).N, I - s ",i,: o}.

Obviously alT C: tr' O R], which is closed and of finite codimension, and ri d* s.
Hence aff C is closed and of finite codimension, ard (i C+ a .

CoRoLLARy 1. If (Di hoLls, then etery continuous afrne fundian on Ai* na or
ized by p1." correspond: ta an elenent aI ,41", rutht than a morc geke t elenent of
A1"**. In pattitulat, fot euery @,lt) e Ai+ such that e!.1@, t)+ -.D, the s bsrcdient
set A\L.LQ, y) is actua t) contained in A1".

Ploof. By definilion, the continuous linear funclions on ,4;* corresponding to
afine lunctions majorized by p,,. are the elements of l1** for wbich the value
of ef. is not +co. Theorem 2 says that there are no such elements other than
elements of l;.

CoRoLLARy 2. rf (Do\ holds, then eDeryr cantinuaus li ear funclion on At"*

bounded abote (or below) an dom el can be identifed vith a etene t of Ai, tather
than a morc senercl element of A1"** .

Proof. Define 10 and 1-o bv

(3.26)

Q.27)
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Then /0 and ao satisfy (A), (B), (C) and (DJ, and e," r":0. If, is a continuous
linear function on ,,11* whose supremum d over dom gj,r is finite, then

pLa,* Z h_a.

Hence by Corollary l, applied to /o and ,0, i corresponds to an element of,4l.

CoRoLLARy 3. If (DJ holds, fien the linit

(3.28) lim inf e,.la,l)

is the same wlethq it it taken with rcspect to the weak* topologt ot the strcng
tapolost ot1 Ai+. I paftitukr, uhder (DJ one has

(3.2e) inl o,,(p) : strons lilnini e,i(r,'),),
..r1

unless @t,L and A^. arc identica y +@ an Al and the atigin af A1"* is not ih the

weak* .losurc of eitht dom e,.' o/ dom en,v.

Proof. The limit (3.29) is th€ sane jn boih topologies for every (4, t) if and
only ifthe closure oflhe epigraph ofe,,r in l** O Rl is the same for bolh topolo-
gies. Since the epigraph is convex, irs closure for a particular topoiogy is ihe
intersectjon of the half-spaces rvhich contain ii aod are closed for that topology.
Corollarics I and 2 inply tbat, if(Do) holds, dre hall-spaces in question in l** O Rl
are the same, \rhether one is considering,.ll* in lhe weak* topology or the strong
topology. Forrnula (3.29) follo'vs fron (3.7).

CoRoLLARy 4. Assume that (DJ ha s. If q L navherc has i1e Mlue @, then

A*.M is not ide ti(a t +t, and the canjusate conr)ex futtctian Ai.M on A1"* agrces

hith pL,L except pethaps ai rclatiue boundary points of domq.l. On the othet ha d,
if et.t. ha! the t)alue .t sonewherc, then vL.L is identica ), cr o, ri (dom qi.),
bhile a^,M is tlentiLalr -,r on Aia and hence astee! with, .1o ti(dameL) (but

does not agrce hith qLL outside af domq].b since thete vLL is ide tica r +o.\.

Proof. This is obtaiied from Corollary 3 and the fact in Theorem 2 that
atr(dome,., is cioscd, and ?!.'- is coniinuous relative to af(dome,,.) except

perhaps at boundary poinis oldon qr.. relati\€ to afi (dorn e,.J. In general, since

o.. is the conjugate of pr,. on ,al, oi,r(a, t) is given by the limir (3.28) unless

(r, t) is nol in ihe weak* closxre of don ?i,i and o",.' is identically +.o [3].
The next t\vo corollaries are major steps in the direction ofTheoren L

CoRoLLARy 5. If (Dl halds and(0,0) eti(domeD, then

inl o,.,(.r) : -min o,,"'O) < +or.
'.!l *,:

Proof. Theorem2 assertsthat pr.'is continuous at(0,0) relative to atr(dom e,,r,
and ih€refore rpi.,(0,0) is not empty.In fact apr,,(o,0)is contained in,.li according
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to Coroilary 1, exc€pt in the trivial case where ae!_,(0,0) is all of ll**. Thus

?r,! has at least one subgradieni Z€r4l at (0,0), and rhe result follows from
Proposilion 5.

CoRoLLARy 6. Axtune that (DJ haus, and that O^.M is nat identbaly +.D on
At". Then each of the clased, connex lerct sets

191l

(3.30) {p e Ail a,,.MO) 
= 

p\, /, € R1,

(3.3D (0, 0) ' int (dom ?j..).

(3.32\ {.a,y):(a',}')+(a',r\, @', )i') e atr D, (a',y")eJ,

25

is a laca r compact spate rclatiue to the veak topolog on Ai a d in ?atticular has
the prcpefty that ebery bau ded subset is veakv telath)ely conpact. The sets (3.30)
are thensetr,es boolded (and he ce \ieakly canpact) if and only if

Proof. In general, for each real number p gfeaier than the inimum of 9!., on
,r;, the convex level set (3.30), regarded as a subset ofli*3, has as irs closure in the
weak*+ topologJr (the weak topology induced on ll** by,4l+) the corresponding
level set of the function O*1, on ,4i**. These level sets are rhe same accordjng ro
Theoren 2 if (DJ holds, so that th€ set (3.30) is weak** closed in ,4;**. Then
bounded subsets of (3.30) are weak*+ compact in l;**, or h other words weakty
compact in li. A basic theorem aboutconvex functionals [1, Theorern 7A] asseds
that (3.30) is bounded in ll for every real p if and only if rhe origin belongs to
int (don O*,v) in l**. The lauer condition is equivalenfto (3.31) by Corollary 4.
Thrs the set (3.30) is weakly compact for every p if and only if (3.31) holds.

