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1. INTRODUCTION

This paper will be concerned with generalized problems of Bolza of the
form: Minimize

Bu4(e) = x0) 5(T) + [ Lt 3(0), 50 (L)

subject to the constraints
{(=(0), x(T)) e C, (1.2)
(x(2), (1)) € D(t) for almost every ¢, (1.3)

where () is an absolutely continuous function from the real interval [0, T]
(T fixed and positive) to R® with derivative () (almost everywhere), C and
D(t) are subsets of R" X R", [ is a real-valued function on C and L(z, -, *)is
for each ¢ € [0, T] a real-valued function on D{#). Here C and D(t) could be
defined, for example, by systems of equations or inequalities, Not only
classical problems, but many problems of optimal control can be expressed
in this form, as will be seen below.

Our treatment of such problems of Bolza differs from previous treatments
in several respects. On the one hand, we impose convexity, not only in £, but
in x and & jointly. Thus we consider only the case where the sets C and D(f)
arc convex, ! is a convex function on €, and L{¢, +, ) is a convex function on
D(1). This, of course, excludes many important problems from consideration,
although it still allows a substantial class of applications.

On the other hand, we make unusually weak assumptions concerning the
regularity of / and L. No differentizbility is assumed whatsoever, In deriving
neccssary and sufficient conditions for a given arc (f) to be optimal, we rely
entircly on the “subdifferentiability” properties of ! and L which automatic-
ally follow from convexity. Furthermore, only lower semicontinuity, rather

* This rescarch was supported in part by the Air Force Office of Scientific Research
under Grant AF-AFOSR-1202-67A.
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than continuity, in %(0), (7T), & and & is imposed on the functions / and
L(t, *, ). The pair (D(1), L(#, -, -)) is only required tc depend measurably on ¢
in a certain general sense.

Convexity theory is, of course, the tool which makes it possible to survive
under such weak regularity assumptions. The concepts and special results
of convex analysis can be substituted in many instances for those of classical
diffcrential analysis, as has long been known in the caleulus of variations and
optimal control theory. For example, the notion of a tangent hyperplane to a
smooth manifold can be replaced by that of a supporting hyperplane to a
convex set. To some extent, the convexity assumptions in this paper are
motivated by the desire to explore what happens if this substitution of convex
analysis for differential analysis, already widely carried out in the literature,
is brought to a logical extreme. From such an exploration, even if its domain
is restrictive in certain respects, one may hope to learn something about the
“limits of the possible”. Knowledge of what is, or is not, true in the “purely
convex” case could help shape conjectures in more general cases, And, need-
less to say, there is always the hope that the methods in the “purely convex”
case, which are quite different from the usual ones, may lead to new insights.

The main justification for our convexity assumptions, however, is that they
lead to a theory of duality which would otherwise not be possible. By means
of the theory of conjugate convex functions, we shall show that each (mildly
regular) convex problem of Bolza of the type described above has associated
with it a dual problem, which is likewise a convex problem of Belza. The
dual of the dual problem is the original problem again. Extremal arcs x of the
original problem and extremal arcs p of the dual problem are related to each
other by several conditions, involving subgradients of convex functions,
which generalize the classical Euler-Lagrange equations, Hamiltonian equa-
tions and transversality conditions. These subgradient conditions, in the case
of certain optimal control problems formulated as convex problems of Bolza,
also generalize the well known maximum principle of control theory.

The duality theory developed here may be viewed as an extension of the
one originally proposed in the calculus of variations by Friedrichs [10]
(see also Courant-Hilbert [7, p. 234 1.]). This earlier theory likewise required,
in effect (in view of the necessary condition of Legendre and its dual), joint
convexity in x and &, but it was based on the classical Legendre transforma-
tion, rather than the much more general conjugacy correspondence of
Fenchel [8]. Thus it actually required strict convexity, as well as differentiabil-
ity, in & and &, and it was unable, except in very special cases, to handle
constraints of the type (1.2) or (1.3). Since the Fenchel conjugate of a convex
function is essentially equivalent to the Legendre conjugate when the function
is strictly convex and differentiable [21, Section 26], the earlier theory is
essentially contained in the one in this paper.
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The relationship between our dual problem and the dual or reciprocal
problems of Pearson [18, 19], Mond-Hanson [14] and Kreindler [12] (which
depend on differentiability for their definition) is less apparent. Basically,
however, it is the same as that already known in the theory of conwvex
programs between the dual in the sense of Wolfe [30] and the dual
in the sense of conjugate convex functions; see [21, p. 320-22, and p. 430].
Our dual problem is an outgrowth of the abstract duality theory developed
in [21], [24], and [25], and also given, in a somewhat different form (where
conjugate functions do not appear explicitly), by Wets-VanSlyke [29].

The duality between “continuous” infimal convolution and “continuous”
addition of convex functions, as discussed by Ioffc and Tikhomirov in [11],
[33], and [34], may be regarded as a special case of the duality in Example 7
below (for convex funetions on R%). The duality in the continuous linear
.progr amming problems of Bellman [2, p. 197 f£.] and Tyndall [28] could
also be regarded as a special case of our duality, although not in as simple a
manrer.

To our knowledge, the general theory of conjugate convex functions has
not previously been applied to the calculus of variations (or optimal control)
in a broad and systematic way, although Ioffe and Tikhomirov have recently
used this T_'l'if:‘{Jl‘\-' as a vehicle for expressing certain convexification results
in [33, Part II, Section 2]. Ilowever, nonclassical conjugate functions have
appeared in sp‘,cml types of prob I(,;'ﬂ:; treated by Moreau [16, 17] and Ioffe-
Tikhomirov [11, 33, 34], and they have been used by Young [31] in defining
“Hamiltonians in the large”. 'T'hey have also been mentioned by Zachrisson
in an informal note [32] which anticipates several of the ideas e¢xploited in this
paper, such as generalized Hamiltonian equations in terms of subgradients,

(Note added in proof: some related ideas have also been pursued by T'svetanov

[351)

Most of the background material in convex analysis relevant to this paper
can be found in the book [21], the 1967 lecture notes of Noreau [15], and
the survey of Toffe and Tikhomirov [33]. The principal exception is the special
theory of measurability developed by the author in [22] and [23] with the
present application in mind. This theory makes it possible, by taking advant-
age of convexity, to avoid certain assumptions of continuity and to allow the
constraint (1.3) to depend on 7 in a very general way. It contains, in particular,
results on measurable selections which take on the role played clsewhere by
Filippov’s implicit functions lemma [9].

'lhc plan of the paper is fairly apparent from the section titles:

1. Introduction

2. DBasic assumptions
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Convex problems of Bolza

Some examples in optimal control
The dual Bolza functional
IExamples of dual problems
Conjugates of Bolza functionals

Duality of infima

© 0 N kW

Subdifferential conditions for 2 minimum

10. Extremal arcs and the maximum principle.

Scctions 2 through 6 are concerncd principally with the proper technical
formulation of a convex problem of Belza and its dual. Section 7 builds
machinery. The main duality results (Theorems 4 and 5 and their corollaries)
are harvested in Scctions 8 and 9. Various applications, such as to optimal
control theory, are treated in general examples in sections 4, 6, 8, and 10.
Many of these examples are accompanied by lengthy proofs, and they thus
contain much of the substance of this paper.

Due to the length of the exposition, we have had to omit a number of
results of a more difficult nature which are needed to balance out the theory,
such as theorems about the existence and regularity properties of optimal arcs
and extremals. These will be published separately [26, 27].

2. Basic AsSUMPTIONS
LTet L,» =L, *[0, T] denote the usual Banach space of (equivalence classes
of) Lebesgue measurable functions from [0, T] to R" under the norm

lol, = (J'T] q;(r)'_vdt)i'!p if 1<p<+ oo,
0

|ols = ess. sup | 2(1)],
<T

=i

where | + | denotes the Euclidean norm in R%. Let B,? be the linear space
R* @ L,? under the norm

e ellp=(el”+lelp)”  # 1<p<+oo,

”(C| T’).ﬂo = m‘l\“ (2 [ ) ” @ !T}

21

Obviously B,” is a Banach space. If | < p < + 20, the dual of B,” can be
identified with B, 7, where (1/p) + (1/g) = 1, under the pairing

6 0) (@ = (e dy + | <o), w0 b
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We denote by 4,7 the spacc of all absolutely continuous functions from
[0, T] to R" whose derivative (defined almost everywhere) belongs to L7,
The norm on 4,7 is taken to be

% fll; = [I(x(0), £)

% (2.2)

The mapping & — (x(0), &) is thus a lincar isometry of 4,? onto B,7, so that
AP is a Banach space whose dual, in the case where 1 = p <+ o0, can be
identified with B, (1/p) + (1/¢) = 1, under the pairing

G (@& w)y = <O, > 4 [ <)l . (2.3)

Note that if p = p" one has 4,7 C 4,7, and convergence in || - |[|, implies
convergence in | - |||, .

It will be convenient to reformulate a problem of Bolza as a problem of
minimizing a certain functional @ over the space 4,1, where no constraints
appear explicitly, but @ is extended-real-valued. The idea is simply to incor-
porate the constraints (1.2) and (1.3) into the functional @, ; by defining (or
redefining, as the case may be)

leorer) =+ i (e, 2 G, (2.4
Lit,%,0) = | w0 if (x, ©) £ D(z). (2.5)

Heuristically, (2.4) and (2.5) may be interpreted as imposing an infinite
penalty when the given constraints are violated.

Assume for a moment that the regularity properties of L(t, u, v) and D(3)
are such that, under this extended definition of L, the integral in (1.1) is
well-defined in the following sense: For each x in 4,1, the (extended-real-
valued) integrand is a measurable function of ¢ which majorizes at least one
summable function of £, Then @, ,;(x) will be well-defined and equal to
cither a real number or + 0. In fact, one will have @, ;(x) = - o whenever
x fails to satisfy either of the constraints (1.2) or (1.3), so that minimizing
@y, over all of A, will be equivalent to minimizing @, ; subject to (1.2)
and (1.3).

From this discussion, it is clear that problems of Bolza can be described
simply by specifying two extended-real-valued functions 7 and L, which are
everywhere defined on R* X R and [0, T] X R" x R*, respectively. This
is the approach we shall take. The sets C and D(2) are defined in terms of /
and L by

C={{cg,er) e R* X R"| ey, e4) << 4+ 0, (2.6)
D(t) ={(»,v) e R* X R*|L{t, %, v) < + o0}, (2.7)
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However, in many contexts, other than examples, these sets need not be
treated explicitly. .

It should be observed that, in suppressing D(t) and passing to an extended-
real-valued L, one is nevertheless faced with a technical question of what
conditions on /., are appropriate to insure that the integrand in (1.1) is always
measurable. Familiar conditions such as those of Caratheodory (continuity in
(¥, ©) and measurability in 7} are not applicable, since L(z, +, *) may jump
abruptly to - o at the boundary of D(#). Furthermore, for the study of
duality, one needs conditions which are self-dual with respect to taking
conjugates of convex functions. The conditions given below will meet this
criterion,

We now state the basic assumptions which will be in effect throughout this
paper, The first is:

(A) Each of the functions I and L(t, *, *) is a lower semicontinuous convex
Sunction (everywhere defined) on R® X R™ with values in R U {+ oo}, not
identically + 0.

The lower semicontinuity assumption in (A), of course, requires all level sets
of the form

{(cos er) eR* X R* | Ufeo , 1) < i},
{(x,v) e R* X R*|L(t, x, v) < pu},
to be closed, but it does not actually require the sets C and D(£) to be closed.
On the other hand, (A) does imply that C and D(z) are convex and non-
empty.
The remaining assumptions concern L only, and under (A) they are all

automatically satisfied when L is independent of t. The main purpose of these
assumptions is to guarantee in a suitable way that the integral

f :L(t, x(t), 3(2)) dt
is meaningful for every x € 4,1
(B) L is Lebesgue normal in the sense of [22].
(C)y L majorizes at least one function v on [0, T] %X R* X R" of the form
r(t, %, 0) = (x, o)) + <o, p(t)) — oft)
with sel,!, psL,® acLL

(D) There extsts at least one pair of functions x e L,* and w € L, such that
the function L(-, x(), v(*)) (which is extended-real-valued on [0, T']) is mnajorized
by a function § €L,

(Here {:, ) denotes the usual inner product in R".)
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The Lebesgue normality condition (B) is satisfied by definition if and only if
[in additien to (A) being satisfied] there exists a countable collection
{x;,v) | 7€}, where x; and z; are Lebesgue measurable functions from
[0, TTto R, such that L{{, x,{(1), ©{t)) is a Lebesgue measurable function of ¢
for each 7 =7, and the set

D(e) O {(wie), vi(B) |2 €1}

is dense in D(¢) for each ¢ € [0, T']. It is easily seen that this holds in particular
whenever L(Z, x, #) Is independent of £, or whenever L{Z, &, v) is Lehesgue
measurable in ¢ for each (¥, @) and /{{) has a nonempty interior for each ¢
[22, p. 528].

