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Ordinary Convex Programs Without a Duality Gap*
R. T. ROCKAFELLAR?

Communicated by M. R. Hestenes

Abstract. In the Kuhn-Tucker theory of nonlinear programming, there
is a close relationship between the optimal solutions to a given minimization
problem and the saddlepoints of the corresponding Lagrangian function.
It is shown here that, if the constraint functions and objective function are
Jfatthfully convex in a certain broad sense and the problem has feasible
solutions, then the f sup and sup inf of the Lagrangian are necessarily
equal.

Let C be a nonempty convex subset of R”, and let f,, f; ,..., f,, be real-
valued, convex functions on C. The ordinary convex program

(P)  minimize f(x) over C subject to  fi(x) < 0,..., fu(&) < 0

has as its dual, in the sense of conjugate-function theory (Refs. 1-2), the
problem

(%) maximize g{ v) over R.™,

where R ™ is the nonnegative orthant of R™, and g is the extended-real-valued,
concave function on R ™ defined by

g(y) = inf{L(x, y) | x & C}, )
L(x, 3) = fo(x) + 31A(%) 4 =+ VoSl ). @)

The dual problem is important in computational methods which solve
(P) using Lagrange multipliers: typically, one maximizes g by some algorithm
which involves repeated calculation of the infimum in (1) [see Geoffrion
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(Ref. 3) for references and a general discussion]. For such methods to succeed,
1t is essential that there be no duality gap. In other words, the infimum in (P)
and the supremum in (P*) must be equal. It is therefore of interest to know
under what conditions one can be sure that there is no duality gap.

Conditions of this sort have been developed by many authors. The
conditions usually also entail the existence of optimal solutions to either (P)
or (P*), although this would not be required by most algorithms that seek
approximate solutions to (P).

The well-known theorem of Kuhn and Tucker (Ref. 4) asserts that

min(P) = max(P*),

under the assumption that (P) has an optimal solution at which the functions
fi are differentiable and satisfy a constraint qualification. Fan, Glicksberg,
and Hoffman (Ref. 5) have shown much more generally that

inf(P) = max(P*),

under the simple assumption that the constraints in (P) can be satisfied with

strict inequality (Slater condition). This result has been extended to allow for

lincar equation constraints, either explicit or implicit (see Ref. 2, Section 28).
Theorems of the type

min(P) = sup(P*) (3

have been developed by Rockafellar (Ref. 6) in terms of growth properties
of C' and the functions f; . In particular, (3) is known to hold if C is closed,
each f; is lower semicontinuous, and there exist real numbers 1y 0= 0 Ty
such that the convex set

{xeC|filx) =Su, for {=0,1,.,m (4)

is nonempty and bounded.
Other results about duality gaps have been obtained through the study
of the perturbation function p for (P), where

P{”) " lnt{fﬂ(l) | x < C! fl(x) ““(t Uy e fm(x) “{t um}' (5}

(see Ref. 2, Section 29.) If (P) is consistent, a necessary and sufficient condition
for there to be no duality gap is that p be lower semicontinuous at = 0.
The purpose of the present paper is to point out a large and important
class of convex programs for which consistency alone guarantees that there
is no duality gap. For problems in this class, it is unncessary to check any



JO'TA: VOL. 7, NO. 3, 1971 145

further assumptions concerning sets of the form (4) or to verify directly any
properties of the function p.

Theorem. Suppose that C = R* and that each of the functions f;
satisfies the following regularity condition: f; is not affine (linear-plus-a-
constant) along any line segment, unless f; is affine along the entire line
extending the line segment. If (P) is consistent, then

inf(P) = sup(P*)

or, in other words,

inf sup L(x, y) = sup inf L(x, ).

2=R" weRY yeRY xeR”

Observe that the regularity condition in this theorem is satisfied by f
whenever f; is linear or quadratic. In fact, it is satisfied whenever f; is analytic
Thus, the theorem is applicable in particular to all convex programs on
C' = R™ with analytic objective and analytic constraints.

