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1. InTRODUCTION

Various developments in mathematical economics and optimal control
have led to the study of the measurability of multivalued mappings. Castaing,
in his recent thesis [2] (partly published in [3]), has presented a broad new
theory of measurable multivalued mappings, built upon foundations laid
by Aumann [1], Debreu [4], Kuratowski and Ryll-Nardzewski [3], Olech [7],
Plis [8], von Neumann [11], and others. The context chosen by Castaing
is that of mappings from a locally compact topological space to the subsets of
another topological space, usually assumed to be metrizable, This stands in
contrast to the measurability theory of Debreu, which treats mappings from
a measurable space (without topological structure) to the compact subsets of a
metric space. Castaing’s approach, however, is to prove an interesting general-
ization of Lusin’s theorem, which requires topological structure of the domain
space in order to make sense, and to use this theorem as the basic theoretical
tool. The results of Castaing are, for the most part, limited to compact-
valued mappings.

In this paper, the theory of mecasurable multivalued mappings will be
elaborated in the case of mappings from a general measurable space to the
closed (but not necessarily bounded) subsets of n-dimensional Euclidean
space R*, Emphasis will be placed on measurable convex-set-valued mappings
and their relationship with the normal convex integrands studied in [9],
Our goal will be to establish several convenient characterizations of measur-
ability and normality, and to usc these to show that measurability or normality
is preserved when certain opcrations, such as addition, are performed on
multivalued mappings or convex integrands. The consideration of multi-
valued mappings which are not nccessarily compact-valued is important for
for this purpose, since in dealing with a convex function on R one is auto-

* This work wuas supported in part by the Air Force Office of Scientific Research
under grant no. AF-AFOSR-1202-67A.
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MEASURABLE DEPENDENCE 5

matically dealing with an unbounded convex subset of R*'1, the epigraph of
the function.

Let T be aset, and let 7 be a o-fleld of subsets of 7 A multivalued mapping
K from T to R" will be called measurable if, for every closed subset § of R”,
the set

K-YS)={te T| K@) NS¢}

is measurable in 7. Note that, for K to be measurable, it suflices actually if
K-1(S) is measurable for everv compact S C R", since any closed § can be
expressed as the union of a sequence of compact sets Sy, 5, ,..., and the set

o 0

K= ( U ‘Sm] == U I{—:L(Sm)
=1 : mi=L
is measurable if cach K—1(5,,) is measurable.
By a conwvex integrand on T X R", we shall mean a function

JiT X R —(— 00, 4 &0]

such that f(#, x) is a convex function of x for each 7. A convex integrand will
be called normal if it satisfies the following conditions:

(a) for each ¢ e T, the function f(¢, -) is lower semi-continuous on R7
and not identically - oo, and

(b) therc exists a countable collection U of measurable functions w: 7'— R*,
such that f(#, u#(t)) 1s measurable in ¢ for each we U, and U(z) N D(t) 1s
dense in D(¢) for cach ¢ € 7, where

D(t} = {x € R* | f(2, x) < + o0}, (1.1)
U(t) = {uft) | w e U (1.2)

Normal convex integrands were used in [9] to define convex integral func-
tionals of the form

I(u) = [ o up)d,  wel (1.3)

where di is a positive measure on (7,.7) and L is a linear space of measurable
functions # : I'— R", Normality was shown to guarantee, among other
things, that the (extended-real-valued) function f(#, u(z)) is measurable in ¢
for every measurable # (not just for u = UJ),

An important advantage of the normality condition, as opposed to various
simpler measurability conditions which would suffice for the definition of
functionals of the form (1.3), is that nermality is preserved under duality:
as proved in [9], if f is a normal convex integrand, then /7 is alzo normal,
where f* is the convex integrand on 7' < R" conjugate to f, defined by

FH@, %) = sup{x, ™) — f(x) [ x € R"} (1.4)
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({x, *) being the ordinary inner product of two vectors x € R” and x* & R7),
This implies, for example, that the function

Py =1nf{ f (¢, x) | x € R*}
is measurable when f is normal, since

p(0) = — f¥(t, u(t),
where u(f) = 0.

A convex integrand fis normal in particular whenever f satisfies condition
(a) of normality, f(¢, #) is measurable in ¢ for every x £ R”, and the (convex)
set D(¢) has a nonempty interior for every ¢ € 7. (Let % be a countable dense
subset of R*, and let U be the collection of constant functions on 7' mth
values in Z [9, Lemma 2].)

The concept of a normal convex integrand attempts to describe a certain
kind of measurable dependence of a convex function £(¢, -) on R* upon an
abstract paramecter . The concept of a measurable multivalued mapping
K : T— R” describes a kind of measurable dependence of a subset K(#) of
R* on a parameter #. What are the relationships between these concepts ?