If the set (3.30) is nor bounded, it is neveriheless " bounded localty" retative ro
lhe weak topoiogy and therefore 1oca1ly weakly compacr. This local boundedness
ploperty lollows by a general argument from the fact that (according to Corollary
4 and the second paragraph ofTheorem 2) the convex ser

D : dom o;l.d c .a*+

has atr D closed and of finite codimension, and ri D+ a ; cf. Ioly ll3l.
Here is the argumenl. Fix any p e Rr and t e,-1I such that O,,M(p)Si,, and

denot€ the set (3.30) by C. We construct a weak neighborhood ,/ oft such rhar
ttl n C is bounded in li. Ler "r be a finite-dimensional subspace of l** compie-
mentary to afir. Then each elenent (r,t) of,4l* can be represented uniquely in
the form

and the conponents (a', r,') and (d",1) depend continuously on (d,.r'). Using the
representation (3.32), we de6ne the convex function $ on A1"* by

(3.33)
'!i(a, 

y\ : aA.M@', r)+ d I@', r) j ,
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where d is a real number, d> p.Theconjugateof,y'onliisthengivenby

'!*@) 
: @-, (p, ir p e rl/a,

: +.o if p+Wd,

w": {p <p,(a", r')> 
= 

a (a",11 ,v(a',y")eJ\.

Note that ttlo is a weak neighborhood of the origin of ,,1:, becau se d - 1 ltlo is the

polar ofthe finite-dimcnsional compact conlex sct.I^ U, U being the unit ba11of

,al+. Moreover, belongs to the strong inierior of t/0, inasmuch as d> tl ,and
hence Itlo is also a \leak neighborhood oft. we now choose any elenent (t, t) of
the (strong) inlerior oldom,y' in li*; such an elenrelrt exists by the definiiion of/,
because ri , + ,. Invoking Il1, Theorem 7Al as above, we obtain lhe lacl thal for
every F € Rr rhe set

Ip e Al | 'l)*(!)- 
(.p, G, ,)> < F\: wa^IpEA1" o,..(r) 5 (2,(t,t))+F]

is bounded. Let

,Y1 : Ip e Ail <p,(a, r)>+F > t"j,

where E>p- (i, (a, t)). Th€n /1is a weak neighborhood of, sxch that

wt 
^ 

C - Ip e AA I a^.M@) 
= 

<p, (a, t)> + Fl.

It follows that W: Wa 
^ 

Wt is a weak neighborhood of t such that ltl A C is

4. Support functions and attainnbl€ sets. Corollaries 5 and 6 of Theorem 2

reduce ihe p.oofofTheorem I to th€ anatysis ofthe condilions (0, 0) e d (dom ?r.,
and (0,0) € int (dom qr,.). These conditions can be related to the conditions in
Theorem 1 on lhe convex sets Cr and C, through a study ofsltpporting hyperplanes

For a star!, we derive a formnlain terms ofm and M fot the suppott fu ctioflal
dom pr.. on ,-,1i, ihat is, the function which for each arc/ €,4i gives lhe supremum

over dom pi., of the lineal functional on ,!i* corresponding ro 1. This forrnula

relates the support function of domq,,i to tlre support functions of the finite-

dimensional convex sets C,:dom / and ,i(r):dom I.. It also provides informa-
tion on the relationship betwee! the weakly aitainable scl C, and the attainable set

dom -F. (see Corollary 4 of Theorem 3).

A useful fact in our analysis is the resxlt that the support function of the effecrive

domain of a convex function is the recession lunction of the conjugate conYex

function (provided that the conjugale is not idenrically infinite); see [l] and

[6, $8 and S ] 3I. Il ,y' is a lower semicontinuous convex function (not idcnlically + co)

from a iocally convex space -E10 R] u{+or}, thc re&s}io futtction of,l', whic}'
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we denore here b) y'.; given b! lle formut"

r4.li yr"' lrn [Jl. -,1u) tt, rl^. h'-dom I.

(The limit is the sane no mafter which rr' is chosen in dorn ,y'.) It is known rbat I
is again a lower senicontinuous, convex furctior from , to R1 u {+oo}, and that

(4.2) l(),): )l(r), r > 0.

In parl;cular, rve shall use rhe lact that the recession funcrions land i satisfy (in
view ofrhe modifi€d conjugacy relaiion (1.7))

(4.3) k(rto, d) : s|p {t.ca, d; <cr, d) ) (ca, c) e c},
(4.4) l(.,,..) : sup {("", d.) <cr, d!) l(d6 d; e c^J,

while the recession funcrions Z(, ., .) and ,l?(r, ., .) otr(r, ., ) and M(r, , .)
satisfy (in view of(1.8))

(4.t n?G,p, r) : sup {(:r, r)+ <t), p> ) (x,4 e DLOI,

(4.6) i0,:r,,) = sup {(.r, r)+(,, p) O,r)€re(r)}.
PRo?osrrroN 6. The rccession functions i and L satisfy co ditianj (A\, (B), (C)

and (D), and so do rit and iL ne Botza fu ctianah tt)i., and aa.n arc thur wet!
defned on A1", and tu fact ai,. is the rercssion function of at,L Qf At.L* +.D), and
A^.$ i! the rccessianfunction af A^,w (if A*.M* + d.). Morcot)et, A;,e k the suppott
function of dom y\1, while Ai.i is the suppott function of dom v^,M.

Proof. Clcarly I and i satisfy (A), while (D) is trivialtv satisfied because
L/.0.0r -0. llr.r 1rd d,,re trn.rioi, t"\:ng rhe Orooery rn'16r 1o. 7. ,n.n r, ,
and 0 have the same property for Z; thus i, satisfies (C). Since a satisfies the
measurabiliry condirion (B) and Z can be expressed by definirion (see (4.1)) as a
lmir olorFerence q.ror:enr. of/. a tikewr,e,arisfie. rBr(|ne lin r ,,t d sequence of
measurable functions being rneasurable). Ifx is an arc such rhar Oi.r(J')< +co, we

lim Io,..(r+ ):) - o,.,(.x)l/)

(4.7) : lim I/(.r(0)+)z(0), jr(4 + rz(r) (,(0), jr(4)l/,\
tr

- 'iT-J" ftr,, rt,, ^zttt 
ittt 

^:tttt-Lt!.xtt). itlDl ttd!.

