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CONVEX FUNCTIONS, MONOTONE OPERATORS
AND VARIATIONAL INEQUALITIES (%)

R. TYRRELL ROCKAFELLAR, SEATTLE (WASH., USA)

The theory of extended-real-valued convex functions has been
the subject of much development in the last few years; for expo-
sitions of the results, see Moreau [20] (infinite-dimensional case) and
Rockafellar [31] (finite-dimensional case). Our aim here is to explain
some of the connections between this theory and the theory of mo-
notone operators, with special emphasis on applications to extremum
problems and variational inequalities.

The basic connection between the two theories is the fact that
the subdifferential of a proper convex function f is a monotone
operator, indeed often a maximal monotone operator. Subdifferential
mappings Jf are defined in § 1, and a number of useful examples
are given. Among these is the subdifferential of the indicator
6(-| K) of a convex set K. This mapping, which assigns to each
z€ K the normal cone to K at z, is very important in studying
extremum problems.

In § 2 we show that the solutions z to the problem of mini-
mizing a proper convex function f over a non-empty convex set K
usually can be described as the points x such that

0€of(w)+ 06 (x| K).
In general, the condition

0€T (x) + 08 (x| K)
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is known as the wvariational tnequality for T and K. Variational
inequalities do not necessarily arise from true extremum problems,
but, as we explain in § 4, there are cases where a variational ine-
quality for a maximal monotone operator T corresponds to an ex-
tremum problem (to be specific, a minimax problem) even though
T is not the gradient (or generalized gradient) of any function.

A proof is given in § 4 of the fact that §f is a maximal mo-
notone operator when f is a lower semi-continuous proper convex
function (and in particular that 646 (-|K) is a maximal monotone
operator when K is a non-empty closed convex set).

The theory of Lagrange multipliers, developed in § 2, makes
it possible to analyze general variational inequalities by decomposing
06 (x| K), when K is given by some finite or infinite system of
linear or convex inequalities. In § 5, however, we pursue a question
at the opposite extreme from decomposition. When is the monotone
operator

T+ 66(-| K)

again maximal (assuming that 7 is maximal and K is closed), so
that the existence theory for variational inequalities can be reduced
to the fundamental existence theory for solutions x to relations of
the simpler form 0 € S (x), where §is a maximal monotone operator.
Theorems are presented which allow this reduction in most cases
of interest.

In passing from a given variational inequality to the study of
a single maximal monotone operator S, one is led to many questions
about the nature of the effective domain D (S) and range R (S) of
8, as well as conditions for membership in these sets. A number
of results which bear on such questions are discussed in § 6.

1. Subdifferentials of convex functions.

In everything that follows, X denotes a real Banach space,
and X* denotes the dual of X. For z€¢ X and x*€¢ X* we write
(z,z*) instead of z™ (x).

A function f on X with values in B U }+ oo{ (where E denotes
the real line) is said to be conver if

1) S =N+ ly) <A — ) f(@)+ ¥ ) 011,
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for any v € X and y € X. This condition is equivalent to the condi-
tion that the set

(2) epi f=}x, HeEX E R|u=f(x)

which is called the epigraph of f, be a convex subset of the space-
X P R. By a proper convex function on X, we shall mean a con-
vex function with values in R U}+ co! which is not merely the
constant function -+ co.

If f is any proper convex function on X, then the set

(3) dom f=3x€X|f(x) <<+ oof,

called the effective domain of f, is a non-empty convex subset of
X on which f is real-valued. Conversely, if K is a non-empty con-
vex subset of X and f is a real-valued function on K which is
convex (i, e. satisfies (1) when x € K and y € K), then one can obtain
a proper convex function on X by setting f(x) = -+ co for every
x ¢ K.

A very useful example of a proper convex function is the
indicator 6 (-| K) of a non-empty convex set K, which is defined by

(0 it x€eK,
(4) S| )=
| + o0 if z¢K.

Indicator functions play a role in the theory of convex functions
similar to that played by the characteristic functions of sets in
some other areas of mathematies.

Let /' be a proper convex function on X, and let « be a point
of X. An element a* € X* is said to be a subgradient of f at x if

(5) S =fl)+ <y —a,a*), VyelX.

Geometrically, this condition means that the graph of the affine

function
y— /(@) F <y —x 2%

is a supporting hyperplane to the convex set epi /' in X @ R at
the point (x, f(x)). The set of all subgradients a* of f at x is de-
noted by éf(x). The multivalued mapping

of t x—df () c X*
is called the subdifferential of f.
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It is obvious from (5) that 8f (x) is a weak* closed convex set in
X* since the set of all «* € X* satisfying an inequality of the form

(z,2*) << a

is always a weak™* closed convex set. If x ¢ dom f, 9f (x) is trivially
empty. If z€dom f and f is continuous at x, then ¢f(x) is neces-
sarily non-empty and weak* compact [19]. If x € dom f and f is dif-
ferentiable at x in the sense of Géteaux (or Fréchet), then 9f (x)
consists of a unique element of X* namely the gradient of f at wx,
denoted by V f(x).

ExamMpLE 1. Let f be a real-valued convex function on X
which is everywhere Giateaux (or Fréchet) differentiable. Then gf
reduces to the single-valued gradient mapping

Vit X—X*
(For the continuity properties of such mappings, see [3] aud [20]).

EXAMPLE 2. Let j(xz) = (1/2)| « ||>. Then j is a continuous con-
vex function and, for each z€ X, §j(x) is the set of all z* € X* such
that

(6) (w,2*) =2 ||«*| and [a*|=]=].

The multivalued mapping gj is called the extended spherical mapping
from X to X* When X is a Hilbert space, gj reduces to the ca-
nonical isomorphism between X and X*. In general, a mapping of
the form ¢f, where f(x) = @ (||« ||) and @ is a non-negative real-
valued (strictly) increasing strictly convex function on [0, 4 o), is
called a duality mapping from X to X* (see [2]).

