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LOCAL BOUNDEDNESS OF NONLINEAR,
MONOTONE OPERATORS

R. T. Rockafellar

1. INTRODUCTION

Let X denote a locally convex Hausdorff (topological vector) space over tae
reals R. Let X* denote the dual of X, and write < x, x*) in place of x*(x) for
x E X and x* E X*.

A multivalued mapping T: X --+ X* is called a monotone operator if

(1.1) < x - y, x* - y* > 2: 0

whenever x* E T'(x) and y* E T(y). It is called a maximal monotone operator if, in
addition, the graph of T, in other words, the set

(1.2) {(x, x*)1 x= E T(x)} C X x X*,

is not properly contained in the graph of any other monotone operator T': X --+ X*.
It is said to be locally bounded at x if there exists a neighborhood U of x such that
the set

(1.3) T(U) = U {T(y)1 y E U}

is an equicontinuous subset of X*. (Of course, if X is a Banach space, then the
equicontinuous subsets of X* coincide with the bounded subsets.)

In the case where X is a Banach space, it follows from a result of T. Kato [7]
that a monotone operator T: X --+ X* is locally bounded at a point x if x is an in-
terior point of the set

(1.4) D(T) = {x E x] T(xh" ¢}

and T is locally hemibounded at x (in other words, for each u E X there exists an
£ > 0 such that the set

U {T(x+>tu)1 0'::; >t'::;e ]

is equicontinuous in X*). Moreover, Kato showed in [6] that the assumption of local
hemiboundedness is redundant when X is finite-dimensional.

In this note, we establish the following more general result, which implies, among
other things, that the assumption of local hemiboundedness is redundant even when X
is an infinite-dimensional Banach space. (The abbreviations conv, int, and cl denote
convex hull, interior, and (strong) closure, respectively.)
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THEOREM 1. Let X be a Banach space, and let T: X -+ X* be a maximal
monotone operator. Suppose either that

(1.5) int (conv D(T» *- 0

or that X is reflexive and there exists a point of D(T) at which T is locally
bounded. Then int D(T) is a nonempty convex set whose closure is cl D(T).
Furthermore, T is locally bounded at each point of int D(T), whereas T is not lo-
cally bounded at any boundary point of D(T).

We shall prove Theorem 1 and its corollaries in Section 3.

The following corollary corresponds to the result of Kato [7] that a single-valued,
monotone operator T on an open subset of a Banach space X is demicontinuous if it
is hemicontinuous.

COROLLARY 1.1. Suppose the hypothesis of Theorem 1 is satisfied, and let DO
denote the subset of D(T) where T is single-valued. Then Do C int D(T), and T is
demicontinuous on Do, in other words, continuous as a single-valued mapping from
Do in the strong topology to X* in the ioeak" topology.

The convexity assertion of Theorem 1 is also worth noting. We have shown else-
where [11] that if X is a reflexive Banach space and T: X -+ X* is a maximal mono-
tone operator, then cl D(T) is a convex set. In fact, if X is also separable, then
D(T) itself is a virtually convex set, in the sense that for each relatively (strongly)
compact subset K of conv D(T) and each E > 0 there exists a strongly continuous
mapping p of K into D(T) such that IIp(x) - x II~ E for every x E K. In this con-
text, Theorem 1 contributes a condition under which D(T) is virtually convex even
though X may not be reflexive.

COROLLARY 1.2. Under the hypothesis of Theorem 1, D(T) is virtually convex,
and in particular cl D(T) is convex. If in addition D(T) is dense in X; then D(T)
must be all of X.

When X is reflexive, we can apply Theorem 1 to the maximal monotone operator
T-1, where

(1.6) . T -I(x*) = {x I x* E T(x)} .

Since D(T -I) is the same as the range of T, that is, the set

(1.7) R(T) = U{T(x)lxEX},

one can obtain various corollaries concerning the range of T.

COROLLARY 1.3. Let X be a reflexive Banach space, and let T: X -+ X* be a
maximal monotone operator. Then 0 E int R(T) if and only if 0 E cl R(T) and there
exist positive numbers O! and E such that

(1.8) Ilxll ~ O! => Ilx*11~ E (V x* E T(x».