The following relationships, among others, will be demonstrated below.
When fis a convex integrand satisfying condition (a) of normality, fis normal
(i.c. also satisfies condition (b)) if and only if the multivalued mapping
K ; T— R" is measurable, where

K(t)=epif(t, ) ={(vp) s R pe R p 2 ft )} (1.5)

(The set cpif(z, «) is called the epigraph of the function f(t, ) on R"; it is
convex and closed if and only if f(#, *) is convex and lower semi-continuous. )
On the other hand, when K : T'— R" is a multivalued mapping such that
K{(t) is a nonempty closed convex set for each #, K is measurable if and only
if the convex integrand f is normal, where

{0 if x = K1),

= if  wé K. (2:8)

£(6,2) = 3(x | K()) =
(The function 8(+ | K(£)) is called the indicator of K(¢); it is a lower semi-
continuous convex function, not identically + <o, if and only if K(2) is a
nonempty closed convex set.)

2. MEAsURABILITY OF MULTIVALUED MAaPPINGS

The closure, interior and convex hull of a subset S of R* will be denoted by
cl S, int S and conv S, respectively. The following general measurability
critcrion, essentially due to Castaing [2], will be employed in proving our
main results, Theorem 3 and Theorem 4.
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TuroreM 1. Let K+ T — R" be a multivalued mapping such that K(t) is a
non-enipty closed set for every ¢ = T\ In order that K be measurable, it is necessary
and sufficient that there exist a countable collection U of measurable functions
w: I'— R* such that, for every te T

K(t) =cl U(t) = cl{u(t) |ues Ul (2.1)

Proor. Castaing established the necessity of the condition in [2, Section 5]
in the casc where T is a locally compact topological space and 7 = all
p-measurable scts for a Radon measure p on T (R* being replaced by a
separable complete metric space). He also proved the sufficiency of the
condition in this case, but under the further assumption that every compact
subset of 7' is metrizable. Castaing’s nccessity argument does not in fact
make use of any topological structure of 7', so it may be carried over directly
to the present context. But this sufficiency argument is topological in a
fundamental way and therefore cannot be invoked in any form here, Actually,
however, since the sets K(7) lie in R%, the sufficiency in Theorem 1 can be
cstablished by the following elementary argument, which does not involve
any compactness in 7

Let U be a collection of measurable functions such that (2.1) holds. To
prove that K is measurable, it is enough, as observed in Section 1, to show
that K~3(8) is meusurable for every compact S C R", Given a compact S,
define S, form =1, 2,...,, by

L

5 (2.2)

=

L :x e R* | JyelS, | —y| = -

(where | « | denotes the Euclidean norm). Since XK(#) = ¢l U(#), and each S,
1s compact, we have K(£) N .S == ¢ if and only if U(#) N S,, == ¢ for every m,
Thus

KYS)= () | UO N S, 28
ni=1
= U # X5, (2.3)
m=1 uslf

The sets #71(8,,) arc measurable, because the functions # £ U/ are measurable,
and, since I/ is a countable collection, it follows from (2.3) that K-(S) is
measurable, This finishes the prootf.

“Although Theorem 1 only characterizes measurable multivalued mappings
K such that K(#) is nonempty and closed for every ¢, it does have some
bearing on more general mappings, in view of the fact that, if K: T -+ R”
is any measurable multivalued mapping, then the multivalued mapping

K’ t— ol K() (2.4)
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is measurable. The latter is true because, for any compact S C R*, one has
=0
(‘Kf)_l (S) = n K_I(Sm)!
m=1

where .S, 1s given by (2.2}, It should be observed further that, if K1 7' — R*
is any measurable multivalued mapping, then the set

T, ={t T| K(t) %} = K-YRY) (2.5)

is measurable. Thus, if K(f) is closed for every ¢, the restriction of K to T,
is a measurable multivalued mapping K, : 7, — B* of the type to which
Theorem 1 (and Corollary 1.1 helow) are applicable.

Here are some useful facts implied by Theorem 1,

Cororrary 1.1 (Kuratowski and Ryll-Nardzewski [5]). Let K: T — R»
be a measurable multivalued mapping such that K(t) is a non-empty closed set for
every t €T, Then there exists a measurable selector for K, i.e. a measurable
Junction w: T —> R® such that u(t) € K(¢) for every t € T.

Cororrary 1.2, Let K, and K, be measurable multivalued mappings from
T to R%. Then the multivalued mapping

K it — Cl[Ky (1) + Ky(1)] = clfaey - x, | &y € Ky(2), 25 € Koft)}

is measurable.