ExaMPLE 3. Let K be a non-empty convex set in X. For the
indicator (- | K), #* €89 (x| K) if and only if

) 2€K and {(y—aza*)<0, M yeK,

An z*€ X™* is said to be a normal to K at x if (7) holds. The set
of all normals to K at x is a certain weak* closed convex cone,
non-empty (because it contains the zero element of X*) when z € K,
but empty by definition when x¢ K. The subdifferential mapping
38 (- | K) thus associates with each z the normal cone to K at .
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CXAMPLE 4. As a special case of Example 3, let K be a sub-
space of X. Then

Kt if ze€K,

BEIK) =3~ it o¢K

where Kl is the subspace of X* «orthogonal » to K, i.e.
Ki=\}a*e X*|Cx,2*) =0, frxeK|{

EXAMPLE 5. As another specialization of Example 3, suppose
that K is of the form }x|f(x)<< 0}, where f is a continuous real-
valued convex function on X such that f(x) << 0 for at least one .
In this case, it can be shown that 0 (x| K) is the convex cone in
X* generated by the (weak* compact convex) set §f (x) when f (x)=0,
whereas 66 (x| K)=13}0{ when f(x)<<0 and §d(x|K)=(J when
f(@)> 0. (If f is Gateaux differentiable at x, the convex cone gene-
rated by of (x) reduces to the set of all non-negative scalar multi-
ples of the gradient V f (x)).

ExAMPLE 6. Let K* be any non-empty weak* closed convex
subset of X*, and let f be the support function of K* on X, i.e.

S(x) =sup {z,2*) |x* e K*.

Then f is a lower semi-continuous proper convex function, and
it can be shown that, for each xz€ X, 8f(x) is the subset of K*
consisting of the points (if any) where the linear function (x,-)
attains its maximum. Note as a special case here that, if K* is the
unit ball of X* f is the norm on X.

2. Conditions for a minimum.

If f is a proper convex function on X, then, trivially, the (glo-
bal) minimum of f occurs at the point x if and only if 0€ §f (@).
This condition may be regarded as an analogue of the familiar
condition Ff (x) = 0 for extrema of differentiable functions. To make
non-trivial use of it, however, we need to have some means of
computing subgradients in given cases.
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Consider, for instance, the proper convex function g defined by

fle) if €K,
8 = o] K)=
(8) g@) =f(x)+é(@x|K) Yoo if 20K,

P

where f is a real-valued (continuous) Gateaux differentiable convex
function on X and K is a non-empty convex subset of X. Minimi-
zing g over X is equivalent to minimizing f over K. Thus the
minimum of f over K is attained atthe point x € K if and only if
0 € 69 (x). In order to analyze this condition, one needs to analyze
dg in terms of the subdifferentials of the convex functions f and
(- K), which are known (to some extent at least — see also below)
from Examples 1 and 2 of § 1. The following theorem may be ap-
plied. ’

THEOREM 1. Let f, and f, be proper convex functions on X.
Suppose there exists a point of dom f, Ndom f, at which one of the
two jfunctions, say f,, is continuous. Then, for every x € X,

(9 o (fs + fo) (@) = of | (&) + of; (2)
= la¥ 4 a7 | 7 € 8f, (x), 3 € 3f, (%)}

This result was first proved in the finite-dimensional case in
[22] and later extended to the infinite-dimensional case in [19] and
(23]. For a further extension, see [15].

Proof. If zf € 9f, (x) and ¥ € 3f> (x), we have
H=file) +Cy —a,at), VyeX,
o=/ @+ y—aap), Vyek,

by definition. Adding these inequalities, we obtain

L+ WM=U+f) @ +Cy — a2 + af), Vyek,
or in other words

o 4+ 2 €5 (f, + 1) (@)
This shows that
é (fy + 13 (®) Dofy (x) + af, ().
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These conditions can be expressed, respectively, as
fi@)=f,0)4 (x—0,a"), M x€ X,
fi@)=F(0)+ (2 —0,—2%), Maeek,

or in other words

z* € of, (0), — a* € 3f, (0).
It follows from this that
0 € 3f, (0) 4 a1, (0),

and the proof of Theorem 1 is complete.

To apply Theorem 1, let us return to the example given at the
beginning of this section. There, taking f, =f and f,=4(-|X)
the hypothesis of the theorem is satisfied, so we have

(11) o9 (x) = of (x) + 06 (¢ | K), M x€X.

Also, df (x) reduces to Ff(x) by the differentiability assumption
on f. Thus

0 € dg () <=> — pf(x)€ 36 (x| K),

i. e. f attains its minimum over K at z if and only if (x€ K and)
— Vf (2) is a normal to K at x. More generally, we may state

COROLLARY 1. Let f be a proper convex function on X, and let
K be a convexr subset of X. Suppose there exists a point of K N dom f
which is interior to K, or which 18 a point of continuity of f. Then
f attains its minimum over K at x if and only if (€K and)
there exists an x* € gf (x) such that — x* i a normal to K at x.

Proof. The hypothesis of Theorem 1 is satisfied either for
fi=20(|K) and f,=F, or for f, =f and f, = d(-| K). Hence (11)
holds for g = f -+ 6 (-| K), and the condition 0 € dg (x) for a minimum
of g can be analyzed as we have just done.

Theorem 1 may also be employed to analyze further the con-
dition that a given vector be a normal to K at x.

COROLLARY 2. Let K, and K, be convex subsets of X, and let
K=K, NK,. Suppose there is a point of K which is interior to
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either K, or K,. Then
(12) 00 (x| ) =40 (x| K,) + 66 (x| K,), M .

