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ON THE MAXIMAL MONOTONICITY OF
SUBDIFFERENTIAL MAPPINGS

R. T. ROCKAFELLAR

The subdifferential of a lower semicontinuous proper con-
vex function on a Banach space is a maximal monotone opera-
tor, as well as a maximal cyclically monotone operator. This
result was announced by the author in a previous paper, but
the argument given there was incomplete; the result is proved
here by a different method, which is simpler in the case of
reflexive Banach spaces. At the same time, a new fact is
established about the relationship between the subdifferential
of a convex function and the subdifferential of its conjugate
in the nonreflexive case.

Let E be a real Banach space with dual E*. A proper convex
function on E is a function f from E to (- 00, + 00 J, not identically
+ (0, such that

f«l - J\,)x+ J\,y) ~ (1 - J\,)f(x) + J\,f(y)

whenever x E E, y E E and 0 < J\, < 1. The subdiffereniiai of such a
function f is the (generally multivalued) mapping of: E -> E* defined
by

of (x) = {x* E E* I f(y) ~ f(x) + <y - x, x*>, Vy E E} ,

where <., .> denotes the canonical pairing between E and E*.
A multivalued mapping T: E -> E* is said to be a monotone oper-

ator if

It is said to be a cyclically monotone operator if

<xo - XI1 x~> + ... + <X"_l - x,,, x:_1> + <x" - xo, x;;> ~ 0
whenever xl E T(xi), i = 0, ... , n .

It is called a maximal monotone operator (resp. maximal cyclically
monotone operator) if, in addition, its graph

G(T) = {(x, x*) I x* E T(x)} c E x E*

is not properly contained in the graph of any other monotone (resp.
cyclically monotone) operator T': E -> E*.

This note is concerned with proving the following theorems.
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THEOREM A. If f is a lower semicontinuous proper convex fU1W-
tion on E, then of is a maximal monotone operator from E to E*.

THEOREM B. Let T: E -+ E* be a multivalued mapping. In
order that there exist a lower semicontinuous proper convex function
f on E such that T = of, it is neceeearu and sufficient that T be a
maximal cyclically monotone operator. Moreover, in this case T
determines f uniquely up to an additive constant.

These theorems have previously been stated by us m [4] as
Theorem 4 and Theorem 3, respectively. However, a gap occurs in
the proofs in [4J, as has kindly been brought to our attention recently
by H. Brezis. (It is not clear whether formula (4.7) in the proof of
Theorem 3 of [4 J will hold for s sufficiently small, because xl depends
on e and could conceivably increase unboundedly in norm as s de-
creases to O. The same oversight appears in the penultimate sentence
of the proof of Theorem 4 of [4]). In view of this oversight, the
proofs in [4] are incomplete; further arguments must be given before
the maximality in Theorem A, the maximality in the necessary con-
dition in Theorem B, and the uniqueness in Theorem B can be regarded
as established. Such arguments will be given here.

2. Preliminary result. Let f be a lower semi continuous proper
convex function on E. (For proper convex functions, lower semiconti-
nuity in the strong topology of E is the same as lower semicontinuity
in the weak topology.) The conjugate of f is the function f* on E*
defined by

(2.1) f*(x*) = sup {<x, x*> - f(x) I x E E} .

It is known that f* is a weak* lower semicontinuous (and hence
strongly lower semicontinuous) proper convex function on E*, and that

(2.2) f(x) + f*(x*) - <x, x*> ~ 0, Vx E E, Vx* E E* ,
with equality if and only if x* E af(x)

(see Moreau [3, § 6]). The subdifferential af*, which is a multi valued
mapping from E* to the bidual E**, can be compared with the sub-
differential of from E to E*. when E is regarded in the canonical way
as a weak** dense subspace of E** (the weak** topology being the
weak topology induced on E** by E*). Facts about the relationship
between af* and of will be used below in proving Theorems A and B.

In terms of the conjugate f** of f*. which is the weak** lower
semi continuous proper convex function on E** defined by



ON THE :\IAXIMAL MONOTONICITY OF SUBDIFFERENTIAL MAPPINGS 211

(2.3) f**(x**) = sup {<x**, x*) - f*(x*) I x* EE*} ,

we have, as in (2.2),

(2.4) f**(x**) + f*(x*) - <x**, x*);;;;; 0, Vx** EE**, Vx* EE* ,
with equality if and only if x** E of*(x*) .

Moreover, the restriction of f** to E is f(see [3, § 6]). Thus, if E
is reflexive, we can identify f** with f, and it follows from (2.2) and
(2.4) that of* is just the "inverse" of of, in other words one has
x E of*(x*) if and only if x* E of (z), If E is not reflexive, the relation-
ship between of* and of is more complicated, but of* and of still
completely determine each other, according to the following result.