Proor, The set T, defined by (2.5) is measurable, since
Ty = K HR™) N KR,
Restricting K to 7 if necessary, we can reduce the assertion to the case
where T, = T, ie., K1) 7= ¢ and K,(t) == ¢ for every t € T. We can also
assume that K,(7) and K,(¢) are always closed. Then there exist by Theorem 1

countable collections U and U, of measurable functions from 7' to R* such
that

K(t) = cl{uft) |w, e U}, i=1,2.
Then (2.1) holds for <
U={uy +uy |4y e Uy, uy e Uy,

so K is measurable by Theorem 1.
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CoroLrLary 1.3. Let (K, |iel)bea finite or countable family of measurable
multivalued mappings from T to R™, such that K(t) is closed for every t € T
and i £1. Then the multivalued mapping

K:t— () K1)

iel

is measurable. In particular, the set

jre FI (K1) # ) = KHR)

ief
is measurable in T

Proor. Let § be any compact subset of R®, We must show that K-%(S)
is measurable. Consider first the case where [ = {1, 2}, and let

Kt =K@n NS,  Kit) = — Kyfp). (2.6)

clearly the multivalued mappings K, and K, defined by (2.6) arc again
measurable, and since Kj(¢) is compact the set K, () + K,(2) is closed for
every . The mapping

K': 1 — K1) — K1)
is therefore measurable by Corollary 1.2, Moreover
K7(8) = {t| 0 K3(2) + Ky(t)} = (X&)~ ({0},

so K71(5) is measurable as claimed,

Since the assertion is true for [ — {1, 2}, it is true for any finite index set /
by induction. Consider now the case where [ is countable, and let [ be the
collection of all finite subscts of 1. For cach j = Jand ¢t € 7' let H,(t) be the
intersection of the K () for ¢ £ 7, T'he multivalued mappings H; so defined for
J = J are measurable by what has already been established. The compactness
of S implies that

KHS)={IVie LHHNS #4} = H
]

Since H;(S) is measurable and J is countable, K-1(.S) is measurable and the
proof of Corollary 1.3 is complete.

Corollary 1.2 and Corollary 1.3 were proved by Castaing in the case where
7 is a locally compact topclogical space (with 7 = all g-measurable sets for a
Radon measure p) under the assumption that the sets K,(¢) are all compact
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[2, Corollary 1 to Theorem 4.4 and ‘Theorem 4.10]. Castaing showed, how-
ever, that the compactness assumption on the K (f) in Corollary 1.3, at lcast,
could be avoided if every compact subsct of T were metrisable [2, Corollary to
Theorem 3,3].

Another general measurability fact, which needs to be mentioned for use
in Section 4, concerns the graph of the multivalued mapping K : T'— R*, Le.,
the set

GK)={t,x) e T x R* | x e K(¥)}. (2.7)

t % be the o-fleld in 7" x R" generated by all the subsets of the form
A 2 B, where 4 €77 and B is a Borel subset of R, The elements of .% will
be called the measurable subsets of T % R*, We shall say that the measurable
space (7,.77) is complete if there exists at least one o-finite (nonnegative)
measure pon.Z which is complete (i.e., such that, if 4 € 9 is a set of measure
zero with respect to u, then every subset of A belongs to .77).

Tueorem 2 (Debreu [4, p. 360)]. If K : T—» R is g measurable multi-
valued mapping such that K(t) is a closed set for every t, then the graph of K
is a measurable subset of T x R". On the other hand, if K : T — R™ is a multi-
valued mapping whose graph is a measurable subset of T x R*, and if the
measurable space (T, T7) ts complete in the above sense, then K is a measurable
multivalued mapping.

Proor. The arguments of Debreu are actually applicable if R? is replaced
by any separable complete metric space. The argument given for the first
assertion, however, is couched in terms of compact-valued mappings K
(and a different but equivalent definition of measurability for
Castaing [2, p. 25]), so some minor changes are necessary, The modified
argument is this. Let Z be a countable dense subset of R", and for each 2 £ Z
and each positive integer m let S, ,, denote the closed ball in R with center
and radius 1/m. Since K(t) is a closed set, one has x € K(¢) if and 0111) if, for
every m > O there exists a2 ¥ € Z such that x £ S, ,, and

KHnS,, =¢, B€y te KNS, )

Therefore the graph of K is given by the formula

GK) = () U [K(Sem) % Senl (28)

me=l zeZ

Each of the sets
K Sey) %48

z,Mm

is measurable in T X R", because S, ,, is closed in R and K is measurable.
Since Z is countable, (2.8) implies then that G(K) is a measurable set.



v the graph of K 15 a Borel subset of R x R7. On the
e s, e grah oF K 4 @ Bovel subsat of B 0 K7, oen K ds Lebesowe
measurable.

3. MEASURABILITY IN THE PRESENCE OF CONVEXITY

We turn now to special criteria for the measurability of multivalued map-
pings K : T — R" such that K(t) is a closed convex set (not necessarily
bounded) for every t e 7.

Given any » £ R* and any lower semi-continuous convex function / from
R to (— oo, + oo] which is not identically - oo, we denote by prox(z | /)
the unigue point & of R™ where the function

t— Al L Hln— 2

.
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attains its minimum. The mapping prox(- | &) from R" into itsclf is called the
proximation associated with k. The general theory of proximations has been
developed by Moreau [6]. It is known in particular that prox(: | /) is a
continuous mapping whose range is dense m the convex set

domh ={xeR" | h(x) < + o}
If & is the indicator of a nonempty closed convex set CC R™, ie.,

PR T - it xeC,
h(x) =38(x | C) = e i #2C.
then prox(z | #) is the unique point of C nearcst to 2, and it will also be
denoted by prox(z | C').