*

In other words, x* is a normal to I at x if and only if (x€K and)

there exist elements xf and xS of X*, such that x7 is a novmal to I,
at x, xf is a normal to Ny at x, and xf + af = a*.

Proof. Apply Theorem 1 to
O(|K)=06(-|I)+ o(-| Iy).

o

COROLLARY 3. Let f,, ...,/ be continuous reul-valued convex
JSunctions on X, and let

(13) K == 3 | ko) =5 U f == By e, T
Suppose that

(14) 3x such that fi(x) << 0,i=1,..,m.

Then x* is a normal to K at a point & if and only if there exist
real numbers Ay, ..., A, such that

a* €0, of (1) 4 oo + Ao 8fm (),
Li=0, Sile) << 0, Aifi(x)y =0, t=1,..,m.
Proof. We have K = K, N..N K, , where
K=z | filx)<< 04
Moreover, the hypothesis implies that

int K, N...Nint &, 5= ¢¥.

Apply Corollary 2 and the description of 84 (-| A;) given in Example
5 of §1.

To combine some of these results, consider the problem of mi-
nimizing f over the set (13), where f, f,, ..., fi,, are all real-valued
(continuous) Giteaux differentiable functions on X. By Corollary 1
and Corollary 3, the minimum of f over K is attained at z if and
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only if the conditions

(15) VS @ + 4 Vf @) 4 oo+ A Pfon (@) = 0,

(16) =0, filz)<< 0, Aifi()=0, t=1,..,m,

are satisfied for certain real numbers A;. Iere 4; is called the
Lagrange multiplier associated with the constraint f;(z) << 0. Condi-
tions (15) and (16) are called the Kuhn-Tucker conditions ; the above
derivation of them is taken from [23]. Note that (15) implies in
particular that the convex function

S+ 4 i+ A Anfm

attains its (unconstrained) minimum on X at the point 2. -
It may be mentioned in connection with Corollary 3 that a
linear constraint of the from

(z,a*) = a, a* e X*, aER
can always be expressed as a pair of convex inequality constraint

fi@®)<<0 and f,(x) <0,
where
Siw)=Cx,a*)—a, - fi@x)=a— (xa*).

In the presence of such constraints, hypothesis (14) of Corollary 3,
as stated, cannot be satisfied. However, it may be proved that the
conclusion of Corollary 3 is still valid if the condition f;(z) < 0 in
(14) is weakened to f;(x) << 0 for each ¢ such that f; is affine (i.e.
linear-plus-a-constant) — see [23].

An analogue of Corollary 3 may also be proved for systems
of infinitely many constraints.

THEOREM 2. Let I be a compact Hausdorff space, and for each
1€1 let f; be a real-valued (continuous) Qdteaux differentiable conver
Junction on X. Let

K=\lreX|fi(x)<<0, Micll
Suppose that f;(x) is a continuous function of i €1 for each x € X,
and that
(17) Iz, 3¢ >0, piel, fi(x) < —e.
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Then x* is a normal to K at a point x if and only if there exists a
finite Borel measure A on I such that

18) 2t = f Vs (@) i (i)
I

(19) ze K, 1=0, /.f.-(x) da (i) = 0.

I

Here (18) is interpreted to mean that «* is the unique element
of X* such that

(u,w">=f<u,l7f}(x))d)..~(w), Mue X,
I

Of course, (19) says that x satisfies f;(x) << 0 for every i€, and
that 1 is a non-negative measure whose support is contained in the
(closed) set of indices ¢ such that actually fi(x)=0.

ProOF oF THEOREM 2. Suppose that (18) and (19) are satisfied,
and let y be any point of K. Then

02fi (y)2f.(-7v)+<?/——w,l7fa(w)>, ViEI,
go that

@) 0= f £i) dA ) = f @) + ¢y — 2 p f: (@))]dA ()
I I

=<y—w,fo,-(x)dl(i))=(y—w,w").

I

This shows that «* is a normal to K at x.

Conversely, suppose that 2* is a normal to K at x. Then, by
definition, the linear function ¢ .,a*) attains its maximum over
K at .

Let C(I) be the Banach space of all continuous real-valued
functions on I and, for each w€ C(I), let p(u) be the infimum of
— < -, z*) over the set

Ke=}y|fil))<u(@f, Miel
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It is easily verified that the epigraph of p is a convex subset of
C ()& R. Moreover

p(0)=—<(2,2*) > — o0

and by (17) p is bounded above on a certain neighborhood of the origin
It follows from these facts that p is a proper convex function on € (I).
which is continuous on a certain neighborhood of the origin. Hence
8p(0) 3+ . Let u* be an element of the dual space C(I)*.such that
— w* €3 p(0). Of course, »* corresponds by the Riesz representation
theorem to some finite Borel measure 1 on I, and for this 1 we
have
P W) =p0)+ Cu— 0, —u*)

=P(0)—fu(i)d).(i), W ueO(I)
I

In view of the definition of p, the latter condition means that
(21) — (et == oty — [(iw) + 0@ ae
I

for every y € X and every w € C(I) such that
w(i)=0, Miel

This implies in particular that A is a non-negative measure, for
otherwise there would exist a non-negative v € C (I) such that

f v (i) dA (i) < 0,
1

and (21) could be contradicted for any given y by taking w = av
for a sufficiently large constant o >> 0. Setting y =« and w({)=20
in (20), we see that

[f; (z) dA (i) = 0.
1

Since fi(x)<< 0 and 1>=0, however, this integral is also < 0.
Therefore (19) holds. It follows then further from (21) that, for
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every y € X,
(y —a,2*) sff.-m di (i)
I
= /jl- (y) di (1) — [/}(x) da (i).
T T

Setting y = x + wu, where t > 0, we can write this as

(22) Cu, a* ) < [r‘l [fi (@ 4 7w) — fi (x)] dA (i)
1

The difference quotient in the integral in (22) is, by the convexity
of fi, a non-decreasing function of z for each u, and

(23) lim = [ fi (@ + wu) — fi ()] = Cw, V fi(2) ).