We have shown in [23, Corollary 5.1] that [in the presence of (A)] con-
dition (B) is satisfied if and only 1f L is & » 2 X & measurable, Le., measur-
able with respect to the o-field of subsets of [0, '] x E* x R gencrated by
products of Lebesgue sets in [0, 7] and Borel sets in R* [The latter certainly
is true if L is Borel measurable, and in particular if L is lower semicontinuous
in (¢, x, v).] Also, according to [23, Theorem 4], (B) is satisfied if and only if
the multifunction

Eit»E)={(x, v, 1) | (%, 0) e D), L(Z, x, ¥) = p << + o0} (2.8)
is Lebesgue measurable from [0, T] to R* x R* x R!, in the sense that
BASYy =0 Ef)n S = @)

is a Lebesgue measurable subset of [0, 7] for every closed subset S of
R x R* x RL,

The fact that (C) automatically holds [assuming (A)] when L is independent
of ¢ follows from the fact that a lower semicontinuous convex function from
R" % R* to RO {4 o0} necessarily majorizes at least one affine function
[21, Theorem 12.1]. Thus when L is independent of ¢, the functions s, p, and &
in (C), as well as x and ¢ in (D), mayv be taken to be constant functions.

We shall note in Section 4 that (C) and (D) are “dual™ to cach other, while
(A) and (B) are “self-dual”,

3, Convex Proprens oF Bowza

The conditiens deseribed 1n the preceding section lead to a well-defined
problem of Balza. In the first place, (A} and (B) guarantee according to
[22, p. 531] that L(z, »(¢), =(#)) 1s a Lebesgue measurable function of # when-
ever x(t) and ¢(f) are Lebesgue measurable in ¢

AR S
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Furthermore, if x €L,® and v €L}, wec have

L{t, a(t), v(2)) = (&, x(t), v(2))
= {x(t), s(£)> + <(2), p(£)> — wl2) G.1)

by (C), where the latter function of ¢ is summable on [0, T']. It follows that
the integral

Ip(x, v) = [ :L(r, (1), o(t)) dt (3.2)

is well-defined (unambiguously cither a real number or + oo) for every
(x,v) el ®LL

Prorostrion 1. Under (A), (B) and (C), the integral I, is a well-defined
convex function from L,™ S L, to RY U {-- w}. Moreover, when L™ @B L}
is regarded as a topological wector space in the product of the norm topologies,
I, is lower semicontinuous, not only with respect to this normable topology, but
also with respect to the corresponding weak topology.

Proof. 1t has already been seen that I; is well-defined. The convexity of
I; is an immediate consequence of the convexity of L{t, -, -) for every £
To prove the lower semicontinuity of I in the product of the norm topologies,
consider any function r as in (C), and set

L'(t, x,v) =L(t, x, v) — r(t, x,v) = 0. (3.3)
Then

I(x,0) = f:L'(:, x(8), () dt -+ f :r[t, (1), o(t)) dt

(3.4)
= IL‘(-\?, E-’) -} Ir('\‘! T".)’

where I, is a continuous linear functional on L,” @ L.}, so it suffices to
prove the lower semicontinuity of J;- . Since L' is nonnegative, the latter is
casily deduced from Fatou's lemma and the fact that every convergent
sequence (x;, ;) in L,® & L, has a subsequence in which the functions z, ,
as well as the functions x;, converge pointwise almost everywhere.

A convex functional [ on a topological vector space B which is lower
semi-continuous with respect to the given topology on B is necessarily
lower semicontinuous also with respect to the corresponding weak topology
on B. (This is immediate from the fact that [ is lower semicontinuous
with respect to some topology if and only if all the level sets of the form
{y e BII(y) < i}, p € R, are closed with respect to that topology. When [
15 convex, these level sets are convex subscts of B, and, as is well-known, a
convex subset of a locally convex space is weakly closed if and only if it is
closed in the given topology.) This establishes Proposition 1.
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Condition (I}, which was not nceded in Proposition 1, is of course merely
the condition that I;(x,v) < 4- 00 for at least one (xv,v)el,*@L,L
Certainly no harm is done when this condition is added to the others, and it
will be needed later for the sake of duality.

Given any x £ 4,7, 1 < p < o, we have x €L,” and & €L,1, so that the
integral

T
Ty, &) = f L0, x(0), () d (3.3)

is well-defined by the above. In fact, this integral is a convex function of x,
inasmuch as x = (1 — A) x; + Ax, implies & = (1 — A) & + Adéy . It is also
lower semicontinuous in the norm topology of A7 by Proposition 1, since
convergence of a sequence {x;} in the norm of A4, entails convergence of
{#;} in L;! and convergence of {x;} in L,*. Moreover, strong lower semi-
continuity, together with convexity, implies weak lower semicontinuity, as
observed at the end of the proof of Proposition 1.

On the other hand, since { is assumed to be a lower semicontinuous convex
function on R™ X R", it is apparent that the term

Jix) = Ux(0), %(T)) (3.6)

is a lower semicontinuous convex function of x € 4,7
Adding Ji(x) and I;(x, &), we obtain:

TueoreM 1. Under (A), (B), and (C), the function
D0a(s) = U(0) S(T) + [ Lt 3(0), 500) e

s, for any p (1 = p << + o0), a well-defined convex funclion from A7 to
Ry U (- ). Moreover, @, is lower semicontinuous on A", not only with

noy

respect to the norm topology, but also with respect Lo the weak topology.

We shall call @, ; the Bolza functional corresponding to ! and L, where [
is the boundary function and L is the Lagrangian function. A problem of mini-
mizing a function of the form @, ; over 4! [under conditions (A), (B), (C),
and (D)] will be called a conwvex problem of Bolza.

By a feasible arc in a convex problem of Bolza, we shall mean an x € 4.}
such that @, ;(x) == 4 oo, Clearly, a feasible arc must satisfy conditions
(1.2) and (1.3) [where C and D(¢) are given by (2.6) and (2.7)], although these
conditions arc not always sufficient for feasibility. It follows from the con-
vexity of @ ; that the sct of all feasible arcs in a given convex problem of
Bolza is a convex subset of 4.}, not necessarily closed and possibly empty.
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Minimizing @, ;, over all of 4! is equivalent to minimizing @, ; over this
convex subset, .

A feasible arc at which the minimum of @, ; over 4,1 is achieved will be
called an optimal arc. (We do not speak of optimal arcs when @, is identically
+ oo, even though in that case the minimum of @, is achieved at every
point of 4,'.) Theorem 1 implies that the set of all optimal arcs in a given
convex problem of Bolza is a (possibly empty) convex subset of 4!, which is
weakly closed, as well as strongly closed.

Since @, ; is convex, a local minimum of @, ; is a global minimum, and
no difficultics arise because of a possibility of arcs vielding more complicated
kinds of extrema or stationary points. Besides optimal arcs, we shall define
in Section 9, in terms of subgradients of the convex functions / and L(¢, -, *),
a class of so-called extremal arcs of @, ; , but it will turn out that every such
arc is optimal. (A major task is to establish conditions under which an optimal
arc is necessarily an extremal arc.)

4. Some Exanmerrs 1N OprTivarn CONTROL

As mentioned in the introduction, various problems in optimal control
can be formulated as convex problems of Bolza. We shall now demonstrate
this in several cxamples. These examples are chosen mainly to illustrate
how the basic assumnptions (A), (B), (C), and (D) can be verified in some
important cascs, and they do not pretend to give the most general problems
to which the theory is applicable.

ExampLE 1. Consider an optimal control problem of the following type:
Minimize

T
f K, o(t), u(t)) dt (4.1)
a
in ged!and ueLl! (with T fixed), subject to the constraints
5(t) = A(t) =(t) + B(t) u(t) for almost every ¢, (4.2)
u(t) = U(t) for almost every ¢, (4.3)
z0) e Z, and #T)eZr, (4.4)

where, for each t &[0, 7], K(¢, *, *) is a real-valued (finite and everywhere
defined) convex function on R* % R?, A(t) and B(f) arc real matrices of
dimensions r X r and r s, respectively, U(#) is a nonempty closed convex
subset of R¥, and Z; and Z; are nonempty closed convex subsets of R".
(In particular, Z, or Z; may consist of a single point or be all of R".)
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To formulate this as a problem of Bolza, it is convenient to regard u(z)
as the derivative of a function »(t) in 4. and then set x(t) = (2(1), ¥()) in
R, where n = r + 5. Then / and L are defined by

o {0 it 2(0)eZ, and =(T)eZ;, -
WA= vos  #  sl0he /: or (7)€ /; 2
I K(t, 2z, u) if ue l(t) and w= At)z + B(t)x,
Gl + w0 if ¢ Ut) orif === A(t) s + B(l)u,

(4.6)

where (2, 3) = x and (w, 1) = v in R" X R = R% The given optimal con-
trol problem is equivalent to minimizing

I(x(0), x(T)) — J"::L(r, x(t), £(t)) d

over all x € 4,}, provided that the latter problem is well-defined, as is always
the case when conditions (A), (B), and (C) are satisfied.

It is elementary here that (A) is satisfied. (Recall that the functions K(z, -, *),
being finite and convex, are necessarily continuous throught R x R%) To
get (B), we assume further that K(#, z, #) is a Lebesgue measurable function
of t for each (z, ) € 7 x R, that the components of A(¢) and B(f) are
Lebesgue measurable functions of ¢, and that the vnultifunctitm Ut — U
is Lebesguc measurable (in the sense that the set {t | U(6) " S =0} is a
Lebesgue measurable subset of [0, T for every closed ‘:;Ub‘on.f S of R%; some
criteria for this are compiled in [5] and [23]).

Leswa.  Condition (B) is satisfied under the preceding assumptions.
Proof.  This will be deduced from results in [23]. Let D, and D, be the
multifunctions from [0, 7] to R" x R® x R™ x R® defined by
Dl{r} ={lz, v, wu) |w— Alt)z — B(t) u =0},
Dyft) = {(z, 3, w, 1) | u < U(E).

It is clear that D, is Lebesgue measurable, and the Lebesgue measurability
of D, is assured, for instance, by [23, Corollary 3.6]. T'hen the multifunction

D:t—Di(On Dz(:)
1s Lebesgue measurable by [23, Corollary 1.3]. Now let
Li(t, x,2) = K{t, =, 1),

N L if (z, v, w, w) € D{1),
L L W (2,3, @, u) & D(1).
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Since L, 1s finite, measurable in ¢, and convex in (z, ¥, w, ), L, is Lebesgue
normal by [22, p. 529]. On the other hand, the Lebesgue measurability of the
multifunction D implies the Lebesgue normality of L," by [23, Theorem 3].
We have L =L, + L;’, and therefore L is Lebesgue normal by [23, Corollary
4.2]. Thus (B) ig satisfied as claimed.

Assuming that the components of A(f) belong to L}, while those of B(z)
belong to L;*, it can casily be seen that condition (C) holds if and only if
there exist functions @ L}, b € L,® and p = L,® such that

Ktz u) = {2, a(t)) + {u, b@)> — pl@)

for all £ €[0, 1], z € R", and « = U(1). There are various ways of insuring
the existence of such functions, but in particular it follows {rom [22, Theo-
rem 4] that this condition is satisfled (regardless of the nature of U(z)), if
K(2, , ) is an essentially bounded function of 7 for every (2, u) e R™ x Ry,

Condition (ID} merely requires here the existence of iUnCUODo el ™ and
ueLt such that u(t) € U(t) for almost every ¢, and K(7, 2(#), »(¢)) is sum-
mable in ¢, Again, this is satisfied in particular, according to [22, Theorem 4],
if K(t, =, u) is an essentially bounded function of £ for every (2, #) € R x Ry,
and if the function

d(t) = min{} u | | u = U)}

s essentially bounded above in £. (The boundedness of d(2) implies the exist-
ence of a function u € L,® such that u(t) € U(t) for every ¢ £ [0, T]; see [5]
or [23]. One may take this choice of u(z), together with 2(¢) = 0.) )

Exampeie 2, Consider an optimal control problem of the following type:
minimize

ky(=(0), z('f))+[ Kt a(t), 4(t), () dt @.7)

inzedtand u el subject to the constraints

B0, (T <0 for i=1,.,m,, (4.8)
K, 20, #2), u(t) <

for  J=1,..., m,and almost every 2, (4.9)
where the functions /&, arc all finite and convex on R™ x R, and for each
t € [0, T]the functions K (¢, -, -, *) are all finite and convex on B™ % R x R
(Tere system (4.9) may involve constraints on the state 2(¢) alone, or con-
straints on the control u(7) alone.)