Proximations were a convenient tool in the study of normal convex inte-
grands in [9], and they will again be helpful here. We shall need two lemmas.

Lenmva 1 [9). If fis a normal convex integrand on T > R" and u : T'— R"
is a measurable function, then the function

t — prox(u(t) | f(z, *)) € R"
Is measurable,

Lesva 2. If G0 CyD =+ &5 a non-tncreasing sequence of closed convex
subsets of R" and

COZ m Cm :/Zﬁi‘- .

m=1

then for every 2 € R*

L}_:E prox(z | C,,) = prox(z | Cp).

Proor. Fix z £ R", and for notational simplicity set 2, = prox(z | C,,)
for every m. Let r,, = | 2, — 2 | . T'he sequence r, , 73 ,..., is nondecreasing
and bounded above by r,. Let # = lim,,_.. 7, . T'hec sequence 2, 25,..., I8
bounded in R", and all of its cluster points belong to the set

- ]
xeCylls—a| <A =) {reCalln—a| <)

=1

The latter set is nonempty by compactness, so it must contain the unique
point 2, of C nearest to &. Since 7 = 7, it can contain no other points. Thus
3, is the only cluster point of the sequence 2, 25 ... (and 7 = »,),

Our main result about convex-set-valued mappings can now be proved.
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Turorem 3. Let K : T'— R" be a multivalued mapping such that K(t) is
nonempty closed convex set for every t = T. Then the following conditions are
equivalent :

(a) K is a measurable multivalued mapping;

(b)  the indicator of K, i.e., the function f on T x R* defined by (1.6), is a
normnal convex integrand; in other words, there exists a countable collection U of
measurable functions w: T — R" such that {t | u(t) € K(t)} is a measurable
subset of T for eachu ¢ U, and U(t) N K(t) is dense in K(t) for each t € T, ewhere
U(t) is given by (1.2);

(¢) the support function of K, i.e. the function g on T X R» defined by

&8, y) = sup{{x, y) | x e K(1)}, (3.1)
is @ normal convex integrand;
(d) there exists a finite or countable family (u; | i 1) of measurable functions
Sfrom T to R such that, for every t T,
K(t) = cl convi{u ) | i e l}; (3.2)
(e) there exisis a finite or countable family (v, | i € I) of measurable functions

from T to R*, and a corresponding family (x; | i € I) of measurable functions from
T to RY, such thai, for every t e T,

K(t) = {2 | Vi e l, {x, v(t)) < at)); (3-3)
(f)  Jfor each z € R", the function
t — prox(z | K(2)) (3.4)

15 measurable from T to R®.

The equivalence of (a) and (f) has already been demonstrated by Castaing
in case of 7"locally compact [2, p. 16]. The equivalence of (a), (c), (d), and (e)
in this case could also be derived from Castaing’s results, assuming that K{(z)
is compact for every ¢ = T.

Proor oF Turorem 3. The equivalence of (b) and (c) is immediate from
the fact that normality is preserved under duality: the convex integrands fand
£ are conjugate to each other, i.e., one has

8(t, ) = sup{<x, y> — f(t, %) | x € R,
f(#, %) = sup{<w, ) —g(t, ) | ¥ € R}
Ta prove the remaining equivalences, we shall show that

(2) = (b) = (¢) =(f) = (d) = (a).
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(a) implies (b). This is clear from Theorem |.
(b) implies (¢). Let (5, |7 1) be a countable family of points which is
dense in R", Foreachieland t e T, let
uft) = prox(z; | K(7)),
o t) = 2 — ut),
C\;"(f) : 3 <u'£(t)? f"i'@)}-
The functions u, , ¢, and «, are measurable on 7' by Lemma 1. Foreach el

and ¢ & T the set
{x s R? | (x, v(t)y =2 a8)) (3.5)

is either a closed half-space supporting K(z) at u,(t), or it is all of R*(z(t) = 0,

w,(£) = 0). Therefore K(t) is contained in the intersection of the sets (3.3)

as 7 ranges over [. On the other hand, K(#) cannot be properly smaller than

this interscction. To see this, let x € K(#) and » = prox(x | K(¢)), so that
@—yx—y> >0

Since (2, 12e7) is dense, and prox(- | K(z)) is a continuous mapping of R»
into itself, there exists an 7 ¢ I such that

0 =< —u(t), 2, — w,(1)> = (x, v,(8)) — aft).
Thus « fails to belong to one of the sets (3.5), and (¢) holds as claimed.
(¢) tmplics (f). We may suppose without loss of generality that the index
set [ is the sct of all positive integers. For m = 1, 2,..., lct
K. ={xeR" | {no)) < oft) L 27 i=1,.., m}..
Each K, (t) is a closed convex set such that

int &, (1) = 4, (3.6)
and we have
KK D DK@ = ﬂ K, ().
m=1

For cach m the indicator function
Jult, %) = 8(x | K,,(2))

is a normal convex integrand by (3.6) and the measurebility of the functions
©; and o; . (Let Z be a countable dense subset of R, and let U be the collection
of all constant functions from T to R* with valucs in Z.) Hence, for each m
and each z € R*, the function

t— prox(% | fu(t, -)) = prox(z | K. (1))
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is measurable from 7' to B® by Lemma 1. Since this function converges point-
wise to (3.4) as m —> o0 by Lemma 2, condition (f) holds.