T,0

Therefore (23) implies that

(24) Cu, 2*) £f< w, V fi(x) ) dL (1),
I

= u,[Vfi (x) dA (i) ), M oue X,

i

and, since this is equivalent to (18), our proof is finished. (The
measurability of the functions of the form

i— Cu, V fi(x)),
which was used in (20) and (24), follows from (23) and the assumed

continuity of f;(x) in i.)

3. The maximal monotonicity of subdifferentials.

If f be a proper convex function on X. Given &g € 3f (x,) and
xt € of (x;), we have

Fla) = f (@) + (wy — @, 75 ),

f(mo)2f($1)+<'”o — &y, 2% ),
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and adding these inequalities, we obtain

(@, — w28+ (xg — 2,27 ) < 0.
Therefore

(xy — 2, xf — af ) =0 whenever «f €df(x;), i=0,1.

This condition means by definition that the multivalued mapping
of : X— X* is a monotone operator.
More generally, if af € of (x;) for i =0,1, ..., n,

f(a"l) _>_f(w0) + <xl — Xy 7xg )7
S (09) = f (®y) + Covg — 01, 3 ),

S (@) = f (®n—1) + { @0 — Tn—1, ¥n—y ),
S @) = (@n) + L@y — &n , 1),
and consequently
(25) (@ — 2,28+ oo + (g — @p 28 ) << 0.
A multivalued mapping 7: X — X* which satisfies (25) whenever
x¥ € T (x;) for i =0,1,...,n (n arbitrary)

is said to be a cyclically monotone operator. Thus 9f: ¥ — X* is a
cyclically monotone operator.

The importance of cyclic monotonicity is apparent from the
following result.

THEOREM 3 [25]. Let T:X — X* be a multivalued mapping. In
order that there exist a proper convex function f on X such that

(26) T (x) C 6f (), \f z€ X,

it 18 necessary and sufficient that T be a cyclically monotone operator.
(The function f in (26) can, without loss of generality be taken to be
lower semi-continuous).

The proof of Theorem 3 will not be repeated here. We shall,
be concerned instead with the question of the maximality of a sub-
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differential 4f. By definition, f is a maxrimal monotone operator (resp.
maximal cyclically monotone operator) if there does not exist a mo-
notone (resp. cyclically monotone) operator 7' whose graph

G(T) =}z, a*) € X < X*|a* € T ()} .
properly includes the graph of gf.

THEOREM 4. If f is a lower semi-continuous proper convex function,
on X, then of: X — X* is a maximal monotone operator.

This result was stated as Theorem 4 of [25]. However H. Brézis
has brought to our attention the fact that an oversight occurs in
the proof given in [25]. (The penultimate sentence of the proof
ignores the fact that z* depends on ¢ as well as on «x, so that || z*|
might conceivably increase without bound as s decreases to 0).
Fortunately it is possible to give alternative proofs of Theorem 4
which avoid this difficulty. One of these proofs will be published
in [30]. A somewhat different proof will be sketched here.

PROOF oF THEOREM 4. We already know that §f is a mono-
tone operator. Thus, given u and »* such that »*¢ 5f(u), we must
show that there exist  and «* such that z* € 5/ (x) and

(x —u, 2" —u*) <O0.
Replacing f by the lower semi-continuous proper convex function

g@=f(x+u)— <z, u*)

if necessary, we can reduce the argument to the case where u =0
and «*=0. We assume therefore that 0¢ gf(0), and we argue
towards the conclusion that there exist x and 2* such that a* € gf (x)
and {z,z*) <.

It is instructive to consider first the case where X is reflexive,
since the argument there is much simpler. Let j(x) = (1/2) ||z ||*
Then f -} j is a lower semi-continuous proper convex function on X.
It is not a difficult exercise to show that all the (convex) level sets
of the form

WEX|(f+i@=<eal, atR,

are bounded in X, and consequently by the lower semi-continuity
of f4j and the fact that X is reflexive) weakly compaoct. This



50 R. TYRRELL ROCKAFELLAR

implies that f 4 j attains its minimum over X at a certain x. We
then have 0¢€ 6 (f+ j)(x), so that by Theorem 1

0 € of (x) + 9j (x),

i. e. there exists an ™€ gf () such that — 2*€gj(r). In view of
the nature of gj(x), as described in Example 2 of §1, the latter
means that

(27) —ALza*) =|laf-[la*], [*]=][2]

If £ =0, we would have a* =0 by (27), contrary to 0¢ 3/ (0).
Therefore ’

— A, a*) =|x [P>0 .

by (27), and we are done.

To prove Theorem 4 in the case where X is not reflexive, we
make use of weak® compactness in X* by applying the argument
just given to the conjugate function f* defined by

J*(@*) = sup Ku, 2*) — f(x) | x € X

This is a proper convex function on X* which is actunally lower
semi-continuous in the weak® topology (see [20]). Thus there exist
a* € X* and #** € X* such that

(28) Z*™ € 9f* (#*) and (4™, z*) < 0,

The proof is completed by invoking the following general fact,
whose proof (not elementary) is detailed in [30]: if #** €9 f* (a*),
there exists a bounded net (x;|i€I) in X converging to ™" in the
weak™ topology of X** as well as a net (f |i€I) (with the same
partially ordered index set I) converging to z* in the strong topo-
logy of X*, such that «¥ € of (x;) for every ¢ € I. (Here X is identi-
fied in the canonical way with a subspace of X** which is dense
in the weak* topology, i.e. the weak topology induced on X** by
X*). For such nets we have

at € 9f (x) and (ax;,2f> << 0

for some @ by (28), as desired.
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Any maximal monotone operator which is cyclically monotone
ig, of course, in particular a maximal cyclically monotone operator.
On the other hand, any cyclically monotone operator can be im-
bedded in a maximal cyclically monotone operator by Zorn’s lemma.
Thus from Theorem 3 and Theorem 4 we have :

THEOREM 3’. Let T: X-— X* be a multivalued mapping. In
order that therve exist a lower semi-continuous proper convex junction
JFon X such that T = of, it is necessary and sufficient that T be a
maximal cyclically monotone operator.