COROLLARY 1.4. Let X be a reflexive Banach space, and let T: X -+ X* be a
maximal monotone operator. Suppose there exists 'a subset B C X such that

o E int (conv T(B» .

Then there exists an x E X such that 0 E T(x).
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COROLLARY 1.5. Let X be a reflexive Banach space, and let T: X -> X* be a
monotone operator (not necessarily maximal). Suppose there exist X{ E: T(xi)
(i = 1, 2, ... ) such that

lim IIxiii = 00

i-+ 00

and lim 11< - x*11
i-+oo

o.

Then x* is a boundary point of R(T).

COROLLARY 1.6. Let X be a reflexive Banach space, and let T: X -> X* be a
maximal monotone operator. In order that R(T) be all of x*, it is necessary and
sufficient that the sequence xi, xt ... have no strongly convergent subsequence
whenever X{ E T(xi) (I == 1, 2, ... ) and lim IIxdl == 00.

i-+oo

We remark that according to [11, Corollary 1 to Theorem 2], the condition
o E: cl R(T) in Corollary 1.3 is equivalent to the nonexistence of a u E X and a o' > 0
such that <u, x=> .:::;-0 for every x* E R(T).

Corollary 1.4 is a generalization of the main existence theorem of G. J. Minty
[8], which requires that the unit ball of X is smooth and that, in effect,

o E: int (conv T O(B»,

where To is some mapping with the properties that T o(x) C T(x) for every x and

sup sup < x, x* > < 00

xE: B X*E: T a (x)

The necessary and sufficient condition in Corollary 1.6 is satisfied, in particular,
if the following condition is satisfied:

if X{ E T(Xi) (i == 1, 2, ... ) and lim Ilxdl
i-+oo

00, then Iim IIX{II
i~oo

00

(The two conditions are equivalent, of course, when X is finite-dimensional.) Under
the additional assumption that X is uniformly convex and X* is strictly convex, F.
Browder [4, Theorem 4] established that the latter condition is sufficient for R(T) to
be all of X*.

In the case where T is the subdifferential of a lower-semicontinuous, proper
convex function f on X (see [10], [12]), Theorem 1 reduces to known results (see
[1], [9]), provided int (conv D(T» is nonempty; but the fact that the local bounded-
ness of T at some point of D(T) implies the nonemptiness of int (conv D(T» has not
been pointed out previously. (Theorem 1 gives this implication only for reflexive X,
but reflexivity is used in the roof only to ensure that cl D(T) is convex, and the
latter is true for subdifferential mappings even 1 IS a nonreflexive Banach space
[3].)
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2. GENERAL BOUNDEDNESS THEOREM

Theorem 1will be deduced from a broader result, which is applicable even when
X is not a Banach space.

THEOREM 2. Let X be a locally convex (real) Hausdorff space, and let
T: X --> X* be a maximal monotone operator. Suppose there exist a subset S C D(T)
and an equicontinuous subset A c X* such that T(x) meets A for every XES and
one of the following two conditions holds:

(a) int (cl S) *- 0,
(b) int (cl (conv S» *- 0 and sup sup I < x, x* > I < 00.

xESx*EA

Then int D(T) is a nonempty , open, convex set whose closure is cl D(T). Further-
more, T is locally bounded at each point of int D{T), whereas T is not locally
bounded at any boundary point of D(T).

In proving Theorem 2, we shall use three lemmas.

LEMMA 1. Let X be a locally convex Hausdorff space, and let T: X --> X* be a
monotone operator. Let B be an equicontinuous subset of X*. Then, for every
x E X, there exists an x* E X* such that

< u - x, u* - x* > ? 0 (V u E X, V u* E T(u) n B).

Proof. Give X* the weak* topology. Then B is a relatively compact subset of
X*, and the dual of X* can be identified with X. Let S be the restriction of T-1 to
B; thus

S(u*) = {u E x] u* E T(u)}

if u* E B, while S(u*) = ¢ if u* fj B. Then S is a monotone operator from X* to X
with D(S) C B. According to the theorem of H. Debrunner and P. Flor [5], there
exists for every x E X an x* E X* such that

( u - x, u* - x* > ? 0 (V u* E B, VUE S(u*».