This may be formulated as a convex problem of Bolza in much the same
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manner as the preceding example. Setting x = (z,y) and v = (=, #), we
define

J(x(0), #(T)) = ﬁi(z(f}), (1Y) if (4.8) is satisfied, (4.10)

0 otherwise,

L) — [Kbm a0 K200 <O, j= Ty,
7 {4+ o otherwise, @.11)
Condition (A) will be satisfied, assuming that the constraints (4.9) are
consistent in R™ x R™ and that the constraints

Kj(z: 2, w, l"") “g 0: j: l)'": iy (4]-2)

are consistent in R X R" X R? for cach fixed 7 € [0, T']. We shall assume in
addition to this that K(t, 2, w, ) is an essentially bounded Lebesgue measur-
able function of # for each index j (0 < j <{m,) and each (z,%,#) in
R X R” X R,

Lesmaa.  Conditions (B) and (C) are satisfied under the preceding assump-
tions.

Proof. With x = (2,5) and v = (w, ) as above, let
Lt x, v) = K,(t, =, w, u), =0, 1505 ms5 (4.13)

and for each ¢ € [0, T] let D(¢) be the (nonempty, closed, convex) set of all
(x,v) in R™ X R" satisfying (4.12), i.e.,

D) = {(x, 2) | Li(t, %, v) < 0,7 = 1,..., my}.

The functions L;, being finite, convex in (x, ©), and Lebesgue measurable
in ¢, are all Lebesgue normal [22, p. 529]. This implies by [23, Corollary 4.4]
that the multifunction D : £ — D(¢) is Lebesgue measurable, and hence by
[23, Theorern 3] that the function

it v gy — {0 if (v, v)eD(),
Litm )=, o & (%, v) € D(t),

is Lebesgue normal, Inasmuch as I =L; - L/, L is Lebesgue normal by
{23, Corollary 4.2], and (B) is established.

The fact that Ly(t, x, ©) is essentially bounded in ¢ for each (x, ) & R* % Rn
implies by [22, Theorem 4] that Ly(#, x(t), #(z)) is summable in ¢ for every
x €L, and v € L,®, and furthermore that L, satisfies (C) (where s can actually
be chosen in L, *). Therefore L satisfies (C).
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In fact L also satisfies (D), under the preceding assumptions, provided
that it is possible to select a point (x(2), o(t)) from D(¢) for each ¢ € [0, T
in such a way that x € L, and » €L, ™. The latter will be true in particular
by a selection theorem of Kuratowski and Ryll-Nardzewski [13] (quoted
as [23, Corollary 1.1]) if there exists a bounded subset .S of R® x R" such that
D) N S ¢ for every ¢

It may be noted that Example 2 contains Example 1 as the special case

“where my; = 1, my, = 2r + 1, and

Fu(0), 2()) =0,
Ful=(0), (T = min{| 2(0) —ay >+ | 2(T) —a; ?lay€Z,, arc Z7),
Kt 2w, u) = K(1, 2, u)

»

2
Kt 2w u) = af — Z a;(t) 28 — Z bift) ut, Jo= Ly (4.14)
=1

k=1

K, (t 2w u) = — K|t 2, », u), e

Koty 2, 0, 1) = min{l u — ' [* | ' € U(1)).

Although the constraints (4.9) do not in general represent an ordinary
differential equation, they can always be expressed, of course, as a so-called
contingent differential equation:

£(t) e F(2, 2(2t), u(t)) for almost every f, (4.15)

“where F(t, 2, u) denotes for each t€[0, T], 2 € R" and u & R* the (closed,
convex, possibly empty) set of all e & R such that (4.12) is satisfied.

Examere 3, The two preceding examples illustrate what seems to be the
most convenient method of formulating an optimal contrel problem as a
problem of Bolza, However, there is another method, technically harder to
work with, which makes clearer in some ways the relationship between the
present approach and other approaches to optimal control problems in the
literature. T'o avoid a lengthy technical discussion, we shall treat this method
only in a very special case, although it is really of much greater generality.

Consider a fixed endpoint problem of the following type: minimize

,
J K(t, 5(t), u(t)) dt (4.16)
0
inxed}and ¥ =L,*, subject to the constraints
x(f) = (¢, x(t), u(t)) for almost every ¢, (4.17)
u(t) € U for almost every ¢, (4.18)

#0)=¢ and (T)=cr, (4.19)
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where U denotes a nonempty compact subset of R™, and K and f are continu-
ous functions from [0, T] X R" x R™ to R! and R”, respectively, Define L
to be the function from [0, 77 % R* X R"to R1 U {+ oo} such that L{t, x, v)
is the minimum of K(t, x, u) over all vectors u = U such that f(¢, x, ) = w.
(If there are no such vectors %, the minimum iz — oo by convention.) Then L
is lower semicontinuous (in all varizhles). Morcover, the given control
problem is equivalent to minimizing the integral

f:L(f, x(t), £(1)) dt : (4.20)

over all » £ A 1 satisfying {4.19). (The integral is well-dcfined, although it may
be + oo, because, under our assumptions, L(t, x(¢), #(2)) is measurable and
essentially bounded below as a function of 7 [0, 7] for each x € 4,1 Tt can
be secn via Filippov’s implicit functions lemma {97 that this integral is finitc
for a given x if and only if there exists a u elL,,” satisfying (4.17) and (4.18),
such that (4.20) and (4.16) are equal.)

The theory in this paper is applicable to the reformulated problem if
L(2, x, ¢) turns out to be convex in (%, ©) for cach 1, as is always the casc in
particular when K{(7, «, u) is convex in (%, w), f is affine in (x, %), and U is
convex. (One may verify that conditions (A), (B), (C), and (D) are then
satisfied, where /(x(0), ¥(7')) is taken to be 0 if (4.19) holds and - oo other-
wise.) ‘The convexity of L(z, %, v) in (x, ©) means that, for each 1, the epigraph

{2, p) eR* X R* x R [p = L(7, %, v)}.

15 convex. This may be compared with the weaker condition, developed by
Cesari [6, p. 390] as a generalization of a similar condition of Ilippov [9],
that for each (¢, x) the epigraph

{(mp) e R* X R | p = L(4, %, v)}

is conves, or in other words that Lit, x, %) is merely convex as a function of ¢,
rather than as a function of (x, 2).

5. Tue Duvar Bovza FunoTioNaL

Every convex problem of Bolza leads to a certain dual problem of the same
type. This dual problem will be defined below in terms of the conjugates of
the convex functions /and L(t, -, +). The theory of conjugate convex functions
will be used further in Scctions 7 and § in establishing relationships between
the dual problem and the original one.
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We begin by reviewing some basic facts about conjugates (for a fuller
exposition, see [3], [15], [21], [33]). A context more general than that needed
simply for the definition of the dual problem is chosen for the purposes of
Section 7. :

Let X and Y be arbitrary real vector spaces paired by a bilinear form
{+, *>, and let X and Y be supplicd with arbitrary locally convex topologies
compatible with this pairing. ("Thus it is assumed that ¥ — {x, ¥> is always

- a continuous linear function on X, and that every continuous linear function
on X can be expressed in this form; at the same time, y — (&, ¥) is always a
continuous linear function on Y, and cvery continuous linear function on ¥
can be expressed in this form. In the case where X = ¥V = R", we take
{*, *> to be the ordinary inner product.)

Let f be any cxtended-real-valued convex function on X. We allow f
possibly to take on — o0, as well as - ¢, in which case the convexity of f
is interpreted to mean that the epigraph of f, i.e., the set

epif ={(x,p) |x e X, pe R, p = f(x)},

is convex in X @ R We say that f is proper, if { does not take on — c0, and
fis not identically + oo, The extended-real-valued function f* on 1" defined
by

FH(y) =sup{<x, > — f(x) |x € X} G

“is called the conjugaie of f (with respect to the given pairing). The conjugate
of £#, i.e. the function f** on X defined by :

fHH() = sup{<x, 3> —fH() 1y e Y} (5:2)

is called the biconjugate of f.

The functions f* and f** are always convex and lower semicontinuous,
and if they are not both proper then one must be identically 4+ oo and the
other identically — oo, If f is proper and lower semicontinuous, one has
f#¥% = f; thus the operation f— f* yields a one-to-one symmetric corre-
spondence between the lower semicontinuous proper convex functions on X
and those on Y,

Morc generally, if f is not lower semicontinuous, let f denote the lower
scmicontinuous hull of ) ie.

F () = lim inf £(x"). 6y

Then f is the greatest lower semicontinuous convex function majorized by f.
If f(x) > ~— oo for every x, one has f ** = f, On the other hand, if f takes on
— oo somecwhere, there exists a convex set C (namely the closure of
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{x e X | f(x) < + o}) such that f(x) = — o for every x € C and
J(x) = + oo for every x € C. In the latter case f** is identically — oo, so
that £ ** and f agree on C but disagree outside of C.

We proceed now with the definition of the dual Bolza functional. Given the
functions [ and L, we denote by I* the conjugate of [ on R* X R”, and we
denote by L* the function on [0, T] X R" X R" such that, for cach ¢,
L=(t, -, +) is the conjugate of L(¢, -, -). ({Iere the ordinary inner product gives
the pairings.) We then set

m(d, , dr) = I*(d, , — dr), (5.4)
M(t, p, s) = L3, s, p). (5.5)
Thus by definition
m(dy , dr) = sup{{¢, do) — {er,dr) — Uy, er) | oE K ere R, (5.6)
M(t, p, 5) = sup{<x, ) + (e, pp —L{t, x,v) | x € R*, v € R"}. (5.7)

The function m will be called the boundary function dual ro I, and M will

be called the Lagrangian function dual to L. We shall call the functional

D) = m(pO), 2T + [ 21t p(0) B0 (5:8)

the Bolza functional dual to @, 1 .

TureoreM 2. The conditions (A), (B), (C), and (D) on l and L imply that m
and M likewise satisfy (A), (B), (C), and (D). Thus Theorem I is applicable to
Doapyaswell as to Py .

Moreover, lis in turn the boundary function dual to m, and L is the Lagrangian
function dual 1o M, so that the Bolza functional dual to D, y, is just @, ; again.

Proof. It is immediate from the facts cited above that m and M again

satisfy (A), and that

lco» e1) = sup{co, &> + Ler, er'> — 1", ¢1) [ &' € R*, e e R}
= sup{{cu ) dﬁr> B <CT= ffT:-\' o m(dn ’ dfj i du < Rn’ dT € Rn} (59)
=m*(co, — 1),

L(t, x, v) = sup{{x, s) + (g, p> — L*(t,5,p) | se R, pe R")
= sup{{x, &) + (v, p> — M(s,p,5) | s € R, p € R%} (5.10)
= M*(i, v, ).

The latter formulas say that / and L are the functions dual to m and M as
claimed. We have already proved elsewhere [22, Lemma 5] that Lebesgue
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normality is preserved when conjugates are taken. Thus M again satisfies (B).
As for conditions (C) and (D}, we observe from (5.7) and (5.10) that the
functions p €L,”, s eL,!, and x € L,! satisfy (C) for L, if and only if they
satisfy

M{(t, p(t), (1)) == «(t) for almost every t.

Similarly, the function x€L,*, veL,}!, and 8 eL,! satisfy (D) for L, if
and only if they satisfy

M(t, p,5) = <x(0), 53 + <2(2), 2> — £(D)

for every t &[0, I'], p € R* and s € R*, Thus (C) for L implies (D) for M,
and (D) for L implies (C) for M. The proof of Theorem 2 is now complete,

The problem of minimizing @, »; over 4, will be called the convex prob-
lem of Bolza dual to the problem of minimizing @, ; and 4,2, and vice versa.
The close connection between these two problems will be seen in Sections 8

and 9,
6. ExaniprEs oF Duar PROBLEMS

In passing from @, ; to @, »y, it is necessary to determine the coningates of
certain convex functions on R?", and this can be easy or difficult, depending
on the nature of the functions in question. Many examples of conjugate
convex functions are given in [21] and elsewhere in the literature. Often, as
in the problems described in Scction 4, I and L(, -, -) arise by various opera-
tions from other convex functions, as well as convex sets, and in such situa-
tions formulas like those in [21, Section 16] may be helpful in calculating
conjugates,

The examples which follow indicate the calculation of the dual problem in
some typical cases. They also bring out the fact that the dual problem can
sometimes be finite-dimensional in character, and therefore more clementary
in principle than the original problem.