It can be shown, incidentally, that the f in Theorem 3’ is de.
termined by 7 uniquely up to an additive constant; see |30].

From Theorem 4 and Theorem 3’, we may conclude that the
multivalued mappings deseribed in the six examples at the end of
§ 1 are maximal monotone operators and at the same time maximal
cyclically monotone operators, provided that K is closed in Example
3 and Example 4.

4. Monotone operators associated with minimax problems.

If a monotone operator 7: X — X* happens to be the (single-
valued) gradient operator [/ for some real-valued Gateanx differen-
tiable function f on ., this f must be convex. Indeed, the mono-
tonieity inequality

Coey — xy, Vf(2) — Fflag)) =0
implies that

Cey — oy, Vf(20)) << Kmy — o0, Vf(2)))
for every », and x,, and hence that
Cu, P e + 71y 0)) << Cuy V(e + 7 u))

whenever x€.X, u€ X, 7, < 17,. In other words, for any x and »
the function

g(t)=f(r+ ), € R,

has a non-decreasing derivative

9 @) =, Vf (x4 ),
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implying that ¢ is a convex function on R. The restriction of f to
each line in X being convex, f is itself convex.

Theorem 3 may therefore be interpreted as saying that a meno-
tone operator is a « generalized gradient operator » if and only if
it is actually ecyclically monotone. Cyclic monotonicity is thus an
analogue of the classical condition that a continuously differentiable
mapping T: R™ — R™ is the gradient of some function if and only
if its Jacobian matrix of first derivatives is symmetric at each
point. -

In the case where 7: X — X* is a monotone operator of the
form o&f, the relation 0 € 7T (x), which is a primary object of study
in the theory of monotone operators, reduces to 0 € 4f (x) and thus
describes the solutions x to a certain variational problem, namely
that of minimizing the proper convex function f over X. One
might get the impression from the facts described above, however,
that, when T is not of the form gf, the points x such that 0¢€ T (x)
do not correspond suitably to any extremum and therefore cannot
be characterized in terms of any variational prineciple. Our purpose
here is to point out that this is not necessarily true. There exist
maximal monotone operators 7, which are not the subdifferentials
of convex functions, and yet for which the points x satisfying
0¢ T (x) are, in a natural way, the solutions to certain variational
problems.

The variational problems in question are minimax problems.
Suppose that the Banach space X is of the form Y & Z, where Y
and Z are Banach spaces with duals Y* and Z*, respectively. (Then
X™* can be identified with Y* & Z*, so that

Cay a*) =y, y*d + (2, %)

for x=/{y, 2} and z* = (y*, 2*)). Let L (y,2) be a real-valued function
of y¢ Y and z€Z. A point x = (y, 2) is said to be a saddle-point
of L (with respect to maximizing over Y and minimizing over Z)
if the maximum of L (-,2) over Y is achieved at y, and at the
same time the minimum of L (y, -) over Z is achieved at 2. It can
be demonstrated that in this event

L (y, 2) = sup inf L (u, v) = inf sup L (u, v).
ue¥ veZ veZ ue¥

This extremum (when it exists unambiguounsly) is called the mini-
max of L. Saddle-points (if they exist) are regarded as the points
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where the minimax of L is attained, i.e. the solutions to the mi-
nimax problem for L.

If L is Gateaux differentiable in y and 2, the saddle points of
L can be characterized in terms of gradients. Let V L (y, 2) € Y*
denote the gradient of L (-,2) at y as a function on Y, and Tet
V,L (y, z) € Z* denote the gradient of L (y,-) at z as a function on
Z. A necessary condition for & = (y, 2z) to be a saddle-point is that

(29) V.L(y,2) =0 and V,L(y,2) =0, =

or in other words, in terms of the gradient

VL (y, 2) = (ViL (y, 2), VoL (y, 2)) € X*,
simply
VL (y, 2) = 0. -
If L(y, 2) is convex as a function of z for each y and concave as
a function of y for each z (i.e. — L (y, 2) is convex as a fumction
of y for each z), these conditions are not only necessary but suf-
ficient.
Of course L itself is not a convex function on X in the latter
case, 80 "L: X — X™* is not a monotone operator.
But consider the mapping 7: X — X* defined by

(30) T(x) = (— V1L (y, 2), VzL (y, 2)), ®©={(y,2).
The saddle-point condition (29) can just as well be written as

T(x)=0.

It turns out that (when L is concave-convex as described above) T
is a maximal monotone operator. The proof of this is given in [27],
where it is also shown how to generalize the result to concave-convex
functions L which are not differentiable, and which may even have
the values 4 co and — co. Here we shall content ourselves merely
with showing why 7T is monotone.