The last limit can be exchanged with rhe integral, because the difierence quotient
is nondecreasnrg in .\ (due to the convexiry ofz(r, ., )). Therefore

r4.8i or..(:l - l(:{0i..?r/" l'Lr,.n,r.:r,ra,. a e1
Jo

as claimed. It follows thar Or,, is the supporr funcrion of the convex ser dom Oi.
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m\.t", d,) = 
'il.ax 

{m(d$ dr),01, Ma(t, p, s) : lnax iM(r, p,.!),01,

(4.13) i(co+,\z(0),."+)z(t)) : /(.0, cr+rao for all co, c", .\,

(4.14) L(t,x+^z(t),D+^2(t)) - L(t, x, D) + 
^dr(.t) 

forallr., r,.r,

or equivalently if
(4.15)

(4.l6)

(4.t7) Ai,z( z): @i.LQ).

(4.18) oi.,(jr+,L) : or..(j')+.\d for all r eli, r e R1

in,li* [], Coro]lary 3Dl. Bur domofr and domei,M have the same weak*

ciosure in li*, because o,,':qi,v and Or.z* +co. Hence ot.r is also the supPo

funcrion of dom p,.v.
Unfortunately, this arguneni does nolyieldthe useful fact that Oi,iisthe supporl

funciion of dom 9.,M even in tlre case rvhere or,, is ideniically +.o. However, to
cover the latter case we can replace n and M by

laking /0 and Z0 io be rhe functions dual to 
'no 

and M0. Then (A), (B), (C) and

(D) are satisfied. The function p...r. is nonnegative, so thal its conjxgate o,o,io

on,.1l is finite al the origin, and the result already proved can be applied. Since

c.,-C and ,ut,l-D!t/,. we hare l -lrnrl l0 a {see,4.a) and 14or' lhe
recession funciion of o,",.", which is the sxpport functtun of dom e,,",r0, is there-

fore oi.r. But dom q.".Mo is the same as dom p..y, and the proof is now complele.

We callan arc z E,4i a li ealiltarclotlandLil there exist real nunbers do and

d1(l) (for almolt all r) such that

(-,(0), -,(")) : i(z(o), 
"(r)),

L(t, -,(t), z(D) - -L(t, '(it,.(t)), a.e.

It is not difficuh to verify (using the convexity and posirive honogeneiry of I and

Z(t, , )) that z has lhis properry if and only if

If or,. is not identicaliy +.., so that ill,i is the recession function of o,,. eroposi-
rion 6), property (4.17) characterizes the lineality arcs for / and l, as rhe arcs z €,1;
for which there is a constant @ such that

Lineatity arcs for ,? and ,1,/ are defined analogously.

Ordinarily one would not expect to encounter nonzero lineality arcs in a well-

formulated problem of Bolza, but rhey might occur in certain derived problens,

such as the dual problem. Their theoretical role is explaiied by the next resul!.

PqoposrrroN 7. Assume that (Da:) holds. Then a co tinuous lineat functianal on

Al* is constant on dom er.L il a d onlr if it coftesponds to an etenent of AI wllich k a
lineatit) arc fot m and M. The li eality arcs for n a d M thus forn a subsparc af Ai
',thote dine sion is the(Jinite) codine sion of atr(domp.J in Ai.
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we denore here b) y'.; given b! lle formut"

r4.li yr"' lrn [Jl. -,1u) tt, rl^. h'-dom I.

(The limit is the sane no mafter which rr' is chosen in dorn ,y'.) It is known rbat I
is again a lower senicontinuous, convex furctior from , to R1 u {+oo}, and that

(4.2) l(),): )l(r), r > 0.

In parl;cular, rve shall use rhe lact that the recession funcrions land i satisfy (in
view ofrhe modifi€d conjugacy relaiion (1.7))

(4.3) k(rto, d) : s|p {t.ca, d; <cr, d) ) (ca, c) e c},
(4.4) l(.,,..) : sup {("", d.) <cr, d!) l(d6 d; e c^J,

while the recession funcrions Z(, ., .) and ,l?(r, ., .) otr(r, ., ) and M(r, , .)
satisfy (in view of(1.8))

(4.t n?G,p, r) : sup {(:r, r)+ <t), p> ) (x,4 e DLOI,

(4.6) i0,:r,,) = sup {(.r, r)+(,, p) O,r)€re(r)}.
PRo?osrrroN 6. The rccession functions i and L satisfy co ditianj (A\, (B), (C)

and (D), and so do rit and iL ne Botza fu ctianah tt)i., and aa.n arc thur wet!
defned on A1", and tu fact ai,. is the rercssion function of at,L Qf At.L* +.D), and
A^.$ i! the rccessianfunction af A^,w (if A*.M* + d.). Morcot)et, A;,e k the suppott
function of dom y\1, while Ai.i is the suppott function of dom v^,M.

Proof. Clcarly I and i satisfy (A), while (D) is trivialtv satisfied because
L/.0.0r -0. llr.r 1rd d,,re trn.rioi, t"\:ng rhe Orooery rn'16r 1o. 7. ,n.n r, ,
and 0 have the same property for Z; thus i, satisfies (C). Since a satisfies the
measurabiliry condirion (B) and Z can be expressed by definirion (see (4.1)) as a
lmir olorFerence q.ror:enr. of/. a tikewr,e,arisfie. rBr(|ne lin r ,,t d sequence of
measurable functions being rneasurable). Ifx is an arc such rhar Oi.r(J')< +co, we

lim Io,..(r+ ):) - o,.,(.x)l/)

(4.7) : lim I/(.r(0)+)z(0), jr(4 + rz(r) (,(0), jr(4)l/,\
tr

- 'iT-J" ftr,, rt,, ^zttt 
ittt 

^:tttt-Lt!.xtt). itlDl ttd!.

