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Abstract. In tle Kuhn Tdcker theorr of nonlinear programming, there
is a close relaiionshb betireen the optimal solutions to a given nininizatiotr
rroblem and the saddlepoints of the corresponding Lagrangian function.
k is sho{a here that, if the constralnt functions and objective function are

fanhfulry an{^ in a certain broad sense and the problem has feasible
soluiions, rhen the ;nf Q and sul inJ af th. Lagrangiao are nece$arily

Let C be a nonempty convex subset of R", :nd let /u , /' ,..., /,, be real-
valued, convex functions on C. The ordinary convex program

(P) minimizeli(,) over c subject to ,(') < 0,...,/-(,) < 0

hns as its dua1, in the sense of conjugate-function theory (Refs. 1-2), the
problem

(P) nxdmizes(jy) over R=-,

vhere R - is the nonneg'rtive orthint of R'1, andg is the extended-real-valued,
concave function on R,'" defined bl'

/.(.!, r) - lD(r) +:vri(,) + '+r,"l-@). (2)

The dual problem is important jn comp tatiooal methods which solve
(P) us;ng Lagrange nultipliersr typically, onc maximizes g bt, some algorithm
which involves repeated calculation of the infinum in (l) [sec Geofirion
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(Ref. 3) for references and a general discussionl. For such methods to succeed,
it is essential that there be no dualitr ga?.I\ orher i,L.ords, the infmurn in (p)
and the suprcmum in (P*) must be equal. It is thereforc of interest ro knorL
under what conditions one can bc sure that there is no duality gap.

Conditions of this sort halc been der-elooed bv manv authors. The
conditions usually also entail rhe existence of optimat iolutions to either (p)
o|P ). dlthough rhi. noLld nor be rcquired b) 1lo+ algorirh-s rl,ar.ee\
rpproximate solutions to (P).

The well-Lnoirn theorem of Kuhn and Tucker (Ref. 4) asserts that

nin(P) : nd("+),

under the assumption thar (P) has an optimrt sotution at which the functions
/t are dilTerentiable and satisfy a constraint qualification. Fan, clicksberg,
ard Hoffnan (Ref. 5) have shown much rnore generally rhat

;nf(P) : nd(P*),

undcr the simplc assumpiion that the constraints in (p) can be satisfied ivith
strict inequality (Slater condition). 'I'his resutt has been extended to altov for
lincar equadon constraints, either explicit or implicit (see Ret 2, Section 28).

Theorems of the type

nin(P): $ip(P+) (3)

liave been developed by Rockafellar (Ref. 6) in terms of gronth properties
of C and the functions, . In particdar, (3) is kno$,n to hold if C ;s alosed,
each/, is loNcr semicontinuous, and there cxist real nunbers rr , I : 0, 1,..., n,
such that thc conver set

{,€cli(r) < 2, k" i : 0, 1,...,1 1 (4)

is nonempty and bounded.
Other results about duality gaps have been obtain€d ihrough thc study

of the perturbation function ? for (P), whcre

l(z) : inil/o(') lr€ c, "f,k) <,,,..., ,r_k) <,_1. (5)

(see Ref. 2, Section 29.) If(P) is consistent,: necessary and sulicient condition
for there to be no dual;ty gap is rhat p be lower semicontinuous at ll : 0.

The purpose of the present papcr is to point out a large an.l imporrant
'rr* ol ro-r<r prog". 's for $hich consisLenry:lon. guaranr.es rhar rhere
i. .o duaiirl gJp. For o-oblems :n rhi, c.r.s. ir is unniessary ro ct-eck ary
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furtlier assumptions concerning sets of the form (4) or to ldify directly any
properties of the function p.

Theorern. Supposc that C -=,R' aDd that each of thc functions /,
satisfics the follorvnrg regularity condition: l; is not afrnc (lincarplu!-a-
constant) along aoy line segmcnt, unless t is afiine along thc cntire line
extending the l;ne segment. If (P) is consistent, then

inf(/) == Np(P*)

or, in other r,ords,

i." ;.'lr. , ', s' p ;. I t, \.r ).

Observe that thc regularit]' condition in this theoren is satisned b1 /
x,henelcrl, is linerr or quadratic. In tact, it is satisfied Thenevcr, is .rrdhrr'
thu.. rh- heorem i. inp cJble .n pa ric,la' , , "tt .o1.e\ p-og-r." on
C : R" r'ith a.alytic objcctive and analytic constra;nts.