The monotonicity of a single-valued mapping 7 means that

(w, —xy, T(x)) — T () ) =0, ¥ &y, 2.
Thus, for the T defined by (30), monotonicity means that

(31) Yy — Yo, — Vi Ly, 2)+V,y Ly, %))
+ 2y — 2y, Vo Ly, 2) —V,y L(yy,20)) =0
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for all y,,y,,2,.2,. To prove (31), we need only observe that the
inequalities

L(yyy2) = L (yg,20) + 2y — 25 Vy L (g, %),
Ly, 29 = Liy,2)+ 2 —2, Vo L{y;,2)), °

hold by the convexity of the functions L (y,,-) and L(y,,./) on Z,
whereas the inequalities

— L(yy,20) =— Ly, 2) + (¥, '—.’/oa—ViL(ymz;))’
_L(yoyz1)2‘—L(yuz1)+<yo—?/19—ViL(.’/uzi)>’

hold by the convexity of the functions — L{(.,2,) and — L(.,z,)
on Y. Adding these four inequalities, we get (31).

Minimax problems may also be considered in which the éxtremum
is taken over a certain subset of X = Y @ Z, rather than over the
whole space. Let C and D be non-empty subsets of Y and Z respec-
tively, and let

E=C®D=={y2|ye 0 zc D

A point « = (y,2) is said to be a saddle-point of L relative to K if
the maximum of L (-, ?) over C is achieved at y, while the minimum
of L(y,-) over D is achieved at z. Suppose that € and D are convex,
and that L is concave-convex and differentiable as above. The con-
ditions for a maximum or minimum can then be analyzed in terms
of subgradients as in § 2. One sees in this way that ® = (y,2) is a
saddle-point of L relative to K if and only if V', L(y, 2) is a normal
to C at y and — V, L(y,2) is a normal to D at 2. Obviously an
element x* = (y*, 2*) is normal to K at x ==(y,2) if and only if y*
is normal to C at y and 2* is normal to D at 2. It follows that
x = (y,2) is a saddle-point of L relative to K if and only if — T (x)
is a normal to K at xz, where T is given by (30). Put another way :
the saddle points of L relative to K are the points x satisfying

0€ T (x)+ 86 (x| K).

5. Variational inequalities and sums of monotone operators.

If T, and T, are monotone operators from X to X*, the sum
T,+ T, is defined by

(Ty 4 Ty) (@) = T, (x) + T, ()
= oy + aF | xf € T, (%), o € T, (w){.
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It is easy to see that 7, 4 7, is again a monotone operator.
Namely, if

a* (T, + T, (x) and yre(T, 4 Ty) (y),

there exist elements

&y € Ty (), 2 € Ty (), ¥t € T1 (), y* € Ty (y),
such that
af + 2 =a* and yr4-yr=y"
We then have

(x—y,0* —y*) =(r—y,af —yl)+<(z—y, 2] —yl) =0
by the monotonicity of 7, and T,. Of course
(32) D(T, + T,) = D(T,) N D(T,),

where, for a multivalued mapping 7: X -— X* D(7) denotes the
set of all « such that 7'(x) =} (.

A deeper question is this: if 7, and 7, are maximal monotone
operators, is 7, 4+ T, again a maximal monotone operator ? The an-
swer in general has to be no since, for example, if D (7,) does not
meet D (7,), the graph of T, 4 T, is empty and hence certainly not
maximal. At the very least, some kind of condition about the way
D(T,) and D (T,) overlap is needed, if maximality is to be preserved
when 7, + T, is formed.

The preservation of maximality under addition is of interest in
the study of variational inequalities, among other things. Let
T:X-— X* be a monotone operator, and let K C X be a non-empty
convex set. The condition

(33) 2*€ T (x) and — 2* is a normal to K at x

is called the variational inequality for T and K, since, in the case
where 7' is single-valued, (33) can be written as

(34) €K and (y — 2, T (2)) =0, ¥ y€ K.
Variational inequalities have been investigated by Browder, Lions,

Hartmann and Stampacchia because of important applications to
problems ot partial differential equations (see [12] for some examples).
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However, variational inequalities for operators of the form 7 = gf
were studied earlier in [22] in the spirit of § 2; see also [23].

When 7 = gf, the variational inequality for 7 and K is the
condition for a minimum of f relative to K (Corollary 1 of Theorem 1).
In certain other cases, as seen at the end of §4, a variational ine-
quality can be the condition for a saddle-point of a concave-convex
function L relative to K, even though T is not actually the gradient
of L.

The variational inequality for 7 and K can also be written
equivalently as the condition that

(35) 0€S@), S= T+ 86 (-|K)

If K is closed, the indicator é (.| K) of K is a lower semicontinuous
proper convex function on X, and consequently. by Theorem 4 the
multivalued mapping 66 (-| K) is a maximal monotone operator from
X to X* If the monotone operator 7 is likewise maximal, one may
hope that the sum § too will be maximal. If it is, then the study
of the variational inequality for 7 and K is reduced to the more
fundamental study of the condition 0 € §(x) for a maximal monotone
operator 8.

The main advantage of the reduction just described, when it is
possible, is that it leads to a unified theory of existence of solutions.
As far as characterization of solutions and regularity of solutions are
concerned, one is interested, not so much in lumping 7 and 64 (-| K)
together, as in decomposing dd(-| K) farther in the manner of
Theorem 2 or Corollaries 2 and 3 of Theorem 1.

Observe incidentally that, even if 7 is single-valued and every-
where defined on X, and K (== X) has a very regular boundary, the
monotone operator § in (35) will be multivalued, and D (§) will be
a proper subset of X. This is one of the principle motivations for
developing the theory of multivalued maximal monotone operators.

In order to see what theorems might be possible concerning
the maximality of a sum of monotone operators, it is helpful first
to investigate the case where the operators are the subdifferentials
of convex functions, since knowledge and intuition are so much
greater there. (This is a good heuristic method to keep in mind).

Some remarks about the relationship between dom fand I)Xéf), for
a lower semi-continuous proper convex function f on X, are necessary
at the outset. As mentioned in §1, §f(¢) = () when x € dom f and
f i8 continuous at z. It turns out that lower semi-continuity of f
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implies that f is continuous at every interior point of dom f [24].
Furthermore, it has been established in [4] that, even if the interior
of the convex set dom f is empty, D (df) is dense in dom f. Thus
in general

(36) int (dom f)c D (6f )< dom f c ¢l D (af).