IxavplE 4. Let 7 and L be as in Example 1 in Section 4. We shall
determine m and M. Setting p = (g, #), as well as x = (2, y), we have by
(4.5)

m(p(0), p(T)) = m{4(0), #{(0), o(T), /(T))
= sup{¢z(0}, 9(0)> 4 <x(0), A(0)) — (=(T), o(T)>

— (D), MTY ~ U(=(0), y(0), =(T), (T} (6.1)
= sup <a(0), (0 + sup <5(0), KO

+ sup {x(7), ~9(T)> + o LUT) — KT,

z(T)eZy
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or, in other words,

_ w_ (@) +f{—g(T)) if  AO)=0=KT), n
meO TN =100 i MO) 20 or KT) 0, (62

where f; and fr are the support functions of the convex sets Z;and Zr,
respectively (cf. [21, Section 13]). On the other hand, we have by (4.6)

Mt p,s)=m(t, g, ki, 1, k)
= sup {(z,r> - {3y, k> -+ <w, ¢y +<{u B> — L =, 9, w, u))
2,00
— sup{Ga, 75 + <3 B o+ <AL £+ BE) ) + < ) &)
v,
olts &, W)},
= ‘%‘Lip\-}, ky +supfdas, r + A%(t)¢> + {u, h + B*(t)g)

Z,u

olts 2, w)),

where 4*(1) and B*(¢) denote the transposes of A(t) and B(t), respectively,
and

Ky(t, =, u) = K(t, 2, u) + P(t, u), (6.4)
e BT

Let K* and K* be the functions on [0, T] X R” x R? such that, for each ¢,
K*, +, +) 1s the conjugate of K{(1, -, -), and K *(¢, -, -) is the conjugate of
Ko, +y ). Let ¥* be the function on [0, T] x R* such that, for each ¢
WH(t, -) is the conjugate of ¥(t, ), i.e., the support function of U(#):

(L, h) = sup{lu, k) | u  UQt)} (6.6)
Then from (6.3) we have

M(t, p,5) = gfx Wty =A%) ¢ b+ BH() q) ﬁ i;g (6.7)

Moreover, according to [21, Theorem 16.4], we have

Ko*(t, 7', b') = — min{K*(t, r', b' — k) + ¥*(t, h)}. (6.8)

;u—_pa

The convex problem of Bolza dual to the one in Example 1 in Section 4
is thus the problem of minimizing @,, », over 4,}, where m is given by (6.2)
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and M is given by (6.7). In other words, it is the problem of minimizing
il
Foa(0)) + fz(— (1)) + jn Kox(, () + A1) o), B(1) g(t)) at - (6.9)

over all g £ 4,2, where K, is given by (6.8).

ExamreLe 4'. To be more specific, let us suppose in Example 4 that Z,
single point @, Zr is a certain subsp ace of R™ with orthogonal

consists of a
complement Z;4, and for a given p(1 = p = + 0)

(6.10)

Uty ={u!]lu|l, =1},
(6.11)

K(I,z,zz}:a!!z! -+ uslulas

where « and § arc nonnegative constants and
= [(ut)r + - + (uS)]e if 1 sZp <+ oo,
i, = max{| &t | ... | 25 [}

(KA

(Note that K is not differentiable everywhere with respect to z if & > 0, s0
that here we have a type of control problem not covered by the standard

theory.) Then, as is easily verified,
Fog(0)) = <a, g(0),
- if g(tye Z:,

TFurthermore, we have

Wit ) = | A,
i (0 £ lrl<« and 1Al <B
* =
BOr=liw i Jrlo>a or Jhl>8
where (1/p) -+ (1/0) = 1, and therefore by (6.8)
max{[ 7, — 8,0} i 7 <x
if 7'l > a

Kot v ) =100

Hence in this case the dual convex problem of Bolza consists of minimizing

o, g0 -+ [ maxll B¥) ), — B, 0} dr (6.12)
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in g € 4,%, subject to the constraints

(T)ezy, (6.13)
Il g(z) + A*(2) g(t)!, = « for almost every ¢. (6.14)

Note that, if « = 0, we have

4(t) = — 4%(@) g(t) (6.15)

by (6.14), so that (assuming, say, that the matrix components in (6.15) arc
summable functions of t) ¢(t) iz determined for all ¢ by ¢{(0), and the dual
problem is essentially finite-dimensional. In fact, the dual problem consists
of minimizing a certain finite (everywhere defined, nondifferentiable) convex
function of ¢(0) € R* subject to a finite system of lincar equations [represent-
ing the constraint (6.13)].

Similarly, in the more general dual problem where one minimizes (6.9),
it can be seen that the constraint (6.13), and hence the finite-dimensionality
of the problem, will be implicit whenever K(¢, 2, «) is actually independent
of =,

ExampLE 5. Supposc the Lagrangian function L can be expressed in the
form

L{t, %, v) = f(¢t, ) + g(t, v — F(1) x), (6.16)

where E(t) denotes an # X m matrix, and f{¢, -} and g(¢, -) are lower scmi-
continuous convex functions from R* to R U {+ 0}, not identically + co.
('This is true in Example 1, for instance, if

K(t, 2, 4) = Ky(t, 2) + K,(1, u),

where K(¢, ) and K,(t, -) are convex functions.) An L of this form satisfies
(A), and it also satisfies (B), as can be shown by the arguments similar to
those in Example 1 of Section 4, if the components of E(t) are Lebesgue
measurable functions of £, and f and g are Lebesgue normal in the sense of
[22]. The dual Legrangian 37 may then be computed directly from (5.7) as

M, pys) = g% p) = (0 s + E¥(1) p), (6.17)

where E*(¢) is the transpose of E(7), and (¢, *) and g¥(¢, -) are the conjugates
of f(¢, ') and g(z, *), respectively. Thus, in the given problem of Bolza one
minimizes

KO, (1Y) + [0, w(0) e+ [ glt, ) (6.18)
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subject to
&(t) = E(21) x(t) + u(t), (6.19)

while in the dual problem one minimizes

X r
m(eO), 20 + [ g5 de+ [ e ueyar (620

subject to
pt) = — E*(t) p(t) + w(t). (6.21)
If f(¢, x) = 0, then
0 if  w=0,
TE(t, w) = ’—f‘ & i Wt

so that in the dual problem one actually minimizes

m(pO (1) + [ g%t p00) (622)

over all solutions p to the differential equation

p(t) = — E*(t) p(t) for almost every ¢. (6.23)

7. Conjucates oF Borza FuNcTiONALS

The dual of 4, can be identificd with the Banach space B,® under the
pairing (2.3), as already pointed out in Section 2, and the convex functions
D,; and @, on A4, have certain conjugates on B,™ with respect to this
pairing. The study of these conjugates will reveal the connection between the
problems of Bolza corresponding to @, ; and @,, ,,. It will be seen, in fact,
that the conjugate of @,, s describes the behavior, under perturbations, of
the infimum in the problem of minimizing @, ; , while the conjugate of &, ;
describes the behavior, under perturbations, of the infimum in the problem
of minimizing @,, ..

Given any (@, y) € B,”, we denote by @7} the Bolza functional obtained
by replacing I by /2 and L by L¥, where

I(cy , er) = lcg + a, ¢7), (7.1)
LY(t, x, %) = L(t, * + ¥(t), ). (7.2)
Thus by definition

BH(x) = Ix(0) + &, (7)) + | :L(t. x(t) + 30 2(O) . (1.3)
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It is easy to see that our assumptions (A), (B), {C), and (D) on /and L imply
that [* and LY satisfy these same assumptions, so that @7} is well-defined on
At by Theorem 1.

\’\ ¢ define the functional ¢, ; on H by

T, L(a j lnfl(pt .L(‘A AnI}' (?4)
Of course @7} = @, ; for (a, y) == (0, 0), and consequently
2110, 0) = inf{, ,(x) | ¥ € 4,3, (1.5)

We shall be interested in the lower semicontinuity of ¢; ; at (g, ¥) = (0, 0)
with respect to the weak™ topology on B,7, in other words, the weak topology
on B,” induced by 4,.! under the pairing (2.3).

We define the functional oh%, on A, for (b, ¢) € B,” similarly by

Da(p) = m(p(0) + b, p(T)) + J M(t, p(t) - q(0), p(1)) dt,  (1.6)
and we define ¢, 3y on B,* by

P, ".:f(b g) T ln{:{(pn W(P] .i pe j}-ril}! {?'7)
where in particular

P, M(O O B Hlf(d}m M(P) |P /_1111} (78)

Tueores 3. The functions @y and ¢, are convex on B, and their
conjugates on At [with respect to the pairing (2.3)] are given by

?:L = D, ar and ‘;I’:ri,,w = CDE.L . {1.9)

The conjugate of B, ; on B,* is in turn given by the formula

7' =1

Q){’:I"L(E), q) = llrn ;rl‘krg P ae(B, 07, (7.10)

except in the case where there are no feasible arcs for @, 1 at all, and where at the
same time @, 05 identically -+ oo on some weak™ neighborhood of (b, g).
Stmilarly, the conjugate of D, 4 on B, iz given by

@, ala,¥) —  liminf 9‘3:,1.(&”: ¥ (7.11)

{a’ v )=ia,

except in the case where there are no feasible arcs for' @, o at all, and where at
the same time g, 1 is identically - <o on some weak™ neighborhood of (a, v). Here
the limits are to be taken over all nets converging in the weak™ topology to the
indicated points,
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Progf. The key to the proof is a fact which we have already established
clsewhere [22]: the convex functions I and [y on L,* @G L, [sce (3.2) and
'Proposition 1] are conijugate to each other with respect to the pairing

@0 (o) = [ w0y s+ [ Gl pepae (2

between L,® (5L, and itself, In other words,

va(fJ s) = sup supi{{x, v), (p, s}y — Ie(x, v)} (7.13)

xel, ™ vel,

for every p e L,® and s € L}, and dually. This is a special case of Theorem 2
of [22], in view of conditions (A}, (B}, (C), and (ID) on L and the definition
(5.5) of M. Calculating the conjugate function ¢;*, on 4, directly from the
definitiong, we have, using this fact,

era(p) = sup{d(a, 3), P> — 91,(a,3) | (@, 3) € B}

— sup sup(a, 3), p) — inf LK)}
azR" yel, ™ xed,l

= SUp Sup sup
asR™ yel ™ xed

Y O REOFOF
— [x(0) + a, 5(T)) — J'TL(r, (6 -+ ¥(2), £(2)) a’tl

== sup sup sup E(a — x(0), p(0)> —j {y'(t) — «(2), p(t)> dt

a'sR" y'sL *® Vc.r?
, Ll aar
— I’ %(T)) — jﬂ L, ¥/(2), (1) di|

T
= sup sup_sup (<@ O + [ <y, pa)y e — (D), p(D)

+ [ G, pep @t — 1@ 1) - [ L6510, 300

= ‘-,Llp ‘-,Llp sup{-{_a’,p(ﬁ)} _ <‘)”(T)! Jr)/ — Z(a ) x(l‘))

*ERMy el Foaed,)
) 1 x)} (}L": P}/ - IL(J)‘: J.‘)]
— sup sup(<a', #(0)) — <6, p(T)) — (@, )

a'chRY ccR

+ sup ul“{/(J o) (2, 0> — 1u(y's )}

‘Lrtl:

= m(p(0), 2(T)) + Lu(p: p) = Prm.sael)-
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Thus ¢f; = &, 4, as claimed. Consequently, as exphincd at the beginning
of Section 5, the conjugate function @ ,, on B, is given by

Druel®3) = giida 5) = liminf 1@, (7.14)
except in the case where ¢}, = @,, 5 1s identically -+ o0 on 4,1 and PrL

is identically + oo in some ncighborhood of (g, ¥). Here the neighborhood
of (a, ¥) and thc limit in (7.14) may be taken with respect to any locally convex
topology on B, such that 4, can be identified with the space of all continu-
ous linear functionals on B,* under the pairing (2.3). The weak* topology,
in particular, meets this requirement.