The latter relation is identical to the one in the lemma, in view of the definition of S.

COROLLARY. Let X be a locally convex Hausdorff space, and let T: X --> X* be
a maximal monotone operator. If T is globally bounded, in other words, if R(T) is
an equicontinuous subset of X*, then D(T) is all of X.

LEMMA 2. Let X be a locally convex Hausdorff space, and let T: X --> X* be a
maximal monotone operator. Then, for each weak <closed, equicontinuous subset B
of X*, the set

T-1(B) = {x] B n T(x) *- ¢}

is closed in X.

Proof. Let y E cl T-l (B). For each neighborhood U of y, the intersection
T(U) n B is nonempty; denote the weak* closure of this intersection by Bu. Since
B is weak*-closed and equicontinuous, each Bjj is weak*-compact. The collection
of sets Bu, as U ranges over all neighborhoods U of y, has the property that every
finite subcollection has a nonempty intersection, and hence this collection as a whole
has a nonempty intersection. Thus there exists some y* E B such that y* belongs
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to the weak* closure of T(U) for every neighborhood U of y. We shall show that the
latter implies that y* E T(y), and this will prove the lemma.

Consider any u E X and u* E T(u). For each c > 0, we can find a neighborhood
U of y and a weak* neighborhood U* of y* such that

(2.1) I < x - s, u* > I < c (VXEU),

(2.2) 1< u - v, x* - y* > I ~ s, (V x* E U*), and

(2.3) I < x - v, x* > I < c (V x E U, V x* E B).

-(Condition (2.3) can be met, because B is equicontinuous.) Let x* be an element of
the set T(U) n U* n B, which is nonempty by the choice of y*. Let x be an element
of U such that x* E T(x). The monotonictty of T gives the relation

(u - x u* - x*) > 0, - ,
and hence

<u - y, u* - y* >
(2.4)

< u - x, u* - x*) + < x - y, u* >
+ < u - Y, x* - y* > - < x - y, x*) 2: 0 - c - c - c -se .

Since (2.4) holds for arbitrary c > 0, we must have that

(2.5) (u - s, u* - y* > 2: o.
Furthermore, inequality (2.5) holds for each U E X and u* E T(u). Therefore the
maximality of T implies that y* E T(y).

LEMMA 3. Let X be a locally convex Hausdorff space, and let T: X -+ X* be a
maximal monotone operator. Suppose that cl (conv D(T» has a nonempty interior
and that x is a point of D(T) not belonging to this interior. Then the set T(x) con-
tains at least one half-line (and consequently T(x) is not equicontinuous).

Proof. Since x is a boundary point of cl (conv D(T», which is a closed, convex
set with a nonempty interior, there exists a supporting hyperplane to cl (conv D(T»
at x. Thus there exists a y* E X* (y* '" 0) such that

(2.6) < x, y*) 2: < u, y*) (VUE D(T».

Let x* be an element of T(x). By (2.6) and the monotonicity of T, each vector
x* + AY* (A2 0) satisfies the condition

(2.7)
< u - x, u* - (x* + AY*» = < u - x, u* - x* ) + x < x - u, y*) 2: 0

(V u E D(T), V u* E T(u».

Since T is maximal, (2.7) implies that x* + '\y* E T(x). Thus T(x) contains the
half-line

{x*+,\y*l,\ 2: o}.

Proof of Theorem 2. If condition (a) holds for S, then condition (b) holds for
So' = S n a A? ' where a is a sufficiently large, positive number and A? is the polar
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of Al = A U (-A). (Since A] is equicontinuous, A? is a neighborhood of the origin in
X.) Thus it suffices to prove the theorem with condition (b).

Condition (b) implies in particular that cl (conv D(T)) has a nonempty interior.
Let x be a point in this interior. We shall prove that T is locally bounded at' x and
that x E D(T). This will establish Theorem 2 except for the assertion that T is not
locally bounded at boundary points of D(T).