Suppose now that f, and f, are lower semi-continuous proper
convex functions on X. The hypothesis of Theorem 1 can then be
translated into a condition on D (df,) and D (df,). The points x € dom Ji
at which f, is continuous are simply the interior points of dom f,,
and we have

int (dom f,) = int D (df,)

by (36). Moreover, the latter set meets dom f, if and only if it meets
D (3f5), because D (gf,) is dense in dom f,. In view of Theorem 3’
and the fact that f, -+ f, is another lower semi-continuous convex
function, we may draw the following conclusion from Theorem 1.

THEOREM 5. If T, and T, are maximal cyclically monotone ope-
rators from X to X* such that

D(T)nint D(T) + ),
then T, + T, is again a maximal monotone operator.

This result leads one to conjecture that a similar theorem might
be true for arbitrary maximal monotone operators. The conjecture
turns out to be true, at least in the reflexive case:

THEOREM 5'. If T, and T, are maximal monotone operators
Jrom X to X* such that

D (Ty) Nint D (T,) == ¢,

and if X is reflexive, then T, 4+ T, is again a maximal monotone
operator.

COROLLARY. Let T: X — X* be a maximal monotone operator,
and let K C X be a non-empty closed convexr set. Suppose that X 1i8
reflexive, and that

(37) D(T)Nint K == @ or KNint D(T) Q)
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Then the monotone operator

S8=T+ 86(-|K)
18 maximal.

Theorem 5, whose proof is given in [29], is a substantial gene-
ralization of earlier results of Lescarret and Browder; see [10] for
a discussion of the literature on the subject. For more details on
the applications of the corollary to the existence theory for varia-
tional inequalities, see [29]. "

The preceding corollary covers many important cases of varia-
tional inequalities, but there are certain cases studied by Browder and
Stampacchia in which (37) does not necessarily hold. For these,
one needs a special maximality result, whose proof is easy enough
to be stated here in its entirety. v

THEOREM 6 [29). Let K C X be a non-empty closed convex set,
and let T: X — X* be a monotone operator (not necessarily maximal)
such that D(T)> K and T tis single-valued and hemi-continuous on K
(. e. continuous from line segments in K to the weak™ topology
of X*). Then

§ =T+ 38(-| K)
i8 a maximal monotone operator.
Proof. Let y€ X and y*€ X* be such that
(38) (y — 2, y* — a*) =0 whenever 2*€ 8 (x).

We must show that y*€ S(y). In view of the definition of 8, (38)
means that

(39) 0<<(y—ua,y" — T(x))—C(y—ux,u*) whenever u*€d(x|K).
Now 66 (x| K) is a convex cone, so if (39) holds for  and a given
u* it must also hold for Au* in place of u* for any 1 = 0. Therefore
(39) implies that

(40) (u —a u*)<<0<<(y—ux,y*— T(xr))> whenever u*€ 3d (x| K).

The left side of (40) can be written as

(y—a,0 —u*)=>0.
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Since this holds for every x and u* such that w*€gd(x|K), and
since 94 (-| K) is a maximal monotone operator by Theorem 4, we -
must have

0€pd(y|K), i.e. yeK.

Consider next the right side of (40), which holds for every z¢€ K.
Fix any x€¢ K, and let

n=(1—Ny+Axe K, 0<1<1.
We have
0<(y—a, " —T@)) =iy — =z, 9" — T(x;))

by (40). Dividing through by i1 and taking the limit as 1 goes to 0,
which is possible by the hemicontinuity of T, we get

0<(y—=,9y"—T(y).

This has been verified for arbitrary z€ K, and we may therefore
conclude that 7' (y) — y* is normal to K at y. Thus

vy ET (y)+ 80 (y | K),
and we are through.

6. Domains and ranges of maximal monotone operators.

We have seen above that, in most cases of interest, the solu-
tions to a variational inequality can be described as the points
x € X such that 0 € S (x), where S is a certain maximal monotone
operator. When does such a point x exist?

In general, given a maximal monotone operator 7: X — X*,
we may ask : for which choices of x* € X* does there exist an r€ X
such that «*€¢ T (#)¥ By definition, to answer this question, we have
to explore various properties of the range of T, i.e. the

R(T)=U|\T(x)| z€ X}{.
Among the things we would like to know are: what conditions on

T ensure that 0 € R(T), or that R(7T)=X*? We might also be
interested in whether a given point belongs to int R (7'), or whe-
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ther R (T) is dense in X* in some topology. We are led thus to a
broad investigation of the geometric nature of R (7).

The investigation of the geometric nature of the effective do-
main D (T) of a maximal monotone operator 7: X — X* is likewise
worth undertaking, for example in connection with the domain
condition in the hypothesis of Theorem 5’.

It is useful to observe that the theory of ranges and the theory
of domains are equivalent in the reflexive case. If X is reflexive
and 7 is a maximal monotone operator from X to X* <then the
operator 7! defined by

T (2" = & | 2" € T (2)}
is obviously a maximal monotone operator from X* to X = X"**
Furthermore, v

D(T-Y)= R(T) and R(T-") = D(T).

Some known facts about D (7') and R (T) will now be mentio-
ned without proof. We begin with recent results about convexity
properties.

THEOREM 7 [26]. Let T: X -»> X* be a maximal monotone ope-
rator. If X is reflexive, then ¢l D(T) and cl R(T) are convex sets.

Here ¢l denotes closure with respect to the norm topology.