This proves (7.11) and the first half of (7.9). Formula (7.10) and the sccond
half of (7.9) follow by symmetry, and Theorem 3 is thereby established.

A slight generalization of the above argument enables one to determine
also the conjugates on B, of the restrictions of @, ; and @, ,, to the spaces
4,7 1 <p <+ oo. (In what follows, the letters p and g will be used to
denote the traditional Lebesgue exponents, as well as functions, but no
confusion should arise if the reader bears this in mind.)

Treorem 3'. Let 1 << g, = -+ 00 and (1/p,) + (1/gy) = 1, and suppose that
condition (C) can be satisfied with se L. Then the conjugate of @, , on A%,
with respect to the pairing (2.3) between A% and B, is the restriction of
Dpoar to AL The conjugate on B,* of the restriction of @y, ap to AD is fn
turn given by (7.11), except when @,, 4 has no feasible are in A% and P L
15 identically +co on some neighborhood of (a,y). Here the neighborhood
of (a,y) is taken with respect to the BY norm (2.1 on B,>, and the Umit in
(7.11) is taken over all sequences in B,® converging to (a, y) in this norm.

Moreozver, the same facts hold here, and in Theorem 3, if the infimum in the
definition of D, is taken over AT instead of A1, where 1 < p, << - o0,
provided that condition (D) on L can be satisfied with v e LD (as is true in
particular when @, ; has a feasible arc in AR).

The roles of (I, L) and (m, M) can be reversed in the preceding to obtain a
dual result.

Proof. Let p; be such that (D) can be satisfied with @ €L, where
1 = j')l = + o0, and consider the pairing (7.12) between the spaces
XN=L=@Lhand ¥V =L,* B LY. The convex functions I; on X and [,
on Y are well-defined and conjugate to each other with respect to this pairing;
this is another special case of the result cited in the proof of Theorem 3,
namely Theorem 2 of [22]. Using this fact, we may calculate ¢, just as
before and see that ¢}, = @, 3 (restricted to A%). It follows, then, that the
conjugate of the latter is given by formula (7.11), except in the case noted, but
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the weak * topology must be replaced by a locally convex topology on B,
with respect to which the continuous linear functionals on B,” can be
identificd with the clements of 4% under the pairing (2.3). Since B, is
dense in Ble and 1 < p, << + o0, the Bl topology on B,* satisfies this
condition.

Remark. It can also be shown by the same arguments that, when condi-
tion (C) on L can be satisfied with s € L7 (as is true in particular when @, 5/
has a feasible arc in 47v), then ¢, ; is actually a well-defined convex function
on all of Blo, and the conjugacy formulas in Theorem 3’ hold with respect
to the pairing (2.3) between A% and BYs, rather than between A% and B,

ny

The significance of Theorems 3 and 3’ for the study of convex problems
of Bolza lies in the extensive duality between properties of the nest of (convex)
level sets {x | Py ;(x) == p} of @, ; and the behavior of the conjugate function
@, at the origin. For instance, boundedness or compactness properties of
the level sets of @, ; correspond to continuity properties of @7, at 0, while
the manner in which the minimum of @, ; is attained can be analyzed in
terms of the differentiability of @7, at 0 in various senses. Many facts of this
type have been established in the gencral theory of conjugate convex functions
by E. Asplund, J. J. Moreau and the author; see {1], [15], and [21, Section 27].
Inthe present paper we shall not exploit this duality to the fullest, but the
reader can get some idea of what is possible by examining the theory of
finite-dimensional extremum problems in [21, Part 6].

8. DuaLity oF INFIMA

We shall now derive some facts relating the infimum in a given convex
problem of Bolza and the infimum in the corresponding dual problem.

A basic fact is near the surface. Consider any x and p in A, By the defini-
tion of m and M (scc formulas (5.6) and (5.7)), we have

I(x(0), (T)) + m(p(0), p(T)) z <¥(0), p(O)) — N(T), p(T)>,  (8.1)
L(t, 5(0), (1) + M(t, p(8), B(2) > G, O + 80,605 (82)
Integrating (8.2), we get

f L(t, (1), 3(1)) dt + j M(t, p(t), p(t)) dt = f [<a(t), A1) -+ <(t), p(1)>] dt

f = alt), pe)) (8.3)

= &(T), p(T)) — <x(0), p(0)>-
The latter inequality, when added to (8.1), yields the following result.
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ProrosiTioN 2. For every x € 4, and p € A,1, one has
‘:DI,L(x) ‘L' qu_.w@) =0 (84)

Thus every p € A, furnishes a lower bound — ®,, 34(p) to D, on A,}, while
every x & A, furnishes a lower bound — @, ;(x) to D, pr on AL, and one has

inf{®, ;(x) | x € 4,2} = — inf{D, r(p) | p € 4.1} (8.5)

An obvious question to ask is whether, under some kind of general con-
ditions, equality holds in (8.5). An answer can be provided, via Theorems 3
and 3, in terms of lower semicontinuity properties of the infima in (8.5)
with respect to certain “perturbations” of the functionals @ 1, and @m o
namely the “perturbations” which replace these funcnonal:. by @¢¥ and
@)%, as defined in (7.3) and (7.6), for various pairs (a,) and (b, g) near
the origin of B,>.

We assume here, of course, as everywhere elsc, that (A), (B), (C), and (D)
are satisfied,

Treorem 4. Let 1 <<p, <+ o0 and (1/p) - (1/g;) =1 for i =0, 1.
Suppose that conditions (C) and (D) can be satisfied with s € L% and v €L,
respectively. If either ®,; has a feasible arc in A%r or D, 5 has a feasible arc
in A%, then

inf{®, ;(x) | x€ A%} = — lim mf{mf{dﬁm 2(p) | p e A%}, (8.6)
(&,4)-(0,0
lim inf(inf{®7 }(x) | x € A7}) = — inf{®,, ,(p) | p € A%). 8.7)
(a,5)-(0,0}
Here, if py = 1 and q, = -\ oo, the limit in (8.6) is to be taken over all nets in

B.* converging to (0, 0) in the weak* topology, while, if p, > 1 and g, < -+ oo,
it is to be taken over all sequences in B, converging to (0, Q) in the BZr norm.
Similarly, if py = -} oo and gy = 1, the limit in (8.7) is to be taken over all
nets in B.* converging to (0, 0) in the weak™ topology, while, if py < + o0 and
Qo = 1, it is to be taken over all sequences converging to (0, 0) in the BY norm.

Proof. Assume first that p, =1 and ¢, =1, and consider formulas
(7.10) and (7.11) in Theorem 3 in the case where (4,y) = (0,0) and
(b, ¢) = (0, 0). By definition of the conjugates, we have

@7 1(0) = — inf{d, ,(x) | xe 4,1, (8.8)
Dpa(0) = — inf(D,, y(p) | p & 4,1 (8.9)

If a feasible arc exists for @, , in 4, then (7.10) is valid, and hence (8.6).
Furthermore, in this case ¢, ;(0) << + oo, so that the lim inf in (7.11) is not
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4+ oo, and (7.11) is valid, yielding (8.7). Similarly, both (8.6) and (8.7) are
valid if a feasible arc exists for @, 5 in 4,

The case of general €xponents p; and ¢; follows in cxactly the same way
from Theorem 3'.

Cororiary. If a feasible arc exists for either O, or @, 5y in A2, then the
following assertions are equivalent, where the limits are taken over all nets in
B,* converging in the weak™ topology :

(a) inf @ ,(x) = — inf @, A (p)
a'E‘-fﬂl PE";:::l

(b) inf @, (x) = liminf (inf OF}(x)),

xed,} (a,3)-+(0,0) x=4. 2

(c) inf @, sy (p) = liminf (inf ¢',,, “lp))
=41 (b,g)=(0,0) p=dt

It is possible to develop “reasonable” conditions of some generality on [
and L guarantecing that the three equivalent properties in this corollary are
present. However, this is a lengthy undertaking in itself, and we therefore
relegate it to a separate paper [27]. Here we shall only give examples to show
that the properties do hold in some cases and do not hold in other cases.

ExavpLe 6. Assume there exist # X n matrices E(f) and a real number
p such that

(g er)eC implies | €]

=p,
(x,v)eD(t)  implies lv—Ef) x| <p

H

where C and D(¢) are the convex sets defined in (2.6) and (2.7), respectively,
and the components of E(¢) are measurable, essentially bounded functions of
t [0, 77. (This is satisfied in particular, of course, if €' 1s bounded and the
union of the sets D(¢), 0 =2 ¢ =2 T, is bounded, in which case one can take

E(t) = 0.) Under this assumption, the level sets
{red,'|9,4x) peR,

are weakly compact in 4,, in view of Theorem 1, and therefore the Bolza
functional @; ; attains its minimum somewhere on A, In other words, the
convex problem of Bolza corresponding to Jand L has an optimal arc, provided
that it has at least one feasible arc. We now show that, under the same
assumption, properties (a), (b), and (¢) of the Corollary to Theorem 4 are
present. To do this, it is enough to prove the following result.
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Levnia,  Under the above assumption, the function @, i, if not identically
— oo on B,®, is everywhere finite and lower semicontinuous in the weak™®
topology. In fact, @, s 15 everywhere continuous on B,® with respect to the
Bt norm.

Proof. Let seL,!, pel,= and x =L be functions with the property
in condition (C) of Section 2, and let 4, £ R® and dr € R™ be points such that
vy = mi(d, , dr) < 4+ oo, Let p be the arc in 4,1 such that p(7') = dr and
p=s5, and let §=p —p and b =dy — p(0). Then { =, and L =L,
where

jeo» B(0) + D — Ler, P(TY) — =g if leol = p,
Mg i e ] >,

KB+ @B Ay —al) i o EQx|<p
Eqlt, & 9) = Liicog if fw— E(t)x| =p.

Therefore m =2 my and M =X M, , where my and 1 are the functions dual to
I, and L, in the sense of fmmu as (5.6) and (3. f) For each g €L,”, let p,
denote rln unique arc in A4, such that p,(7) = p(T) and

Polt) — B(t) = — EX(#) [p,(t) — (O] + B*() [9(t) — 3(1)]
for almost every £, [Here E*(#) is the transpose of E(t).] Note that p; = p
for g = §, and that the definition of p, implics (by the essential boundedness
of the components of E(f) as functions of #) the existence of a constant o,
independent of g, such that
0d8) — B <olla—glh, O<t<T

For any (b, ¢) € B,®, we have (by divect calculation)

ool By 1 20) = B(O) + b — B,
Dylt, o) + a(t), o) = o(t) + p | ) — BCE) -+ 9() — 3O

Since m = m, and M =< M, it follows that
P58l = m(p0) + b, 2T) 4 | M, plt) + le) A2
<&+ p [1£d0) —BO) + 16— 5|
+ [ ino —gora + [ 10 — a0l

L&+pld—b]+pl +oll + T g—Flhs
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where
T
&= ay+ J oft) dt.
LH]
On the other hand, we have

fpm,_\f(bs g) ﬂ (pi;i"-f(_po)

by the definition of g, s In Section 7. Thus there exists a constant  such that

qjm.ﬁff(&’ {1) € & "JI'" ,5 ||(b! g) - (5! g}ll

for every (b, g) € B,®. This implies that g, ;r is bounded above in a [ - ||;-
neighborhood of every point of B,™. Since ¢, 5 is convex (Theorem 3),
we may conclude that g, 3, 1s either identically — oo or finite everywhere, and
that g,, 4 is continuous everywhere on B,™ with respect to the norm || - [
(see [4, Chap. 2, p. 92]). Therefore, by the observation in the last paragraph
of the proof of Proposition 1, ¢,, s 18 lower semicontinuous with respect to
the weak topology induced on B, by the || * ||;-continuous lincar functionals
on B, in other words, the weak topology induced on B,* by 4, under
the pairing (2.3). Then, a fortiori, ¢, 1 is lower semicontinuous with respect
to stronger topology induced in the same way by A.', which is the weak*
topology on B,*,

ExamrLe 7. Consider the special case of Example 5 in which L [satis-
fying (A), (B), (C), and (D)) can be expressed in the form

Lit, %, v) = g(t, v — E(1) x), (8.10)

where E(t) is an # * n matrix whose components are sumrrable functions of
¢, and g is a function from [0, T] % R® to R U {4 ool Let £*(1) denote the
transpose of E(z), and g¥(¢, *) the conjugate of g(¢, -), for each 2,

Leviva.  Under these assuwmptions, the three properties in the Corollary to
Theorem 4 are present (and wmoreover an optimal arc exists for @,y tn A1),
whenever the following conditions are satisfied:

(a) There exists at least one feasible arc for @, ¢, tn other words (in view
of the formula for @, », determined in Example 5) at least one solution p = A}
to the differential equation

p(E) = — EX(2) p(t) (8.11)
such that

n(p0) (D) + [ g¥(tpE) dt < + (5.12)
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(b) If P is a solution to (8.11) such that the expression
T
m(p(0) + PO HT)+ XD + [ (e p) + BNt (@13)

is a nonincreasing function of A € R for every are p satisfying (8.11) and (R.12),
then — p has this same property.