(f) implies (d). Let{z, |7 <} bea countable family of points dense in R”,
and foreach7eJand ¢ = T let

ui(t) = prox(s; | K(#)).

The functions #, are then measurable, and (3.2) holds (where the convex hull
operation can be omitted).

(d) implics (a). According to Carathéodory’s theorem, the convex hull of
{u,(t) i €l}is the sct of all points of the form

Aot (1) + +or 4 A (2),

where i, 1, A, 20 for k=0, 1,..,2, and Ay -~ -+ = A, = 1. Therefore
K(t) = cl{u(t) | u e U},

where U is the (countable) collection consisting of all functions of the form

n
)L.l’.' :'::Or Z Ak:ly

=0

w o= Ay, + 0 Aglly,
where 7, £ I and A, is rational for k — 0,..., n. The functions u € U are measur-
able, so K is a measurable multivalued mapping by Thcorem 1.

CororLary 3.1, Let K:T'— R" be a multivalued mapping such that, for
every t € T, K(1) is a closed convex set with a nonempty interior. Then K is a
measurable multivalued mapping if and only if, for each x € R,

{teT|x<K(t)}
is @ measurable subset of T.

ProoF. The necessity of the condition is immediate from the definition
of the measurability of K. The sufficiency follows from the equivalence of (a)
and (b) in Theorem 3. (Lct Z be a countable dense subset of R, and let U
be the collection of all constant functions from 7' to R" with values in Z.)

CoroLLary 3.2. Let K : T — R" be a multivalued mapping such that, for
every t e T, K(t) is a nonempty closed convex set containing no (wwhole) lines.
Then K is measurable if and only if its support function g, defined by (3.1), 15
measurable in t for each fixed y.

Proor. The condition that K(#) contain no whole lines is equivalent to the
condition that the convex set

dom g(t, ) = {y € R* | g(t, ) < + %}
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have a nonempty interior for every . Under the latter condition, g is normal if
(and only if) g(¢, 3) is measurable in 7 for each y, as noted in Section 1. The
result therefore follows from the equivalence of (a) and (c) in Theorem 3.

The line condition in Corollary 3.2 is satisfied in particular if K(2) is
compact for every ¢. Corollary 3.2 has been deduced in this special case by
Castaing [2, p. 52] with T Jocally compact (but with R” replaced any separable
Fréchet space).

Corovrary 3.3. If K: T — R" is any measurable multivalued mapping
vom T to R*, then the multivalued mapping
=]

K':t— cl conv K(t)

s measurable.

Proor, Restricting K to the measurable set T defined by (2.5) if necess-
ary, we can assume that K(z) is nonempty for every ¢ Let K'(r) = cl K().
Since the multivalued mapping K" : 7'— R" is measurable (as observed in
Section 2), there exists by Theorem 1 a countable collection U of measurable
functions u# : T — R such that, for every t £ T,

cl K(t} = cl{u(t) | u e U}.
We have
K'(t) = cl convi{u(t) | u e U},

s0 K' is measurable by criterion (d) of Theorem 3.
Corollary 3.3 has previously been proved by Castaing in the case of T
locally compact under the assumption that K(#) is compact for every ¢

[2, p. 27].

CoroLrary 3.4. If (K, | i el)is any finite or countable family of measurable
multivalued mappings from T to R*, then the multivalued mapping

K :t—>cleonv | ) K1)
ie]
15 measurable,

Proor. Let

K'(t) = | Ky().

il

It follows trivially from the definition of the measurability of the K that K’

is measurable. Since
K(t) = cl conv K'(2),

K is measurable by Corollary 3.3.
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Cororrary 3.5, Let K:T— R" be a measurable multivalued mapping
such that K(t) == & for every 1. Then the multivalued mapping

KVt K ={yeR" | Vxe K@), (x> = 1}
is measurable.

Proor. Let K'(t) = ¢l K(#) for cvery t. Since K’ is another measurable
multivalued mapping, there exists by Theorem [ a countable family (u; |7 1)
of measurable functions from 7" to R* such that, for every ¢t € 7',

K'(t) = cluyt) | i 1},

we have
K¥t) = K'(t)" ={y | Vil (uft),y> = 1%L

Hence K®is measurable by criterion (e) of Theorem 3.