Of course, the regularity condition does not actually require any differen-
tiability at all. It is satisfied, as one can easily verify, if, and only if, every f;
can be expressed in the form

(%) = h(A42) + L)

where /; is a finite, strictly convex function on R™, 4, is a linear trans-
formation from R" to R™, and [; is an affine function on R*. The term %,(4,x)
may be omitted entirely, or 4; may be the identity transformation, #; = z.
On the other hand, /,(x) may be a constant, perhaps 0.

Proof. Let x be the infimum in (P). We can assume that « is finite,
since the result is trivial otherwise. Let I, be the set of indices 7 in {1,..., m}
such that (P) has at least one feasible solution x with f,(x) <= 0. Let I, be the
complement of [ in {1,..., m}, and let

Cy={xeR"|f(x) <0, icll
Then, () has a feasible solution x with fi(x) <= 0 for every i eI, [that is,
% = (ljn) ¥y, %y, where x; is, for each i<1I,, a feasible solution with
fi(%;) << 0]. On the other hand, f; is identically zero on C, for each i I, . [If
one had x, e Cy and fi(x,) <2 O for a certain keI, , then for small € = Q the
point &' = (I — €)x + ex, , where x is a feasible solution with fy(x) <= 0 for
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every i € I, , would be a feasible solution with fi(x") << 0, contradicting & ¢ 1, .]
Problem (P) is equivalent to the ordinary convex program

(Py) minimize f,(x) over C, subject to f(x) =< 0 for i€ ;.

There is at least one feasible solution x to (P,) with fi(x) << O for every i€ [, .
Thus, (P,) is strictly consistent, and it follows from the theorem of Fan,
Glicksberg, and Hoffman that there exist Lagrange multipliers J; = 0,
i el,, such that

inf 1 /o) - T Fo)| = max(Pe¥) = inf(Py) —
wEly [ iely !

Let M be the lineality space of C;, the subspace of R" consisting of all
the vectors z such that C, - z = C, (Ref. 2, Section 8). Define f; on R* by

fo@) = inf f(x + 2), (6)
where

Then, f, is a convex function, because f is convex (see Ref. 2, Section 8), and
we have

igh ) = jgf ) = ®

Note that f, is nccessarily finite everywhere, since, if not, f, would have to
be identically 2o (Ref. 2, Theorem 7.2), contrary to the assumption that
the infimum in (P) was finite. Furthermore, the definition (6) implies that

folw 4+ =) = folx) if =

We proceed now to apply the Lagrange multiplier theorem in Ref. 6, p. 39
to the ordinary convex program

m

M. 9)

(Py) minimize f, over R* subject to fi(x) =< O for iy .

The infimum in (#;) is « by (8). 'T'o verify that the hypothesis of this theorem
is satisfied, suppose that z is a recession vector (Ref. 2, Section 8) common to
f, and the functions f; , 7 € I; . In other words, z possesses the property that,
for every x £ R%, one has

folx4-2) <flx)  and  filx +23) Sfilx), iel. (10)
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Then, in particular, the half-line {x - Az |A = 0} is contained in C,, the
set of feasible solutions to (P,), where x is an arbitrary element of C,. The
functions f; , 7 € I; , then vanish on this half-line and, hence, by our regularity
assumption, they vanish on the line extending this half-line. Thus, the
expressions

Filx + A2), iel,

are constant as functions of A if x € C, and, consequently, they are constant
as functions of A for every x € R (Ref. 2, Section 8). Therefore, 2 € M, and
— 2 is also a recession vector common to f, and the functions f;, €1, . This
verifies that the hypothesis of the cited theorem is satisfied, and we may
conclude that

min(P,) = sup(P,*).
Thus, « is the supremum of
inf /() + i_g:;f-lyif«;(x)i (11)
over all choices of y; = 0, 71, . Since
filx + 2) = fix) if zeM, iel, (12)

the latter supremum is the same as the supremum of the expression

inf }() + T 9ufi9] = inf () + £ )+ Todf  (13)

isly i€l igh i
over all y; == 0, 71, . In other words, we have
x = sup inf }i(s) + T yufi), (14)
=Ry wsR” | i=l !

and the theorem is thereby proved,
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