We deal first with the case where

(2.8) X E int (cl (conv S)).

For each equicontinuous subset B of X*, we let TB(X) denote the set of all
x* E x* such that

(2.9) < u - x, u* - x*) ~ 0 ('r/ u E X, 'r/ u= E T(u) n B) .

By Lemma 1 and the monotonicity of T, we have that

(2.10) ('r/x E X).

Note that TB(x) is always a weak*-closed set, since by definition it is the intersec-
tion of a certain collection of weak*-closed half-spaces in X*.

To prove that T is locally bounded at X, we consider the mapping TB: x -+ TB(x)
in the case where B = A. Choose a convex neighborhood V of the origin in X such
that

(2.11) x + 2V c cl (conv S),

as is possible by (2.8). Let

(2.12) /1 = sup sup I < x, u*) I .
XES U*EA

(Note that /1 is finite by hypothesis.) For each u= E A, the closed, convex set

contains S, and hence it contains cl (conv S). Thus (2.12) actually implies the in-
equality

(2.13) I < x, u* > I ~ /1 ('r/ x E cl (conv S), 'r/ u= E A).

Select an x E (x + V) and an x* E TA(X). Relations (2.11) and (2.13) imply that

< u - x, x* > ~ < u - x, u*) ~ 1< u, u* > I + I < x, u*) I ~ 2/1 ,

for every u E Sand u* E T(u) n A. Thus S c {u 1< u - x, x*> ~ 2/1}, and it follows
that

x + V c X + 2V c cl (conv S) c {u I < u - x, x* > ~ 2/1} .

Therefore <v, x*) ~ 2/1 for every v E V; hence

x* E (2/1 + I)VO ,
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where VO, the polar of a neighborhood of the origin in X, is an equicontinuous sub-
set of X*. Since x was any element of x + V and x= was any element of TA(X), we
may conclude from (2.10) that

T(x+V) = U {T(x)1 x E (x+V)}

c U {TA(x)1 x E (x+ V)} C (2M + OVO.

Thus T(x + V) is equicontinuous, and by definition T is locally bounded at x.

To show that in fact x E D(T), we consider the collection of all the (nonernpty,
weak*-closed) sets TB(x), where B is an equicontinuous subset of X* containing A.
This collection has the property that every finite subcollection has a nonempty inter-
section. Moreover, every TB(X) inthe collection is contained in TA(x), which is
equicontinuous (and hence weak*-compact) according to the preceding paragraph.
The collection therefore has a nonempty intersection. Let x* be an element in the
intersection. By the definition of the sets TB(X), we must have that •

< u - x, u* - x* > 2: 0 (Vu EX, Vu* E T(u».

But T is a maximal monotone operator, so this implies x* E T(x). Thus T(x) *- ¢
and x E D(T).

We deal now with the general case where x is an interior point of cl (conv D(T»,
not necessarily satisfying (2.8). We shall reduce this case to the previous case by
demonstrating the existence of a subset S' C D(T) and an equicontinuous subset
A' C X* such that T(x) meets A' for every XES I, condition (b) holds, and

(2.14) X E int (cl (conv SI».

According to the argument already given, D(T) contains a nonempty, open set on
which T is locally bounded, namely the interior of cl (conv S). Thus there exists a
nonernpty, open, convex set We D(T) such that T(W) is equicontinuous. Let

E = UF int (conv (W U F»,

where the union is taken over all finite subsets F of D(T). Then E is a nonempty,
open, convex set whose closure contains D(T). It follows that

int (cl (conv D(T») C int (cl E) = E,

and hence that x E E. Thus there exist elements xl, ... , xn of D(T) such that

(2.15) X E int(conv(WU {Xl, ... , Xn}».

Choose an arbitrary x7 E T(x) (i = 1, .", n), and let

A' = T(W) U {x1, "', x~} .

Then AI is equicontinuous. Since W is convex, relation (2.15) implies the existence
of an Xo E W such that

X E int(conv(U U {Xl' "', xn}»,
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for every neighborhood U of xo. Take U to be a neighborhood of xo, contained in
W, on which the linear functionals in A' are uniformly bounded, and let

S' = U U {xl' "', xn} C D(T).