The last limit can be exchanged with rhe integral, because the difierence quotient
is nondecreasnrg in .\ (due to the convexiry ofz(r, ., )). Therefore

r4.8i or..(:l - l(:{0i..?r/" l'Lr,.n,r.:r,ra,. a e1
Jo

as claimed. It follows thar Or,, is the supporr funcrion of the convex ser dom Oi.
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MorcoLe\ it is possible to frul ma ices A(t) (not nercs:atiu unique) vhose com-
pa ents arc summable in t, su(h that etett linealit! atc z fat n and M is a solutio
ta the di/fercntial etttqtion

(4.1e) .(t) : A(t)z(t), (:(0), z(?')) e N,

29

(but ot ne.essarilr conueryelr. Here Nt is the ofthogonal conpletnent in R;<R
oJ the subspace para el to atr C1.

Proof. Sirce (DJ hotds, every continuous linear functional which is consrant
on dom e,r.. coffesponds by Corollary 2 of Theorem 2 lo an elenent of li. The
first part ofllre proposition is then appitrent fron the lact that @;.r is the support
function oi dorn 9!.. (Proposition 6) on l*, rogether \yiih the characterizarion of
lineality arcs for ,? and M as the arcs z wiih ihe property that

(4.20) @^.tu( z): A,^,nG).

To prove the secord par!, we take any nonempry, bounded, open ser ,Y in ,Ri
and select B0) and r(r) as in Proposition 3.lf: is a iineality arc for l'? and ru, then
properlies (4.15) and (1.16) (iith l and a replaced by ,t .nd M) imply via (4.3)
and (,1.5) that the linear funclions

(co, .") + (.o, z(0)) + (.", ,z(?)), ('f, 

" 
+ <n, :t(,)) + (,, :(1)),

are constant on Cr and rll), respectively. Therefore (:(0), -z(r)) belongs to ir',,

(jr, tG)) +(B(r)Jr+D(r), z(r)), x e x,

is for each I a constant independeni of jr. Since X has a nonenlpty interior, the
latter fact implies rhai ?(1):,40)20) for alrnost every r, where l(l) is the lranspose
ofB(/).

CoRoLLARy 1. Assune that (DaJ holds. The cantex set dam Et.L hlrx lt onem\f
intetiot (so that i dom .pt.L and i dom qL.L arc the same) if and onD if therc arc no
hleali\ arcs fot m and M othet than the zero arc.

Proof. This follolvs tuon the properties of dom q,.i established in Theorem 2.

CoRoLLARy 2. Assume that (Do\ halds. If z is a linealit) arc fu n a d M suth
that zQ):A fot same r e I0,Tl, then z nwt be the zerc arc.

Proof. Tbjs is lrue because z satisfies the linear ditr€renrial equation (4.19).

CoRoLLARy 3. rf (Di holds, the cadime sian of affdotoELL in A1"+ does not
e xc eed n, a .l i t is no t gruttet than the c odimensian af afr C t in R: x N.

Proof. The codimension in question cannot exceed the dimension of the space

of solutions to (4.19). Of course, the dimension of N, is the codimension of atr Cr.

We are ready now to prove the main result ofthis section.



THEoREM 3. /(Do) ioldr, the foloh)i g statements are equioalentl
(a) The otisin of AA* belonss to ti dom,pL.L.
(b)tiCt^iCL+a.
(c) Therc arc a arcs z e Ai, orhet than linealitt arcs fot h and M, vith the
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(4.21) tit(z(o), z{n)+ I' nrO, z(r),2(t)) dt < a.

t tdo. d,'t - nl t , n. do ,.J, (.a..) (,J

and make use of (4.3), we can express (b) equivalentiy as the condition that

G.n) fikia, d) r(4, d') ! 0 implies ,( dr, 4\ F(-da, -rt) = 
0.

To prove that (4.23) is equivalent to (c), it suflices to demonstraie thar

lr(.4.24\ - r(t1o. J.\ . 11,r { l v0, d1). :(r)) dt | , . Ai, ,(o) -d,,-tt)-d,l
\Jol)

Fix any (do, dt E R'x n", ard define

ta(co, cr) : <ca, da> -<ca, d;,
La(t, x,o) :0 ir (x,t) Ect DLQ),

- +6 it (x, D) + ct DL(t).

a d fot etery such atc equalitr holds in (4.21\.

The foloflins siatenents arc also ertuiDabnt u .ler (D):
(a') Tahe dsin af Ai* beldrsr ,o illt dorn pi.,.
(b') ri Ci . ri Cr+ o ardatr(Cru C,):R.xn".
(c") Therc ate no arcs z e Ai, othet thdn z=0, su,:h that (4.21\ holb.

Proof. we denonstrate nrst that (a) and (c) are equivalenr. Since ri dom e,., is
nonemply and affdom?,,. is ciosed (Theorem 2), the origin fails to belong to
rl dom 91," if and only if it can be separated properly from dom e,.. by some
coDtinuous linear functional on,4l*. Srch a linear functional nec€ssarily corre-
sponds to an arc 

" 
in ,4i by Corollary 2 of Theorem 2, and its supremum over

dom e,.r is therefore On.r(r) by Proposirion 6. It is constant on dom ?r., if and
only ifz is a lineality arc lor ,7l and ,1(Proposition n. Thus (a) holds jfand only if
every arc z e ll satisfyhg O;.r(-?) <0 is a lineality arc for 

'l' ard t1 such ihat
O'.r(:):0. In other words, (a) holds if and only if (c) holds.