PROPOSITION 1. Let f be a lower semicontinuous proper convex
function on E, and let x* EE* and x** EE**. Then x** E of*(x*)
if and only if there exists a net {xl liE I} in E* converging to x*
in the strong topology and a bounded net {Xi liE I} in E (with the
same partially ordered index set 1) converging to x** in the weak**
topology, such that xl E of (Xi) for every i E I.

Proof. The sufficiency of the condition is easy to prove. Given
nets as described, we have

f(xi) + f*(x7) = <Xi' xl), Vi E I

by (2.2), where f(xi) = f**(xi). Then by the lower semicontinuity of
f* and f** we have

f**(x**) + f*(x*) ~ lim inf {f**(xi) + f*(xt)}

1· < r> < ** *)= 1m Xi' Xi = X , X •

{The last equality makes use of the boundedness of the norms II Xi II,
iEI.) Thus x** E of*(x*) by (2.4).

To prove the necessity of the condition, we demonstrate first that,
given any x** EE**, there exists a bounded net {y. liE I} in E such
that y. converges to x** in the weak** topology and

(2.5) limf(Yi) = f**(x**) •

Consider f + h", where a is a positive real number and h.; is the lower
semicontinuous proper convex function on E defined by

(2.6) h,,(x) = 0 if II X II ~ a, h,,(x) = + co if II x II > a .

Assuming that a is sufficiently large, there exist points x at which
f and b; are both finite and b; is continuous (i.e., points x such that
f(x) < + So') and :I x ;I < a). Then, by the formulas for conjugates of
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sums of convex functions (see Moreau [3, pp. 38, 56, 57] or Rockafellar
[5, Th. 3]), we have (f + ha)* = f* 0 h~ (infimal convolution), and
consequently

(2.7) (f + ha)** = (f* 0 h;)* = f** + h:* .

Moreover h:(x*) = a II x* II for ever x* E E*, so that

h:*(x**) = sup {<x**, x*> - a II x* III x* E E*}

if II x** II ;£ a ,
if II x** II > a .

Hence by (2.7), given any x** E E**, we have

(2.8) f**(x**) = (f + ha)**(x**)

for sufficiently large a > O. On the other hand, it is known that, for
any lower semi continuous proper convex function g on E, g** is the
greatest weak** lower semicontinuous function on E** majorized by
g on E (see [3, § 6]), so that

(2.9) g**(x**) = lim inf g(y) ,
1/-:t: ••

where the "lim inf" is taken over all nets in E converging to x** in
the weak** topology. Taking g = f + ha, we see from (2.8) and (2.9}
that

f**(x**) = lim inf [f(y) + ha(Y)] ,
1/---0 x"'·

implying that (2.5) holds as desired for some net {Yi liE I} in E such
that u, converges to x** in the weak** topology and II Yi II ;£ a for
every i E I.

Now, given any x* E E* and x** E Jf*(x*), let {y il i E I} be a
bounded net in E such that Yi converges to x** in the weak** topology
and (2.5) holds. Define Ci ~ 0 by

c~= f(Yi) + f*(x*) - <Y;, x*> •

Note that lim e, = 0 by (2.5) and (2.4). According to a lemma of
Brendsted and Rockafellar [1, p. 608], there exist for each i E I an
Xi E E and an xI E E* such that

xI E Jf(xi), II Xi - Yi II ;£ Ci' II xI - x* II ;£ Ci •

The latter two conditions imply that the net {xI liE I} converges to
x* in the strong topology of E*, while the net {Xi liE I} is bounded
and converges to x** in the weak** topology of E**. This completes
the proof of Proposition 1.
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3. Proofs of T'beorerns A and B. In the sequel, f denotes a
lower semicontinuous proper convex function on E, and} denotes the
continuous convex function E defined by }(x) = (1/2)11x W. We shall
make use of the fact that, for each x E E, of (x) is by definition a
certain (possibly empty, possibly unbounded) weak" closed convex sub-
set of E*, whereas oj(x) is (by the finiteness and continuity of j, see
l3, p. 60]) a certain nonempty weak" compact convex subset of E*.
Furthermore

(3.1) o(f + j) = of (z) + o}(x), "1;1; E E

(see [3, p. 62] or [5, Th. 3]). The conjugate of j is given by j*(;l;*) =
(1/2) I' x* ii2, and since

(f + J")*(,I;*) = (f* 0 J'*)(x*) = min {f*(y*) + j*(x* - y*)}
Y"e E*

([3, § 9] or [5, Th. 3]) the conjugate function (f + iv: is finite and
continuous throughout E*.

Proof of Theorem A. Theorem A has already been established by
Minty [2) in the case of convex functions which, like i, are every-
where finite and continuous. Applying Minty's result to the function
(f + j)*, we may conclude that a(f + })* is a maximal monotone op-
erator from E* to E**. We shall show this implies that of is a
maximal monotone operator from E to E*.

Let T be a monotone operator from E to E* such that the graph
of T includes the graph of af, i.e.,

(3.2) T(x) :=J of (x) , v« E E .