Then (2.14) is satisfied, T(x) meets A' for every XES', and condition (0) holds for
S' and A' as desired.

The proof of Theorem 2 will be complete as soon as we demonstrate that T is
not locally bounded at any boundary point of D(T). Let y be a boundary point, and
suppose that U is a neighborhood of y such that T(U) is equicontinuous. _We shall
derive a contradiction. Let B be the weak* closure of T(U). According to Lemma
2, T-I(B) is closed. Since

D(T) n U C T-I(B) C D(T)

and y E cl D(T), it follows that actually y E D(T). Now y rI int D(T), and we have
shown above that

int D(T) = int (conv D(T» "* 0.

Lemma 3 then implies that T(y) is not an equicontinuous set, contrary to the as-
sumption that T(U) is equicontinuous. This proves Theorem 2.

COROLLARY 2.1. Let X be a locally convex Hausdorff space, and let
T: X --> X* be a maximal monotone operator. Suppose there exists an
x E int (cl D(T» such that T is locally bounded at x. Then the conclusions of
Theorem 2 hold.

Proof. Let U be a neighborhood of x, contained in cl D(T), such that T(U) is an
equicontinuous subset of X*. Then the sets S = U n D(T) and A = T(U) satisfy the
hypothesis of Theorem 2.

COROLLARY 2.2. Let X be a locally convex Hausdorff space, and let
T: X --> X* be a monotone operator (not necessarily maximal). Let C be an open
subset of cl D(T). If T is locally bounded at some point of C, then T is locally
bounded at every point of C.

Proof. By Zorn's Lemma, there exists a maximal monotone operator
T': X --> X* such that T' (x) :=l T(x) for every x. Let U be a nonernpty, open subset
of C such that T(U) is an equicontinuous subset of X*. Then S = U n D(T) and
A = T(U) satisfy the hypothesis of Theorem 2, with T' in place of T. It follows that
T' is locally bounded on the interior of cl D(T'). In particular, T is locally bounded
throughout C.

Remark. Corollary 2.2 is the analogue for monotone operators ofa familiar re-
sult about convex functions: if f is a real-valued, convex function on an open, con-
vex subset C of X, and if f is continuous at some point of C, then f is continuous at
every point of C. For the connection between these results in the case of subdiffer-
ential mappings, see a result of J. J. Moreau [9, p. 79] and its formulation as Theo-
rem 2 of [1].

COROLLARY 2.3. Let X be a locally convex, reflexive Hausdorff space, and let
T: X --> X* be a maximal monotone operator. Suppose there exists a bounded subset
A of X such that one of the following two conditions holds:

(a) 0 E int (cl T(A»,
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(b) for some S C T(A), one has 0 E int (cl (conv S» and

sup sup I (x, x* ) I < 00 •

xE A X*E S

Then there exists an x E X such that 0 E T(x).

Proof. Apply Theorem 2 to T-l. Since X is reflexive, the bounded subsets of
X are equicontinuous subsets of X**.

3. PROOFS OF THEOREM 1 AND ITS COROLLARIES'

Proof of Theorem 1. We consider first the case where the set

C = int (conv D(T»

is nonempty. For each positive integer n, let Sn denote the set of all x E D(T) such

that Ilxll ~ n and T(x) contains an x* with Ilx*11~ n. Since D(T) = U:=l Sn' we
have the inclusion

00

(3.1) C c U conv Sn.
n=l

. Of course C, being a nonernpty, open, convex subset of a Banach space, is of the
second Baire category. The sets C n conv Sn therefore cannot all be nowhere-
dense. Thus

int(cl(conv Sn» '* 0

for some n. The sets S = Sn and

A = {x* E x*lllx*11 .:s; n ]

then satisfy the hypothesis of Theorem 2, and the conclusion of Theorem 1 follows.