If (a) holds, 
've 

have e!.,(0,0)< +.o, so that or.. is not identically +.o and
there exists ai least one arc x satisfying (1.3). Therefore, in proving tlre equivalence
of (b) wiih (a) and (c), it ca]l be assumed that C,+ z. Then (b) holds if and only if
the convex seis Cj and C. cannor be separated properly 16, Theorcm ll.3l. ln other
words, if we define Fon R" xl?" by

(4.25)
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These l iclions.rgain satisi, (,\). (B), (C) and (D0), and the lirrclion. dLial Io Ihem

(1.26)

(1.21)

(thc last by (4.5)). ln lern1s of lhese functions, the relation (4.24) that we want to
pfove can be written as

(4.20 ' irlto,o ra((l I r 4;, - nin to a..,.{4 7 - ,r1}

This holds by Corollary 5 of Theorem 2 if
(0, 0) e i dom e,".,".

n\ll, d,) : a ir t; : da atrd di = dr,

: +a. 1rd[+4ot4+6,
ttla(t, !, s) : tilt, p, s)

(4.2e)

Since (a) and (c) have already been shown to be equivalent, we can apply this fact
to /o and lo to express (4.29) as conditioD (c) for t'0 (:310.0)) .Dd fua G M). In
this way we reduce the argument to showing that there are no arcs -:, oiher lhan
z:0, ruith the property thar

(4.30) :{0r 0. -{rr t ,.(l i. irt.-rtr. LttJt o.

(A lineality arc for rlo and Mo satisfying (4.30) nust be the ze.o arc by Coroliary 2
of Proposition 7.)

Assume that 
" 

€,1i satisfies (4.30), but ihat r is not the zero arc. we argue from
this to a coniradiclion. Since C.l a, the.e is at least one arc .I0 e,.ll such ihat

(4.3D (ra(t), ia(t\\ e cl DL(t) a.e. on [0, 7'].

From (4.5) we see that

(4.32)
fi(t, z(t\, t(t \ > (r.(r), z0))+(;'(r),40)

: (d ldt\( xo(t), ,(t)>

for almost every 1, where equality holds if and only if

(4.33) ('-jro(r), ?(r))+(, t"0), z(r)) 5 0, v(,', ,) € rr(,).

Subtracting th€ right side of (4.32) fron the left side and integrating over [0, 7],
we obtain from (4.30) thal

0rl I4(!.zlt).2ltrdr - r10).0 - r0(r).0 50.
Jo

This implies rhat equality must in fact hold in (4.32) lor almost every /, so that
(4.33) is true for almost every t. Since z is noi the zero arc, we can lind numbers /o

and tr (0=ro<tr=O such that z(ro):0, but ?(r)+0 for r€00,/11. For each
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' € 00, /rl, tet r(-, denote ihe set of all veclors c e ni slrch rhar rhere exists an
Jbsol.rlel) ronLinLou. arc r: l/0. rr. - R1 $'rh

(4.34) irG):. and (x0), i(/))€ clr,0) a.e. on fto,?1.

Clearly,((') is a coDvcx set containing io("). lfjr is any arc satislying (4.34), rhe
inequalily (4.33) nnples that

(4.35)
0: (jro) i!o(r),:t(,)) + (i(1) i"0),40)
: (dldt)<x(t) ro(t), z(t)>.

Thus (x(t)-.r0(r), z(r)) is nonincreasing as a function of r E [to, r], so that

(. );"G),:(r): ('G)-l'G),4,)) < (i(rJ i!00J,u(rJ):0.
Thererore rG) is a (nonzero) normal 1(r r(r) at jro(,i for t0 < '< /1. To contradicr
rhis, we show that jro(") is actually an iDlerior point ofr(?) if is sufiiciently ncar
to t0. Let Xbe any bounded, opcn neighborhood of,ro(lJ tu R", and iake 3(r)
and ,(/) as in ftoposition 3. For each point a e -R", the direrential equation

has a L,nique sdution on [0,r], and if aex one has :r(r) E,r (and hence
(r(/), i(r)) e ,i0) by lhe choice olB(/) and ,(,)) for I s!frcienily near to ro. Thus,
il the solurion to (4.16) is wrillen in lhe form x(/):,t/,(d), we have W,(d)E K(')
whenever d e X and r is suficiently near to /o (,> to). Let a/ and ,, be compacr
subsets of ,Ysuch that:ro(to) Eint Uand U-int Z Then there exists a 

", 
ro < '<lr,

such thar

xa(t)eintu - Wt(v) - X, ta 
= 

t < a.

These relations imply ihat

xa(.) e int w"(v) - K(a),

so lhat j!o(') is an interior poinr of(('). This completes the proofoflho equivaience
of (b) with (a) and (c).

The equivrlence of (a') and (c) is obvioxs from Corollary I of Proposition 7
and the equivalence of(a) and (c). The equivalence or(b') and (c') follows,like the
equivalence of (b) and (c), fron lbe suppor! lunction formula (4.24) established
abo\€. Theorem 3 h now established.

CoRoI-l-ARy 1. Assune that (Cd holds. Then ane has tiC^^tiCM+ a Lf and
onlt iI therc ate a arcs z € A1, other than lineali, ar6 fot I a d L, such that

(4.36) t(t) : B(t)x(t)+b(t), x(t): a,

i,,aot,,trn + J' 
Lr t.,r,). :r/ )) Jr s o,(4.31)

a dfot ercty su.h arc eqality halds n|(4.31).
one has both rl C.^ti CM+ E a.latr(C^vCM)-R'\Rif and anlr i.f therc

is no arc z, athet than z:o, satisfyins (4.37).



CoRoLLARy 2. Assume that (Cl hol.ls. Then ane has CM+ a if an.t ontr if thete
is no arc z E Al, ather than z:0. such that

,4.18) il0, -0. z,n - o. an,1 | Ltt.:t'1.'\t))dt:0.
Jo

Proof. Invoke thc equivalence of(b') and (c') for the dual fu.ctions in the case
where / is thc indicator of the origin, so that ,l is identically 0.