Proof.  Condition (b) means, in the sense of [21, Section 8], that the con-
vex function @, 5, has no directions of recession other than directions of
constancy. Since @, 4, 18 lower semicontinuous by Proposition 1, and also
finite-dimensional, that is, the sct of all p such that @,, ,(p) < <+ oo forms a
finite-dimensional subset of 4, (because every such p satisfies (8.11)), it
follows from this that @, ,, attains its minimum (finitely) on 4,1 [21, Theo-
rem 27.1b]. Thus an optimal arc exists for @, 5.

The idea 15 now to pass from the finite-dimensionality of @,, ,, to a dual
property, the finite-codimensionality of ¢, ; , and thereby reduce the limit
in (b) of the Corollary to Theorem 4 to a more elementary finite-dimensional
case,

Let N be the finite-dimensional subspace of 4,1 consisting of all p satis-
fying (8.11), and let N* be the annihilator of NV in B, with respect to the
pairing (2.3). The quotient space B,®/N- is finitc-dimensional, and it is
paired with N in a natural way., Suppose it can be shown that o, (e, 3)
depends only on the canonical image of (a, ¥) in B,®{N*, so that ¢, ; can be
regarded as a convex function on B,®/N* whose conjugate on N is the restric-
tion of @, 5 to N. Then, since D, 5y has no directions of recession other
than directions of constancy, it will follow from [21, Theorems 7.4 and 27.1b]
that ¢; ; , as a function on B,*{N*, is lower semicontinuous at the origin
(in the natural finite-dimensional topology). The latter property implies that
@;.1 » as a function on B, is lower semicontinuous at the origin in the weak™®
topology, and hence that condition (b} holds in the Corollary to Theorem 4.

To show that ¢, ;(a, y) depends only on the canonical image of (g, y) in
B,®[N*, we abserve first that [by direct caleulation using the fundamental
matrix of the differential equation (8.11)] Nt consists of the pairs (¢, ) such
that c € R®, w 2L, and there exists a z € 4,1 with 5(0) = — ¢, 2(T) =0,
and

() = E(&) [2(¢) + w(t)] for almost every 2.
Now, by definition, o, ;(@ + ¢, ¥ - @) is the infimum of

: T
(x(0) + a5 e, x(T)) + [ gt &(t) — E(t) [x(t) +5(8) + w(t)]) dt  (8.14)

0
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over all y € 4,1 If (¢, w) € N1, and 2 corresponds to (c, @) as just described,
expression (8.14) can be rewritten as

(w(0) + a, u(T)) + J':g(r, a(t) — E(t) [u(t) +3()]) dt,  (8.15)

where # = x — x £ 4,2 Thus the infimum of (8.14) over all x £ 4.1 is the
same a3 the infimum of (8.15) over all w € 4.1, Tn other words,

grrle +6,y +w) =g (a,v) for any {c, w) e N4,

and the proof 1s complete.

Exampie 8. This is a counterexample showing that the three equivalent
properties in the Corollary to Theorem 4 do not always hold, even when
optimal ares exist for both @, ; and @, »r. It also shows that T'heorem 4
and the Corollary would fail if the weak* convergence were replaced by
convergence in the B, norm,

Let n = 1, and define L on [0, T] x R x R by

if x =0,

if  x<0. (8.16)

r ({0
Define [ on Rt x R* by
Heg,er) =gy . (8.17)

Tt is obvious that condition (A) is satisfied, and, since L is independent of ¢,
conditions (B), (C), and (D) are satisfied too. We have

_{x(0) if  x(t) =0 forally,
Prulx) = 4 o otherwise, (8.18)
so that trivially
inf{d, 1 {x) | x € 4.1 = ¢, (0} = 0. (8.19)

On the ather hand, for (a, y) € B, we have

wr o 4x(0) if  x(t) = — (1) for almost every ¢,
a7 e o0 otherwise
{4+ 0 he ,

Thus the incquality [(a, ¥)l, =X & implies that ¢, ,(a, ¥) = — 8. Therefore

strong lim inf @, 4(¢,) = ,.4(0, 0) = 0, (8.20)

(a,¥)={
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where the limit is taken over all sequences in B,™ converging to (0, 0) with
respect to the norm || - [ .

We shall show now, however, that the limit is actually — oo if taken over
all sequences converging to (0, 0) with respect to the weak™® topology on B,*,
Fixing any positive real number «, we define (a,, , ¥,) € B;® and x,, € 4,
for each positive integer m by a,, = 0,

— if 0 =t= i
m
_‘Um{i) = 1
0 if — -t = T
i i
\
. ~ 1
a(mt — 1) if O=t=—,
H1
wp(t) = 1
0 if —=t<T
b
Then for every m we have
{PI,L(&m :ym) = (I}E,L(x_vﬁ} =

Furthermore, the function v,, converges to zero almost uniformly on [0, T,
and hence in particular (a,, , ¥,) converges to (0, 0} in the weak*® topology
on B.®. Therefore

R BT &
weak® liminf o, (a, ) < —«
(@3)=(0,0) " EA

where the limit is taken over all sequences in B,™ converging to (0, 0) in the
weak* topology. Since & was an arbitrary positive number, we conclude that

weak*® lim inf o ;{a, v) = — . (8.21)

{a,y)—(0,0)
Of course, (8.21) implies by Theorem 4 that, dually,
06y (7)1 5 A1) = g (0, 0) = 4 0

8.22)

> weak* liminf @, (b, ¢) = 0.
(6. (0.0

This can also be verified directly by computing m and M, if one so desires.
If in this example the definition of / is changed to

lcy , e7) = €7,
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the same arguments can be carried through, with the difference that, in this
case, an optimal arc exists for @,, , as well as for &, ; , the minimum of
@, ; on A, being 1, and the minimum of @, ,, on 4, being 0.

9. SunpIrrERENTIAL CONDITIONS FOR A NINIaUM

The familiar Euler-Lagrange equations and transversality conditions of the
calculus of variations can be gencralized to convex problems of Bolza, where
there are no differentiability assumptions, by means of the theory of sub-
differentiation of convex functions, Furthermore, a one-to-one correspond-
ence between Lagrangian functions L and Hamiltonian functions H, extend-
ing the classical Legendre correspondence, can be defined in terms of con-
jugate convex functions, Under this correspondence, the Euler-Lagrange
subdifferential condition is transformed into a Hamiltonian subdifferential
condition, which is an ordinary differential equation with a multivalued right-
hand side.

Given an extended-real-valued convex function f on R”® and a point
x € R, we denote by ¢f (x) the set of all ¥* € R" such that

(=) Zf(x) + (& — x,x%) forevery zeR™ (9.1)

Such vectors x* are called subgradients of f at x, and &f (x) is called the sub-
differential of f at x. It is immediate from (9.1) that ¢f(x) is always a closed
convex set (possibly empty). If fis actually (finite and) diffcrentiable at x in
the ordinary sense, then Zf (x) consists of a single element, namely the gradient
vector

Vi) = (- @ L) -

oxt T oam

Inequality (9.1) implies that
x*¥edf(v) ifandonlyif  f¥a*) = {x, &%) - f(x), 9.2)

where f* is the conjugate of f. Thus, in the case where fis proper and lower
semicontinuous (so that f** = f), one has x* e &f(x) if and only if
x € of *(x*).

The theory of subgradients of convex functions on R" is presented at
length in [21, Scctions 23-26]. This theory includes formulas for calculating
subgradicnts in various situations,

We shall denote by &L(%, x, ) the subdifferential of the convex function
L(t, -, 2) at (x, ©). Thus ¢L(z, x, v) will be a certain closed convex subset of
R* x R* for each (f,x,v) in [0, T] x R* x R*, The subdifferential
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él(e,, er) of T at (¢, c7) will likewise be a closed convex subset of R* x R»
for each (¢, ¢7) in R* x R™

We shall say that a given arc & = A4, satisfies the Fuler—Lagrange condition
for L if there exists an arc p € 4,! such that

(p(2), p(0)) = eL(t, x(¢), 5(1)) for almost every z. (9.3)
When L(f, x, ) 1s actually differentiable with respect to
o) =(aYuia®ontg ws);

so that ¢L(t, x, v) consists of the single vector

(-EL (t, x, L}..._. e (r % ?,) i (i, 2,0}, .

(9.3) says simply that

pilt) = fL 7)) N T

i) = :L (t, x(2), %(£)), i TR

for almost every ¢. Then the Euler-Lagrange condition is the classical con-
dition that x should satisfy the Euler-Lagrange differential equations:

d L = (1, (1), 4(0)) = \L— @t 5(t), 8@), i=1l..,n (9.4

In certain cases the Euler-Lagrange condition may also be construed as the
maximum principle of optimal control theory, as will be seen in the next
section.

We shall say that x e 4. is an extremal are for the Bolza functional @,
if x satisfies the Luler-Lagrange condition for L and, in addition, the arc p
in (9.3) (which is not always uniquely determined) can be chosen in such a
way that

(2(0), — p(T)) € &l(x(0), %(T)). (6.3)

Such a p c 4! will be called a coextremal of @, ; corresponding to x.
‘ondition (9.3) will be d the transversality condition for @, ; in analogy
Condition ? 3) will be called the transversality condition for @, ; in analogy
with rela onditions 1n the calculus of variations ar timal control.
th related cond the calculus of wvariations and eptimal control
e reason for the terminology 15 found in the special case where, for certain
Th for the t logy 1s found in the special ca here, for certa
nonempty closed convex sets €y and Cpin A7 one has
{0 if x(0=C, and «(T)=Cr,

GOTN=1" 0§ w)eC o (rec, OO
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[Then in the given problem of Bolza one is minimizing J'QTL(r, x(t), 2(2)) dt
subject to x(0) & C; and #(7T) e C;]. From (9.6) and the definition of &/,
it is apparent that the transversality condition (9.5) is satisfied in this case
if and only if x(0) € C,, #(7T) € Cr and

{p(0), c5 — (01> =20 for every ey,
=Ty er —x(T)> =0 for every creCrp.

In the language of convex analysis, this says that P(0) is a normal vector to
Cy at 2(0), while — p(7") is a normal vector to Cy at %(T). When Cj and Cy
consist of single vectors ¢, and ¢, respectively, the transversality condition
says simply that x(0) = ¢, and #(T) = ¢;, (#(0) and p(7') being arbitrary).

Of course, an arc p € 4,1 will similarly be called an extremal of the dual
Bolza functional @,, 5, if there exists an x & 4,2 (a coextremal of @,, ,, cor-
responding to p) such that

(#(2), x(1)) € 8M(z, p(t), p(r)) for almost every ¢, (8.7
(#(0), — «(T)) € em(p(0), p(T)). (9.8)

The relationship between extremal arcs and optimal arcs of the Bolza
functionals @, ; and @, ;,1s exactly explained by the next result, which iz a
L.L m, M d : g ]
direct consequence of Theorem 4 and the theory of subdifferentiation.

Turorem 5. The following conditions on a pair of arcs x € 4,1 and ped}
are equivalent :

() xis an extremal arc for @, with co extremal p;

(b) p is an extremal arc for @, 4 with co extremal x;

(¢) «is an optimal arc for ©, 4, p &5 an optimal arc Jor @, sr, and the
equivalent semicontinuity conditions (b) and (c) in the C orollary to Theorem 4
are satisfied,

(d) Do(x) = — P, u(p)

Proof. In view of the conjugacy relations (5.5) and (5.10), conditions
(9.3) and (9.7) are equivalent, and they arc satisfied if and only if

L{t, a(2), 3(1) + M(t, p(t), HO) ~ <30, p0)> — () o> =0 (9.9)

for almost cvery ¢. Similarly, by (5.4) and (5.9) conditions (9.5) and (9.8)
are equivalent, and they are satisfied if and only if

Hx(0), (1)) + m(p(0), H(T)) — <x(0), 2(0)> + <<(T), p(T)y = 0. (9.10)
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Of course, the left hand sides of (9.9) and (9.10) are always nonnegative, and
the integral of the left hand side of (9.9) over [0, 7], plus the left hand side
of (9.10) is

Dy () + P ai(p) =0,

as observed in Proposition 2. Therefore (a), (b), and (d) are equivalent. The
equivalence of (¢) with (d) is obvious from Proposition 2 and the Corollary
to Theorem 4.