We must show that equality necessarily holds III (3.2).
The mapping T + aj defined by

(T + OJ)(x) = T(x) + oj(x)

= {x: + xi 1 x: E T(x), x,* E aj(;<;)}

is a monotone operator from E to E*, since T and oj are, and by (3.1)
and (3.2) we have

(3.3) (T + oj)(x):=J o(f + })(x), "Ix E E .

Let S be the multivalued mapping from E* to E** defined as follows:
x** E S(x*) if and only if there exists a net {xi! i E I} in E* converg-
ing to x* in the strong topology, and a bounded net {Xi 1 i E I} in E
(with the same partially ordered index set I) converging to x** in the
weak** topology, such that

xi E (T + oj)(xi), Vi E I .
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It is readily verified that S is a monotone operator. (The boundedness
of the nets {Xi liE I} enters in here.) Moreover

(3.4) S(x*) ~ a(f + j)*(x*), vx* E E* ,

by (3.3) and Proposition 1. Since a(f + j)* is a maximal monotone
operator, equality must actually hold in (3.4). This shows that one
has X E a(f + JO)*(x*) whenever x E E and x E S(x*), hence in particular
whenever x* E (T + aj)(x). On the other hand, one always has
x* E a(f + j)(x) if x E a(f + j)*(x*) and x E E. (This follows from
applying (2.2) and (2.4) to f + j in place of f.) Thus one has
x* E o(f + j)(x) if x* E (T + aj)(x), implying by (3.3) and (3.1) that

(3.5) T(x) + oj(x) = of (x) + oj(x), v» E E .

We shall show now from (3.5) that actually

T(x) = of (x) , Vx E E ,

so that of must be a maximal monotone operator as claimed. Suppose
that x E E is such that the inclusion in (3.2) is proper. This will lead
to a contradiction. Since af(x) is a weak" closed convex subset of E*,
there must exist some point of T(x) which can be separated strictly
from af(x) be a weak" closed hyperplane. Thus, for a certain y E E,
we have

sup {<y, x*) I x* E T(x)} > sup {<y, x*) I x* E af(x)} •

But then

sup Ky, z*) I z* E T(x) + oj(x)}
= sup {<y, x*) I x* E T(x)} + sup {<y, u"> I y* E aj(x)}
> sup {<y, x*) I x* E af(x)} + sup Ky, s"> I y* E oj(x)}
= sup Ky, z*) I z* E af(x) + oj(x)} ,

inasmuch as oj(x) is a nonempty bounded set, and this inequality is
incompatible with (3.5).

Proof of Theorem. B. Let g be a lower semi continuous proper
convex function on E such that

(3.6) og(x) ~ af(x), Vx E E •

As noted at the beginning of the proof Theorem 3 of (4], to prove
Theorem B it suffices, in view of Theorem 1 of [4] and its Corollary
2, to demonstrate that g = f + const.

We consider first the case where f and g are everywhere finite
and continuous. Then, for each x E E, af(x) is a nonempty weak*
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compact set, and

(3.7) f'(x; u) = max {<u, x*> I x* E of (x)} , Vu E E ,

where

f'(x; u) = lim [j(x + A.u) - f(x)]/X,
no

[3, p. 65]. Similarly, ag(x) is a nonempty weak* compact set, and

(3.8) g'(x; u) = max {<u, x*> I x* E ag(x)}, Vu E E •

It follows from (3.6), (3.7) and (3.8) that

(3.9) f'(x; u) ~ g'(x; u), v » E E, Vu E E •

On the other hand, for any x E E and Y E E, we have

f(y) - f(x) = ~:f'«l - A.)x + A.y; Y - x)dA. ,

g(y) - g(x) = ~:g'«l - A.)x + A.y; y - x)dA.

(see [6, § 24]), so that by (3.9) we have

f(y) - f(x) ~ g(y) - g(x), v» E E, VyE E •

Of course, the latter can hold only if g = f + const.
In the general case, we observe from (3.6) that

ag(x) + aj(x) :::J af(x) + aj(x), Vx E E ,

and consequently

a(g + j)(x) :::J a(f + J")(X), Vx E E ,

by (3.1)(and its counterpart for g). This implies by Proposition 1 that

(3.10) a(g + j)*(x*) :::J a(f + j)*(x*), Vx*E E* •

The functions (f + j)* and (g + j)* are finite and continuous on E*,
so we may conclude from (3.10) and the case already considered that

(g + j)* = (f + j)* + a

for a certain real constant a. Taking conjugates, we then have

(3.11) (g + j)** = (f + j)** - a .

Since (g + j)** and (f + j)** agree on E with g + i and f + i, re-
spectively, (3.11) implies that

g+i=f+i-a,
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and hence that g = f + const.

REMARK.

fiexive, since
and a(f + j),
case, S may
Theorem A.

The preceding proofs become much simpler if E is re-
then af* and a(f + j)* are just the "inverses" of of
respectively, and Proposition 1 is superfluous. In this
be replaced by the inverse of T + oj in the proof of
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