CoroLLARY 3.6, Let K : T—» R” be a multivalued mapping such that K(t)
is a subspace of R" for every t € T. Then the following conditions are equivalent :

(a) K is a measurable multivalued mapping ;

(b) the multivalued mapping K+: T — R" is measurable, where K(t)
25 the orthugonal complement of K(z) for every t;

(c) there exist wmeasurable functions a,: T— R", i = 1,..., m, such that
K(t) is the subspace generated by the wectors ay(t),..., a,,(t) for every t;
(d) there exist measurable functions a; : T — R*, { = 1,..., m, such that,
Jfor every i,
K ={x| {x, at)y =0,1=1,..., m}.

Proor. 'The equivalence of (a) and (b) follows from the equivalence of
conditions (a), (b) and (c) of Theorem 3, because the support function of a
subspace is the indicator of its orthogonal complement. Furthermore, it is
clear that (¢) holds for K if and only if (d) holds for K*, and that (d) holds for
K if and only if (c) holds for K*. Therefore, in view of the equivalence of (a)
and (b), to complete the proof we need only show that (a) is equivalent to (c).
To see that (c) implies (a), one can apply Theorem | to the collection U
consisting of all lincar combinations of the functions a, ,..., a,, with rational
coefficients. T'o see that (a) implies (c), let e, ,..., e, be a basis for R*, and for
cach ¢ & T let ay(t),..., a,(t) be the orthogonal projections of ¢, ..., e, on K(2).
The functions a; : t — a,(t) are measurable by (f) of Theorem 3, so (c) is
satisfied (with m = n).

Note in Corollary 3.6 that the dimension of X(¢) must be a measurable
function of ¢ when K is measurable, since by condition (c) this dimension
is the rank of a certain matrix 4(r) whose rows ay(¢),..., a,,(f) are measurable
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functions of #. (The rank of A(z) can be expressed in terms of the vanishing
of certain dcterminants which are measurable functions of #.)

4., NorMmALITY 0F CONVEX INTEGRANDS

The rcsults of Scction 2 and Scetion 3 will now be applied to convex
integrands, which may be regarded of course as correspondences associating
with each ¢ € 7', not a subset of R", but a convex function f(z, ) on R".

Tueorem 4. Let f be a function on T x R" with values in (— oo, + oo]
such that, for each t ¢ T, f(t, x) is a lower semi-continuous convex function of x
which 1s not identically -+ oo. Then the following conditions are equivalent:

(a) fis a normal convex integrand;

(b) the epigraph mapping of f, i.e., the multivalued mapping K : T — R#+!
defined by (1.5), is measurable ;

(c) there exists a finite or countable family (v, | ¢ = I) of measurable functions
from T to R, and a corresponding family (x; | i € I) of measurable functions from
T to R}, such that, for every t € T and x € R,

f(t, %) = sup{<x, v(1)) — a(f) i €1} (4.1)

ProoF. Let f* be the conjugate convex integrand defined by (1.4), and let
K*:T— R%! be the epigraph mapping of f* Let (b*)and (¢*) denote
conditions (b) and (c) for f* in place of f. We shall show that

(8) = (b) = () = (6%) = (c) = (b) = (a).

(a) implics (b). Let Z be a countable dense subset of R7, and let U be the
(countable) collection of all functions u : T— R+ of the form

u(t) == (w(t), f(t, w(t)) + <), w(t) = prox(s | f(, *)),

where 2 € Z and e is a positive rational number. Each u € U is measurable by
Lemma 1. Since for each # the range of the mapping

2 — prox(z | £(, *)

is dense in the set D(t) = dom f(¢, -), as noted in Section 3, the sct of points
2(t) as & ranges over Z is likewise dense in D(t). Morcover /(t) is the image
of K(t) under the projection (x, u) — x, and K{(#) is a closed convex set.
Therefore (2.1) helds, and K is measurable by Theorem 1.
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(b) implies (c*). If K is measurable, there exists by Theorem 1 a count-
able family (v, | € I) of measurable functions from 7T to R", and a corre-
sponding family (x; | { € I) of measurable functions from T to R, such that

K(t) = c{(edt), %) | i € I}

for every r & 7. Since

JH(t &%) = sup{dx, &%) — | (v, p) € K(2)},
one has
e, a%) = sup{o,(t), ¥™> —w(t) | i1} (4.2)
for every ¢ € 7, so that (¢*) holds.
(c*) implies (b*).  Given measurable functions ©;:7T—R" and
a; : T — R such that (4.2) is satisfied, we have
K*(t) = {(x*, p*) | x* e R?, u* e RY, p* == f¥(z, x%)}
={ye R |Viel, (y, wlt)) =< «,(8)},
where w,(t) = (z,(¢), — 1). Therefore K¥ is a mecasurable multivalued
mapping by criterion (&) of Theorem 3,
(b*) implies (c). This follows by the same argument which showed that
(b) implies (c*), because fis in turn the convex integrand conjugate to f*.
(c) implies (b), Same as the argument that (¢*) implies (b*).
(b) implies (a). By Theorem 1, the measurability of K implies the
existence of a countable family (w; | 7 € J) of measurable functions from T to