CoroLLARY 1. Euwery extremal arc of @, is an aptimal arc. Conversely, if
an extremal arc exists for @, ; , or if one of the semicontinuity conditions (b) or
(c) in the Corollary of Theorem 4 is satisfied and the infimuni of @, yr over A}
15 attained, then every optimal arc for @, 1 is an extremal arec.

CoroLLary 2. If x is an extremal arc for @, 1 , then the coextremals of @y ¢
corresponding to x are the optimal ares for D, 4 .

These corollaries provide, among other things, a dual method for solving
a given convex problem of Bolza in cases (as in Examples 6 and 7) where it is
known that the equivalent properties in the Corollary of Theorem 4 arc
present. In this method, one minimizes the dual Bolza functional @, 3
over A% rather than the given @; ; . Having determined any optimal arc p
for @, 4y, one gets all the optimal arcs x for @, ; by finding all the arcs x
which, together with p, satisfy (9.3) and (9.5). This dual method could be
advantageous if minimizing @,, 5 happencd to be simpler than minimizing
D, ; , perhaps because @, 5, was essentially finite-dimensional (as in Exam-
ple 7), or because @, 5, was everywhere differentiable in some suitable sense,
so that “steepest descent” algorithms could be used.

(Dual methods of solution of variational problems are, of course, nothing
new, and they are well known in the case of linear control problems with fixed
endpoints. However, dual methods have customarily been described in terms
of supporting hyperplanes as in Wets-Van Slyke [29], whereas here we are
able to give a more explicit form, provided that m and M can be caleulated
from [/ and L.)

A Hamiltonian form of the Euler-Lagrange condition will now be derived.

The Hamiltonian function corresponding to the Lagrangian function L
will be defined as the extended-real-valued function H on [0, ] % R* x R*
obtained by taking the conjugate of the convex function L(, x, *) for each

(t, x). Thus

H(t, x, p) = sup{{w, p) — L(t, x,v) | v € R"}. (9.11)
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By the propertics of the conjugacy correspondence, of course, L is completely
determined by I [in view of assumption (A)], and one has

L{t, %, ) = sup{o, p> — H(t, % p) | p € R, (9.12)

The correspondence between Lagrangian functions and Hamiltonian fune- .
tions 1s thus one-to-one.
If L(t, x, ©) is differentiable in o, and if the gradient mapping
, el
v— VLt x, %) = —_]1 (tx0), — (1, 2, @)

—|‘.|

is one-to-one from R® onto itself, (9.11) reduces essentially to the classical
Legendre transformation: H(z, x, p) is obtained by solving the equation

Vo L(t, 2,2} = p
for v in terms of ¢, &, and p and then substituting this in the expression

(o, py —L(t, x, v).

This is treated rigorously in [21, Section 26],

The convexity of L(¢, x, ¢) in (x, ») implies by [21, Theorem 33.1] that
H(z, x, p) is concave as a function of x and convex as a function of p, so thut ,
like L, is well suited for study by convexity methods. The properties of H
will be discussed in more detail clsewhere [26]. (Note that the one-to-one
correspondence between Lagrangians and Hamiltonians in (9.11) and
(9.12) does not depend on all of our assumptions; it is well-defined as long as
L(2, x, *) is, for each ¢ and «, a lower sémicontinuous convex function from B#®
to R* U {-- co}. In this general case, however, H(t, x, p) would not be concave
in x, although it would still be convex in p, and subdifferentiation with respect
to & could not be employed as below.)

For each ¢ and #, let us denote (somewhat imperfectly) by 8,7(¢, x, p) the
set of all subgradients in R* of the convex function H(f, , -) at the point p.
Stmilarly, for cach ¢ and p let us denote by — &,H(z, x, p) the set of all
subgradients in R* of the convex function — H(¢, -, p) at the point x. In other
words,

B,H(t, x, p) = {v | Yp' e RY H(t, %, ) = It x,0) - {2, 0" — p>),  (9.13)
EH(t, %, p) = {s | V2’ € R", H(t, ¥, p) << H(t, %, ) + (&' — D). (9.14)

We shall say that given arcs x .4, and p & 4,7} satisfy the Hamilionian
condition corresponding to H if

©(t) c e 1 (¢, x(2), p(t)) for almost cvery ¢
and (9.15)
) e — & H{t, x(2), p(t)) for almost every ¢.
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If H(z, -, -) happens to be differentiable at (x(2), p(f)) for every ¢, this reduces
to the Hamiltonian equations:

x(ty = V, H(¢, x(t), p(t)) for almost every ¢
and (9.16)
PE) = — VIt x(1), p(2)) for almost every 2.

(Observe, incidentally, that A could be diffcrentiable everywhere in & and p
without L necessarily being differentiable, or even finite, everywhere in x
and =.)

In the classical case, where the correspondence between Lagrangians and
Hamiltonians is defined in terms of the Legendre transformation, & and p
satisfy the Hamiltonian equations if and only if & satisfies the Euler-Lagrnage

“equations and

2(t) = V..L(t, (2), o).

In the present case, there is an analogous result, which Is augmented by a
game-theoretic characterization. The latter concerns the function [ defined by

Jit, 5, 8) = — sup{< 5, r) L(z x®, d) | x e R" 3 . (9.17)

We note that J(z, -, ), llkc H(r ) is concave-convex on R" X Rﬂ f01 each t
by [21, Theorem 33.1]. We snad say that arcs x € 4, and p € 4, satisfy the
mimimax condition corresponding to J if (H(£), 4(7)) is for almost every ££[0,1']
a saddle-point of the concave-convex function

T

&.\_ K s, v) = .JT('If Sy

)4 o 8)

on K" x R" in other words,

ELp(t), ©) = Kp(2), (1)) = Ks, (1)) 9.19)

for every 2 € R* and 5 € R,

Turorext 6. The following eonditions on a pair of arcs x ¢ At and p e 4,1
are equivalent :
(2) x and p satisfy the Hamilionian condition corresponding to H;

(b) x satisfies, together with p, the Fuler—Lagrange condition corresponding
to L;

(c) p satisfies, together with x, the Euler-Lagrange condition corresponding
fo .:'1'.{,’

(d) x and p satisfy the mimimax condition corresponding to J.



CONVEX FUNCTIONS IN OPTIMAL CONTROL 213

Proof, This is immediate from the subgradient relations established in

[21, Theorem 37.5].

CoroLrary. If « 5_4,1‘ and pe AL satisfy the Hamiltonian condition
(9.15), then x minimizes ro L dt over the class of all arcs in A} having the
same endpoints as x, while p minimizes fu M dt over the class of all ares in
A hauving the same endpoints as p.

Proof. Given x and p satisfying (9.15), let ¢; == x(0) and ¢ = %(T'), and /
be the function on R* x R" which vanishes at (¢, , ¢7) but has the value
+ oo everywhere else. Then x and p trivially satisfy the transversality condi-
tion for /. Since » and p also satisfy the Euler-Lagrange condition (9.3) by
Theorem 6, x is an extremal arc for @, ; . Theorem 5 implies then that
is an optimal arc for @, ; . In other words, one has

j jL (¢, x(£), £(t)) dt < [ :L(r, (1), (1)) dt

for every arc 2 € 4, such that 2(0) = x(0) and =z
for p is parallel,

x(T"). The argument

The advantage of the Hamiltonian form of the Euler-Lagrange condition
is that it can be studied as a differential equation with a multivalued right-
hand side. Thus results about the cxistence of solutions, and the dependence
of such solutions on initial points, can be derived in certain broad cases, as
we shall demonstrate in [26], from known generalizations of theorems
about ordinary differential equations, such as the results of Castaing in

[5, Section 9],

10. ExTrEnaL Arcs anp THE Maxtuum PrINCIPLE

The Euler-Lagrange condition and transversality condition introduced in
Section 9 can be made more explicit in particular cases by means of the rules
given in [21, Section 23] for computing subgradients, together with various
measurability results and selection theorems. We shall demonstrate this for
some of the cxample problems already discussed. Example 12, especially,
will clarify the relationship, in the case of “sufficiently differentiable’ prob-
lems of optimal control reformulated as convex problems of Bolza, between
extremal arcs in the sensc of Section 9 and arcs and controls which are
extremal in the sense of the maximum principle.
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ExampLe 9. Suppose, as in Example 5, that L is of the form (6.16). The
corresponding Hamiltonian function H may then be calculated as

H(t, x,p) = i?g{@’ > —f(t, x) — g(t, v — E(t) x)}
= sup{Cw + E(t) %, ) — f(t, x) —glt, )} (10.1)

welt"

= CE(t) %, p> — f(t, %) + g¥(t, p),

where the last expression is to be interpreted as — oo if both f(#, x) = + o
and g*(t, p) = + 0. The gencralized Hamiltonian “equations” (9.5) for

this H, which are equivalent to the generalized Euler-Lagrange “equation”
(9.3) by Theorem 6, are:

(e) € (1) x(t) -+ dg*(t, p(1)),
A1) = — EX(t) p(t) + &f (2, +(1) (10.2)
for almost every ¢, where &f (2, a(t)) is the set of all subgradients of f(t, *) at

x(), and cg*(¢, p(1)) is the set of all subgradients of g*(, -) at p(¢). Of course,
(10.2) can also be expressed in the form

&(1) = E(t) x(¢) + u(?), (10.3a)
B(t) = — EX(1) p(2) + w(t), (10.3b)
u(t) € og*(t, p(t)), (10.3¢c)
w(t) € &f(t, x(1)), (10.3d)

whereu eL,! and @ €L, 1.

Suppose now that f is identically 0, and that the conditions in Example 7 in
Section 8 are satisficd, so that the dual problem of Bolza is essentially finite-
dimensional and has at least one optimal arc, and the propertics in the Corol-
lary to Theorem 4 hold. Then, by Corollary 2 of Theorem 3, x is an optimal
arc for @, ; if and only if x is an extremal arc, i.e., satisfics the conditions
(10.3a-d) and (9.5) for some p = 4,1 In this case w(z) must be identically
zero in (10.3d) and (10.3b), and the arc p is uniquely determined by p(0).
Once p(0) and x(0) have been specified, a function # can be obtained from
(10.3¢), and then (10.3a) can be solved for x. Here (10.3¢) can be expressed
equivalently as the condition that the maximum of the (extended-real-
valued) concave function

(1), > —glz, )
over R” be attained at the point u(t); thus, if g is such that Zg*(¢, p(¢)) cannot

be handled explicitly, it may still be possible to determine the function u by
solving a certain optimization problem in R" for each ¢,



CONVEX FUNCTIONS IN OPTIMAL CONTROL 215

Observe that, depending on the relationship between E(f) and g(z, +), it
could well happen that 1 is uniquely determined by (10.3) up to equivalence
in LY, since &g¥(¢, p(t)) might reduce to a single element for almost every ¢
when p is an arc satisfying the differential equation (10.3b) with ew(z) = 0.
(This is suggested by the fact that, on the interior of the set of points where
dg*(¢, ') is nonempty, dg*(¢, *) reduces to a single elcment almost everywhere
[21, Theorem 235.5].) In such cascs, x is uniquely determined by p(0) and
x(0). The only remaining problem (not necessarily easy) is then to choose
£(0) and x(0) in such a way that the resulting x(7") and p(T') satisfy the trans-
versality condition (9.5).

As pointed out following Corollary 2 of Theorem 5, the coextremal p
necded in order to determine x can also be found by solving the dual prob-
lem of Bolza, which in this casc (according to Example 5) consists of mini-
mizing

T
m(p(O) A1) + [ g*(tp(e) dt

over the finite-dimensional subspace of 4,! consisting of all arcs p such that
p(t) = — E*(t) p(t) for almost every #. This may be regarded as a problem of
minimizing a certain (extended-real-valued, not necessarily differentiabie)
convex function of a vector variable 4, € R*, where d;, = p(0).

Exampre 10. Consider the convex problem of Bolza in Example | in
Section 4, where [ and L are given by (4.5) and (4.6). Here we sct

®(f) = (s(0, (1)) and  p() = (q2), A(2)).