CoRoLLARY 3. Suppose that

(4.1e)
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L(t, x, t) > L1(t, x, o)+sO,t) A(t)x),

z(t):l(t)z(.t, for atmost erer! t eIa,rl
has no satutions z, othet than lineali1 arcs t'ii I and Lr, such that

(1.41) 11"1o4,4ry + f 4t,4r\, z(t)) dt 
= 

o,

g(t,u):0 if ,l:0,
: +otr if ,10.

wherc L\ satx|ies (A), (B) and (C), s k a nomat can"ex intestu d on 10, Tl\ Rtr
h hose conjusate s* has the prcperty that s+(t, p) is fnite a d sunmabte in t fot euery
p e R, and A(t) is an nx n matrix whase campanents arc sunmable .functions af t_

Suppose fu her that the dilbrcntial equation

(4.40)

and thl:tt for etery such sohnio equalitr hold! in (4.41).

Then (CJ hakis and i C^ 
^ 

ti Ctr+ a, so that the h):pathesis of Theorcn t(a)
is satisrted. If in fa.t there is no nakzerc saLutian z to (4.40) vhich is a lineatity arc
fot I and L\ , lrer dko atr (C. u C,) : R. x fi'.

Proof. Since tr satisfies (C), there exist functions i € 4, t e l,f, an{l d € Z1 such
that

(4.42) .(r, jr, ,) > (r, i0))+(D,t(t\)-d(t)+s(t,1,-A(t)x).
Let Zo(1, r, .) denote the righr side of (4.42). The Hamilronian 1/o coresponding
to Io is

(4.43) Ho(t, x, p) : a(r) - (jr,.i(/))+ (10)x, p-FeD + s*(t, p-FQD,

and this is summable in I for every r and I (apply 17, II, Corollary 2Al to s*,
usiDg the hypothesis thal s*(r,?) is sunnable in r for each p). Corollary I of
Proposition 2 impiies in this case that (Co) holds. The inequaliry (4.39) inplies ar
the same lime (from the definition ofthe recession funcrion of. convex function)
tllat

(4.44) L(t, x, D) > L,(t,x,i)+Ee,r A(i)x),

where g(1, ) is the recession function ofa(r, ). But g(r, ) is cofinite; hence

(4.4s)



Ir loUows that if .z € li is any arc sarislying (4.37), lhen (4.a0) and (a.al) hold, and

the conclusioDs of the corollary are apparent.

R|M^RK. The assumptions in Coroilary 3 concerning the ditrerential equation
(1.40) are satisfied if
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(4.46) l(.",.t < +oo inplies that co : 0 or c": 0,

,ti,L@. t; a, ]) : lifr h,,I(.i+Ia,t+,\r) r,,14 t)l/,t.

as is true in particular if Cr has a bounded image under either of rhe projections

(.0, .r) + co or (.", .') - .'. Indeed, in this satisfynrg (4.40) and
(,1.41) has cither z(0):0 or;(r):0, and conseqxenily.z is the zero arc.

CoRoLLARy 4- As"^une that lC) is satisfed. :lhen, for the canNex fu ctian FL

in (t.25), rhe .onuex set dam FLQhe set oJ attaindble endpoints fot L) h telated ta

CL( rc set of weaktr axainable ekdpoints fot L) br

(1.47) dom -F. c C, - cl dom Fr.

Thus in pafiiculat ane has

(4.48) ri C. : ri dom F,.

Proof. The first inclusion in (4.47) is obviors, so we need only show that
dom 4rri Cr. Let (.0, .") be any pojnt olri C' and take

/(.0,.t : 0 if .o : .o and c" : 2",

:+6 if q+ toorcr+ ar.

Then (b) is sarisfied in Thcorem 3, and ir follows that (a) js satisfied as well, so that
p,..(0, 0) < +.o. Thus there js at least one arc .! E,41 with o,,,(ir) < +co. In vie\y

of the definirion of 1 such an arc has

r(0) -,0, ,y(/) i, and I L(t. x(.t). i(.t\\ dt .
Jn

Therelore (d, ,1) € dom F .

Proof of Theorenr 1. There is nothing left to do, except to conbinc Theorem 3

with Corollaries 5 and 6 of Theorem 2.

5. Dual interpretation of optirnal arcs, The fact that lhe arcs which minimize
o,,, - over ,.11 correspond to the subgladients (in ll) ofer,. al lhe origin of,4l* has

alrcady been nored in Proposition 5 in $3. Dually, the arcs wlich rninirnize Oi.,

correspond to subgtadients of e^.M at the o gin. These facts, in conjunction with

Theoren 2, make it possible 1o interpret the oplirnal arcs in a given problem of
Bolza in lerms ofthe differential efi'ect ofperiurbations on the infimum in the dual

problem of Bolza, and vice rersa. Analogous duality results have been developed

by the aurhor in the general theory ofconvex programs 16, i301.
We denore by Ei."la,j:a,y) ihe one-sidcd directional derivative of 8,,' with

respect 1lr (d, ],) at (4, t):
(5.1)
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qi.Ja, t; t1, t\ Z <fu, t), p> :

(5.3) el.L@,0: a,y): sup {((l1, r), p) lr, EP}.

(5.1) ,pi,Lq,o;a,t = <(a,!),p) : <a, p(0)>+ f <^t), iQ> dt.

(I-hus e',,1(0,A; ., ) is the suppott function of P.)
(b) P co sists of a sinsle elenent p (that is, p is the unique optimal at. fot n and

M) if and only if vL!. is (f ite and) kllare tiahle at (o,o) in the se se af Gdteaux.

In this er,ent p is the stallie tofqL.Lat(0,O)inthese se ofGakaux:far eoeU) aE R
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Sinc€ ?r,r is convex, tbjs is well defined, provided that e.L@, t) is finile. AD arc
p E li belongs to the subgradient set aer !(4 t) if and only il

<a, p(o)> + It <!(t),i@) dt(s.2)

for ail (a, r') € l:*.
Tbe following result is stated one-sidedly, but needless to say the dual assertions

are also valid, where I and l, are inrerchansed with ,'7? and ,11, and (DJ js rcplaced
by (CJ. These dual assertions characteriz€ the case where there is a unique optinal
arc for / and L.