R*, and a corresponding family (8; | / € J) of measurable functions from 7' to
R such that

K(t) = cl{(w,2), (1)) 1 € J}

for every t € T, Let U = {u; |j € J}. Inasmuch as the set D(z) is just the
image of K(¢) under the projection (¥, u) — x, the set

U@@) N D) ={u,(t) |je J}

is dense in D(¢) for every ¢ € 7. We shall show that f(z, #,(z)) is measurable
in ¢ for every j € J, and this will complete the proof that f is normal. It has
already been verified that (b) implies (c). Let (v; |i =) and (x;|71) be
countable families of measurable functions as described in (c). Then

F(@ (1)) = sup{<u(2), vt)) — at) |1 €1}

Thus f(-, #,()) is the supremum of a countable family of measurable func-
tions on T and hence is measurable.
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CoroLrarY 4.1. Let (f; |iel) be a finite or countable collection of normal
convex integrands on T X R", and let

(&, %) = supf fi(t, ») | i eI}
Then the set
Tr_} = {f = : dx e Rﬂ'?f(t, ;T) =] 4 QCI}

is measurable in T. If T, = T, f is another normal convex integrand.

Proor. Let K (f) = epifi(t, ). Then

epif(t, 1) = () Ki(d).
i=f

Each of the multivalued mappings K, : T — R**1is measurable by Theorem
4, so the multivalued mapping

K:t—epif(t, ")
is measurable by Corollary 1.3. Since
Ty= &I

T, is measurable. If 7, = 7, f is a novinal convex intcgrand by criterion (b)

of Theorem 4.

CoroLLARY 4.2, Let f; and f, be novinal convex integrands on T X R*, and
let
7t %) = £t ) A ).
Then the set
T,={teT|Ixc R f(t ) < -+ w0}

is measurable in T. If Ty = T, f is another normal convex integrand.

Proor. The T, here is the same as the T in Corollary 4.1 for I = {1, 2};
hence it is measurable, Assuming that Ty, — T, f(¢, ) is for each # € 7" a lower
semi-continuous convex function on R® which is not identically - co. In
fact, let

fit, %) = sup{<x, w1(2)> — ae) | €1,

£t 2) = sup{Cx, m2(8)> — () | ke L)
be representations of f; and f, as in (c) of Theorem 4. Let I =1, x I, and
for each i = (j, k) let

vl(t) = 2}@) + o), au(t) = o) + 1),

The functions v, : 7'— R® and o, : T— R! are then measurable, and (4.1)
holds, Therefore fis a normal convex integrand by criterion (c) of Theorem 4.
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Cororrary 4.3, Let f be a normal convex integrand on T % R*, and let
C: T — R* be a measurable wmultivalued mapping such that, for every tc T,
C(t) is a closed convex set. Then the extended real-valued function p on T
defined by

p(t) = inf{ f(2, %) | x € C(t)} (4.3)

is measurable (wheve Inf & = 4 o0 by convention). Moreover, for any measurable
Junction « : T — R* the multivalued mapping
Kit—={xeCl)|fit % < o)} (4.4)
is measurable.
In particular, if for every { the infimum in (4.3) is finite and attained, Corollary
1.1 is applicable to the K in (4.4) with «(t) = p(1), and it follows that theve exists
a measurable function u 1 T — R" such that, for every ¢,

u(t) = C(f) and  f(t, u(t)) = p(t).

Proor. There is no loss of generality in assuming that C(f) == ¢ for every
t. Then
£t %) = 8(x | C(2))

is a normal convex integrand by (b) of Theorem 3, Let
ht, &) = f(2, x) + g, x).
By Corollary 4.2, the set
Ty = {2 3%, h(t, x) < + oo} = {t | p(t) % + oo}

is measurable. Thus, to prove the first assertion, it is enough to consider the
the case where 7, = 7. In this case /2 is a normal convex integrand by Corol-
lary 4.2, We have

p(t) = inf{h(t, x) | x € R},

80 p is measurable (see Scction 1).
In proving the second assertion of the corollary, we can assume that a(f) = 0
for every ¢, since otherwisc  could be replaced by the convex integrand

R(t, x) = f(t, 8) — oft),

which would trivially again be normal, Then, given any closed subset S of R”,
we have
KYS8) = (K1 (S), 4.5)

where

K'(t)=epih(t, "), S ={(x,u) R |xeS,u<0}



22 ROCKAFELLAR

The multivalued mapping K’ @ T - R*#1is measurable by (b) of Theorem 4,
so the set in (4.5) is measurable. This shows that K is a mecasurable
multivalued mapping.