The transversality condition can be analyzed as in the example mentioned
in Section 9: one has

(9(0), #(0), — g(T), — B(T)) & €l(=(0), 3(0), =(T), AT))

if and only if #(0) =0 = A(T), ¢(0) is a normal vector to Z, at 5(0), and
— q(T) is a normal vector to Zy at (7).
Let us now write

L(t, x,v) = Ly(t, x, 2) + Lo(t, x, ¥) 4 Ly(t, %, ¢), (10.4)
where (for x = (2, y) and v = (w, )) |

Lyt x, v) = K(1, =, u),

0 if w=A4(@)s + B{t)w,
+ w if  w#Al)y -+ B(t)u,

R if ue U,
Lyt ,2) = ,—; o if ug U

Lyt x,2) = z
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For each fixed ¢ € [0, T}, the hypothesis of [21, Theorem 23.8] is easily seen
to be satisfied for (10.4) as a sum of convex functions of (x, ¢), and hence

eL(¢, x, v) = 6L,(2, x, v) + SLy(t, &, v) -+ ELy(t, x, v). (10.5)

Leania.  An arc x € 4,1 satisfies the Fuler—Lagrange condition here for L
if and only if there exists a p € A} such that one has

(p() p()) = (xr*(#), v (1) + (27(1), 227} + (%0, 2™(2))  (10.6)
for Lebesgue measurable functions x,* and v;* satisfying
(2, 7(), v, 5(t)) € 6L(t, x(2), &(2)) for almost every t. (10.7)

Proof. The functions L, satisfy conditions (A) and (B) (see the discussion
in Section 4), and therefore by [23, Corollary 4.6] the multifunctions

t — GL(t, a(t), 2(2)) C R

are Lebesgue measurable for any x € 4, (At points ¢ where the derivative
&(¢) does not exist, an arbitrary value may be assigned to @(¢), so that these
multifunctions are everywhere defined.) Fix any arc p € 4.1, let O,(#) denote
the set of all (a,*; o, %, w,*, ©,%, &%, ©4*) in R such that

X% o g ® 4 xg® = p(t) and v * ™ 4wt = p(1),
and let

O,(1) = EL,(¢, x(2), #(2)) X% ELy(2, x(2), 2(1)) % ELy(z, x(1), &(1)),
O(t) = O4(t) N Ou(1)-

In view of (10.5), the Euler-Lagrange condition (9.3) is satisfied by x and p
if and only if

O(t) # 0 for almost every ¢, (10.8)

Now 0, and O, are Lebesgue measurable as multifunctions from [0, 7] to
R by [23, Theorem 3] and [23, Corollary 1.2], and hence Q is likewise
Lebesgue measurable by [23, Corollary 1.3]. This implies by a result of
Kuratowski and Ryll-Nardzewski [13] (quoted as [23, Corollary 1.1]) that,
under (10.8), there exists a Lebesgue measurable function from {0, 7] to R%"
whose value at 7 belongs to O(#) for almost every £. In other words, (9.3) holds
if and only if there exist, as claimed, Lebesgue measurable functions &,
and #;* from [0, T to R" satisfying (10.6) and (10.7). This proves the lemma,
We must now analyze conditions (10.7). For convenicnce, let us set

(x* v®) = (2,5 v w5 u,*) e R X R* X R" X R,
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Then obviously (10.7) holds for ¢ ==1 if and only if, for almost every ¢,
35(t) =0, e,*() =0, and

(a5*(0), 17(1)) = 2K (1, 2(0), u(t) (109)
(where # = ). On the other hand, (10.7) holds for / = 2 if and only if for
almost every ¢
&(t) = A(F) 2(t) + B() u(e), (10.10)
¥ 5(1t) =0, 2%() = — A¥(t) w,*(#), and u,%(t) = — B*(£) w,*(t) (where
A*(t) and B*(t) denote the transposes of A(t) and B(1), respectively). Simi-
larly, (10.7) holds for i = 3 if and only if, for almost every ¢, 2,%({) = 0,
V¥ =0, w;* =0 and
1, *(£) 1s a normal vector to U(#) at u(t) e U(t). (10.11)
Thus (10.6) requires that, for almost every ¢,

4(t) = 2 *(1) — A*(1) 2,*(2),

h(z) =0,

q(t) = wy*(2),

h(t) = ug*(t) — BX(t) w0y (2) + u3™(2),
subject to (10.9), (10.10), and (10.11). Of course, the condition that A(t) = 0,
and the transversality condition that A(0) = 0 = i(T), imply that A(t) is
identically 0.

Therefore the arc x = (%, y) is an extremal arc in this example (i.e. the arc x
and corresponding control u =y are an “extremal pair” for the given optimal
control problem) if and only if theve exist functions ge A} and w* e L} such
that, for alinost every t € [0, T),

() = A(t) =(t) + B(t) u(t),  (10.122)

(g(t) = A%(t) q(r), — u*(t) + B*(?) (1)) € 6K(2, 2(t), u(?)), ~ (10.12b)

u*(t) is @ normal vector to U(t) at u(t) e U(r),  (10.12¢)

¢(0) is a normal vector to Z, at z0)eZ,, (10.12d)

— ¢(T) is @ normal vector to Zp at 2(T)yeZr. (10.12¢)

These conditions can be analyzed further when more information is given

about K, U(r), Z, , and Zr . Suppose, for instance, that these are defined as in

Example 4. Let B, denote the unit ball for the norm || - |, , and for a vector

w let [,(z¢) denote the set of points of B, at which v is a normal vector, Define
Jo similarly for [ - ||, . Then (10.12b) and (10.12¢) say that

d(t) + 4%(0) qt) € L (=(0), (10.13)

u(t) € J(B*(t) (t) — BL.(u(2))), (10.14)
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while (10.12d) and (10.12e) say that 2(0) = a, 2(T)=Z7, and ¢(T) e Z+
(g(0) arbitrary), Of course, in the casc where p = ¢ = 2, one has

Jy = e it w20
AT k| |k | < 1) if = 0.

If p = w0 and ¢ = 1, conditions (10.13) and (10.14) are more complicated,
but they can still be written down explicitly.
The Hamiltonian function in this example is given by

H(t, %, py = H(t,z, v, q, k)
= (At} =, g> -+ sup {{u, b L+ BHit) q¢> — K(t, =, u)}.
)

usli{t

(10.15)

ExamprLe 1. We shall show that, in the case of Example 2 in Scction 4,
the Euler-Lagrange condition and transversality condition require the exis-
tence of certain Lagrange multipliers for the constraints (4.8) and (4.9). Here [
and L are given by (4.10) and (4.11). We shall assume it is possible to choose
ay and ar in RT in such a way that

kiay, ar) =0 for 1= 1,..,my,

with strict inequahity for all ¢ such that 4; is not affinc. Similarly, we shall
assume that, for almost every ¢ [0, T], it is possible to choose z € R7,
e € R7, and u € R such that (4.12) holds with strict inequality for all j such
that K {7, +, -, -) is not affine. Then &/ and &L may be calculated as in [2],
p. 283].

Setting p = (g, &) and x = (=, ¥) as before, we obtain the result that the
transversality condition

(9(0), A(0), — g(T), — K(T)) & &l(x(0), »(0), (1), ¥(T)
1s satisfied if and only if 2{0) = 0 = &(T'), and there exist real numbers A;
(Lagrange multipliers) such that

(9(0), — g(T)) € 8ko(2(0), 2(1)) + A,844(2(0), 2(1))

(10.16)
";_ 3 "l' Amlakmi(r‘z(o)r 2"(1‘)),

k(=(0), 2(7)) = 0, Ay =0
and (10.17)
Ak{(=(0), 2(T)) = 0, £ Tieaymy s

Likewise, the Euler-Lagrange condition (9.3) is satisfied if and only if, for
almost every ¢, one has A(f) = 0, and it is possible to choose real numbers
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(1), such that

(d(2), q(0), (1)) € BE(F, 2(t), £(t), u(t)) - pui(F) BK (1, 2(2), &(2), u(t))

b (10.18)
" mmrabe lu".‘i’iz(f) C’sz(i, z(r)) ;"g(t): ?‘r'(t))
Kt 5(0), 50, u(t) <0, py(t) =0
and _ (10.19)
' ps(t) K(t, 2(2), $(t), u2)) = 0 for  j=1l,.,m.

Here the Lagrange multipliers py(f), if they exist, can be chosen as
Lebesgue measurable functions of ¢; this may be established by an argument
similar to the one in the lemma in the preceding example,

Therefore x € A} and u L} are an “extremal pair” for this optimal control
problem if and only if there exist real numbers N; and Lebesgue measurable
functions u; from [0, T to R such that conditions (10.16), (10.17), (10.18), and
(10.19) hold ( for almost every ), with k(1) = 0 in (10.18).

When the functions k; and K,({, », ) are differentiable on R* x R*, the
subgradients in (10.16) and (10.18) can be replaced by gradients.

Exampie 12, Relationships with the maximum principle [20] can be
clarified by considering Example 3 in Section 4. In this fixed endpoint prob-
lem, the transversality condition is just that x(0) = ¢, and 2(7") = ¢7, with
no restriction on p(0) or p(7). According to (9.11) and the definition of L,
the Hamiltonian function is given by

H(t, %, p) = max{( £t % ), p) — K(t, %, w}, (10.20)

an cxpression familiar in the theory of optimal control. Thus [under the
assumption that L(f, x, #) Is convex in (x, ¢)] formula (10.20) defines a
function H which is concave in x, convex in p (and actually finite and continu-
ous in all variables).

From Theorem 6 we know that x € 4! is an extremal arc if and only if
x(0) = ¢y, &{T) = ¢, and there existsa p € A, such that x and p satisfy the
generalized Hamiltonian differential equation (9.15) for this H. The existence
of solutions to the latter for arbitrary initial points and sufhciently small ¢
intervals can be deduced from the theory of contingent equations, as we
shall show elsewhere [26].

The fact that the Hamiltonian condition here implies the maximum
principle, assuming (as reguired in the formulation of the maximum prin-
ciple) that K and f are differentiable with respect to x, can most easily be
demonstrated by working directly with the equivalent Fuler-Tagrange
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condition. The Euler-Lagrange condition (9.3) is satisfied if and only if
one has

w(e), () - <&(0), £(8)> — L2, #(0), %(1)) = M(2, 5(2), p(2))

for almost every ¢, where
Lt o), &(0)) = min{K(, 2(1), 1) | w e U, f(¢, x(2), u) = 2(2)} (10.21)

(the minimum being - oo if there is no « € U such that f (2, x(t), ) = (7))
and

M1, p(t), p(1)) = caup aupw&‘*: Y + <o, p(t)> — L{t, %, 9)} (10.22)

= sup max{ LDy — (F, x, ), p(E)> — K2, x, u)).
xeR" wsU

This says that, for almost every ¢, there must exist a #(¢) € U such that
&(t) = f (¢, x(2), u(t)) (10.23)

and the “sup max” in (10.22) is attained at (x(t), #(t)). (It can be scen from
Filippov's lemma [9] that, in this event, u(f) can bc cho:,Ln to be a Lebesgue
measurable function of ¢.) In particular, one then has

<Aty 50, w2, PO — K (& (0, u(0)
= H(t, x(t), p(2)) (10.24)
= max( A1 +(2), ), 50 — Kt +(0), ),

<x(t), pt)y + (S a(2), u(2)), p(£)> — K(4, (1), u(t))

(10.25)
= max{/x POV L FOE x, u(t)), p(i)> — K8, x, u(t))h

Assuming that K and f are differentiable with respect to x, (10.25) implies,
of course, that

BE) = — Vo f (b, (t), u(®)) p(t) = VK( 5(0), u(t)),  (10.26)

¢., that p satisfies the familiar adjoint differential cquation in optimal control
theory. Thus, in this case, if ¥ 2 4! is an extremal are, there must exist a
control function ¥ €L,” and an arc p = 4.t such that (10.23), (10.24), and
(10.26), the conditions of the maximum principle for a “normal” are, are
satistied,
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Conversely, suppose that K and f are not only differentiable in x, but also
that K(t, x, u) is convex in (x, 1), f(Z, x, 1) is affine in (x, 4), L.e., of the form

Flt, 5 0) = A1) x + B u + C(@),

and U is convex. (These are natural assumptions implying that L{¢, x, v)
is indeed convex in (x, o), as mentioned in Section 4.) Then (10.26) is equiv-
alent to (10.23), and it can be seen further that (10.24) and (10.25) imply the
seemingly stronger condition that the maximum in (10.22) be attained at
(x(2), #(t)). Under these assumptions, therefore, every “normal extremal”
in the sense of the maximum principle is an extremal arc in the sense of this
paper.
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