Suppose, for the sake of illustration, that T is a single-valued
hemicontinuons monotone operator with D (T)= X. Then 7T is
maximal, as has been proved by Browder [6] (the maximality also
follows from Theorem 6 above with K = X). Then ¢l R(T) is convex
by Theorem 7. Thus, either there exist elements z*€ X* of arbitra-
rily small norm for which the equation 7 (x) = z* has a solution z,
or 0 can be strictly separated from R (T) by some closed hyper-
plane, i.e. there exists a y*€ X* and an ¢ > 0 such that

(T(@), y*)<<—¢ MaeX.

Theorem 7 can be improved in the case where X satisfies the
following condition : there exists an equivalent norm on X which
is Fréchet differentiable except at the origin and whose polar norm
on X* is Fréchet differentiable at the origin. It is well known
that this condition implies X is reflexive. The Banach spaces satis-
fying this condition will be called strongly reflexive.
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The class of strongly reflexive spaces obviously includes all
L? spaces for 1 < p < oo, in particular all Hilbert spaces. It also
includes all separable reflexive Banach spaces; this has been shown
by Asplund [1] by means of a theorem of Kadec. 3

(We would like to point out that the condition above is satis-
fied for every reflexive Banach space, if Fréchet differentiability is -
weakened to Gateaux differentiability ; see [1]. Equivalently, any
reflexive Banach space X can be renormed in such a way that the
upit balls of X and X™* are strictly convex. This fact enters into
the proof of Theorem 7).

THEOREM 7’ [26]. Let T: X — X* be a maximal monotone ope-
rator. If X is strongly reflexive, then D (T) and R (T) are virtually
conver sets.

A set C is by definition virtually convex if, given any relatively
(strongly) compact subset A of the convex hullof C (for example, 4
could be taken to be the convex hull of any finite subset of (),
and given any ¢ > 0, there exists a (strongly) continuous mapping
p: A — C such that

lp () —u| <e M ue A.

For example, let X be a separable reflexive Banach space,
let K* be a non-empty closed (but not necessarily bounded) subset
of X* and let C be the set of all x € X such that the linear func-
tion (z, -) is bounded above on K* and attains its maximum.
Then C is virtually convex, because C = D (§f) for the f given by
Example 6 of § 1, and 4f is a maximal monotone operator by Theo-
rem 4.

As a more special case, to get some intuitive idea of what
a virtually convex set may be like, let X = L? (@), where G is a
bounded region of R*, and let K* be the set of all non-negative
functions in X* = L? (@) whose integral is 1 (density functions
for probability distributions). Then C consists of all the flat-topped
functions in L? (@), i.e. functions which attain their essential su-
premum on a set of positive measure. This C is therefore virtually
convex, but it is clearly not convex, since the «average» of two
flat-topped functions need not be flat-topped.

Here is another convexity result which does not depend on
reflexivity.

THEOREM 8 [28]. Let T: X — X* be a maximal monotone ope-
rator. If the convex hull of D (T) has a non-empty interior, then
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int D(T) is a non-empty open convex set whose closure contains all
of D(T).

COROLLARY 1. Let T: X — X* be a maximal monotone opera-
tor. If X is reflexive and the convexr hull of R(T) has a non-empty
interior, then int R (T) is a non empty open convex set whose closure
contains all of R(T).

Theorem 8 is closely related to results about local boundedness,
T being locally bounded at a point x if there exists a neighborhood
of & such that

T(U)=U}T ()| ue U}

is a bounded subset of X* It is proved in [28] that, if X is refle-
xive, a maximal monotone operator 7': X — X* is locally bounded
at a given point x if and only if # is not a boundary point of
D (T). This fact, in conjunction with Corollary 1, yields

COROLLARY 2 [28]. Let T: X — X* be a maximal monotone
operator. Suppose that X is reflexive. In order that R(T)= X*, it
is necessary and sufficient that, whenever x, , Z, , ... , i8 an unbounded
sequence in D (T) and x € T (x;) for every i, then the sequence x¥f, z3, ...,
has no strongly convergent subsequence.

In the finite-dimensional case, the necessary and sufficient
condition in Corollary 2 is equivalent to a sufficient condition pre-
viously established by Browder [6]: whenever z,, z,,.., is an un-
bounded sequence in D (7) and z¥ € T (x;) for every i, then the
sequence z{, a3, ... , is unbounded.

Another condition for R (T) to be all of X* can be stated in
terms of coercivity. A multivalued mapping 7: X — X* is said
to be coercive if

lim infl {2, a") |2 € T (@), || o]| = af = + oo.

a—+-4oo0 V\
(Here we use the convention that the infimum of the empty
get is + oo .)

THEOREM 9. Let: X — X* be a maximal monotone operator.
Iy X is reflexive and T is coercive, then R (T) = X*.
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This result was originally developed independently by Minty
[18] and Browder [5] in the case of single-valued 7 with D (T)= X,
and after various improvements it was extended by Browder [10]
to the case of general multivalued 7 with 0 € D (7) and X and X*
strictly convex. The minor step of removing the latter restrictions
was carried out in [29]

Finally we state a condition for simple membership in E (7).
Of course, a given z* belongs to R (T) if and only if 0 belongs to
R (T’), where -

T () = T (x) — a*, M e X

If T is maximal monotone, then 8o is 7'’. Thus it suffices to con-
sider conditions granteeing that 0 belongs to R (T').

THEOREM 10. Let T: X — X* be a maximal monotone operator.
Suppose that X is reflexive. If there exists some a€ D(T) and o >0
such that

(& —a, 2*) =0 whenever a* € T (z), |2 || = a,

then 0 € R (T').

Theorem 10 is an easy extension of some results of Browder
[6,10], a proof is given in |29]. Theorem 9 is an immediate corol-
lary of Theorem 10.

Existence theorems for variational inequalities can be deduced
from Theorems 9 and 10 as a simple exercise using the results of
§ 5; see [29].
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