By a ninimizing sequenca for O..r, we mean of course a sequcnce of arcs p1 in
,ri such that O. -(pJ tends to rhe infimum of O. u over li. If the level sets of
o.,M are lveakly compact as in Theorem l(b), such a sequence has cluster points,

and every cluster point is an arc p which minimizes o,.,.

TIJEoREM 1. Assume that (Da) holds, and let P de ote the (closed, cant)ex) subset

of AA consistins of the att p whith mi it ize 6^.M.
(a) If ane of the equixatent contlitions (a), (b) or (c) i Theorcm 3 is satisJied and

p,,10, 0) (rre i fnun af at) is rt ift, the lot ewrr a e R and ) e L:, ane has

(c) In the situatian in (b), eDeryi ni nnizias seque ce for On.M conueryes ta p ih
the veak topologt o.f A:. In adq that p actua f be the gradient in the iense af
Fftchet, it is necessary and sufr.ient that euety minimizing sequen.e fot A-.u tok-
I)etge tu p h the strcng tapolagj.

hooi (a) Theoren I and Proposition 5 imply that Pconsisls olthe subgradients
of Pl . at (0, 0) which belons to ,,11. On the other hand, Corollary I of Theorem 2

asserts that err., has no subgradients in,4l**\li. Therefore P - ,?,,10, 0). However,
since qr., is continuous at (0, 0) relaiive lo afi'doll pr,., which is closed (Theorem 2),

e;.10,0;., ) is rhe support funciion ol ae1.10,0). (Thn fact has been slated by
Moreau [3], [4] in the case of a function continuous relalive to the whole space,

but the exlension to the pr€seni case is clernentary-) Formula (5.3) is rhereby

lfP consists of a sinsle arc p, rhen condition (c) of Th€orem 3 is satisfied, and
the minimum of o. , is finire. Theorem 1(b) then implies that pr 10, 0) is finire,
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(5.5) (,r(0), .x(I) + (jr(o) + a, r(r),

(5.6) L( t, x(t), 
'( 

t)) + L( t, x(, ) + 
'-' 

(i). i(r).

(5.7) (-l(t), i(t)) e afl(r, jr(,), p(t)) a.e.

and, applying (a), we see that (5.4) holds. Con\'ersely, if e,..{0,0) is finitc and
(5.4) holds, then lor every d E Rr and / € l,; it must be true that er .(.1ll, )),) < +..
for .\ somciently small. Thus an'dom e,,. is all ol,li*, and we may conclude that
(0, 0) is an interior point of dom ?r.,. The assumptjons in (a) are rhen met, and
(5.3) shows thai I is the uniquc clcmcnt of P.

(c) Since one has (0, 0) E int dom q, r in the situation nr O), er . aerees $ith the
conjugate fxnctjon of - in a neichborhood of (0,0), and nej$er function takes

on -or (Corollary 4 to Theorem 2). The asrcrtions are then immediate from the
geDeral results relaling rhe rotundity properties of convex funclions 10 the difi'er-
ential propedies ofiheir conjxgales [1, Theorem 1 and corollarics]. This completes
the prool of Theorem 4.

Theorem 4 explains the exact significance ofihe optimal arcs in thc problem of
Bolza dual ta a given problem Gatisfying the staLcd conditions). Thus in the
simplest case, where the doal problem h.s a unique optimal arc p and (5.4) holds.
the initial ponrt p(0) gives the directional derivaiives of the infirnum of O,,. with
respect to displacements ofthe form

while the derivrrives l(r) give rhe directional derivarives of the infinum of Oi.,
with rcspcct to displacements of the form

To illustrate fu.therj consider rhe case where (Do) holds, ri C, . ri C.+ ir, and
an optirnal arc r for / and Z is known to cxist. Corollary I ofTheorem t implies
the existerce ofarcsp such that r and? satisfy the generalized Hamiltonian equrrion

Gee t9, S9l and tl0l). These arcs z are in facr rhe optinal arcs for the durl problem.
The initial pointst(0) that may be chosen in (5.7) are thus characterized by Theorem
,1 as the subgradients of the convex function

(s.8) e(a) : ?i,i(a,01 ae R\,

?i,10,0) : inf oi..(x).

at a:0.

6. Mininization over ,r;. The preccding results trea! minimization over ,ri,
but some conclusions may also be drawn concerning minimization over the spaces

ll, where li consists of the absolutely continuou [0, l] such that -i
bclongs to Z; (l Sr< +co).

For each (a,:,:) e li*, iet ei,(d,l) denote the infimlrm of the expression (3.3)
over all arcs xEA. Then pi.z is a convex function on l;+, ei.=er.., and by

(6.1)
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We shall make use ol lhe following stronger condition than (Do):
(Dil Fat each xeRn there exist functions t)eL'" and PeLI such that

. L(t, x, u(t))=P(t).

PRoposlfloN 8. If (D6\ holb, thetl.pi.Lagrces Nith v\Lelierywherc onAI*, ex.ept

' perhaps at boundarr points of dam qL,L rclariue ro atrdomV'J.

koof, Since q{.2 majorizes ?r,.j the convex sei epi ?i,, is contained in epi9r,..
We shall demonstrate that

(6.2\ cl epi ei.' > epi er.r,

that atr epi 
"i.. 

is closed, and thai ri epi ?i.i is not empty. This will sufrce to estab-

lish the proposition, becanse of the convexity of pi,L and ErL.
Suppose tha! (a,l,) e li* and /, € R1 are such that

(6.3) ,p'.,(a, y) < p.