Next we consider the case where X is reflexive and T is locally bounded at
some point of D(T). In this case, there exists an open, convex set U, meeting D(T),
such that T(U) is norm-bounded in X*. If U c D(T), the hypothesis of Theorem 2
is satisfied and the conclusions of Theorem 1 again follow. Suppose therefore that U
is not included in D(T). Then U contains a boundary point of D(T). We shall show
that this is impossible.

Let B be the weak* closure of T(U). By Lemma 2, T -l(B) is closed. We have
that

un D(T) c T -l(B) C D(T),

and this implies the inclusion

cl [u n D(T)] c D(T).

Therefore

(3.2) un D(T) u n er D(T),



406 R.T.ROCKAFELLAR

in other words, every boundary point of D(T) in U belongs to D(T). Since X is a
reflexive Banach space and T is a maximal monotone operator, cl D(T) is a convex
set (Rockafellar [11, Theorem 2]); hence the set of points where cl D(T) has a sup-
porting hyperplane is dense in the boundary of cl D(T) (E. Bishop and R. RvPhelps
[2, Theorem 1]). Since U contains a boundary point of D(T), it follows from (3.2)
that U actually contains a point x E D(T) such that cl D(T) has a supporting hyper-
plane at x, in other words, such that (2.6) holds for some nonzero y* E X*. The
argument given to prove Lemma 3 now implies that T(x) is unbounded, contrary to
the assumption that T(U) is bounded. This completes the proof of Theorem 1.

Proof of Corollary 1.1. Since int D(T) = int (conv D(T)) *- 0 by Theorem 1, Lem-
ma 3 implies that T(x) is an unbounded set for each x E D(T) \ int D(T). Therefore
Do C int D(T), and, by Theorem 1, T is locally bounded at each point of Do. Let Xo
be a point of Do, and let x~ be the unique element of T(xo). Let U be a neighbor-
hood of Xo such that T(U) is equicontinuous, and let U* be some weak*-open neigh-
borhood of Xb. Let B be the intersection of the weak* closure of T(U) with the
complement of U* in X*. Thus B is a weak*-closed, equicontinuous set, so that
T-1(B) is closed by Lemma 2. If there did not exist a neighborhood W Of Xo such
that T(W) C U*, then T-1 (B) would meet every neighborhood W of xo. This would
imply that Xo E T-1(B), contrary to the fact that T(xo) contains no element of B.
Thus T(W) C U* for some neighborhood W of xO. This shows, in particular, that
the restriction of T to Do is strong-to-weak continuous at Xo.

Proof of Corollary 1.2. Every set containing the interior of its convex hull is
virtually convex-see the proof of the lemma in [11]. According to Theorem 1, we
have that

cl D(T) = cl (int D(T)),

where int D(T) is convex. Thus

int (cl D(T)) int D(T),

and if cl D(T) = X, it follows that

X = int D(T) C D(T).

Proof of Corollary 1.3. Applying Theorem 1 to T-1, we obtain that
o E int D(T-1) if and only if 0 E cl D(T-1) and T-1 is locally bounded at O. The
latter means that there exist positive numbers a and £ such that IIx II< a when-
ever x E T-1(x*) and Ilx*11< e ,

Proof of Corollary 1.4. Since T(B) C R(T) = D(T -1), the corollary follows im-
mediately from applying Theorem 1 to T-1 .

Proof of Corollary 1.5. Because Xi E T-1(x{) for every i, the set T-1(U) is a
nonernpty, unbounded subset of X for every neighborhood U of x* in X*. Thus x*
belongs to the closure of D(T-l), but T-1 is not locally bounded at x*. By Zorn's
Lemma, there exists a maximal monotone operator S: X* --> X such that
S(y*):;) T-1(y*) for every y* E X*. This operator S cannot be locally bounded at
x*, and hence Theorem 1 implies that x* ¢ int D(S) and, in particular, that
x* ¢ int D(T -1). Thus x* is a boundary point of D(T -1) = R(T).

Proof of Corollary 1.6. The stated condition means that T -1 is locally bounded
at every point of X*. By Theorem 1 (applied to T -1), this is equivalent to D(T -1)
being an open, convex subset of X* with no boundary points, and the only such non-
empty subset is X* itself.
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