Of course, the regL arity condition does not actually require any difteren-
tiability at all. It is satisfie.l, as one can ersily ver;fy, i! and only if, everyl
can be expressed in the form

tt@:hlAA+1.(x),

\!h€re i, is r finite, stricrly conrcx function on Ra, .4r is a ljnear trans-
formation from R,, to -R',', and 4 is an amne funcrion on Ru. The tenn /?;(l,r)
may be omitted cntirely, or l; may bc the identity transformation, ,: z.
On the other han.l, (;r) 1ray be a constant, perhaps 0.

Proof. Let r be the i.{imlLm in (P). \\ie can assume that d is linite,
sincc the result is trivial orher$'ise. Ler 10 be the set of nrdices I in {i,..., z{
such that (P) has at lcast oDe feasible solution rjithr(x) -. 0. Let 4 be the
conplcment of 10 in {1,..., ,4f, and let

co: l,€Ri lr(.r) < 0, re4].

Thcn, (P) has a feasible solution r whh ,(r) < 0 for every I E10 lthai is,

' ll ",:" /,. r.. \,h.-e x. s. for c"ch i. /0. a fea-ible .o . ion !irl,
/1\.' 01. On'heo,Lcr I d. ,, iq derric:, \ /rro o- r, fo- e'.h , 1r. ll
one had ro € Co and t(rn) < 0 for a certain A E 4 , rhen for sma11 € >0 the
point r': (1 4r +.r., rvtrere r is a feasible solution $,irh r(r) <0 for
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every I€10, 'ould be a feasibte sotution \ritht(.lr') <0' contradictingA f10 1

Problern (P) is equivalent to the ordiner"v conl'er Prograni

(P.) ninimte/oGJ orer Co subject to/.(,) < 0 for t €10

There is at ieast one feasible solution .r to (Po) nithf(r) < 0 for et'erv ; e 1o

rlus, (Po) ls strictty consistent, and it folloi's fronl the theorem of Fan,

Glicksberg, anti llolTman that ther€ exist Lagrange multipliers f; ) 0,

,t- 1,/,t'/ L ' i.r\ . r "' fo : rrPo' o

Let M be the line ity spacc of C' , the subspace of R" consisting of all
the vectors.g such that CD' z: Ca (Ref.2, Section 8). Define/o on R' by

/.i'): j$-r{" ")' (6)

f :k+ttJ, (D

Then,l, C a conver function, because / is convex (see Ref. 2' Seciion 8)' and

i;1|"L{'-):1{/t'l :" (8)

Note that.lo is nccessaril,v finite eIery$here, since, if not,fi $'ould liale to
be identica111 .z, (Ref. 2, Theorem 7.2), contrary to the Nsurlption that
the inimum in (P) was finitc. Furthermore, the definition (6) hplies that

Ji(r r ') : i("J jf : = 
u. (e)

Wc proceed noil to apply the Lagrarge mritiplier theorem in Ref 6' p 39

to the ordinarl coDrc\ Program

(P,) mjn;rizei orcr R" subjcct tor(r) < 0 for rE.{.

The infinum in (P1) is tr by (8). lo lerit' that thc hypothesis of this thcorem
is satisfiecl, suppose that .: is a r€cession lector (Ref. 2, Sectior 8) common to

ir and the functionsr, i 
= 4 . In other words, .? possesses the property that,

for clery x e R", one hxs

i(' + ") <J,G) and "/,(, +.) </,(,), iel'. (10)
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min(P1) : sup(Pl).

Thus, r is thc supremum of

^r li(.t + t
over all choices ofyi > 0, t €4 . Since

,f'G + 4 : l;(r) (12)

the latt€r supremum is the same as the supremum of the expression

,., lrr., ! rtr,;l . ,r I./"r,, E.r.r0r'- I,t' 'i {13)

over all l; ) 0, t E4 . In other s'ords, we have

(]
' {P i, /o r LY.i r\.1pt

and the theorem is ther.fry p."*a.
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Then, in particular, the hal ine {x + ): ,\ > 0} is contained in Co, the
set of feasibl. sollrtions to (p'), where -- is an arbitrary element of Co. The
functions/' , i e 4 , then vanish on this hatf-line and, hence, by our regularitv
assumption, thel' vanish on the line extending tHs hal ine. Thus, the

i({ + i!), ieL,

are constant as functions of ,\ if ,f E Co and, consequently, they are constaflt

as functions of I for every r' 
= 

R" (Ref. 2, Section 8). Therefore, : e ,'l1, and

-:;s also s recession vector cornmon to/o and the functions/,, ie1'. This
verifies that the hypoihesis of the cited theorcm is sntisfied, and \,Le may

Lnc)1 (11)
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