Results similar to Corollary 4.3 have been proved by Castaing (2, Section 4],
but, while these do not assume convexity, they require T to be locally compact
and C(t) to be compact for every ¢ € 7' They also require f cither to be con-
tinuous in x for cach ¢ (as well as measurable in ¢ for each &), or to be lower
semi-continuous as a function of 7 and x jointly,

CoroLLary 4.4, Let ([, | i 21) be a finite or cowntable collection of normal
convex integrands on T % R", and let (x; | i 1) be a corvesponding family of
measurable functions from T to RY. Then the multivalued mapping

K:t—{xsR"|Viel ft, x) == o,(t)}
is measurable. In particular, the sel
{t | Iv e R, Wil f{t, &) = oft)} (4.6)
1s measurable in T.
Proor. Let
K#) — {x | fi(t, %) == (1))

Each K, : T — R" is measurable by the preceding corollary (with C(f) = R*
for every t), so K is measurable by Corollary 1.3, The set in (4.6) is just
KR,

Coronrary 4.5, Let f be a normal convex integrand on T 3 R*, and let
u: T > R be a measurable function, where 1 <X q <2 n. Let

£t y) = f(& u(®),»)
for every t € T and v € R™, where m = n — q. Then the set
Ty ={t|3y e R gt y) < + o0}
is measurable in T. If Ty = T, g is a normal convex integrand on T X R™,
Proor. Let K : 7"— R be defined by
K(t) = {(u(2).3) | ¥ < R").

This K is 2 measurable multivalued mapping by Corollary 1.2, in view of the
fact that
K(t) ={(0,y) e R" |y € R™} + (u(2), 0).
The indicator
Rz, x) = 8(x | K(2))
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is therefore a normal convex integrand by (b) of Theorem 3. The result now
follows from applying Corollary 4.2 to f - &.

CoroLLARY 4.6. Let f be a normal convex integrand on T X R", and for
each t € T and x = R* let 8f(t, x) be the subdifferential of f(t, ) at x, i.e,,

of(t,%) = {x* € R" | Wy € R", f(3) 2 f(®) + (¥ — m 4%},
Then, for any measurable function w : T'— R", the multivalued mapping
K :t— &f (¢, u(t))

is measurable.

Proor. We have
K(t) = {&* | f¥(2, %) — <uf2), ¥%) < — f(2, u(t)},

where f* is the normal convex integrand on T X R conjugate to f. The
convex integrand

g, x7%) = 5, &%) — {uft), x%)
is again normal, and the function
aft) = — f(z, u(1))

is measurable. Therefore K is measurable by Corollary 4.3 (with C(¢) = R®
for every t).

Finally, we apply Theorem 2 to get criteria for the normality of f in terms
of the measurability of f(z, x) in £ and x jointly, (For the terminology, sce
Section 2.)

TueoreM 5. Let f be a convex integrand on T X R™ such that, for each
te T, f(t, &) is a lower semicontinuous function of x which is not identically
~ oo, If f is normal, then f is a measurable function on T < R™. On the other
hand, if f is a measurable function on T' % R" and the measurable space (T, T°)
is complete, then f is normal.

Proof. For cach real number «, let K, : T— R” be the multivalued
mapping defined by
K(t) ={x | f(t, %) < o

The graph of K, is thus the set
G(K,) ={(t,x) e T x R*|f(t. x) <},

and K,(t) is closed for every ¢ € 7' by the lower semicontinuity of f(#, x) in .
If f is normal, every K, is measurable by Corollary 4.3. Then the sets G(K,)
are all measurable in 7' X R" by Theorem 2, implying that f is measurable,
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Suppose now that f is measurable, and that (7, 77) is complete in the sense
of Section 2, The sets G(K) are measurable in 7' x R™, so the multivalued
mappings K, are measurable. The multivalued mappings K : T~ R™1
defined by

KU = (1) | € Koft), p = o

arc then measurable too. For the epigraph mapping K of f defined by (1.5), we
have

K(@#) = ol [J {Ki() | « rational},

so K is measurable. Henee f s normal by criterion (b) of Theorem 4.
In the case where 7" is a Lebesgue (resp. Borel) subset of R™, let us call a
convex integrand f on 7' < R* Lebesgue (resp. Borel) normal if f satisfies the
definition of normality with the functions # € U Lebesgue (resp. Borel)
measurable, Then we have the following analogucs of Corollaries 2.1 and 2.2.

CoroLLARY 5.1.  Suppose that T is a Lebesgue measurable subset of R™,
and let f be a convex integrand on T X R" such that, for every t £ 1, f(7, x)
is a loteer semi-continuous function of x which is not identically +— oo, In order
that f be Lebespue normal, 1t is necessary and sufficient that f be measurable with
respect to the o-ring in T X R™ generated by all the sets of the form A % B such
that A is a Lebesgue measurable subset of T and B is a Borel measurable subset
of R™,

CoroLLaRY 5.2. Suppose that T is a Borel subset of R™, and let f be a
convex integrand on T % R" such that, for every t € T, f(¢, x) is a lower semi-
continuous function of x which is not identically -- o0, If f is Borel normal, then f
is a Borel measurable function on T x R", On the other hand, if f is a Borel
measurable function on T X R, then f is Lebesgue normal.
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