To prove (6.2) we construct a sequerce of elements (dk,lJ converging in ,.{;* to
(a,l,) and having the properry tlat

(6.4) lin sup ?i,(dr, _rk) < p.

Since (6.3) holds, there exists an arc x eli such that

(o.)) /(x(rJ) rr..yr?))t- f i1,.,1,, Jvr. jvrd < 1..

We observe next ihat Proposition 3 remains valid (by the same argument) if (DJ is
replaced by(D6) and thecompoDents ofB(r) and r(, are assertedto bel'-summable.
Taklng X to bc a bounded subset of R" containing ir0)+.),0) for almost every 1,

we apply this generalization ofProposiiion 3 and for the coresponding B.nd , set

r,(,) : r(rltjr(r)+r(r)l+,(r).

Then , e 4, and r(r, jr(t +)(t), ,(r)) is summable in r. For each positive integer
,4 let ,& be the furction in 4 defined by

*' 
: ill ti[:]i : :

Then Z(t, r(r) + ],(r), ,Jt)) is summable in t, and

Ir-(o.b) Ln I LV, ir(/) | )U),Dk\t))tl! - | r{/,.xtr) t ))l),i:lt))dt.
'-. Jo Jd

Now define dk € R", J,k € Lf and xke Ai by

(6.1) xk?): 4r), i*: t*, ar : x(0)+a-jri(0), )&: jr+/-jre.
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Ther (ak, ti) converges to (a, _r,) in ,4;*. we have

16.8) e'.1h..y.) l(t.ttr a.x.t7r I Lt.rttt !^ rt.i.i.tldt-
Jo

and from (6.5), (6.6), and (6.7) \ye conclude thar (6.a) holds as desired.
The proof that affdom ei,, is closed, and ri dom ?i,i is nonernpty, is a copy of

the proof ofthe corresponding lacls for p,,! in Theoren 2. The only real difierence
is that, inslead of invoking Proposition 3, one uses the generalizarion described

CoRoLrARy. If condiion (Di,) holh, then Thearcm 2 and aI its corcllaies arc
Mlid vith,pu. rcplaced hr ?i.L(hat is, $ifi A\Land its petturbqtio s minimized ot)et
A\, ruthet than Ail.

THBoREM 5. Zer 1= /5 +or.
(a) If (D hous and ti Ct 

^ 
ti CL+ q, then

(6.e)
l:I* 

t*t,,r : 
;5. 

t, 
"r'r 

: -*li t..rri'
(b) Suppose that rhe rckditians i Corcllary 3 ofTheorcn3 arc satisfed, with the

conponents of A belansing to L7, and with s of the fam
(6.10) s(t,u):4u c(t))),

where ceL\, a d tt k a nandecreasi g function fian 10, +.n) to (-,r,, +@l such

(6.1D lim infr(,\)/x > 0.

1,(I) : 0/,'))' forl 5. < +co,

,r-(r):0 if 0<,1 <1,
: +co if 1<,\< +co.

(If t: +,r., (6.11) is ta be replaced b) the candition that,t( ): +.r for A sufrtie tb
larye.) Then euer) feasible arc x for I and L belongs to Ai, atld one hat

(6.12) min o,,.(r) : min o,.ft) : iDf o.. (p) : - inf o,,rGl).
E.Ai *'1, *tI

Proof. Statement (a) is obtained by cornbining Proposition 8 with Theorern 3
and Coroihry 5 of Theorem 2. The asslrmptions in (b) imply by Corollary 3 of
Theorem 3 that the middle equaiity holds in (6.12), and they also imply (since t1
salisfies (C)) the existence of functions i e LL F e Ltr and d €Zl, and constants
p> 0 and P, such that

(6.r3) r(,, i.,,) > (.n, i(r))+(b, F()> - a(t) +t,(lt, A(t)x, c(t) | D p,

(6.14)
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If x is an arc in ll such that o,,.(jr) < +or, it follows from (6.13) that

t,(li(t) A(t)x(t) - c(t))l d < PQ),

i(r) : lQ)-r(t)+ c(,)+4t),

nhere , EZ;. Since the components of I and . are elements of ai, we conclude

hom (6.15) that r: €,!;. This proves the assertion in the theorem concerning Or,.,

and at thc same lime it establishes the first equality in (6.12).

Taking conjugates on both sides of (6.13), we see ihat

wher€ p €21. Thus

(6.15)

(6.16)

(.6.1,

(6.18)

(6.1e)

where l*(r) is the transpose ofl(r) and (l//)+(l/q):1. Define

M(1, p, s) < "(t)+<c(i),p-F1l+n"G p-F())+B

r-s(r)+l*(r)b-t(r)l : 0,

Lj(t, x, u) : L(r,.r,,)-(-y, i(r)) <,,pft),

Mo(t, p, s\ : M(r, p +t(r), r+{D).

Obviously l and Zo again satisfy (A), (B), (C), and (D); therefore 
',1 

and ,l10 again

salnfy (A), (B), (C), and (D), and we can apply Proposiiion 8 to e.,"0 and e;,Mo.
The hypothesis of Proposition 8 is satisfied for these fnnctions, because

(6.20) Ma(|, p, A*(t\p) 
= "(t)+ 

(.c(t), p) +r"Glpl)+P

for €very I ' R" and I € I0, Il by (6.16) and (6.17). Thus ?;,/ agrees with ?'.'"
e{cept al boundary points of don ?..M0 relative to atrdom q.,Mo. However,

according to (6.19) we have

e^.M"@, r) : e^.M(a+ a, y +t ), e!n.M.@, ),) : .p1.,N@+ a, y + t),

tf tt
t!) p\t) I i(r)d' "nd d-l itt)1.

Jt Jn

H€nce ?;,M agrees vith qn,v excep! at boundary points of dom ?,.M relaiive to
affdomE.y. In particular, since (0,0)eridone.. by Theoren 3 and its
Corollary 3, we have e; (0,0):e, M(0,0), orin other words the third equality

in (6.12).
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